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Sommaire

Des travaux théoriques récents ont démontré la présence de textures de spin et orbitales

cachées dans des matériaux non-magnétiques qui présentent une symétrie d’inversion.

Quelques expériences ont déjà été faites pour les faire apparaître, mais toutes brisent la

symétrie d’inversion avec une surface. Ici, on propose que ces textures peuvent être détectées

dans le volume avec la résonance magnétique nucléaire (RMN) sous un champ électrique.

Dans les cristaux avec ces polarisations, un champ électrique uniforme produit, aux sites

atomiques reliés par l’inversion spatiale, un champ magnétique qui pointe dans des direc-

tions opposées. Comme résultat, le signal de résonance qui correspond à ces sites est divisé

en deux. La grandeur de cet effet de dédoublement est proportionnelle au champ électrique

et dépend de son orientation par rapport aux axes du cristal et au champ magnétique externe.

Comme étude de cas, on présent une théorie du dédoublement du signal de la RMN sous

un champ électrique pour 77Se, 125Te et 209Bi dans Bi2Se3 et Bi2Te3. Dans des échantillons

conducteurs soumis à une densité de courant de � 106 A/cm2, ce dédoublement pour Bi

peut atteindre 100 kHz, ce qui est comparable ou même plus grand que la largeur intrinsèque

du signal. Pour observer cet effet dans les expériences, ce dédoublement doit aussi surpasser

la largeur produite par le champ d’Ørsted. Dans Bi2Se3, cela demande des fils étroits avec

des rayons � 1 μm. En outre, on discute d’autres matériaux prometteurs, comme SrRuO3 et

BaIr2Ge2, dont les symétries permettent d’utiliser des stratégies pour supprimer la largeur

produite par le champ d’Ørsted. Finalement, on discute les projets futurs sur ce sujet, notam-

ment deux projets qui sont en train d’être développés et qui sont motivés par des expériences.

Mots clés: Polarisation de spin, résonance magnétique nucléaire, réponse linéaire, matéri-

aux centrosymétriques, modèle de liaisons fortes, groupes de symétries.
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Introduction

In non-magnetic materials with inversion symmetry, all electronic bands are at least two-fold

degenerate. Until recently, it was believed that this degeneracy would prohibit any spin

polarization of bands. This view has been dispelled through the discovery that degenerate

Bloch states can have nonzero spin[1] and orbital[2] polarizations when projected to real-

space positions whose local symmetry lacks an inversion center.

These spin and orbital polarizations are “hidden” in two ways. First, they take opposite

directions in atoms related by spatial inversion, such that the average of spin or orbital

texture over a unit cell vanishes. This is a consequence of the global inversion symmetry

in the crystal. Second, upon summing over occupied states in the first Brillouin zone, the

momentum-space polarizations add to zero. In other words, these polarizations are hidden

both in real and momentum space. However, the existence of nonzero magnetic textures

allows us to search for techniques to visualize them. To this date, all the experimental

techniques [3, 4, 5] have focused on breaking the global inversion symmetry of the crystal

with a surface. Therefore, by using surface-sensitive probes we have access to the spin

textures in momentum space and thus it could be possible to reveal them. There is however

a substantial problem in this approach pointed out by the authors of Ref. [6]. Using surfaces

that inherently break the inversion symmetry renders the access to the bulk states unreliable.

Therefore, in this mémoire we develop a theory of nuclear magnetic resonance (NMR) under

an electric field as a bulk probe of the hidden polarizations. Through this approach, there

is no explicit inversion symmetry breaking, and we propose to reveal these textures by

inducing a real-space staggered magnetization within each unit cell of the crystal.

The idea that electric fields can induce real-space spin textures has attracted significant

interest in spintronics in general and in the development of new magnetic memory devices

in particular [7]. For example, the hidden spin polarization enables to write information in

antiferromagnetic memory devices using electric fields. The use of NMR in the detection and

characterization of hidden polarizations could bring this powerful experimental technique

1



2

closer to spintronics applications.

In chapter 1, we introduce and find out the explicit representations of the most important

symmetries that render these textures hidden in a crystal: time reversal and inversion. We

then explain what the hidden spin and orbital textures mean in our context. Lastly, we revise

some group-theory concepts that help us understand more of the symmetries of any crystal

– to finally explore the symmetries of Bi2Se3 and Bi2Te3 , which will be the systems under

study in the following chapters.

Knowing what the hidden polarizations mean, in chapter 2 we revise the necessary

theory of NMR. First, we go over the most important concepts in an NMR experiment for

our context – namely the resonance frequencies and the interactions of nuclei with electrons.

Armed with these concepts, we tackle the linear response formalism that we need to calculate

the magnetic field induced in a nucleus when an electric field is turned on, by polarizing

the electrons. The application of an electric field in a conducting material induces a current,

which brings itself some complications that we evaluate at the end of the chapter.

In chapter 3, we apply the previous idea to a physical system: the Bi2Se3 and Bi2Te3

crystals. We apply an existing tight-binding model for these crystals to express the Bloch

states in these basis. It is then a matter of plugging our states in the linear response theory

developed in the previous chapter to evaluate the magnetic field that will generate a peak-

splitting in the NMR experiments. We present our results and the evaluation of the possible

complications that could arise in actual experiments. At the end of this chapter, we propose

some solutions that could help us improve the experimental setup for the discovery of the

hidden polarizations.

Having explored a physical system where we showed the possible use of NMR to probe

our effect, we explore in chapter 4 the possible research avenues in the foreseeable future.

First, we consider the possible application of the resonance frequency control by a current

in spin qubits in silicon. By using the same ideas, we basically apply the formalism that we

know in a silicon crystal. Secondly, we examine the possibility to have a converse effect, in

which a magnetic perturbation could induce a hidden electrical response that is localized and

compensates within a unit cell. Finally, we give our insights and conclusions of the problem

and on the appendices some additional results and symmetry arguments are presented.



Chapter 1

Hidden electronic polarizations in

centrosymmetric materials

From the perspective of an electron wandering in vacuum, materials can be regarded as

things that break the continuous translational symmetry of space. In particular, crystals

break this symmetry while bringing however a discrete translational symmetry due to the

periodic arrangement of atoms. Considering the scales in the usual problems, and if we are

looking at bulk properties of the material, this periodicity can be thought to be infinite. Let

us then consider a Hamiltonian for non-interacting electrons in a crystal, which will for now

only include the potential due to the atomic sites and the kinetic energy of these electrons.

Ĥ = ∑
i

p̂2
i

2me
+ V(r̂i), (1.1)

where p̂i is the canonical momentum operator for electron i, V(r̂i) is the potential that it

feels at its position ri and me is the mass of the electron.

3
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1.1 Bloch Theorem

This atomic potential has a spatial dependence, but we can exploit its periodicity. Let us

introduce the discrete translation operator T̂(a) that transforms r �→ r + a. This operator

acts on quantum states |ψ′〉 = T̂(a) |ψ〉. In analogy of the classic counterpart, we want that

the expectation value of the position operator in this new state gets changed by a,

〈
ψ′∣∣ r̂

∣∣ψ′〉 = 〈ψ| T̂†(a)r̂T̂(a) |ψ〉 = 〈ψ| r̂ + a1̂ |ψ〉 , (1.2)

with the normalization condition 〈ψ′|ψ′〉 = 〈ψ|ψ〉 implying that the translation operator is

unitary, T̂†(a)T̂(a) = 1̂. From eq. (1.2) and the unitary condition, we find that

[
r̂, T̂(a)

]
= aT̂(a). (1.3)

From this commutation relation, we find that if |r〉 is the eigenstate of the position operator

r̂,

r̂T̂(a) |r〉 = T̂(a)r̂ |r〉+ aT̂(a) |r〉 = (r + a)T̂(a) |r〉 . (1.4)

This means that T̂(a) |r〉 is an eigenstate of the position operator with eigenvalue (r + a).
In other words, T̂(a) |r〉 = |r + a〉. This lets us find the effect of the adjoint operator on

position eigenstates,

T̂†(a)T̂(a) |r〉 = T̂†(a) |r + a〉 = |r〉 .

That is,

T̂†(a) |r〉 = |r − a〉 =⇒ 〈r| T̂(a) = 〈r − a| ,

from which we can see that T̂(a) is not a Hermitian operator since T̂†(a) = T̂(−a).

Now let us apply this operator on the Schrödinger equation of eigenvalues H |ψ〉 = ε |ψ〉
with the Hamiltonian from eq. (1.1). It is easy to prove that our translation operator commutes

with the Hamiltonian. Looking at the periodic potential,

T̂†(a)V(r)T̂(r) = V(r + a) = V(r), (1.5)

we see the Hamiltonian will commute with the operator provided a translation commutes

with the momentum operator. The fact that it does can be intuitively seen from the translation

symmetry ↔ conservation of momentum. Mathematically, the translation operator can

actually be expressed as,

T̂(a) = exp
(
− i

h̄
p̂ · a

)
, (1.6)
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where p̂ is the momentum operator. This way the Hamiltonian clearly commutes with the

finite translation operator. Now we can use the commutation relation,
[
T̂(a), Ĥ

]
= 0 to

construct a common eigenbasis for these two operators.

Ĥ |ψk〉 = Ek |ψk〉 (1.7a)

T̂(a) |ψk〉 = (
1
pk

) |ψk〉 . (1.7b)

Here k is the quantum number that labels the states in the common eigenbasis. Using

the periodic boundary conditions for the system, it is easy to prove that pk = eik·a where

k = 2π
L (nx, ny, nz) (where we have used a cubic crystal of side L, and ni is an integer). Thus

we have,

T̂(a) |ψk〉 = e−ik·a |ψk〉 . (1.8)

Or, in real space,

ψk(r + a) = eik·aψk(r). (1.9)

This last equation is known as the Bloch theorem. The eigenstates |ψk〉 of the Hamiltonian,

if we consider spin (and for now
[
σ̂z, Ĥ

]
= 0), can also be expressed as

〈r|k, σ〉 = ψk,σ(r) = eik·ruk,σ(r). (1.10)

The resulting Bloch states differ from a plane wave solution only by a periodic modulation

uk(r) that posseses the same period as the crystalline potential. In general, a dispersion

relation En(k) will usually define a set of “energy bands”: for a fixed k, we will have many

different possible values for the eigenenergies due to internal degrees of freedom. These

bands are thus labeled with the band index n and the Bloch states are denoted as |k, n〉.
These solutions can also reproduce “energy gaps”: energy intervals for which there are

no states allowed. In Fig. (3.1), we see an example of this for the Bi2Se3 crystal, obtained

through a tight-binding approximation.

1.2 Band degeneracy

No matter what approximations we do in our system to obtain the previous bands, the

symmetries of the crystal have profound implications on the eigenenergies and eigenstates

of any Hamiltonian that can hope to represent the system. For now, we will drop the hats

over the operators to lighten the notation, and we will come back to them when needed. Let
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Figure 1.1 Band structure of Bi2Se3 as calculated with a tight-binding Hamiltonian. We see the
energy dispersion relation as a function of different directions in k-space. Around
E(k) = 0 we see a band gap. Taken from [8].

S be a symmetry of our single-particle Hamiltonian H. Mathematically, we mean that the

operator representation of this symmetry commutes with the Hamiltonian,

[H, S] = 0.

In the context of statistical mechanics, we say S is a symmetry of the system when it commutes

with the density matrix [ρ, S] = 0. The symmetry S is in general unitary or antiunitary, and

we will see examples of this in this section. To extract information from the existence of a

symmetry, we analyse what is the “action” on observables of the system. Thermal averages

of an observable O will not change when computed in a different basis obtained from

applying the symmetry S. Because of the commutation with the density matrix, we can let

the symmetry operations act on operators instead of on the basis functions, as in

〈O〉 = Tr
[
ρO]

= Tr
[
SρS−1O]

= Tr
[
ρS−1OS

]
,

where we have used the cyclic property of the trace. Therefore, we get the important result

that given S a symmetry, the thermal average of the transformed operator is the same as the
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non-transformed, 〈
S−1OS

〉
= 〈O〉 . (1.11)

We can thus look at what is the signature of the operator under the action of the symmetry.

Throughout the rest of this chapter, we will focus on two basic symmetries that render

every energy band of a non-magnetic crystal at least two-fold degenerate: inversion and

time-reversal symmetries.

1.2.1 Inversion symmetry

In vectorial spaces, the parity operator is usually defined as the operator that flips a spatial

coordinate. Throughout the rest of this mémoire, we will denote our parity operator as Π,

which will flip all three spatial coordinates x̂, ŷ and ẑ and is usually called an inversion

operation. Let us look at the effect of the inversion operation on certain observables.

Let us assume we know that our system is in a quantum state |ψ〉. Let us then apply the

parity operator on this state Π |ψ〉 = |ψ′〉. Evidently, we will ask that the norm is conserved,

〈ψ|ψ〉 = 〈ψ′|ψ′〉 = 〈ψ|Π†Π |ψ〉. Therefore, parity is a unitary operator,

Π†Π = 1. (1.12)

Furthermore, we will ask by the very nature of the operator that flipping the flipped state

takes us back to the original state (up to a phase factor), Π |ψ′〉 = |ψ〉. In other words, that

Π2 = 1̂. Then, eq. (1.12) and this last condition impy

Π†ΠΠ = Π

Π† = Π. (1.13)

And thus the parity operator is Hermitian. Therefore, if we project a state onto real space,

ψ(−r) = 〈−r|ψ〉 = 〈r|Π |ψ〉 = 〈
r
∣∣ψ′〉

= ψ′(r).

Therefore: 〈
ψ′∣∣ r̂

∣∣ψ′〉 = − 〈ψ| r̂ |ψ〉 ,

where r̂ is the position operator. Finally, we have that

Π†r̂Π = −r̂. (1.14)
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When an observable changes sign under the action of a symmetry operation, we say that

that observable is odd under that symmetry transformation. Therefore, position is odd under

inversion, which could have been expected by the very definition of position. Now, another

observable that we could be interested in is linear momentum p̂. The position representation

of momentum is p̂ = −ih̄∇, where ∇ is the usual first-order differential operator. Because

of this, it is easy to show that momentum is also odd under inversion.

Π† p̂Π = −p̂. (1.15)

In general, any vector that changes sign under inversion will be denoted as polar vectors or

real vectors. These include quantities such as: velocity, electric field, current density or the

electromagnetic vector potential.

Nevertheless, there exists another class of observables that are even under inversion, they

do not change sign under inversion. The most standard example is the angular momentum

of a particle. This can easily be seen by the classical definition of angular momentum L,

L = r × p. (1.16)

Since both r and p are polar vectors, they both will change sign under inversion, which

means L will not. This in turn means that the parity operator and a given component i of the

angular momentum operator commute,
[
Π, Li

]
= 0. In quantum mechanics, any angular

momentum operator such as spin Ŝ, orbital L̂, or general Ĵ angular momenta, will be even

under inversion.

Let us turn our attention towards the translation operator T(a). The action of inversion

on this operator can be obtained from eq. (1.6),

Π†T(a)Π = Π† exp
(
− i

h̄
p̂ · a

)
Π = exp

(
i
h̄

p̂ · a
)
= T†(a), (1.17)

which implies that commutation leads to,

ΠT(a) = T†(a)Π.

If we take the Bloch states (that are eigenstates of the translation operator) and start from

this last equation,

ΠT(a) |ψk〉 = Πe−ik·a |ψk〉 = e−ik·aΠ |ψk〉 = T†(a)Π |ψk〉 .
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Remembering that T†(a) = T(−a),

T(a)Π |ψk〉 = eik·aΠ |ψk〉 . (1.18)

We find out that Π |ψk〉 is an eigenstate of the translation operator with eigenvalue eik·a.

Let us finally turn our attention at the Hamiltonian. We remember, from eq. (1.1), that the

crystalline potential is the one that includes all symmetries. This means that, if V(−r̂) = V(r̂),

Π†HΠ = H, (1.19)

because Π† p̂2Π = p̂2. We will refer to the fact that there exists a point in space from

which V(−r̂) = V(r̂) as the system being centrosymmetric. As we have seen, this means

that the Hamiltonian commutes with parity,
[
Π,H]

= 0, and so parity is a symmetry of

the Hamiltonian. Let us consider then the implication of the existence of this inversion

symmetry on the eigenstates of H. Let |k, σ〉 be the simultaneous eigenstate of the Bloch

Hamiltonian eq. (1.1) and the translation operator T(a). Then,

HΠ |k, σ〉 = ΠEk,σ |k, σ〉 .

