
Maxime Charlebois Using Mercurial and/or Git

Using Mercurial and/or Git
Maxime Charlebois

Sherbrooke
December 2017

Contents

1 Introduction to mercurial and git 1

2 Hello world 2

3 Growing Bigger 3

4 Coming back 3

5 Merge 3

6 Ignore some files 4

7 Remote Repository 4

8 Useful links 5

1 Introduction to mercurial and git

Most systems already have mercurial (hg) and git preinstalled. If not, you will need to install them. For
example, on Ubuntu 16.04:

$ sudo apt install mercurial

$ sudo apt install git

or on MacOs:

$ brew install mercurial

$ brew install git

In this document, we use “$” sign to indicate the terminal prompt.

The goal of mercurial or git is the same: providing a way to structure the code development. The philosophy
is to keep a working version, called changeset or commit, of the source code directory at every stage in the
development.

Every changeset (or commit) is like a snapshot of the directory (and subdirectories) of the repository. At
any point in time after a commit, you can come back to the state of the directory at the time of the commit.
If done correctly, this means that you can compile or run any old version of your code. It is very useful for
bug tracking, software development alone or in a team and to archive your progress. The advantages are
multiple, but let just say that it is essential if you want to work in software development in the future.

1



Maxime Charlebois Using Mercurial and/or Git

2 Hello world

In this document, you can choose either left or right column to choose between the hg or git approach.

Both programs are pretty similar in the end. Only the most useful commands will be covered here. I suggest
that you choose one of the two program and stick with it for the tutorial. You can check both program, but
I suggest that you never use both in the same repository.

The first step is to create a new empty directory and move in this new directory. To create a new repository
there, type:

$ hg init $ git init

There you have it, a fresh new repository with nothing in it. Now create a new file named “hello” with
any text editor (like vi), write the word “world” in it and save it. You can now add this new file to the
repository:

$ hg add hello $ git add hello

It means that this newly created file will now be tracked by your local repository. Note that adding a file is
not a commit in itself. It just means that it will start to be tracked in the new commit. To see what are the
changes to be committed, do:

$ hg status $ git status

The information is similar. It should tell you which file have been added (modified or deleted) and which
file are still not added. To commit the actual state of the directory to the repository, you now need to do
a commit. But first, since you most likely never used mercurial or git, you need to configure the name and
email, so that the changeset can identify who is the commiter:

$ hg config --edit $ git config --global --edit

This will edit .hgrc or .gitconfig file in your home directory. Note that you can edit them directly with
your prefered text editor. In these files, you need to provide at least your name and email using the following
syntax:

[ui]

username = myName <my@email.com>

[user]

email = my@email.com

name = myName

Once this configuration detail is set, you can commit do your first commit:

$ hg commit -m "My first commit." $ git commit -am "My first commit."

The option “-m” is needed to specify a message associated to the first commit. It is essential to write a
message corresponding to the changeset you want to commit, in order to be able to find yourself afterward.
It also implies to a certain extent that there is a good commit philosophy: you want to commit a program
that run or compile ideally (unless specified in the commit message) and you want to commit every small
change and not wait until you have a lot of them.

2



Maxime Charlebois Using Mercurial and/or Git

3 Growing Bigger

Now modify the committed file and create 2 new dummy files with a dummy text in it. Add them to the
repository and commit the change. To add every files, you can simply do:

$ hg add $ git add --all

Once you have more than one changeset, you can look at your history using

$ hg log -G $ git log --graph --all --decorate

This will list every changeset with their information (number, name of the commiter, message). The option
“--graph” will plot the tree of every commit and their relation on the left of the list. For now it is quite a
simple tree: it is supposed to be a line. But it can be more complex and have multiple branches over time.
Let us try to explore this.

4 Coming back

If you are not satisfied with your new changeset and want to go back to the first commit, type:

$ hg update <commit number> $ git checkout <commit number>

The commit number can be obtained from the task “log”, for example. Choose the commit number of the
first commit and go back to this version. Doing so, you can see that you now only have one file in your
directory: the one present at your first commit. The other files are not forgotten, you can come back to them
if you update (checkout) to your most recent commit number.

