A self-consistent theory of both spin and charge fluctuations in the Hubbard model is presented. It is in quantitative agreement with Monte Carlo data at least up to intermediate coupling (U approximately 8t). It includes both short-wavelength quantum renormalization effects, and long-wavelength thermal fluctuations, which can destroy long-range order in two dimensions. This last effect leads to a small energy scale, as often observed in high-temperature superconductors. The theory is conserving, satisfies the Pauli principle, and includes three-particle correlations necessary to account for the incipient Mott transition.

1 aVilk, Y M1 aChen, L1 aTremblay, A.-M., S. uhttps://www.physique.usherbrooke.ca/pages/node/7289