This finally means in other words that Π |k, σ〉 is then a simultaneous eigenstate of H, with

eigenvalue Ek,σ; and of T(a), with eigenvalue eik·a. We observe that T(a) |k, σ〉 = e−ik·a |k, σ〉,
just as in eq. (1.18), and thus,

Π |k, σ〉 = |−k, σ〉
with eigenvalue E−k,σ for the Hamiltonian. Now that we know what is the action of inversion

on our Bloch states, we find that the energies for a given σ at opposite k have to be the same,

Ek,σ = E−k,σ. (1.20)

1.2.2 Time-reversal operator

Time-reversal symmetry is a stranger kind of symmetry. The idea is that whatever the

description of a system, by reversing time t → −t, an observer should not be able to tell the

difference in the description of the dynamical system. In the quantum case, we describe our

system by the Schrödinger equation, in the case where we are not considering spin,

Hψ(t) = ih̄
∂

∂t
ψ(t), (1.21)
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where H is a time-independent Hamiltonian. If we reverse time, ψ(−t) would not be a

solution due to the first derivative respect to time. However, if we complex conjugate,

Hψ∗(t) = −ih̄
∂

∂t
ψ∗(t),

then reversing time would render ψ∗(−t) a solution of the Schrödinger equation. The time-

reversal state will be defined as Θψ(t) = ψ∗(−t), where Θ is the time-reversal operator.

This means that for the case with no spin, the time reversal operator consists of just taking

the complex conjugate to the right. This last remark is important when dealing with de Dirac

notation due to the fact that we are dealing with complex conjugation. This means that for

now we will express Θ as the complex conjugation to the right
�
K. In general, time-reversal

is an antiunitary operator. This means it is an antilinear and unitary operator. The action of

an antilinear operator Θ on a linear combination is different than the one of a normal, linear

unitary one,

Θ(a |ψ〉+ b |γ〉) = a∗Θ |ψ〉+ b∗Θ |γ〉 , (1.22)

where ∗ denotes complex conjugation of the coefficients. We see that
�
K complies with

antilinearity and we ask that the norm is preserved. We note that under time reversal any

arbitrary matrix element preserves its norm but not its phase:

〈ψ| ←K
�
K |γ〉 = 〈γ|ψ〉 �= 〈ψ|γ〉 .

For now, time reversal is only about taking the complex conjugate. However, when we

consider spin, we would like that it transforms under time-reversal just like any angular

momentum. In other words, if we look at the classical orbital angular momentum L = r × p,

when we reverse time, L → −L since r does not change and p does. Using for now that Θ
takes complex conjugate to the right, we can see the fact that p changes sign from either

the quantum case Θ(−ih̄∇) = (ih̄∇)Θ; or a classical case, in which p = mv, and thus by

reversing time, Θp = −pΘ.

To find the explicit expression of Θ when it acts on spin states, let us express it as complex

conjugation times a unitary transformation U, preserving its anti-unitary nature. Let us now

compute expectation values of an operator O in times-reversed states.

〈ψ|U†
←KO

�
KU |γ〉 = ( 〈ψ|U†

←K)
(
�
KO∗U |γ〉)

= (〈ψ|U†O∗U |γ〉)∗
= 〈γ|U†O†∗U |ψ〉 ,

where O†∗ = OT is just the transpose. We have then shown that computing expectation
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values with time-reversed states is equivalent to computing equilibrium traces of U†OTU
in the normal basis. Therefore, by imposing the action on spin σ,

U†σTU = −σ (1.23)

we will find the explicit form of U that will depend on the choice of basis for spin. Using

Pauli matrices we find that

U†σxU = −σx

U†(−σy)U = −σy

U†σzU = −σz.

These equations plus the Pauli matrices properties imply that the form of the unitary

transformation follows U = eiδσy, and thus,

Θ =
�
Keiδσy, (1.24)

where δ is an arbitrary real phase. Then let us find the time-reversed spin states.

Θ |↑〉 = −ie−iδ |↓〉 (1.25a)

Θ |↓〉 = ie−iδ |↑〉 , (1.25b)

where |σ〉 are the eigenstates of the quantized z-projection of spin. Choosing e−iδ = i to make

the phase factor real, we see that reversing time changes up-spin to down-spin and viceversa.

Moreover, we get the “strange” result that ΘΘ |↑〉 = − |↑〉. This stems from the general

antiunitary property of the time-reversal operator Θ2 = −1 that applies to half-integer

spins.

1.2.3 Kramers theorem

Let us consider our time-reversal-invariant Hamiltonian H, eq. (1.1). Using then [Θ,H] =

0 and [Θ, T(a)] = 0, the time-reversal state |ψ̃k〉 = Θ |ψk〉 is also an eigenstate of the

Hamiltonian with the same energy Ek. However,

T(a) |ψ̃k〉 = ΘT(a) |ψk〉 = Θ(e−ik·a |ψk〉) = eik·aΘ |ψk〉 = eik·a |ψ̃k〉 (1.26)

tells us that Θ |ψk〉 = |ψ̃k〉 coincides with |ψ−k〉, whose Hamiltonian eigenvalue is E−k.

Therefore, ignoring spin for now, the time-reversal symmetry tells us that the Bloch states
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|ψ−k〉 and |ψk〉 are degenerate, and thus,

Ek = E−k. (1.27)

Let us consider eigenstates |σ〉 of the 1/2 electronic spin σz-operator. The full Bloch states

will just be a tensor product |k, σ〉 = |k〉 ⊗ |σ〉. Using the last result along with eqs. (1.25),

HΘ |k, σ〉 = ΘH |k, σ〉 = ΘEk,σ |k, σ〉 = Ek,σ |−k,−σ〉 . (1.28)

This tells us that

1. Θ |k, σ〉 → |−k,−σ〉 is an eigenstate of H with eigenvalue Ek,σ.

2. However, |−k,−σ〉 is by construction an eigenstate of H with eigenvalue E−k,−σ.

We do not use the equal sign because it is equal modulo a global phase factor, as can be

verified from eq. (1.25). This last equation implies that Ek,σ = E−k,−σ. But most importantly

Θ |k, σ〉 and |k, σ〉 are truly different states. In fact, they are orthogonal states, which can be

proven easily given the antiunitary nature of the time-reversal operator. These two facts are

the content of the Kramers theorem.

1.2.4 Double degeneracy

We have proven that when the system respects inversion and time-reversal symmetries, and

spin is a good quantum number,

1. Ek,σ = E−k,σ .

2. Ek,σ = E−k,−σ .

In consequence, for every k, there are two associated eigenstates that render every band

doubly degenerate: Ek,σ = Ek,−σ.

This holds true even in the presence of spin-orbit interaction. The origin of spin-orbit

interactions in crystals arises from the spatial dependence of the crystal potential. This

generates an effective electric field that electrons in the crystal feel. This in turn means

that the electron feels an effective magnetic field in its rest frame. To calculate this effect,

it is necessary to consider the relativistic contributions to the Schrödinger equation. In
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other words, we have to start from the Dirac equation. When one does this, an additional

contribution to the single-electron Hamiltonian appears, eq. (1.1),

H =
p2

2me
+ V(r) +

h̄
4m2

e c2 σ · (∇V × p), (1.29)

where c is the speed of light. The relative strength of the spin orbit coupling will be deter-

mined by the magnitude of |∇V|, that depends on the atomic details of the crystal. To see

how this additional term can be explicitly an interaction between spin and orbital degrees

of freedom, let us consider a Hydrogen-like atom potential. This means that

h̄
4m2

e c2 σ · (∇V × p) =
Ze2

2m2
e c2r3 S · (r × p)

= λ(r)S · L,

where S = h̄
2 σ. The numerical details of the spin-orbit interaction are included in λ(r). We

note however that the orbital angular momentum operator L would be ill-defined for an

infinite arrangement of atoms, since it depends on the choice of origin. This critical detail is

discussed in the models to follow.

The new SOC Hamiltonian, eq. (1.29), is still time-reversal invariant and inversion invari-

ant. The former can be seen from the fact that both the spin and momentum operator are

odd under time reversal, and the latter because the potential gradient and the momentum

operator are both odd under inversion symmetry. The presence of both symmetries still

protects the at-least double degeneracy of bands everywhere in reciprocal space, but now

there are no pure spin-states due to the L · S term.

1.3 Hidden spin polarization

We have seen what is the action of the time-reversal and inversion operation on degenerate

Bloch states,

Π |k, n〉 → |−k, n〉 (1.30a)

Θ |k, m〉 → |−k, n〉 , (1.30b)

where m �= n ∈ {1, 2} are the two bands that live in this degenerate band subspace. This

means that, given the composition of symmetries ΘΠ |k, 1〉 = eiδ |k, 2〉, we can evaluate the
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expectation value of the spin operator in this degenerate subspace at a particular value of k,

Sk = ∑
n′∈deg{n}

〈
k, n′∣∣ σ

2

∣∣k, n′〉 = 〈k, 1| (ΘΠ)† σ

2
(ΘΠ) |k, 1〉+ 〈k, 2| (ΘΠ)† σ

2
(ΘΠ) |k, 2〉

= 〈k, 2| σ

2
|k, 2〉+ 〈k, 2| (−σ

2
) |k, 2〉

= 0

for all wavevectors k. For the first band, we acted the symmetry operations on the states and

on the second one we acted them on the spin operator. It is important to take the expectation

value over the two bands because of their degeneracy.

The possible study of spin polarization on centrosymmetric crystals has been overlooked

due to this last equation. In a recent paper [1], however, it is suggested that by looking at

real-space projected sectors of the spin operator we could find a non-zero expectation value

for positions other than the inversion center. Mathematically, if we look at the expectation

value over the two bands of

Ŝ(r) =
σ

2
|r〉〈r| , (1.31)

then, we get,

Sk(r) = ∑
n′∈deg{n}

〈
k, n′∣∣ Ŝ(r)

∣∣k, n′〉
= 〈k, 1| (ΘΠ)†Ŝ(r)(ΘΠ) |k, 1〉+ 〈k, 2| (ΘΠ)†Ŝ(r)(ΘΠ) |k, 2〉
= 〈k, 2| Ŝ(r) |k, 2〉 − 〈k, 2| Ŝ(−r) |k, 2〉 ,

which is in general non-zero. We have come back to the hat notation to differentiate between

operators and expectation values. This Sk(r) �= 0 is what we call the hidden spin polarization,

and we will see the reason why it is hidden.

The inversion operator acts on the real-space projection and gives us the projection of

spin at the inverted position relative to the inversion center. This has two main consequences,

due to inversion and time-reversal symmetries, respectively:

Sk(r) = Sk(−r) for all k. (1.32a)

Sk(r) = S−k(r) for all r. (1.32b)

This leads to a hidden spin polarization in both reciprocal and real space:

1. Sk =
∫

d3r Sk(r) = 0 (no spin texture).
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2. m(r) = ∑k Sk(r) fk = 0 (no local magnetic moment).

Where fk is the Fermi-Dirac distribution. The local magnetic moment is a quantity we

define that depends on both Sk(r) and the population of states at wavevector k. If we could

change this population to give certain states k close to the Fermi energy more weight than

others, we could drive this magnetic moment m(r) to a non-zero value. One way to do

this is using an external electric field. This could lead to a nonzero local magnetization

that is otherwise compensated within a unit cell due to eqs. (1.32). Therefore, there is no

macroscopic magnetization. However, there could still be a nonzero staggered magnetization

within a unit cell,

m(r) = −m(−r), (1.33)

which constitutes an effective magnetoelectric effect that could be potentially used for

spintronics applications. In the following chapter we propose nuclear magnetic resonance as

a potential new probe for this effect. Before we come to that, we discuss the orbital electronic

polarization that is a consequence of a local inversion symmetry breaking.

1.4 Inversion-symmetry breaking

In the previous section, we have discussed how the presence of time-reversal symmetry

precludes the appearance of crystal magnetization and, together with inversion symmetry,

protects the double degeneracy of bands everywhere, in particular in relation to electronic

spin. However, there is a known effect that appears at the surfaces of crystals, where the

inversion symmetry is explicitly broken. This phenomenon is known as Rashba effect. This

effect describes the spin-splitting of bands at certain positions in the Brillouin zone due

to the spin-orbit interaction, and is due to Rashba in a series of 2 papers in 1959 [9]. The

well-known effect features a chiral spin texture of the surface bands that can be exploited to

develop technological devices in the context of spintronics [7]. This chiral spin texture is

observed as well on the spin-polarized surface states of topological insulators [10]. In 2012,

it was shown that there is an orbital texture present when inversion symmetry is broken at a

surface, and thus the conventional Rashba effect is just a consquence of this when spin-orbit

interactions are important [11]. In this section, we develop one of the calculations presented

in ref. [11] to show how inversion-symmetry breaking leads to a non-zero orbital angular

momentum. This will be important in the following section when we treat site-symmetry

groups that do not contain inversion.
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We leap to second quantization notation, in which we introduce fermion creation (and

annihilation) operators c†
n (cn), where n is a collection of quantum numbers that label states

that stem from our single-particle Hamiltonian. Thus c†
n (cn) creates (annihilates) an electronic

state |n〉. Therefore, operators act on quantum states that live in the Fock space, which is

the direct sum of Hilbert spaces of 1, 2, ..., n number of particles. Of course, our number of

particles n is conserved and thus there always has to be the same number of creation and

annihilation operators. Working on this occupation representation lets us treat the many-

body state and operators more intuitively. The creation and annihilation operators follow

fermionic anticommutation relations,

{
cn, c†

n′
}
= δn,n′ {cn, cn′ } =

{
c†

n, c†
n′
}
= 0.

In this notation, it is easier to understand the tight-binding Hamiltonian. This approach

introduces the full Hamiltonian H, and particularly the crystal potential V(r), through a

series of hopping terms that can be understood as energy costs (or gains) for electrons to go

from one lattice site to another. This approximation is born from considering the electrons

to be tightly bound to their respective sites – thus its name. It is somewhat the opposite

approach of the one usually seen in undergraduate courses, known as nearly-free electron

Hamiltonian. A typical tight-binding Hamiltonian in the second-quantization notation looks

like

H = ∑
〈i,j〉

∑
μ′,μ

(ti,j
μ,μ′c†

i,μcj,μ′ + tj,i
μ′,μc†

j,μ′ci,μ), (1.34)

where i �= j are lattice site indices, 〈i, j〉 indicates that the sum is allowed to be nonzero if

i, j are nearest neighbours and μ, μ′ hide all the internal degrees of freedom such as orbital

or spin angular momenta. The t terms are the “hopping” integrals that contain all the

information about the kinetic terms and the crystal potential,

ti,j
μ,μ′ = 〈i, μ| H

∣∣j, μ′〉 . (1.35)

Finally, as described above, ci,μ(c†
i,μ) is the annihilation (creation) operator of electron at site i

and with internal degrees of freedom μ. The standard way to diagonalize this Hamiltonian

is by expanding these real-space operators in terms of momentum-space operators,

ci,μ =
1√
N

∑
k

eik·ri ck,μ, (1.36)

where N is the number of sites and k is the wavevector. Since we have seen that k is a good

quantum number that diagonalizes the Hamiltonian, we see that indeed our tight-binding
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Hamiltonian is diagonal in this basis,

H =
1
N ∑

μ,μ′
∑
〈i,j〉

∑
k,k′

tj,i
μ′,μeik·ri e−ik′·rj c†

k,μ′ck′,μ + h.c., (1.37)

where h.c denotes the Hermitian conjugate of the previous expression. Since i and j are

nearest neighbours, we can express rj = ri + ni,j and express the sum over i and j as a sum

over i and the nearest neigbours of i. Let us then perform the sum over i by remembering

that
1
N ∑

i
ei(k−k′)·ri = δk′,k (1.38)

and the fact that the hopping amplitude does not really depend on the label site i, but will

depend on the nearest neighbour positions. We have therefore

H = ∑
k

∑
μ,μ′

∑
n

tn
μ′,μe−ik·nc†

k,μ′ck,μ + h.c. (1.39)

Our tight-binding Hamiltonian is diagonal in k. The matrix elements tn
μ′,μ = 〈μ| H |μ′〉 will

give us all the physics.