But before coming back to the most recent commit: let us stay in the first commit. We want to create a new
branch here. Type:

$ hg bookmark newBranch $ git checkout -b newBranch

Create and add a new dummy file and commit this new changeset in the current branch. This will create a
new branch. If you print the “log”, you can see that there are now two branches with two heads. You can
migrate from one branch to another using the commit number. Repeating this exercise, you can see that
there can be an arbitrary number of branches.

5 Merge

Now that you have two branches, perhaps you would like to merge them. This happens a lot when collaborat-
ing with other developers. If you want to update the master branch with this newBranch, update (checkout)
the repository to the master branch. Then, to merge, type:

$ hg merge newBranch $ git merge newBranch

3



Maxime Charlebois Using Mercurial and/or Git

In mercurial, you will need to commit this merge as for git, the merge include a commit. Note that this
merge is very simple to do because we created files with different names. Hence, the merge only corresponds
to include (copy) all the files in the current branch.

In the case where the same file has been edited differently between two branches, you will need to merge the
same file. This is possible to do in command line, with help of vimdiff, but this is out of the scope of the
present document. The user can refer to:

https://www.mercurial-scm.org/wiki/MergingWithVim

http://www.rosipov.com/blog/use-vimdiff-as-git-mergetool/

for more information.

6 Ignore some files

Most of the time, you want to track plain text file only. Indeed, the “diff” tools and the changeset work
best with ascii file. You could in principle track binaries or “.pdf” files, but as soon as you change them,
the whole file will be different and the repository will conserve a whole copy of the file(s). The memory size
of your repository will grow exponentially. This is to be avoided in general. So you must identify which file
need or not to be tracked. Create for example the file “a.out” (a typical binary generated with gcc). If you
look at the task “status”, you see that the repository does not know what to do with the file in the next
commit. If you want to ignore it completly in the future, edit the file “.hgignore” or “.gitignore” in the
root directory of the repository. Write:

syntax: glob

a.out

*.o

a.out

*.o

Both “ignore” file has the same function here. It will always ignore a.out and any file that ends with “.o”
(object files for example). This means that the task “status” will not complain or see them. So you will be
able to commit new changeset without having to worry about them as they will not be tracked. It is a good
practice to check any file to ignore before any call of the task “add”.

7 Remote Repository

A good practice is to create a remote repository on a hosting facility like BitBucket for example. One can
even host his own remote repository, as long as you have a valid address for your repository. If you go to
BitBucket and follow the information there, you can create an account. Once this is done, you can create a
new repository. Since we already have a repository here, we will upload it on BitBucket. Click on “I have an
existing project” and follow the indication (copy the address it gives you). Then go in your local repository
and type:

$ hg push <address of repository> $ git push <address of repository>

If later you want to download the new changes pushed on this remote repository (if you work on more than
one computer or with other programmer for example), you need to pull:

4

https://www.mercurial-scm.org/wiki/MergingWithVim
http://www.rosipov.com/blog/use-vimdiff-as-git-mergetool/


Maxime Charlebois Using Mercurial and/or Git

$ hg pull $ git pull

Finally, if you want to import a remote project locally and you have nothing yet on your computer, you need
to clone a repository.

$ hg clone <address of repository> $ git clone <address of repository>

It is usually the first command that someone learn, but let us conclude on this.

8 Useful links

Only the most basic stuff have been covered by this tutorial. It is much more powerful, but with these
command, you can deal with the most basic situation. Here is some link to different command translation
between mercurial and git:

https://github.com/sympy/sympy/wiki/Git-hg-rosetta-stone

https://confluence.atlassian.com/get-started-with-bitbucket/git-and-mercurial-commands-860009656.

html

5

https://github.com/sympy/sympy/wiki/Git-hg-rosetta-stone
https://confluence.atlassian.com/get-started-with-bitbucket/git-and-mercurial-commands-860009656.html
https://confluence.atlassian.com/get-started-with-bitbucket/git-and-mercurial-commands-860009656.html

	Introduction to mercurial and git
	Hello world
	Growing Bigger
	Coming back
	Merge
	Ignore some files
	Remote Repository
	Useful links

