Many-body theory versus simulations for the pseudogap in the Hubbard model

TitleMany-body theory versus simulations for the pseudogap in the Hubbard model
Publication TypeJournal Article
Year of Publication2000
AuthorsMoukouri, S, Allen, S, Lemay, F, Kyung, B, Poulin, D, Vilk, YM, Tremblay, A-MS
JournalPhysical Review B
Volume61
Pagination7887–7892
KeywordsCondensed matter, Many-Body, Simulation
Abstract

The opening of a critical-fluctuation-induced pseudogap (or precursor pseudogap) in the one-particle spectral weight of the half-filled two-dimensional Hubbard model is discussed. This pseudogap, appearing in our Monte Carlo simulations, may be obtained from many-body techniques that use Green functions and vertex corrections that are at the same level of approximation. Self-consistent theories of the Eliashberg type (such as the fluctuation exchange approximation) use renormalized Green functions and bare vertices in a context where there is no Migdal theorem. They do not find the pseudogap, in quantitative and qualitative disagreement with simulations, suggesting these methods are inadequate for this problem. Differences between precursor pseudogaps and strong-coupling pseudogaps are also discussed.

Full Text
Undefined