1.4.1 Angular dependence of the orbital hopping

So why does the hopping amplitude depend on the nearest neighbour label? We will be

handling a basis of local atomic orbitals, and in general there can be a directional hopping if

the orbitals that we are using have a non-uniform spatial dependence. The minimal orbital

basis set that contains nontrivial orbital information is the basis for l = 1. We will expand

the atomic orbital eigenstates in terms of real px, py and pz orbitals. So how do the hopping

amplitudes look like? We use Slater-Koster parameters [12] for the angular dependence of

the hopping. The system that we are interested in lies in a surface, and thus our Hamiltonian

describes a two-dimensional lattice of atoms. For the moment, we go back to the i, j notation,

〈px,i| H
∣∣px,j

〉
= −V1 cos2(θij) + V2 sin2(θij) (1.40a)

〈px,i| H
∣∣py,j

〉
=

〈
py,i

∣∣ H
∣∣px,j

〉
= (V2 − V1) cos

(
θij
)

sin
(
θij
)

(1.40b)〈
py,i

∣∣ H
∣∣py,j

〉
= −V1 sin2(θij) + V2 cos2(θij) (1.40c)

〈pz,i| H
∣∣pz,j

〉
= V2, (1.40d)
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where, remembering that we are in two dimensions,

(cos
(
θij
)
, sin

(
θij
)
) = (xij, yij)/

√
x2

ij + y2
ij (1.41)

are the directional cosine and sine of the vector that goes from atom i to j.

We note that in the literature there exists another label for the p-orbital hopping ampli-

tude basis V1 and V2, which are ppσ = −V1 and ppπ = −V2. For more information about

where these terms come from, we refer to Ref. [13].

Now, if the 2D system were isolated, there would be a zero hopping from px and py to

the pz orbital, due to inversion symmetry. That is, there would be an equally large overlap

of a px or py lobe with the positive and negative pz lobe, resulting in zero total overlap. To

introduce the breaking of inversion symmetry by a real surface, the authors of Ref. [11] (and,

originally, those from Ref. [14]), consider a finite hopping between the surface orbitals and

the pz orbital,

〈pz,i| H
∣∣px,j

〉
=

3
2

γ cos
(
θij
)
= − 〈px,i| H

∣∣pz,j
〉

(1.42a)

〈pz,i| H
∣∣py,j

〉
=

3
2

γ sin
(
θij
)
= − 〈

py,i
∣∣ H

∣∣pz,j
〉

, (1.42b)

where γ will be a measure of inversion-symmetry breaking. Since θij is the angle that the

vector �n (which lives in the x − y plane) forms with the x-axis, we confirm the angular

dependence of this hopping.

1.4.2 Spinless, matrix Hamiltonian on a square lattice

For the following problem, we will neglect the spin degree of freedom, and thus orbital

angular momentum is a good atomic quantum number. We will use a square lattice, so we

can perform the sum over nearest neighbours more easily. Therefore, using eqs. 1.40, we see

for example that

∑
n

t�npx ,py
eik·n = 0, (1.43)

since for this hopping, we have the product cos(θ) sin(θ), which is zero for our nearest

neighbours that sit on a square lattice: θ ∈ {0, π/2, π, 3π/2}. Performing all the sums like
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this one, we get a matrix Hamiltonian of the form:

H =

∑
k

c†
k

⎛
⎜⎜⎜⎜⎜⎝

2(V2 cos
(
ky
)− V1 cos(kx)) 0 −3γi sin(kx)

0 2(V2 cos(kx)− V1 cos
(
ky
)
) −3γi sin

(
ky
)

3γi sin(kx) 3γi sin
(
ky
)

2V2(cos(kx) + cos
(
ky
)
)

⎞
⎟⎟⎟⎟⎟⎠ ck,

where we are expressing the creation and annihilation operators as spinors.

ck =

⎛
⎜⎜⎜⎜⎜⎝

px,k

py,k

pz,k

⎞
⎟⎟⎟⎟⎟⎠ =

1√
N

∑
i

e−ik·ri

⎛
⎜⎜⎜⎜⎜⎝

px,i

py,i

pz,i

⎞
⎟⎟⎟⎟⎟⎠ (1.44)

and pl,i is an annihilation operator of a p orbital (l ∈ {x, y, z}) at site i.

In the hopes of having analytic expressions for the bands, let us consider the low energy

spectrum, ka � 1 (a = 1)

HΓ = ∑
�k

c†
k

⎛
⎜⎜⎜⎜⎜⎝

2(V2 − V1) 0 −3γikx

0 2(V2 − V1) −3γiky

3γikx 3γiky 4V2

⎞
⎟⎟⎟⎟⎟⎠ ck, (1.45)

where HΓ is the Hamiltonian around k = Γ. Diagonalizing this Hamiltonian gives us the

following eigenenergies:

E1(k) = 2(V2 − V1) (1.46a)

E2(k) = 2(V2 − V1)− 9γ2k2

2Δ
(1.46b)

E3(k) = 4V2 +
9γ2k2

2Δ
, (1.46c)

where k = |k|, Δ = V1 + V2 and we have used the fact that γk � Δ. We note that if γ = 0,

band 1 and 2 would be degenerate, which we can see from the matrix Hamiltonian. The
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eigenvectors are

|k, 1〉 = ky

k
|px〉 − kx

k
∣∣py

〉
(1.47a)

|k, 2〉 = kx

k
|px〉+ ky

k
∣∣py

〉− 3iγk
2Δ

|pz〉 (1.47b)

|k, 3〉 = |pz〉 − 3iγk
2Δ

(
kx

k
|px〉+ ky

k
∣∣py

〉
). (1.47c)

1.4.3 Calculating orbital angular momentum

As we know, the orbital angular momentum depends critically on the choice of origin,

and renders computations ill-defined when studying an infinite crystal that has a discrete

translational symmetry. However, we can define an average Orbital Angular Momentum that

is translationally invariant and which is defined from the atomic orbital angular momentum

operators. Here we show that, for certain bands, we obtain a nonzero expectation value for

this operator that is expressed as

L =
1
N ∑

i
Li. (1.48)

Li is the atomic orbital angular momentum operator with the origin at the atomic site ri. For

band 2, for example,

〈k, 2| L |k, 2〉 = (
kx

k
〈px|+ ky

k
〈

py
∣∣+ 3iγk

2Δ
〈pz|)L(

kx

k
|px〉+ ky

k
∣∣py

〉− 3iγk
2Δ

|pz〉). (1.49)

We remember that the operator Li acts on real orbitals and in real space. The matrix repre-

sentation in the basis of real p orbitals for the atomic OAM operator is

Lx = −ih̄

⎛
⎜⎜⎜⎜⎜⎝

0 0 0

0 0 1

0 −1 0

⎞
⎟⎟⎟⎟⎟⎠ , Ly = −ih̄

⎛
⎜⎜⎜⎜⎜⎝

0 0 −1

0 0 0

1 0 0

⎞
⎟⎟⎟⎟⎟⎠ , Lz = −ih̄

⎛
⎜⎜⎜⎜⎜⎝

0 1 0

−1 0 0

0 0 0

⎞
⎟⎟⎟⎟⎟⎠ ,

(1.50)

and hereafter h̄ = 1. We find a non-zero chiral OAM for two of the bands, and we visualize

it through L+ = Lx + iLy,

〈k, 2| L+ |k, 2〉 = 3iγ
Δ

(kx + iky) = − 〈k, 3| L+ |k, 3〉 . (1.51)
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And finally band 1 shows no OAM 〈k, 1| L+ |k, 1〉 = 0 . We can draw some conclusions from

this calculation:

• The net OAM is zero for all k in the Brillouin zone: ∑n 〈k, n| L |k, n〉 = 0. This reminds

us of the hidden polarization related to spin: there is a band orbital polarization that is

compensated by another band.

• The OAM is proportional to the inversion-symmetry breaking term: if there was no

inversion-symmetry breaking, there would not be any individual band polarization.

• In the case of small spin-orbit coupling, we can perturbatively include spin and see

that a “hidden” non-zero spin angular momentum arises and it is a direct consequence

of OAM [11, 2]. One recovers exactly the Rashba-type spin splitting as induced by

spin-orbit interaction.

In our main calculations for the orbital degree of freedom, we will exploit our knowledge of

the hidden spin polarization and the fact that there is an individual band OAM texture to

look at a “real-space projection” of the orbital currents. This will lead to a non-zero orbital

polarization of electrons that will have an influence on the nuclear magnetic resonance

spectrum.

1.5 Crystallographic space and point groups

In the previous section, we have seen that a local inversion symmetry breaking, that happens

for example at a surface, can lead to both a nonzero orbital and spin angular momentum

across bands. This is the essential ingredient of the hidden electronic polarizations that

we will study in this mémoire. In this section, we introduce the notion of the classification

of crystals as a function of the discrete symmetries present in their structures. To do this,

we look at the symmetries of the unit cell: the minimal repeating unit that contains all

the symmetries of the full crystal. We remember that the unit cell is a unit such that by

applying the translational unit vectors we can reproduce the whole crystal. The symmetry

transformations that render a lattice unchanged form a group. A set of elements + an

operation (that we will call product for conveniency) form a group when 4 characteristics

happen [15]:

1. The product of any two elements of the group is itself an element of the group.
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2. The elements of the group associate.

3. There exists an identity E that leaves any other element invariant under the product.

4. For every element A of the group, there exists an inverse B such that AB = BA = E.

When we talk about crystals, we will always refer to symmetry groups.

1.5.1 Point groups

Excluding translation, there are three fundamental types of spatial symmetry transforma-

tions that can leave a given lattice point within a unit cell invariant: rotations, reflections

across mirror planes and inversion. A point group of a crystal is the group of all symmetry

operations that leave at least one point invariant. This includes the composition of them, as

stated in item 1 of the definition of group. There exist 32 possible 3D point groups that can

be found in any standard group theory book. If a point group contains inversion, we will call

it a centrosymmetric crystal. There exist 11 centrosymmetric point groups, and this mémoire

centers on them.

1.5.2 Space groups

However, the unit cell of a crystal can be quite complicated and contains many types of

inequivalent sites inside, such as physically different atoms or sites that cannot be related by

a symmetry transformation of the crystal, and thus change the properties of the Hamiltonian.

As such, to physically classify a 3D crystal, we refer to the crystallographic space group. In

the definition of these groups, we admit the use of translation operations. We can thus restore

the full symmetry of the crystal that is described in the single-electron Bloch Hamiltonian eq.

(1.1), which is invariant under lattice vector translations. Space group symmetry operations

have the following usual notation

{Rα|τ},

where Rα is a point-group operation (rotation, reflection, inversion or a composition of them)

and τ is a pure translation operation. Pure rotations and pure translations are special cases

of space group operations: {Rα|0} and {0|τ}, respectively. Additionally, we can define the

product of space group operations as separately treating point groups and translations,

{Rα|τ}{Rβ|η} = {RαRβ|τ + η}.
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This last definition lets us study the two possible types of compound operations: glide planes

({σ|τ}) and screw axis ({Cn|τ}). In simpler words, the former is a reflection across a mirror

plane (denoted by σ) followed by a translation contained in the same plane and the latter is

a rotation of 2π
n around an axis followed by a translation along the same axis. As we can see,

by admitting translations (this includes translations of a fraction of the unit cell vectors!)

we expand the possible combinations that can describe real crystals. As such, there exist

a substantially higher amount of space groups than point groups: 230 possible 3D space

groups.

Within this huge amount of space groups, we can make a distinction between symmor-

phic and non-symmorphic space groups. We can write any space group operation in the

following way:

{Rα|τ} = {Rα|Rn + τα} = {ε|Rn}{Rα|τα},

where ε is identity, Rn is a general vector of the Bravais lattice and τα is a non-primitive

translation of the Bravais lattice. If, with a suitable choice of origin in the lattice, we find that

all the elements of the space group are in the form {ε|Rn}{Rα|0} (τα = 0 for all point-group

symmetry operations), then the space group is called a simple or symmorphic group. All

the others are called nonsymmorphic. There exist 73 symmorphic and 157 nonsymmorphic

space groups.

1.5.3 Site symmetry groups and Wyckoff positions

As we have mentioned, we can have many different atomic sites within a unit cell. Since

we know that point groups leave at least one point unchanged, the other lattice sites might

not be left unchanged under some or by all of the symmetries contained in the point group.

Therefore, we introduce the site-symmetry group as a subgroup of the point group whose

elements leave that particular site invariant.

In addition, a point P is called a point of special position with respect to the space group

G if there is at least one symmetry operation of G, in addition to the identity, that leaves P
invariant (otherwise, P is called a point of general position).

Finally, a Wyckoff position consists of all points P for which their site-symmetry groups

are conjugate subgroups of G. To illustrate this, let us assume Wyckoff position b has two

points A and B, whose site-symmetry groups we denote as HA and HB. This means that

there exists g ∈ G such that gHAg−1 = HB. Because of this, we include points A and B in

the same Wyckoff letter.
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Figure 1.2 Left: Figure showing the three quintuple layers that are contained in a unit cell,
as well as the unit vectors. Right: Layers within a quintuple layer, showing the
different types of atomic sites (that are contained in different unit cells). Adapted
from Ref. [16].

1.5.4 A useful example

To illustrate these 3 concepts, we take a look at the crystal structure of Bi2Se3 and Bi2Te3 that

will be the crystals under study in chapter 3. The crystal structure of Bi2Se3 consists of an

ABC stacking of monoatomic triangular lattices normal to the c-axis. We can see this through

the figures produced in Ref. [16], shown in Fig. 1.2. These layers are grouped into quintuple

layers (QL) of strongly bounded planes, while neighboring QL interact mainly through van

der Waals forces. Each QL contains two equivalent “outer” Se planes (Seout ), two equivalent

Bi planes, and another “inner” Se plane (Sein ) located at the center of inversion. Below, we

will denote as z the direction perpendicular to the QL, while x and y will indicate orthogonal

axes in the plane of the QL.

These crystals structures can be studied from their symmetry groups, as we have said

before. Both Bi2Se3 and Bi2Te3 belong to the D3d (3̄m) point group. This point group belongs

to the rombohedral structure, and it is denoted by

3̄m ≡ D3d = {E, 2C3, 3C′
2, I}, (1.52)

where Cn denotes an axis of 2π
n rotation. In the case of Bi2Se3 the unprimed axis points

along the z direction and the primed axis is contained in the xy plane. Finally, I denotes



25

inversion. Because it contains inversion, this crystal structure is centrosymmetric and thus a

good candidate for the presence of hidden polarizations. In the Herman–Mauguin notation

(3̄m), the 3̄ denotes a rotoinversion (a 2π
3 rotation followed by inversion) and m denotes a

mirror plane. Both operations that can be constructed from the ones listed in eq. 1.52. In

particular, both Bi2Se3 and Bi2Te3 belong to space group 166: R3̄m, which is symmorphic.

Due to the ABC stacking, the primitive rhombohedral unit cell spans three QL and

contains five atoms: two Seout , two Bi and one Sein . An identical crystal structure applies to

Bi2Te3 , upon replacing Se by Te. The following are important points about the site-symmetry

groups of the five different atomic sites in the unit cell that we will use later in chapter 3:

• The site-symmetry group of Sein is D3d. That is, it coincides with the point group of

the crystal and thus it is a special point. The Wyckoff letter for this special position is

a. Because it contains inversion, both local spin and orbital polarizations have to be

zero (see eqs. (1.32)).

• The site-symmetry group of Seout and Bi is 3m ≡ C3v = {E, 2C3, 3σv}. It is a subgroup

of D3d. It contains elements other than E, so they sit at a special position, which is

denoted by Wyckoff letter c in standard tables. Because Seout and Se’out are related by

inversion, they belong to the same Wyckoff position. The same thing happens with

Bi and Bi’. Because they locally break inversion symmetry (there is no I in their site-

symmetry group), they are good candidates to host hidden electronic polarizations.



Chapter 2

Nuclear magnetic resonance in an electric

field

So far, we have seen that centrosymmetric materials can host hidden electronic polarizations.

How can we probe these effects? We have seen that for spin, for example, this electronic

polarization is hidden in two ways, as we have seen from eqs. (1.32): they are compensated

both in momentum and real space. It was proposed in chapter 1 that in principle, by changing

the population of electronic states by means of an electric field, we could render this hidden

polarizations locally visible in real space,

m(r) = −m(−r), (2.1)

where we had defined m as a local magnetic moment. However, this effect is still compensated

within a unit cell due to the inversion symmetry. This tells us that any measurement that is

global in nature, i.e. depends only on the global symmetries of the crystal, will not capture

the local effects.

There have been some proposed methods to probe this effect, and all of them, to the best

of our knowledge, use surface-dependent probes. First, the average over the unit cell can be

made nonzero by breaking the bulk inversion symmetry at the surface. The resulting net spin

polarization would be accessible to surface sensitive probes [3]. Second, in layered materials,

a light beam penetrating the crystal along the stacking direction probes predominantly the

topmost layer. This fact has enabled the “detection” of the hidden spin polarization in WSe2

[4]. Third, in certain materials such as MoS2, spin-dependent dipole selection rules allow to

probe the hidden spin polarization under irradiation by circularly polarized light [5].

26
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However, as recently suggested in Ref. [6], the fundamental inversion-symmetry breaking

at the surface spin-splits the original bulk bands for general k, as we have seen in section

1.4. This effect interferes in spin-resolved surface-sensitive experiments, such as spin- and

angle-resolved photoemission spectroscopy (s-ARPES), where we see a spin-splitting of

bands that does not reflect the bulk effects [17]. This argument makes a good case for finding

a bulk probe to truly disentangle the spin-splitting effects present in basically any surface

from the “hidden” ones.

In this chapter, we propose nuclear magnetic resonance as a local, bulk probe of the

“hidden” electronic polarizations. The way it will work will be detailed in the following

sections, but the idea is as follows: there is a local non-zero value of both electronic orbital and

spin-angular momentum at the nuclear sites. This is also true for other places around them,

as we can see from eqs. (1.32), and thus will also contribute to our effect. Therefore, through

the hyperfine coupling between nuclear and electronic spins for example, the nucleus feels

an effective magnetic interaction. This communication between electron and nuclear spins

is the basis of our proposal. By applying a strong external magnetic field, the nuclear spins

will precess at a frequency that depends on the gyromagnetic ratio of the nucleus and the

magnitude of the magnetic field. However, the local information given by the electrons will

modify this resonance frequency that is sensitive to our probes, thus revealing the “hidden”

polarizations.

2.1 Nuclear magnetic resonance

Magnetic resonance is a phenomenon found in systems that posess magnetic moments.

As we said, and as we will show, the term resonance comes from the fact that we will use

external, tunable perturbations that can let us access a natural frequency of the system –

the precession of a nuclear magnetic moment under a magnetic field, for example. The

advantage of this is that we can access local perturbations to this natural frequency coming

from the details of the system, and it can possess a reasonable resolution. In this section we

look at the resonant condition and what are the local perturbations that we will be interested

in for the rest of the chapter.
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2.1.1 Resonance condition

The principle of magnetic resonance comes from the idea that angular momentum and

magnetic moment are related to each other,

μ = γh̄I, (2.2)

where μ is a magnetic moment, I is a a dimensionless angular momentum operator, such as

electronic or nuclear spin, and γ is what is called the gyromagnetic ratio. This last quantity

can be better understood from a classical viewpoint, in which we have a charge that moves

in a circular path. The ratio between its angular momentum and its magnetic moment

associated with the current that it generates tells us, for example, that big masses have low

gyromagnetic ratios.

If we now apply a constant and homogeneus magnetic field along the ẑ direction, we

can look at the effective Zeeman interaction between H = H0ẑ and our magnetic moment,

H = −μ · H = −h̄γH0 Iz. (2.3)

The eigenvalues of this problem are quite simple since they will only be based on the

eigenvalues of Iz, which are the 2I + 1 values that we know from elementary quantum

mechanics,

E = −h̄γH0m m = −I, ..., I − 1, I.

The levels are equally spaced by h̄γH0. We want to access the information about these energy

levels, and the usual way to think about it is by using some sort of spectral absorption. This

means that we want some time-dependent interaction that can induce transitions between

the energy levels,

ΔE = h̄ω.

Of course, we have to make sure that the interaction has non-vanishing matrix elements

that join initial and final states. In other words, the transition has to be allowed. One way to

do this is by using a transverse alternating magnetic field. In terms of a perturbation energy,

Hpert = −h̄γH0
x Ix cos(ωt).

The allowed transitions for the operator Ix involve states with Δm = ±1. Consequently, the
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difference in energy ΔE coincides with adjacent energy levels, and thus,

h̄ω = γh̄H0

or ω = γH0. (2.4)

The fact that h̄ goes away hints us that this process can be explained from a classical point

of view, and in fact it does, with the classical picture of Larmor frequency.

In a resonance experiment, we will have a macroscopic sample that will absorb that

energy. To make sure that we will be able to get a signal, we need to look at the nuclear spins

from a statistical point of view. For details, we refer to Ref. [18]. For simplicity, we will imagine

a crystal with nuclear spins I = 1
2 . Knowing that the sample will have a time-dependent

perturbation, the energy absorption as a function of time will be given by computing the

number of spins per second that go from the lower energy to the upper and substracting

the number that drop down, emitting energy,

dE
dt

= N+Wh̄ω − N−Wh̄ω = h̄ωWn,

where W is the probability per second of inducing either a m = 1
2 → m = − 1

2 or viceversa.

n is the difference in population between nuclei with m = 1
2 and m = − 1

2 . This difference in

population will depend on the temperature of the sample, the external magnetic field and

the transition rates provided by the capacity of the reservoir to absorb or lend energy to the

nuclear spins. The ratio between N+ and N− at thermal equilibrium will be given by the

Boltzmann weight,
N0−
N0
+

= e−γh̄H0/kBT. (2.5)

In a steady state, the population difference between spin states n is governed by the thermal

equilibrium value n0 = N0
+ − N0−, the square of the alternating magnetic field’s magnitude

∝ W, and the characteristic time associated with thermal equilibrium T1,

n =
n0

1 + 2WT1
.

This tells us that if 2WT1 � 1, the alternating magnetic field does not perturb much the

population difference away from its thermal value. Finally, we could compute the absorption

rate in this steady state. The conclusion that we can draw from this is that our perturbation

will not change much the spin population difference that is essential to be able to perform

a resonance experiment to get a signal as long as the thermal relaxation time is not long

compared to the probability transition rate induced by the perturbation. In other words, if
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we want to induce an absorption of energy that we can read from a detector, the perturbation

has to be small enough to allow it.

In this subsection, we have so far ignored the fact that nuclei in real life are never isolated.

For example, eq. (2.3) neglects the fact that the nuclei are surrounded by electrons. In a

resonance experiment, there are many effects that can change the information relative to a

“nucleus in vaccuum” scenario. For example, in paramagnetic substances, electronic spin

tries to align itself to the external magnetic field, making the nucleus feel a different effective

local magnetic field. This can present itself in many ways that are different in nature, but

they all come from the fundamental nucleus-electron interaction. The electrons also have

an orbital degree of freedom, and the orbital currents can have a non-vanishing effect on

the resonance frequencies. To settle the terminology, we will simply call all the effects that

change the resonance frequency from a reference value (“vaccuum” or diamagnetic samples)

NMR shifts. There are many other interactions that change the shape of a linewidth, which

can have important consequences on the detection of resonance lines, or we can also draw

conclusions from them, such as nucleus-nucleus dipolar interaction. For now, we will focus

on the NMR shifts that will give us the information about the hidden polarizations.

Let us modify our simple Hamiltonian, eq. (2.3), by introducing non-interacting electrons

that otherwise interact with the nuclei,

H = Hn +He +Hen, (2.6)

where Hn includes our previous nuclear Zeeman term and can in principle include interac-

tions between nuclei. He is the Hamiltonian due to the non-interacting electrons under a

Zeeman interaction with the magnetic field and under the crystal potential, eq. (1.1), and

the interaction of the orbital degrees of freedom with the vector potential. Finally, Hen is

the magnetic interaction between the nuclei and the electrons. In this subsection we will

focus on what are the most important interactions between electrons and nuclei in NMR

experiments.

2.1.2 Spin-spin interactions

We will consider the interaction between the electronic spins and the nuclear spins. As long

as the nuclear magnetic moment μn and the electronic one μe are far from each other, we

could expect their interaction to be mediated in first order by a dipole-dipole interaction,

Hdip
en =

μ0

4π
(

μn · μe

r3 − 3(μn · r)(μn · r)
r5 ), (2.7)
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where r is the radius vector from the nucleus to the electron. As long as the electronic wave

function is in a state of non-zero angular momentum, we can expect this approximation

to be good. However, for s-states, this approximation breaks down, given that there is a

nonzero probability of finding the electron at the nucleus, thus making the terms in eq. (2.7)

diverge. Physically, we expect the s-orbital contribution to the dipolar interaction to average

to zero. In this particular case, we have to maneuver to find a good expression for a finite

electronic density at close distances to the nucleus.

Hyperfine coupling

To handle electronic s-states, one usually follows the path of the Dirac equation, since this

effect will become more pronounced when the electron is closer to the nucleus than its

“classical radius”. However, there is a simple way to derive this interaction from a classical

standpoint, whose result is however valid in the relativistic scenario.

Let us model the nucleus as a charge q traveling in a circular loop of radius a with

velocity v. The current associated with this motion is simply qv/(2πa). We can express the

magnetic field, due to the nucleus, in the ẑ direction H̄z, as an average over the electron (s-)
orbital probability density |u(r)|2,

H̄z =
∫

dτHz(r)|u(r)|2, (2.8)

where Hz(r) is the field of the current loop which is perpendicular to the ẑ-direction and dτ

is a volume differential. Since |u(r)|2 corresponds to a spherically-symmetric s-orbital, the

other components of the magnetic field vanish. The contributions of Hz(r) for r > a will

vanish simply due to the angular part of the integral. Finally, writing out the field Hz(r) as a

sum of products of spherical harmonics with radial functions, only the term that corresponds

to a uniform field (Hc, c for center of the loop), within r < a will not vanish [18]. Then, the

field due to the nucleus in the ẑ-direction looks like,

H̄z =
∫ a

0
drHc|u(r)|2.

Approximating that |u(r)|2 does not change much inside the nucleus, then,

H̄z ≈ Hc|u(0)|2 4π

3
a3. (2.9)

And we know how to calculate the field at a distance a from the center of the loop,

Hc =
μ0

4π

qv × r
r3 =

μ0

4π

qv
a2 k̂.
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At the same time, we know that the magnetic moment μn of the nucleus is given by the

current i circulating, μn = iπa2k. We can thus relate the magnetic field in the ẑ to the

magnetic moment of the nucleus,

H̄zk̂ =
μ0

2π

μn

a3 |u(0)|2
4π

3
a3 =

2
3

μ0μn|u(0)|2.

Therefore, the “Zeeman” energy for the interaction between a electronic magnetic moment

and this magnetic field is:

E = −2
3

μ0μn · μe|u(0)|2.

We want to express this in terms of an operator that translates that we only keep the electronic

wavefunction at the nucleus. Once we do this, it looks like the usual “Darwin” term, or

usually called Fermi contact term,

Hcont = −2
3

μ0μn · μeδ(r), (2.10)

where δ(r) is a Dirac delta function. We can re-write in a more familiar form by expanding

the magnetic moment of an electron. We know that the gyromagnetic ratio of an electron is

γe = gs
μB
h̄ , where μB is the Bohr magneton. Expressing the magnetic moment of the electron

as μe = −γeh̄S, we get

Hcont = μn · (2
3

μ0gsμBSδ(r)). (2.11)

We can then define the contact contribution to the local magnetic field as

Hcont = −2
3

μ0gsμB 〈Sδ(r)〉 . (2.12)

This contact interaction is the one responsible for many of the known phenomena in nuclear

magnetic resonance in terms of Knight shifts. In fact, Slichter [18] refers to the Knight shift

as being solely the shift due to this contact term. It successfully explains four experimental

facts found for NMR in metals:

1. It predicts that a higher resonance frequency is needed for the metal than in the

diamagnetic reference.

2. The fractional shift Δω/ω is independent of ω and thus of the external magnetic field.

3. The fractional shift is independent of temperature.

4. The shift is larger for larger-Z atoms (that have larger |u(0)|2).

We will not show these facts for simple cases but we will corroborate it in our results.
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Dipolar interaction

While the contact interaction is enough to understand the main experimental results and usu-

ally is the predominant interaction in simple metals, the dipole-dipole interaction between

magnetic moments due to spins has to be computed if we want to achieve a more complete

picture of the magnetic interaction that the nucleus feels. As we have mentioned before, for

orbitals with nonzero orbital angular momentum, eq. (2.7) is a good approximation to the

magnetic interaction. We can rewrite this interaction in terms of the magnetic dipole due to

the electron spin,

Hdip
en = −μn · μ0

4π
gsμB(

Ŝ − 3r̂(Ŝ · r̂)
r3 ) (2.13)

and we can thus identify an effective magnetic field felt by the nucleus and that is due to

the dipolar magnetic moment of the electron spin,

Hdip =
μ0

4π
gsμB

∫
d3r

〈S(r)〉 − 3r̂(〈S(r)〉 · r̂)
r3 ), (2.14)

where r̂ indicates the position unit vector.

2.1.3 Orbital currents

In the previous subsection, we have seen that because the electron spin interacts with an

external magnetic field, for example, we would have a spin response that can itself interact

with the nucleus. On the other hand, we know that electrons have an orbital degree of

freedom that can also interact with the external magnetic field. This response of the orbital

degree of freedom can in itself generate an effective magnetic field for the nucleus. The

shift produced by this type of interaction is called the chemical shift. Here we will give a

small derivation of the magnetic field that is felt by the nuclear magnetic moment due to

the orbital currents, taken from Ref. [18].

Let us consider the single-electron Hamiltonian that we have been considering so far,

but under a magnetic field. We can then introduce two vector potentials: A0 and An. The

former is the vector potential associated with the external magnetic field H0, and the latter

is the one due to the nucleus Hn. In other words,

H0 = ∇× A0 Hn = ∇× An.

The Hamiltonian has to transform with the minimal-coupling recipe, the Peierls substitution,

H =
1

2m
(p − qA)2 + V. (2.15)
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It is clear that we are free to choose the gauge we want, and under a gauge transformation,

the solutions to this previous equation have to change accordingly. We then define the

current density under the presence of a vector potential to ensure gauge invariance,

j(r) =
q

2m
h̄
i
(ψ∗∇ψ − ψ∇ψ∗)− q2

m
Aψ∗ψ, (2.16)

where ψ is any wavefunction. Since under a gauge transformation both ψ and A both change,

it can be shown that this probability current is gauge invariant. Let us now expand our

Hamiltonian, eq. (2.15),

H =
1

2m
(p − qA0 − qAn)

2 + V.

Recognizing then π = p − qA0 as the canonical momentum that does not consider the

nuclear field contribution, we can rewrite our Hamiltonian as

H =
1

2m
π2 − q

2m
(π · An + An · π) +

q2

2m
A2

n + V.

We will go ahead and consider the vector potential associated to the nucleus as the one that

generates a dipolar field:

An =
μ0

4π

μ × r
r3 , (2.17)

where μ is the nuclear magnetic moment. We clarify that choosing a gauge in this context

means setting an origin from which we measure this field. Since the nuclear magnetic

moment is small compared to the electronic magnetic moments, we will drop the quadratic

term in our previous Hamiltonian. Then,

H ≈ 1
2m

π2 + V − q
2m

(π · An + An · π).

We note that the first two terms make the Hamiltonian of the electron under the magnetic

field. Therefore, we will go ahead and treat the term that contains An as a perturbation.

This means that the first-order correction to the electronic energy due to the nucleus will be

given by

Epert = − q
2m

〈ψ|π · An + An · π|ψ〉 = q
2m

∫
d3r ψ∗(π · An + An · π)ψ,

where ψ is the solution of the single-particle Hamiltonian under a static magnetic field and

the integral is over electron coordinates. Using that π is Hermitian,

Epert = − q
2m

∫
d3r An · ((πψ)∗ψ + ψ∗(πψ)).
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Now we can use the definition of π to arrive at the following expression:

Epert = −
∫

d3r An · j0(r),

where we have noted j0(r) as the current density when the external magnetic field is turned

on, but does not consider the contribution of the nuclear vector potential. We can then

substitute this last quantity, eq.(2.17),

Epert = − μ0

4π

∫
d3r

μ × r
r3 · j0(r)

= −μ · μ0

4π

∫
d3r

r × j0(r)
r3 . (2.18)

From the mean value of the current we can define an effective magnetic field due to this

electronic current density as

Horb =
μ0

4π

∫
d3r

r × 〈j0(r)〉
r3 . (2.19)

2.2 Staggered magnetic response

Thus far, we have described two types of shift – one due to the electron spin and the other

due to the orbital currents produced by the electrons. Then we can say that a given nucleus

feels a local magnetic field that is a sum of the external and the internal magnetic fields,

ω(r0) = γ(r0)Hloc(r0), (2.20)

where γ(r0) is the nuclear magnetogyric ratio and Hloc(r0) is the local magnetic field acting

on the nucleus. The local field can be separated into different contributions,

Hloc(r0) = Hext + Hcont(r0) + Hdip(r0) + Horb(r0), (2.21)

where Hext is the uniform and static external magnetic field and

Hcont(r0) = −2
3

μ0gsμB〈S(r0)〉

Hdip(r0) =
μ0

4π
gsμB

∫
d3r

〈S(r)〉 − 3r̂′〈S(r)〉 · r̂′

r′3

Horb(r0) =
μ0

4π

∫
d3r

r′ × 〈J(r)〉
r′3

, (2.22)
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where r′ ≡ |r − r0| and r̂′ ≡ r′/r′. Thus far, we have not yet explained how to evaluate the

expectation value for the local spin and current operators. These quantities will be in general

a response to the external fields. It means that whatever we will calculate in these responses

will be a correction to the already present values for the local spin and current operators,

that we express as

S(r) = σ|r〉〈r|/2

J(r) = − e
2
{v, |r〉〈r|} − e2

m
A(r)|r〉〈r|, (2.23)

where σ is a vector of Pauli matrices, e and m are the electron’s charge and mass, {, } is an

anticommutator, v is the velocity operator and A is the vector potential.

In usual NMR, the external static field Hext is used to spin-polarize electrons and to

produce orbital currents, both of which contribute to Hloc(r0). In linear response,

Hloc(r0) = Hext + χH(r0) · Hext, (2.24)

where the tensor χH(r0) characterizes the electronic response to the external magnetic field.

The internal field χH(r0) · Hext shifts the nuclear resonance frequency from its value in

vacuum. In principle, Hloc(r0) (and thus the resonance frequency) is identical for all nuclei

of the same species located at symmetry-equivalent lattice sites. In practice, the resonance

peak has a finite linewidth because local defects, inhomogeneities in the carrier density and

interactions with neighboring nuclei lead to a distribution of the resonance frequencies for

equivalent nuclei. From here on, we refer to this linewidth as the “intrinsic” linewidth.

In this work, we are interested in an additional contribution to Hloc that arises in the

presence of an electric field E. As mentioned in Chapter 1, an electric field produces staggered

spin and orbital-current densities in crystals hosting hidden spin and orbital polarizations.

From Eq. (2.22), these spin and orbital polarizations result in a staggered magnetic field

Hstag that takes opposite directions for two nuclei of the same species located at inversion

partner sites. Then, the total local field reads

Hloc(r0) = Hext + χH(r0) · Hext + Hstag(r0), (2.25)

where Hstag(r0) �= 0 only in presence of an electric field, and only if r0 is not an inversion

center. As we discuss below, the direction of Hstag depends on the direction of E as well as

on the symmetry of the crystal. In this work, we will concentrate in the common situation

where Hext � |χH · Hext| and Hext � Hstag. Nevertheless, Hstag need not be small compared

to |χH · Hext|, mainly because Hstag is independent of Hext in linear response.
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Figure 2.1 The nuclear resonance frequency at inversion partner sites depends on the relative
orientation between the staggered magnetic field and the external magnetic field.
In (a), Hext is perpendicular to Hstag, and the two sites have the same resonance

frequency ∝ [(Hext + χH Hext)2 + H2
stag]

1/2. In (b), Hext is aligned (or antialigned)

with the staggered field and, consequently, the two sites have different resonance
frequencies ∝ (Hext + χH Hext ± |Hstag|). Here, χH · Hext is the internal magnetic
field produced by the electrons in response to Hext. For brevity, we have assumed
that χH · Hext is parallel to Hext.

Under a uniform electric field, Hstag does not vary from one unit cell to another (though,

of course, it varies inside each unit cell in a staggered fashion). Consequently, Hstag splits the

resonance peak of a type of nucleus in two, without introducing additional broadening. For

a given Hstag, the magnitude of the splitting depends on the angle between Hstag and Hext.

As illustrated in Fig. 2.1, it is only the component of Hstag parallel to Hext that contributes to

the splitting. If Hstag ⊥ Hext, all inversion partner nuclei have the same resonance frequency.

If Hstag is not perpendicular to Hext, the resonance frequencies of inversion partner nuclei

differ from one another (by the component of Hstag parallel to Hext). The height of the two

peaks is half the height of the parent peak. For sufficiently high electric fields, the splitting

between the two peaks can become comparable to or larger than the intrinsic linewidth of

each peak. It is in this regime that NMR can work as a probe of the hidden spin and (or)

orbital polarizations.
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2.2.1 Linear response

In order to make the preceding statements quantitative, a recipe is needed to compute

Hstag. Here, we consider a uniform and static electric field, and adopt the linear response

expressions that have been introduced in earlier work [19, 8],

δ〈O(r)〉 = δ〈O(r)〉intra + δ〈O(r)〉inter1 + δ〈O(r)〉inter2 (2.26)

for O(r) = S(r), J(r), where

δ〈O(r)〉intra = − eh̄
2Γ ∑

Ekn=Ekn′
〈ψkn|O(r)|ψkn′ 〉〈ψkn′ |v · E|ψkn〉 ∂ fkn

∂Ekn

δ〈O(r)〉inter1 = −2eh̄ ∑
Ekn �=Ekn′

Re [〈ψkn|O(r)|ψkn′ 〉〈ψkn′ |v · E|ψkn〉] Γ(Ekn − Ekn′)

[(Ekn − Ekn′)2 + Γ2]
2 ( fkn − fkn′)

δ〈O(r)〉inter2 = −eh̄ ∑
Ekn �=Ekn′

Im [〈ψkn|O(r)|ψkn′ 〉〈ψkn′ |v · E|ψkn〉] Γ2 − (Ekn − Ekn′)2

[(Ekn − Ekn′)2 + Γ2]
2 ( fkn − fkn′)

(2.27)

are the intraband and interband contributions and Γ is a phenomenological electronic scat-

tering rate (in units of energy). Notation-wise, δ〈O(r)〉 denotes the change in the expectation

value of O(r) due to the electric field. Evaluating Eqs. (2.26), (2.27) and inserting the outcome

in Eq. (2.22), we obtain the E-induced part of the local field, namely Hstag(r0). The contact

and dipolar parts of Hstag vanish in the absence of spin-orbit interactions, whereas the orbital

part does not. It must be noted that Horb contains a staggered as well as a non-staggered

part. The latter corresponds to the Oersted field created by a uniform electric current. This

part will be left out of Hstag and will be treated separately below.

The sums in Eq. (2.27) are carried out over the first Brillouin zone and over all energy

bands (with the indicated constraints for intraband and interband parts). The evaluation of

these sums requires the knowledge of the electronic structure of the material, the chemical

potential, and the electronic scattering rate. Concerning the electronic structure, it should

in principle be computed in the presence of Hext. We will however content ourselves with

the energy bands and Bloch wave functions at zero external field, which is justified by the

fact that we are interested in the linear response to electromagnetic fields. In regards to

the chemical potential, it may be extracted from experimental measurements of the carrier

density. The scattering rate Γ may be obtained by calculating the conductivity of the system

with the Kubo formula and varying Γ in order to match it to the experimental value.

The expressions in Eq. (2.27) are valid when Γ is small: in conducting samples, Γ must

be smaller than the Fermi energy (measured from the band edge); in insulating samples,
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Γ must be smaller than the energy gap. If these conditions are not met, one may resort to

more general expressions based on Green’s functions[20]. We have verified that the small

scattering rate approximation is valid in the parameter regime considered below.

In the small Γ regime, δ〈O(r)〉intra ∝ 1/Γ, δ〈O(r)〉inter1 ∝ Γ and δ〈O(r)〉inter2 is indepen-

dent of the scattering rate. Consequently, in highly conducting crystals, δ〈O(r)〉intra is often

dominant. On the contrary, in poorly conducting crystals, the interband part takes over.

Moreover, in crystals with time-reversal symmetry, δ〈O(r)〉inter2 = 0 (much like the Hall

conductivity vanishes in time-reversal symmetric crystals).

Formally, the relation between the applied electric field and the staggered magnetic field

can be written as

Hstag(r0) = χE(r0) · E, (2.28)

where χE(r0) is a magnetoelectric susceptibility tensor at the nuclear site r0. The form of this

tensor, and hence the relative direction between the electric field and the staggered magnetic

field, depend on the space group symmetry of the material. It is likewise important to

recognize that χE scales with the conductivity σ of the crystal. This is evident from Eq. (2.27),

where replacing O(r) by the velocity operator amounts to calculating the electric current

produced by a uniform electric field (modulo a prefactor). For instance, in good conductors

dominated by the contact interaction, a dimensional analysis shows that

χE(r) ∼ μ0μBσ

evF
|Skn(r)|, (2.29)

where |Skn(r)| denotes the average of the magnitude of the (dimensionless) hidden spin po-

larization over the Fermi surface, and vF is the (averaged) Fermi velocity. In a bad conductor,

where the interband transitions are dominant, a relation similar to Eq. (2.29) still applies,

but the Fermi surface matrix elements of the spin and velocity operators are replaced by

interband matrix elements (e.g. between the top of the valence band and the bottom of the

conduction band). In perfect insulators with time reversal symmetry, an electric field does

not induce a staggered magnetization.

For the purpose of comparison, let us recall that an external electric field induces an

electric polarization in perfect insulators with time reversal symmetry. Moreover, the polariz-

ability of dielectrics remains finite in the Γ → 0 limit. The key behind the difference between

the electric and magnetic cases lies in the fact that electrical polarization is even under time

reversal, whereas the staggered magnetic field is odd. In fact, the direct counterpart of the

dielectric polarization in our problem at hand resides in δ〈O(r)〉inter2, which would give a

Γ-independent staggered magnetic field in an insulator with broken time-reversal symmetry.
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In sum, highly conducting samples with large hidden polarizations are good candidates

for achieving a strong electric-field-induced splitting of NMR peaks. However, although

having a large hidden spin or orbital polarization is always favorable, highly conducting

samples result in an unwanted NMR linewidth that can mask the peak splitting. Next, we

discuss this problem and possible solutions to it.

2.3 Current-related complications

In conducting crystals, an electric field produces a linewidth of the resonance peaks which,

if sufficiently pronounced, can mask the peaks splitting caused by the staggered field. There

are two sources to this linewidth: (i) the change in the imaginary part of the spin and orbital

susceptibility due to an electric field, and (ii) the Oersted (“amperian”) magnetic field Hamp

created by the electric current.

Source (i) implies a change in the T1 relaxation time in the presence of an electric field.

Concentrating on the Fermi contact interaction (though the conclusion below will apply to

dipolar and orbital contributions as well), the relaxation rate [21] at temperature T reads

1/T1(r0) ∝ T ∑
q

χ′′
⊥,H(q, ω0, r0), (2.30)

where χ′′
⊥,H(q, ω0, r0) is the imaginary part of the local (at r0) transverse magnetic suscepti-

bility at momentum q and at the resonance frequency ω0. To leading order in ω0 (which is a

small parameter in relation to characteristic electronic energy scales and disorder broaden-

ing) we find [22] that the change of χ′′
⊥,H produced by an electric field is odd under q → −q.

Hence, given the sum over q in Eq. (2.30), there is no change in T1 to leading order in E and

ω0.

The linewidth produced by the amperian magnetic field Hamp is more insidious, not

least because it does not disappear at low temperature. Inside a cylindrical wire with a

uniform current density J,

Hamp(r) =
μ0 Jr

2
φ̂, (2.31)

where r is the distance from the wire axis and φ̂ is the azimuthal unit vector. The amperian

field circulates in real space, with an average of zero for any nuclear species in the bulk.

Therefore, the amperian field produces a distribution of resonance frequencies with zero

mean, i.e. a linewidth, with no net shift in the resonance frequency (this is the opposite state

of affairs compared to Hstag, which shifts the resonance frequency without broadening it).
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For latter reference, let us estimate the amperian linewidth. For simplicity, we suppose

that the external magnetic field is large compared to the maximum amperian field inside

the sample. Then, to first order in J, we can limit ourselves to the component of Hamp that

is parallel (or antiparallel) to Hext. Indeed, the component of Hamp perpendicular to Hext

contributes to the linewidth only to second order, i.e. it can be neglected in linear response

theory. Assuming that Hamp is coplanar to Hext, a straightforward calculation shows that

the fraction of nuclei “seeing” a field between Hext + H and Hext + H + dH is given by

ρ(H)dH =
2
π

dH
Hamp(R)

√
1 −

(
H

Hamp(R)

)2

Θ
(|Hamp(R)| − |H|) , (2.32)

where H is an arbitrary field along the direction of the external field, dH is a small interval,

Hamp(R) = μ0 JR/2 is the magnitude of the amperian field at the surface of the wire, and

Θ(x) is the Heaviside function. We verify that
∫ ∞
−∞ ρ(H)dH = 1. Equation (2.32) gives the

current-induced distribution of the resonance frequencies for any nuclear species. It shows

that the resonance peak loses its height and is broadened as the current density increases,

the linewidth being given by � 2Hamp(R) .

The NMR peak splitting produced by Hstag can be experimentally resolved if it is com-

parable or larger than the combined intrinsic and Amperian linewidths. The staggered field

and the intrinsic linewidth are independent of the wire radius (unless the wire is so narrow

that quantum confinement effects become significant, a circumstance that we do not consider

here), while the amperian linewidth grows linearly with the wire radius. This implies that

the staggered field will be masked by the amperian linewidth when the wire radius exceeds

a certain value. We will return to this point below.

In order to eliminate the undesirable amperian linewidth, one might be tempted to

work with samples that are as insulating as possible. However, this is not a good strategy

because χE scales roughly as the conductivity of the sample (cf. Eq. (2.29)): in perfectly

insulating samples with time-reversal symmetry, the staggered field vanishes. A better

strategy is to apply the external magnetic field parallel to the current: in this case, Hamp is

perpendicular to Hext and, as mentioned above, the amperian contribution to the linewidth

becomes negligible to first order in the current density. However, this strategy will work

only if Hstag has a nonzero component parallel to the current. Whether or not this is the case

depends on the material.

In the light of the preceding discussion, there are various questions that must be an-

swered in order to assess the utility of NMR as a probe of the hidden spin and orbital

polarization. Is it experimentally possible to attain an electric field at which the splitting of
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the resonance peak becomes comparable to or larger than its intrinsic linewidth? Is the nec-

essary electric field sufficiently high that the Joule heating will be problematic, and can the

contribution of the current-induced staggered field be distinguished from the background

of the amperian field? The answers to these questions are nucleus- and material-dependent.

In the next chapter, we proceed with a detailed study of two candidate materials, where

hidden spin and orbital polarizations exist and where NMR spectra have been measured in

the absence of electric currents. We will also discuss other materials which, according to

symmetry arguments, could prove more promising.



Chapter 3

Material application: Bi2Se3 and Bi2Te3

In the last section of Chapter 1, we saw the crystal structure of Bi2Se3 and Bi2Te3 and we

showed that these materials allow for the existence of hidden spin and orbital polarizations,

as have been confirmed by other groups [3]. Since these materials are strongly spin-orbit

coupled, they constitute interesting (though likely not ideal[3]) candidates to attain sizeable

values of electric-field-induced staggered spin densities. Moreover, these compounds can

develop antiferromagnetic order upon magnetic doping[23], which opens the prospect of

steering the Néel order parameter via current-induced staggered spin and orbital densities.

Adding to the interest, the past five years have witnessed numerous NMR experiments in

Bi2Se3 and Bi2Te3 [24]-[25], which have led to a characterization of the shifts and linewidths

for 77Se, 125Te and 209Bi in the absence of external electric fields. These experiments have been

largely spurred by the fact that Bi2Se3 and Bi2Te3 are topological insulators[16], although

band topology will not play a significant role in our results. In this Chapter, we will develop

a tight-binding model for their lattice structure to project the Bloch-states onto this basis.

With this, we calculate the linear response formulae that we presented in Chapter 2. Finally,

we can find the contribution to the local magnetic field of the electronic response to the

electric field.

43
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3.1 Tight-binding approximation

In this work, we adopt from Ref. [26] a sp3 tight-binding description of the single-electron

Hamiltonian with spin-orbit interactions,

H =
p2

2m
+ V(r) +

h̄
4m2c2 (∇V × p) · σ, (3.1)

where V(r) = V(r + R) is the lattice potential, R are the Bravais vectors giving the positions

of the unit cells, m is the bare electron mass, p = −ih̄∇ is the canonical momentum, c is

the speed of light in vacuum and σ is a vector of Pauli matrices denoting the spin degree of

freedom. The electronic velocity operator, which plays a central role in the theory of NMR

shifts, is given by v = (i/h̄)[H, r] = p/m + (h̄/4mc2)σ ×∇V.

In the tight-binding description of the electronic structure, each lattice site is ascribed a

localized electronic state |Rjμσ〉 = |Rjμ〉|σ〉, j labels the five atoms inside the primitive unit

cell, μ = {s, px, py, pz} denotes the atomic orbitals considered in the sp3 model, and σ is the

spin index. The states |Rjμσ〉 are Löwdin orbitals, obeying 〈Rjμσ|R′ j′μ′σ′〉 = δRR′δjj′δμμ′δσσ′ .

Although the calculated orbitals centered in different atoms are not completely orthog-

onal, the overlaps
∫

d3r 〈r|Rjμ〉〈R′ j′μ′|r〉 for j �= j′ are small enough that neglecting them

does not result in a significant error.

In the basis of Löwdin orbitals, the Hamiltonian from Eq. (3.1) can be recasted in the

second quantized form as

H = ∑
Rjμσ

∑
R′ j′μ′σ′

Hjμσ;j′μ′σ′(R, R′)c†
RjμσcR′ j′μ′σ′ , (3.2)

where c†
Rjμσ is an operator that creates an electron in state |Rjμσ〉, and Hjμσ;j′μ′σ′(R, R′) =

〈Rjμσ|H|R′ j′μ′σ′〉. In Bi2Se3 and Bi2Te3 , the numerical values of 〈Rjμσ|H|R′ j′μ′σ′〉 have

been tabulated for up to third nearest neighboring sites by fitting to results from DFT.[26]

Spin-orbit interactions, crucial in these materials, are incorporated through onsite terms.

Fourier transforming Eq. (3.2), we have

H = ∑
k

∑
jμσ

∑
j′μ′σ′

Hjμσ;j′μ′σ′(k)c†
kjμσckj′μ′σ′ , (3.3)

where k is the crystal momentum (within the first Brillouin zone), c†
kjμσ is an operator that
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Figure 3.1 Bulk tight-binding bands for Bi2Se3 and Bi2Te3 .

creates an electron in a Bloch spinor

|ψkjμσ〉 = 1√
N

∑
R

eik·(R+tj)|Rjμσ〉, (3.4)

tj is the position of a given atom in the unit cell (so that R + tj is its actual position in the

lattice), and N is the number of unit cells in the crystal. The eigenstates and eigenvalues of

H are |ψkn〉 and Ekn, respectively, where n denotes the band index. In particular, |ψkn〉 are

Bloch spinors that obey 〈r+R|ψkn〉 = exp(ik · R)〈r|ψkn〉 and 〈ψkn|ψk′n′ 〉 = δkk′δnn′ . The set

of states {|ψkjμσ〉} defined in Eq (4) form an orthonormal basis. As such, we may write

|ψkn〉 = ∑
jμσ

Ckn;kjμσ|ψkjμσ〉, (3.5)

where Ckn;kjμσ = 〈ψkjμσ|ψkn〉. The matrix elements of the Hamiltonian H(k) are

Hjμσ;j′μ′σ′(k) = 〈ψkjμσ|H|ψkj′μ′σ′ 〉
=

1
N ∑

RR′
eik·(R+tj−R′−tj′ )Hjμσ;j′μ′σ′(R, R′).

(3.6)

To avoid confusion, we remark that H(k) �= e−ik·rHeik·r. A numerical diagonalization of
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Figure 3.2 Momentum-space spin textures for Seout (panels (a) and (c)) and Bi (panels (b) and
(d)) in Bi2Se3 . Panels (a)-(b) show the textures at the bottom of the conduction band
and panels (c)-(d) display the textures at the top of the valence band. Momentum
in the kz = 0 plane is measured in units of the unit cell lattice parameter (axy, in
the xy plane). All panels show the spin textures for inversion partners, in different
colors. Angular momenta are measured in units of h̄.

H(k) yields the eigenvalues Ekn and the coefficients Ckn;kjμσ (n = 1, ..., 40). Figure 3.1

displays Ekn along the high symmetry directions in the first Brillouin zone[26]. As we know

by now, each energy level is doubly degenerate due to the combined time-reversal symmetry

and spatial inversion symmetry, so we can only visualize 20 of the bands.

3.2 Linear response of the hidden polarizations

Now that we have the tight-binding model to our service, we can use this basis to start

calculating some interesting quantities. In this section, we first present the local spin and

orbital textures that the site symmetries of Bi and Seout allow for. We exploit these textures

to get a staggered magnetization within a unit cell at inversion-partnered sites, that we can

calculate with the linear response equations. From there, we analyze the consequences of

applying a current to our conducting samples, regarding the Amperian linewidth that we
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Figure 3.3 Momentum-space spin and orbital textures for Seout (panels (a) and (c)) and Bi
(panels (b) and (d)) in Bi2Se3 . Panels (a)-(b) show the textures at the bottom of the
conduction band and panels (c)-(d) display the textures at the top of the valence
band. Momentum in the kz = 0 plane is measured in units of the unit cell lattice
parameter (axy, in the xy plane). Angular momenta are measured in units of h̄.

have encountered in Chapter 2 and the Joule heating that a current produces. Finally, using

the group theory concepts visited in Chapter 1, we propose other materials with which we

can find a better experimental geometry for the detection of this effect.

3.2.1 Magnetic textures

Figure 3.2 illustrates the momentum-space spin textures for Bi2Se3 , projected onto a Bi (Bi’)

and a Seout (Seout’) site, in the absence of electric fields. These textures are calculated accord-

ing to the definition of local spin from Eq. (1.31). We show only the s-orbital contribution to

the spin textures, relevant to the contact interaction. We confirm the contents of Eqs. (1.32),

which tell us that (a) for a fixed site, the expectation value of spin for a given band is opposite

for opposite values of k and (b) for a fixed k, the expectation value of spin for a given band

is opposite for inversion partners. We can also see how the magnitude of spin polarization

is larger for Bi than for Seout, which is consistent with the large s-orbital component of the
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Figure 3.4 Electric-field-induced staggered magnetic field as a function of the carrier density
for different nuclei in Bi2Se3 and Bi2Te3 , at room temperature, for a fixed electronic

scattering rate Γ = 10 meV and a fixed current density J = 106 A/cm2.

conduction and valence bands for the bismuth site [8].

Figure 3.3 illustrates the momentum-space spin and orbital textures for Bi2Se3 , projected

onto a Bi and a Seout site, in the absence of electric fields. These textures are calculated

according to the definition of local spin from Eq. (1.31) and from Ref. [2]. We again show

only the s-orbital contribution to the spin textures, relevant to the contact interaction. Both

orbital and spin textures are considerable, but the former can be up to an order of magnitude

larger (reaching up to 0.5h̄).

3.2.2 Staggered magnetization

In the presence of an electric field, we combine Eqs. (2.22) and (2.27) in order to obtain the

staggered field acting on the nuclei. The form of the magnetoelectric tensor χE (cf. Eq. (2.28))
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Figure 3.5 Electric-field-induced staggered magnetic field as a function of the electronic scat-
tering rate in Bi2Se3 and Bi2Te3 , at room temperature, for fixed carrier density

n = 3 × 1019 cm−3 and fixed current density J = 106 A/cm2.

is consistent with the R3̄m space group symmetry of Bi2Se3 and Bi2Te3 (see Appendix A),

χE(r0) =

⎛
⎜⎜⎜⎜⎜⎝

0 χxy(r0) 0

−χxy(r0) 0 0

0 0 0

⎞
⎟⎟⎟⎟⎟⎠ . (3.7)

It follows that Hstag · E = 0, and Hstag = 0 when E||ẑ. When the electric field is along x
(y), the staggered magnetic field points at y (−x). Once again, inversion partner sites have

opposite signs of χE(r0) (see Appendix A).

Figures 3.4, 3.5 and 3.6 display the magnitude of Hstag at different nuclei, as a function of

the carrier density (for fixed electronic scattering rate Γ) and as a function of Γ (for fixed carrier

density). In Bi, the main contribution to the staggered field comes from the contact term

Hcont, in part due to the strong atomic spin-orbit coupling. In contrast, in Seout and Teout ,

which are lighter and have smaller hyperfine couplings,[8] the contact part is suppressed

and the orbital part plays a leading role. All these results can be seen in more detail in the

figures in Appendix B.

In the metallic regime (Fig. 3.5), the intraband part from Eq. (2.27) dominates. When
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Figure 3.6 Electric-field-induced staggered magnetic field as a function of the electronic scat-
tering rate in Bi2Se3 and Bi2Te3 , at room temperature, for fixed carrier density
n � 1015 cm−3 and fixed electric field E = 106V/m. Except for very small values of
Γ, Hstag increases with Γ. This confirms that interband (non Fermi-surface) contri-
butions make the dominant contribution to the staggered field in poorly conducting
samples.

the carrier concentration is low (Fig. 3.6), the intraband part dominates as Γ → 0, but the

interband part takes over as Γ increases. For conducting samples, we choose to represent the

staggered field in terms of the current density rather than the electric field. To calculate the

current produced by a given electric field for fixed carrier density and electronic scattering

rate, we make use of the standard Kubo formula (which, modulo prefactors, amounts to

replacing O(r) by the velocity operator in Eq. (2.27)). For carrier densities of the order of

1019 cm−3, a current density of 106 A/cm2 produces staggered fields of the order of 1 mT

at Bi sites. The staggered field is up to an order of magnitude smaller at Seout and Teout

sites. In experiments, the typical intrinsic linewidth of the Se and Bi NMR peaks is of the

order of 10 kHz and 100 kHz, respectively, which in field units is within 0.1 − 1 mT. Thus,

for J � 106 A/cm2, the staggered fields in Bi and Se can produce peak splittings in excess of

the intrinsic linewidth.

Although Figs. 3.4, 3.5 and 3.6 give a quantitative idea for the order of magnitude of

Hstag, in reality the electronic scattering rate and the carrier density are not independent

variables. In order to obtain more reliable results, we take the carrier densities and resistivities

provided by various experiments,[27, 28, 29, 30, 31, 32] and from there calculate the staggered

field. The outcome is shown in Fig. 3.7, which displays the dependence of the staggered
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Figure 3.7 NMR peak splitting for various experimentally reported sample parameters as
a function of current density for (a) Seout and (b) Bi, at room temperature. The
frequency splitting is defined from Eq. (2.20) as Δω(r0) = γ(r0)|Hstag(r0)|.

field on the current density. In the figure, the previous cited experiments are labeled [a]-

[f] correspondingly. This figure confirms that sizeable staggered magnetic fields of the

order of 1 mT (0.1 mT) can be expected for Bi (Seout ) in conducting samples for current

densities of 106 A/cm2. In comparison, for similar current densities, the spin-orbit fields

in ferromagnetic (Ga, Mn)As and the staggered fields in the antiferromagnetic Mn2Au are

about 0.1 mT.[33, 34]

3.2.3 Amperian linewidth and Joule heating

Until now, we have considered the splitting of the resonance peak produced by Hstag, while

omitting the linewidth produced by the amperian field Hamp. In Bi2Se3 and Bi2Te3 , the form

of χE is such that the staggered field is perpendicular to the electric field and thus coplanar

to the amperian field (Hamp ⊥ E because J||E in point group D3d to which Bi2Se3 and
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Figure 3.8 Approximate NMR lineshapes near a 209Bi resonance peak for a cylindrical wire of
radius R. (a) R = 2μm, (b) R = 1μm, (c) R = 0.5μm, (d) R = 0.2μm. The vertical
dotted lines are guides for the eye indicating H̃ ≡ (1+ χH)Hext and H̃ ± Hstag. The
blue and green dashed lines indicate the separate absorption signals for inversion
partner nuclei. The red solid line gives the total measured signal (the sum of the
blue and green lines). The electric-field-induced staggered magnetic field splits
the resonance frequency of Bi. We take Hstag = 2 mT (independent of R), which

corresponds to a current density of � 106A/cm2, and we use Eqs. (2.31) and (2.32)
to model the amperian linewidth. We neglect the intrinsic linewidth because it is
typically � 1 mT. For R � 1μm, the effect of the staggered field is masked by the
amperian linewidth.

Bi2Te3 belong). Therefore, it is not a good idea to attempt to reduce the amperian linewidth

by aligning the external magnetic field with the current, because this would also eliminate

the splitting coming from the staggered field (recall Fig. 2.1). Thus, in doped Bi2Se3 and

Bi2Te3 , both the staggered and amperian fields have to be considered. Moreover, the two

scale linearly with the current density, which means that their relative importance will

depend on the geometry of the sample. For a wire with a circular cross section and radius

R, the condition for detecting the staggered field in the background of the amperian fields

(i.e. Hstag � Hamp(R)) can be expressed as

R � μB

evF
|Skn(r)| (3.8)
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where we have used Eq. (2.29). In sum, it is desirable to have crystals with large hidden spin

polarization (strong spin-orbit interaction, large hyperfine coupling) to satisfy condition

(3.8) for larger values of R. In Fig. 3.8, we show how the staggered field on Bi sites becomes

detectable for wires whose cross-sectional area is � 1μm2. To detect the staggered field on

Se or Te sites, the radius of the wire should be about an order of magnitude smaller. For such

small cross-sectional areas, the NMR signal is reduced, and low temperature measurements

may be required to compensate for the loss. On a positive side, the wire length can be

arbitrarily long; in fact, Bi2Se3 and Bi2Te3 nanoribbons of lengths up to several millimeters

have already been synthesized and their transport properties measured [35].

Another potential issue with conducting samples and high current-densities is the Joule

heating. For a film of thickness w in contact with an insulating substrate, the change in

temperature due to the Joule effect can be roughly estimated as ΔT � J2w2/(σκ), where κ

is the thermal conductivity of the electrically insulating substrate. Taking J = 106A/cm2,

σ = 106 Ω−1m−1, κ = 100 Wm−1K−1 (a sapphire[36] substrate at a few Kelvin) and w �
1 μm, the Joule heating is rather small (ΔT � 1 K). Nevertheless, for fixed J, the Joule heating

becomes problematic as the sample thickness exceeds 10μm.

3.3 Other materials

Given the aforementioned difficulties in Bi2Se3 and Bi2Te3 , it is natural to wonder about

other materials whose attributes might be more favorable for NMR-based detection of the

hidden spin or orbital polarization. The first approach is to try crystals with larger hidden

spin polarization, so that the maximum value of R in Eq. (3.8) becomes larger. LaOBiS2 and

related compounds[3] could be interesting candidates in that regard.

Another approach is to search for materials where Hstag · E �= 0. In other words, crystals

where χE has one or more nonzero diagonal elements (χjj �= 0 for one or more values of j,
where j ∈ {x, y, z}). In addition to Hstag · E �= 0, we need the electric current J to be parallel

to the electric field: together, these two conditions ensure a nonzero staggered field in the

direction perpendicular to the amperian field. The objective of this section is to identify

materials that meet these criteria. This objective is motivated by the fact that, in materials

with Hstag · E �= 0 and J||E, there will be an optimal configuration for the external electric

and magnetic fields, shown schematically in Fig. 3.9: with Hext||E, the amperian linewidth

can be largely eliminated (it goes as the square of the electric field) while keeping the effect

of the staggered field intact (linear in the electric field).
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Figure 3.9 A favorable configuration to probe the hidden spin and orbital polarizations with
NMR, in crystals where the macroscopic (unit cell averaged) current is flowing
parallel to the electric field E, and the staggered field has a nonzero component along
the current. This situation is optimal in that the amperian field is perpendicular to
the staggered field. Then, if a large external magnetic field is applied parallel to the
current, the linewidth from the amperian field is suppressed (it becomes second
order in the electric field), while the NMR peak splitting due to the staggered field
remains intact (first order in the electric field). This situation can be realized in
crystals belonging to monoclinic or higher-symmetry crystal classes, provided that
one or more atoms in the unit cell are located at sites whose local symmetries do
not contain either inversion or mirror planes.

Before continuing, we remark that the amperian field Hamp is a macroscopic (unit cell

averaged) quantity. Accordingly, its direction can be determined completely from the knowl-

edge of the point group of the crystal. For a given electric field, the conductivity tensor

determines the direction of J, which in turn establishes the direction of Hamp. In contrast,

the staggered field is a local quantity whose variation inside the unit cell plays a major role.

Thus, in order to determine the form of χE(r0), we must use the space group of the crystal.

We are now ready to embark on symmetry arguments. On the one hand, for crystals of

monoclinic or higher symmetry (see, for example, Ref. [37]) the macroscopic conductivity

tensor is such that J||E, as long as the electric field is applied along a symmetry axis. Here,

it suffices to consider the conductivity tensor in the absence of external magnetic fields,

because we are interested in the linear response to electromagnetic fields. On the other

hand, the crystals allowing for Hstag · E �= 0 must have atoms whose site symmetries contain

neither inversion nor (vertical or horizontal) mirror planes. This rule follows from the fact

that spin is a pseudovector, while the electric field is a polar vector (see Appendix A for

details). In general, we can infer whether a crystal will allow for Hstag · E �= 0 or not from the

knowledge of the atomic arrangement in the unit cell (i.e. the Wyckoff positions occupied by

the atoms, along with their site symmetries).

From the outset, it must be recognized that many layered semiconductors with hidden

polarizations display χij �= 0 for i �= j, but χjj = 0, because all atoms occupy sites whose
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local symmetry contains a mirror plane. This is the case in Bi2Se3 and Bi2Te3 , in which Bi,

Seout and Teout occupy Wyckoff positions 2c of site symmetry C3v.[38] This is also the case

in transition metal dihalides[39] of the type MX2, where M is a transition metal cation and X

is a halogen anion. The same state of affairs applies to layered semiconductors of the type of

GaTe.[40] Next, we will give several representative examples of centrosymmetric materials

with significant spin-orbit interactions, for which χjj(r0) �= 0.

The first proposed example comes from monoclinic transition metal trihalides[41] with

the AlCl3 structure (space group C2/m). Among them, we note α-RuCl3, which is a candidate

for being a spin liquid.[42] In this layered compound, the monoclinic C2 axis is oriented

along y, and the layers are stacked along z. Ru atoms occupy Wyckoff positions 4g (site

symmetry C2), and the two symmetry-inequivalent Cl atoms (named Cl1 and Cl2) occupy

Wyckoff sites 8j (site symmetry 1) and 4i (site symmetry Cs), respectively. Hence, χjj(Ru) �= 0
and χjj(Cl1) �= 0, but χjj(Cl2) = 0 because Cs has a mirror plane. Recent experiments[43]

have reported 35Cl NMR data in the absence of electric fields. It would be interesting to

see the evolution of the Cl1 NMR shift as a function of an electric field applied along the

y direction (with Hext||ŷ). One drawback of this material is that it is insulating,[44] with a

room temperature resistivity of the order of 103Ω cm. Hence, the main contribution to the

staggered field will come from the deformation of Bloch wave functions by an electric field

(the interband part), which will lead to an electric-field-induced change in the hyperfine

coupling. Detailed calculations will be required in order to find out the electric fields and

the disorder scattering rates for which the staggered field becomes significant.

Another example concerns As2Se3 and As2S3 crystals, belonging to the space group

P21/c. These are layered compounds, where the monoclinic C2 axis is perpendicular to the

layers.[45] The two symmetry-inequivalent As atoms and the three symmetry-inequivalent

Se (or S) atoms per unit cell are all located[46] at general Wyckoff positions (site symmetry

1). Hence, χjj �= 0 for all atoms. The 77Se NMR data in the absence of an electric field[47]

shows three peaks, which correspond to the three inequivalent Se atoms. If an electric field is

applied along the monoclinic axis, each of the peaks should split in two. Unfortunately, these

compounds have extremely large resistivities,[48] especially in the direction perpendicular

to the layers (� 1012 Ωcm), which may make the staggered field too weak.

SrRuO3 (space group Pbnm) and related compounds appear to be much better candidates.

For one thing, SrRuO3 conducts electricity (with a resistivity of about 1 mΩcm at room

temperature[49]), and one of its two symmetry-inequivalent oxygens sits in a general Wyckoff

position 8d (site symmetry 1).[50] For this oxygen, χjj �= 0. For the rest of the atoms, the site

symmetry contains either a non-diagonal mirror plane or inversion, so that χjj = 0. Due

to the admixture of 2s electrons at the Fermi level,[51] the contribution from the contact
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interaction to the staggered field should be significant. Consequently, it will be interesting

to measure the evolution of the 17O resonance frequency under an electric field (once again

we suggest applying the electric field along a symmetry axis, with the external magnetic

field parallel to it).

As extra examples, we list α−Cu2Se and BaIr2Ge2, both from space group P21/c. In

these compounds, all atoms are located in sites whose local symmetry is just the identity.[52]

Hence, χjj(r0) �= 0 for all atoms. These compounds have rather low resistivities (BaIr2Ge2 is

metallic, while the resistivity of α−Cu2Se can be as low as 1 mΩcm at room temperature),

and the low-energy electronic states have a significant s−orbital character, which presages a

sizeable staggered field for reasonable electric fields.

Thus far, we have presented examples of materials with significant spin-orbit coupling.

In crystals without spin-orbit coupling, the electric-field-induced NMR shift has purely

orbital origin (i.e. the contact and dipolar contributions to Hstag vanish). This purely orbital

shift can be expected to be smaller than that of strongly spin-orbit coupled systems with

significant contact hyperfine interaction. However, as we have found in our calculations for

Bi2Se3 and Bi2Te3 , the orbital component of Hstag can attain 0.1 mT for current densities of

106 A/cm2, which can by itself leave a fingerprint in the NMR spectrum. Motivated by this,

we close this section by proposing a few weakly spin-orbit coupled materials, whose crystal

symmetries allow current-induced staggered magnetic fields with a suppressed amperian

linewidth. First, we mention organic layered compounds of the type of BEDT-TTF. Several

of these compounds[53] are centrosymmetric, conducting, and contain atoms in general

Wyckoff positions with site symmetry 1. Second, we bring up the cuprate La2−xSrxCuO4

(space group Bmab), which constitutes a Fermi liquid in the overdoped regime. In this

compound, one of the two inequivalent oxygens in the unit cell[54] is placed in Wyckoff

position 8e (site symmetry C2), which allows for χjj �= 0.



Chapter 4

Future work

Up until this point, we have presented the idea of the hidden spin and orbital polarization

and how we could measure them in a rather simple way using nuclear magnetic resonance

in an electric field. Particularly, we have shown this idea using a particular material in mind.

In this short chapter, we will show two projects that can potentially be worth exploring.

The first project uses the same idea of the whole mémoire. We apply a current to obtain

a staggered magnetic response, but this time we apply the ideas and the formalism to silicon,

another centrosymmetric crystal.

The second project focuses on a more general idea. Thus far we have calculated a particu-

lar magnetic response of an electrical perturbation. Now we ask ourselves about the converse

phenomenon: can we get a similar electrical response out of a magnetic perturbation?

The particular motivations and problems will be included in the section devoted for

each one.

57
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4.1 Hidden orbital polarization in Silicon

The reason to use Bi2Se3 and Bi2Te3 to apply our ideas of hidden spin and orbital polariza-

tions were mainly motivated by a strong spin-orbit coupling present in these materials. The

spin-orbit coupling, discussed in Chapter 1, couples the electric field to the spin degree of

freedom. Given that the Bismuth sites, for example, have a strong hyperfine coupling, the

contact interaction that dominates the magnetoelectric effect gives hope for its detection

with NMR.

From a different perspective, what we are doing with this magnetoelectric effect is to

manipulate the resonance frequencies of nuclei in a material. This idea is widely used in the

spintronics [34] and quantum computing community. For the latter, there is an approach

to quantum computing in which the energy levels of nuclear spins of donors in silicon

are manipulated to be able to perform computations [55]. Silicon is used due to the high

abundance of 28Si in nature. Given the spinless nature of the nucleus for this isotope, it

provides a good “spin vacuum” for donors in silicon. It means that if a donor (extra proton

+ electron) such as arsenic or phosphorus with spinful nuclei were to be in this background,

the coupling between two of them, remains isolated from a “spin noise”. This means that

the energy levels, and thus the resonance frequency to induce transitions between them, of

the donors can be controlled with low decoherence. This control is accomplished by using

gate voltages in the region of dopants [55].

By virtue of detecting them with NMR, we have shown that it is possible to control

the resonance frequencies relative to energy levels that concern nuclear spins. We explore

the opportunity to potentially propose another control tool in doped silicon using the

source-drain current and the symmetry properties of silicon. However, we find two main

complications for the case of silicon:

1. The spin-orbit interaction in silicon is very small (compared to Bi2Se3 or to the

bandgap). This means that the control of the resonance frequency has to come from

the orbital degrees of freedom, which we have seen in Bi2Se3 could be an order of

magnitude smaller than the hyperfine coupling present in 209Bi.

2. The site-symmetry group of the nuclear sites in silicon’s unit cell do not allow for the

hidden polarizations to be made visible.

The first difficulty is only really a difficulty until we see the numbers that we can obtain only

with the orbital degree of freedom. The second problem is a fundamental one. However,
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by inducing strain, we can lower the site symmetries while keeping the global inversion

symmetry of the crystal [56]. Therefore, we explore the hidden polarizations produced by

an electric field in silicon under strain.

4.1.1 Tight-binding hamiltonian under strain

There are tight-binding models that incorporate strain by modifying the hopping parameters.

One can do this by fitting with a power law the hopping Vμν between orbital μ in a site and

ν in a different site[57]:

Vμν(d) = Vμν(d0)(
d
d0

)ημν , (4.1)

where d is the distance between sites after the strain, d0 is the unstrained distance and ημν is

the Harrison parameter.

Because of the widespread use of semiconductors, sophisticated tight-binding models

that incorporate ten orbitals (s, s∗, px, py, pz, dxy, dyz, dzx, dx2−y2 , d3z2−r2) have been developed

to replicate with detail the realistic band structure of cubic semiconductors[58].

Combining these two facts, a sophisticated ten-orbital tight binding model for silicon

with the possibility to add strain was constructed in Ref. [59]. It incorporates strain for the

hopping parameters that involve different sites with the Harrison parameters, as in equation

(4.1). However, for the onsite matrix elements in the model, they develop a first-order

expansion of the crystal potential as a function of the atomic positions, thus incorporating

strain in microscopic detail. We took this tight-binding model, reported in Ref. [59], to build

the basis to expand the Bloch functions of silicon that now depend on strain.

Silicon has two atoms per unit cell, which lets us define two sublattices of the crystal.

The space group for silicon is the symmorphic Fd3̄m. The site-symmetry group for both sites

is 4̄3m. The inversion symmetry is hidden in the rotoinversion axis 4̄. Each of the sublattices

has one atom per unit cell, and we expect that by locally breaking the inversion symmetry

by means of a uniaxial strain, the hidden polarizations will give us a magnetic response

that is opposite across the sublattices. Without going into much detail, the most important

piece of information comes with the dependence of the atomic positions with strain. In

a homogeneously strained crystal, these new positions Ri for site i, as a function of the

unstrained positions R0
i , are given by the following equation,

Ri = (Î + ε̂)R0
i ± ξ

a
4
(εyz, εzx, εxy) (4.2)

where the + (respectively, the −) corresponds to the the sublattice 1 (sublattice 2), ξ is a
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Figure 4.1 Relaxed silicon band structure computed from the tight-binding approximation
from Ref. [59]. We see the indirect band gap happening between the valence band
maximum at k = Γ and one of the conduction band minima at k = X.

phenomenological internal strain parameter, a is silicon’s lattice parameter, Î is the identity

matrix and ε̂ is the matrix of strains. As we can see, the second term is only non-zero when

there are nonzero off-diagonal strain matrix elements. This means that ξ describes the

motion of one sublattice with respect to the other under shear strain.

4.1.2 Preliminary results

Fig. 4.1 shows the band structure of the silicon crystal using the tight-binding method

under no strain. We can reproduce the ∼ 2 eV indirect band gap between the valence band

maximum at k = Γ and one of the conduction band minima at k = X.

We then go ahead and apply all the formalism described in Chapters 1, 2 and 3. To

do this, however, we need the information about the wavefunctions at the nucleus, for a

nucleus that interests us. Because we already have this information for 209Bi, we provide

results for Bi-doped silicon. Fig. 4.2 shows the staggered magnetic field obtained when we

induce a uniaxial strain along the [001] direction for two values of strain, 5% compression

and 5% elongation. We show the x component of the staggered magnetization; all the other

components are orders of magnitude smaller. We note that in this case the applied current

and the staggered magnetic field are parallel (and antiparallel), which helps us get rid of the

amperian field. However, the induced staggered magnetization is one order of magnitude

smaller than the best case scenario in Bi2Se3 for the same applied current.
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Figure 4.2 Magnetic response in one sublattice as a function of carrier density for two fixed
values of strain. All other components of the magnetization are orders of magnitude
smaller. The applied current is in the same direction as the response.

Finally, fig. 4.3 shows the staggered magnetization response as a function of strain

percentage for two fixed values of carrier density (in one, chemical potential crosses the

conduction band (CB), and in the other it crosses the valence band(VB)). We clearly see that

when there is no strain induced in the crystal, the staggered magnetization goes to zero.

With these results we confirm the need of strain in the silicon crystal to induce a staggered

magnetic field with a current. The best order of magnitude of this staggered field that we

can obtain for Bi is ∼ 0.1 mT with a current density of 106 A/cm2. There are many other

questions that we want to explore:

• Is it possible to presently apply this current in silicon samples?

• Is there an advantage to effectively substitute the gate voltages by strains?

• What’s the dependence of this staggered magnetic field with other types of strains?

It is in our intentions to talk with experimentalists if it is a research avenue worth pursuing.
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Figure 4.3 Magnetic response in one sublattice as a function of strain for two fixed values of
chemical potential. The applied current is in the same direction as the response.
CB stands for conduction band and VB stands for valence band.

4.2 Hidden electrical polarization under external magnetic field

We have shown that there exists a hidden magnetic polarization at nuclear sites in cen-

trosymmetric crystal that can be rendered visible by means of an electric field: both by

changing the electronic band populations and the electronic wavefunctions. Given the na-

ture of this magnetoelectric effect, we venture into the question of finding local electric

dipole moments inside a unit cell under a magnetic field – that is, a converse effect, where

now the perturbation is magnetic and the local response is of electric nature.

The particular motivation for this project comes from (presently unpublished) NMR

data of the 209Bi sites in Bi2Se3 . In chapter 2, we presented the theory of NMR that is valid

for any spinful nucleus. However, if the total half-integer spin of the nucleus exceeds 1/2, a

phenomenon called “quadrupolar splitting” arises. For a detailed explanation, see Chapter

10 of Ref. [18].

Basically, if there is a non-spherical distribution of charge in the nucleus, there could

be an effective electrostatic energy associated with the orientation of this distribution of

charge. This distribution of charge can be carried out into a multipole expansion. It can be
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shown that the quadrupole moment interaction with the electric field gradients shifts the

resonance frequencies for transitions between nuclear spin projections mI > 1/2. Therefore,

if we have a nucleus with a nuclear spin I > 1/2, the resonance spectrum gets additional

peaks coming from the other shifted energy levels. This quadrupolar interaction depends

highly on the orientation of the external magnetic field relative to the principal axes of the

crystal. This angular dependence allows a “magic angle” at which all the splitting due to

quadrupolar coupling vanishes. Given that the nuclear spin of bismuth is I = 9/2, the NMR

spectrum for this site, away from the magic angle, gets 8 extra peaks [24]. At exactly the

magic angle, we should only get the main resonance line.

This project is meant to try to look at the influence of a possible extra electric field

gradient produced at a bismuth site by the coupling between the external magnetic field and

the dipole moments of the surrounding atoms. This could affect the resonance spectrum for

nuclear spins higher than 9/2 even at the magic angle, depending on the crystal symmetries.

4.2.1 Local dipole moment operator

Classically, we know that an electric dipole is formed when there are two opposite charges

are very close to each other. This classic idea of “dipole” can be extended, and when we

consider a more complex charge distribution, whose electric field can be expanded in a series

of moments. The second moment is the dipole moment and serves as a first approximation to

compute complex charge distributions by looking at them from far away, where in the zeroth

order approximation we just look at the total charge as a point charge. For a continuous

charge distribution ρ(r), its dipole moment p is defined as

p =
∫

V
d3r ρ(r)r.

When ρ(r) = ∑N
i=1 qiδ(r − ri), and N = 1, we get the classical expression for a dipole moment

p = qd. The electric field at point R, measured from the origin, associated with a dipole is

E(R) =
3(p · R)R − p

4πε0R3 . (4.3)

Let us now write our charge density as a quantum-mechanical operator,

ρ(r) = qψ†(r)ψ(r) = q ∑
k,k′

∑
n,n′

ψ∗
k,n(r)ψk′,n′(r)c†

k,nck′,n′ .
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We then want to compute the expectation value of our dipole moment operator,

〈p〉 = q
∫

d3r r ∑
k,n

ψ∗
k,n(r)ψk,n(r) fk,n,

where fk,n is the Fermi-Dirac distribution that comes about when we take the expectation

value of the number operator in the non-interacting case. We then make use of a closure

relation to get to a normal expectation value of an operator using wavefunctions expanded

in a k-space basis,

〈p〉 = q ∑
k,n

〈k, n|r|k, n〉 fk,n.

We will, however, define a “local” electric dipole moment operator by projecting onto a site

r0,

〈p(r0)〉 = q ∑
k,n

〈k, n|r |r0〉〈r0||k, n〉 fk,n. (4.4)

4.2.2 Matrix elements in the tight-binding basis

Given that we have a tight-binding approximation, we want to find the matrix elements of

our local dipole moment operator in this basis,

|kn〉 = ∑
j0,μ,σ

|kj0μσ〉 〈kj0μσ|kn〉 .

Since we want to know what will be the real-space projection on these states, we expand in

a real-space basis, knowing 〈Rj0μσ|kj0μσ〉 = 1√
N

eik·R,

|kjμσ〉 = 1√
N

∑
R

eik·R |Rjμσ〉 .

Therefore, the matrix elements will be given by

〈
kn

∣∣r |r0〉〈r0|
∣∣k′n′〉 = 1

N ∑
R,R′

ei(k·R−k′·R′) ∑
j,μ,σ

j′,μ′,σ′

〈kn|kjμσ〉 〈
Rjμσ

∣∣r |r0〉〈r0|
∣∣R′ j′μ′σ′〉 〈k′ j′μ′σ′∣∣k′n′〉 .

The real-space projection selects a nuclear site with coordinates R0 for the Bravais lattice

vector and tj0 for specific site within a unit cell, r0 = R0 + tj0 . Because all unit cells are
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Table 4.1 Hidden electric dipole moment for the different sites in Bi2Se3 under no perturbation.

Lattice site ẑ-component of 〈p(r0)〉 (×10−37 C m) in Debyes (×10−8 D)

Sein 0 0

Seout 1.1828 3.5456

Bi 3.9705 11.902

Bi’ -3.9705 -11.902

Seout -1.1828 -3.5456

identical, we can just choose R0 = 0. Therefore,

〈
kn

∣∣r |r0〉〈r0|
∣∣k′n′〉 = 1

N
ei(k−k′)·r0 ∑

μ,σ
μ′,σ′

〈kn|kj0μσ〉 〈
0j0μσ

∣∣r∣∣0j0μ′σ′〉 〈k′ j0μ′σ′∣∣k′n′〉 . (4.5)

Let us focus on the intra-atomic dipole matrix elements in our tight-binding basis,

pj0
μ,μ′ = e

〈
0j0μσ

∣∣r∣∣0j0μ′σ′〉 = e
∫

d3r ψ∗
μ(r0)rψμ′(r0)δσ,σ′ , (4.6)

where the ψμ(r0) is the electronic wavefunction around the nuclear site r0, which can be

calculated through DFT, atomic DFT, or in a hydrogen-like approximation.

4.2.3 Preliminary results

We then use eq. (4.5) for k′, n′ = k, n to compute the expectation value of the intra-atomic

dipole moment in the absence of an external field, eq. (4.4). We still need the information

about the radial part of the wavefunction, which for now we approximate with a hydrogen-

like atom with radial wavefunctions that only differ from hydrogen by the appropriate

atomic number. We can therefore compute the integral in eq. (4.6) for all the atoms in Bi2Se3.

Using N = Vcell/Vcrystal, we get Table 4.1, where we show only the z component. All the

other components are zero.

We see that even in the absence of magnetic field, there is already a staggered dipole

moment within a unit cell. Because it is compensated in each unit cell, there is no net electrical

polarization. The symmetries thus allow a nonzero electric dipole in the z direction that is

nevertheless 8 orders of magnitude smaller compared to the dipole moment of water (in the
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order of 1 Debye).

The present state of affairs in this research avenue is to implement the linear response of

this quantity with the magnetic field, which we have done before in the case of the magnetic

response to evaluate the NMR shifts in conventional setups [8].

• Find χE(r0) in the relation 〈p(r0)〉 = χE(r0) ·H, where H is the external field. Confirm

that its matrix elements obey the symmetry restrictions of the crystal. Compare this

correction to the local dipole moment with the “permanent” one.

• Estimate the electric field gradient produced by the dipole moments.

• Evaluate if the interaction with the nuclear quadrupole moment can lift the degeneracy

of the nuclear energy levels at the magic angle.



Conclusion

Throughout this mémoire, we have looked into the implications that symmetries have on

the physical manifestations of certain phenomena. In particular, this reasoning applies

in the quantum-mechanical formalism of crystals. From a microscopic perspective, the

energies and wavefunctions that describe electrons moving in a crystal are restricted by the

symmetries of the problem.

In chapter 1, we have seen that two particular symmetries, inversion and time-reversal,

render every Bloch band at least two-fold degenerate everywhere in reciprocal space. This

has profound implications on the spin angular momentum expectation value across bands,

as well as for the orbital angular momentum. We have shown that when looking at real-space

sectors, we could extract information about the spin and angular polarizations of bands. By

analyzing their properties, we have seen that these polarizations are hidden in two ways. To

try to obtain a measurement, we have proposed nuclear magnetic resonance in an electric

field to probe this local effect that compensates within a unit cell.

In chapter 2, we have completed a quantitative theory of the NMR shifts that arise when

we allow the probed nuclear sites to talk to their electronic surroundings. In particular,

we have looked at the calculation of the electrically induced NMR shifts, as well as some

potential problems related to amperian magnetic fields. The basis of our proposal is that,

under an electric field, the NMR peaks corresponding to sites away from the inversion center

should be split into two.

In chapter 3, we have applied these ideas to a particular set of crystals whose electronic

wavefunctions show strong spin-orbit interaction. To do this, we adapted an existing tight-

binding model for these materials and computed all the quantities defined in chapter 2.

The most important result that we find is that we could observe the hidden polarizations

with this method in this material if many particular constraints are met. We conclude that

these materials are not ideal mainly because the electrically induced staggered magnetic

field is perpendicular to the current. This fact makes it more difficult to observe the NMR
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peak splitting experimentally because one must contend with the linewidth generated by

the circulating amperian magnetic fields. We have discussed two possible solutions to this

problem. One is to use wires with small cross sectional areas. Another option is to use other

materials, whose crystal symmetry allows to have the staggered field perpendicular to the

amperian field. The ideal systems would be highly conducting, strongly spin-orbit coupled,

with significant s−orbital admixture near the Fermi level, and would have some atoms

whose site symmetries lack inversion and non-diagonal mirror planes. There exist materials,

like SrRuO3 and BaIr2Ge2, that appear to satisfy all of these requirements.

Although the electrically induced splitting of NMR resonance peaks predicted in this

work has not been reported thus far, partially related effects are known in the semiconductor

and quantum information literature.

On the one hand, in silicon-based qubits,[60] an electric field modifies the hyperfine

coupling of a donor nuclear spin-electron system placed in proximity to a gate, thereby

shifting the resonance frequency in a controllable way. This effect is formally similar to the

interband contribution discussed in our work,which also captures the change in the local field

originating from the electric-field-induced deformation of the electronic wave functions. That

said, there are several differences. First, our formalism involves many electrons, as opposed

to just one in silicon qubits. For that reason, the intraband (Fermi-surface) contribution,

which plays a major role in our theory, is not present in silicon qubit proposals. Second, in

our case the magnitude and direction of Hstag depend on the local symmetry at the location

of the nucleus; such symmetry considerations do not play a role in existing silicon qubit

proposals.

On the other hand, there exists a large body of theoretical and experimental work [61, 62]

concerning electric-field effects in electron spin resonance (ESR). For instance, in spin-orbit

coupled systems with broken inversion symmetry, an electric field can lead to an electronic

spin polarization, which modulates (or induces, in the case of ac electric fields) ESR. Our

idea differs from this line of work in that we are focused on nuclear spin resonance. In

centrosymmetric and non-magnetic crystals, Hstag averages to zero inside a unit cell. Thus,

for itinerant electron systems, the shift in the ESR frequency due to Hstag should vanish in

the bulk.

Finally, in chapter 4, we have discussed possible extensions of our work that imply short-

and long-term projects. First, we have found it would be interesting to explore the impact (if

any) of hidden spin and orbital polarizations in the manipulation of spin qubits. Secondly,

we explored the idea of the converse effect happening in centrosymmetric crystal – namely,

an electrical response from a magnetic perturbation.



Annexe A

Symmetry constraints in the form of the

magnetoelectric tensor

In this Appendix, we show how symmetry operations of the space group of the crystal

determine the form of χE. For concreteness, we will study the transformation properties of

a related but simpler quantity,

χ̃ij(r) = ∑
knn′

〈ψk,n| Si(r) |ψk,n′ 〉 〈ψk,n′ | vj |ψk,n〉

× F(Ek,n, Ek,n′), (A.1)

where i, j ∈ {x, y, z} and F(Ek,n, Ek,n′) is a function only of energies of Bloch states (as well

as their broadening parameter Γ). The tensor χE(r) transforms in the same way as χ̃ under

space group operations, because internal magnetic fields transform in the same way as spins

(both are pseudovectors).

Let R be a symmetry operation of the non-magnetic crystalline space group. Under

this operation, a wave vector k changes to Rk, with ERk,n = Ekn. In addition,[15] R|ψkn〉 =
Ukn|ψRk,n〉, where Ukn is a unitary matrix acting on the twofold degenerate subspace of

band n at momentum k (it also includes the phase factors from non-symmorphic symmetry
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operations). Inserting R−1R = 1 in Eq. (A.1), we can write

χ̃ij(r) = ∑
knn′

〈ψRk,n| RSi(r)R−1 |ψRk,n′ 〉 〈ψRk,n′ | RvjR−1 |ψRk,n〉 F(Ekn, Ekn′)

= ∑
Rk,nn′

〈ψRk,n| RSi(r)R−1 |ψRk,n′ 〉 〈ψRk,n′ | RvjR−1 |ψRk,n〉 F(ERk,n, ERk,n′)

= ∑
knn′

〈ψkn| RSi(r)R−1 |ψkn′ 〉 〈ψkn′ | RvjR−1 |ψkn〉 F(Ekn, Ekn′). (A.2)

In the first line of Eq. (A.2), the matrix U has been removed by a gauge transformation (this

is always possible because χ̃ij is gauge invariant). In the second line, we have used the fact

∑k f (k) = ∑k f (Rk) = ∑Rk f (k) for any function f (k) because k and Rk contain the same

momenta (only the ordering differs, but the sum is independent of the ordering). In the

third line, we have made a change of variables Rk → k.

Armed with Eq. (A.2), one can find out how various symmetry operations constrain the

form of χ̃. To begin, let us consider the spatial inversion operator, R = I. In this case,

ISi(r)I−1 = I
σi

2
I−1 I |r〉 〈r| I−1 =

σi

2

∣∣r′〉 〈r′
∣∣ = Si(r′), (A.3)

where we have used the fact that spin is a pseudovector and r′ = Ir is the inversion partner

of r. Since velocity is a polar vector, Ivj I−1 = −vj. Hence, from Eq. (A.2), we get

χ̃ij(r) = −χ̃ij(r′). (A.4)

This shows that χE takes the opposite sign at inversion partner sites, a fact that we have

repeatedly mentioned in the main text. In particular, if the site symmetry of the atom includes

inversion, i.e. if r′ = r, we are led to χE(r) = −χE(r) = 0.

Let us now consider a rotation by an angle φ around the z axis. For an n-fold axis,

φ = 2π/n, the operators transform as

CφSi(r)C−1
φ = ei σz

2 φ σi

2
e−i σz

2 φCφ |r〉 〈r|C−1
φ

CφvjC−1
φ = ei σz

2 φvje−i σz
2 φ. (A.5)

In the second line, vj must be understood as a vector whose only nonzero component is the

j-th component. If Cφ r and r are equivalent sites (i.e. if the site symmetry at r contains the
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Cφ operation), the local spin operator transforms as

Sx(r) →Sx(r) cos φ + Sy(r) sin φ

Sy(r) →− Sx(r) sin φ + Sy(r) cos φ

Sz(r) →Sz(r). (A.6)

The velocity operator transforms similarly. It then follows from Eq. (A.2) that χ̃xz(r) =

χ̃xz(r) cos φ + χ̃yz(r) sin φ and χ̃yz(r) = −χ̃xz(r) sin φ + χ̃yz(r) cos φ. When φ �= 0 mod2π,

the only solution for these two equations is χ̃xz(r) = χ̃yz(r) = 0. Likewise, one can show

that χ̃zj(r) = 0 for j ∈ {x, y}. Similarly, another consequence of the Cφ axis is that

(χ̃xx(r)− χ̃yy(r)) sin2 φ = (χ̃xy(r) + χ̃yx(r)) sin φ cos φ

(χ̃xx(r)− χ̃yy(r)) sin φ cos φ = −(χ̃xy(r) + χ̃yx(r)) sin2 φ.

If sin φ = 0 (C2 axis), these two equations are trivially satisfied. However, if sin φ �= 0, they

enforce χ̃xx(r0) = χ̃yy(r0) and χ̃xy(r0) = −χ̃yx(r0). Such is the case of Bi, Seout and Teout

sites in Bi2Se3 and Bi2Te3 , whose site symmetries contain a C3 axis along z.

Next, let us consider an atomic site r whose local symmetry contains a mirror plane.

For concreteness, let us suppose that the mirror is perpendicular to the y axis. Under this

mirror, Sx(r) → −Sx(r) and vx → vx, which implies that χ̃xx(r) = −χ̃xx(r) = 0. Likewise,

Sy(r) → Sy(r) and vy → −vy,which means that χ̃yy(r) = −χ̃yy(r) = 0. Also, Sz(r) → −Sz(r)
and vz → vz, which leads to χ̃zz(r) = −χ̃zz(r) = 0. In sum, a site symmetry containing a

mirror plane that is perpendicular to either the x, y or z axis imposes χ̃jj(r) = 0, a result

that we have utilized in the main text. This kind of situation arises in Bi2Se3 and Bi2Te3 ,

where Bi, Seout and Teout . In contrast, if the site symmetry contains a diagonal mirror (not

perpendicular to neither x, y nor z axes), it is no longer true that χ̃jj(r) = 0.

A mirror plane can also constrain the off-diagonal matrix elements of χE. For example,

a site symmetry including a mirror perpendicular to the y axis yields χ̃xz(r) = 0, because

Sx(r) → −Sx(r) and vz → vz under the said mirror. Likewise, Sz(r) → −Sz(r) and vx → vx

translate into χ̃zx(r) = 0. In contrast, χ̃xy(r) and χ̃yz(r) are allowed to be nonzero. The

presence of additional mirror operations in the site symmetry group will add further zeros

in χE. For example, if two mirror planes exist, one perpendicular to x and one perpendicular

to y, χ̃yz(r) = 0, though χ̃xy(r) is still allowed to be nonzero (essentially because Sx and vy

transform in the same way under both mirrors). In Bi2Se3 and Bi2Te3 , where all mirror

planes at the locations of Bi, Seout and Teout contain the z axis, χxy(r) �= 0 is allowed.



Annexe B

Spin and orbital contributions to the

staggered magnetization

Figs. B.1 and B.2 shows the contributions to the staggered magnetic field, shown in Eq. (2.22),

at the Bi and Seout in Bi2Se3 , as a function of the carrier density. As referenced in the text, the

contact interaction is the larger of the contributions at the Bi sites, due to the large hyperfine

coupling of bismuth. However, the dipolar interaction becomes the predominant one for

Seout sites.
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