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news & views

Over the past decade, research in high 
magnetic ! elds has transformed 
our understanding of cuprate 

high-temperature superconductors. " e 
main debate had previously centred on 
whether the enigmatic pseudogap Ñ a 
partial suppression of electronic states 
above the superconducting transition 
temperature, TC Ñ was associated with, or 
distinct from, the pairing gap1,2. " e debate 
was largely unresolved due to the fact that 
experimental results were con#icting, with 
di$erent reports showing the pseudogap 
energy scale either vanishing inside the 
superconducting dome (and therefore 
distinct) or terminating at its edge (and 
therefore associated with pairing).

Starting with the discovery of (quantum) 
oscillations in the Hall resistivity of a low-
doped cuprate in 20073, a series of novel 
experiments using intense magnetic ! elds 
to strip away the superconductivity have 
revealed a hidden low-temperature phase 
that is now understood to arise from a 
reorganization of the charge density within 
the CuO2 plane, the principal building 
block of cuprate superconductors. " is 
discovery raised many interesting questions 
regarding the role of #uctuating charge 
order in mediating or suppressing high-
temperature superconductivity and in the 
manifestation of the pseudogap phase. 
Now, in a Letter published in Nature, 
Badoux and co-workers4 report Hall e$ect 
measurements conducted on single crystals 
at unprecedented ! eld strengths of 90 tesla 
that reveal the pseudogap phase to be 
distinct from both the superconducting and 
charge-ordered phases. If two is company, 
then three is most de! nitely a crowd.

" e electronic properties of a metal 
stem largely from the structure of its Fermi 
surface, the locus in momentum space of 
the most energetic occupied electronic 
states. According to conventional band 
theory, the Fermi surface of cuprates 
should be large and cylindrical, occupying 
(1 + p)/2%of the ! rst Brillouin zone, where 
p is the fraction of holes added to the 
CuO2 plane, typically through chemical 
substitution. Prior to 2007, however, 
the prevailing view of the electronic 

structure of underdoped cuprates (that 
is, those with a carrier density below that 
required to maximize TC) was one of Fermi 
ÔarcsÕ%Ñ disconnected regions of coherent 
quasiparticles located near the intersection 
of the underlying (band-theory-derived) 
Fermi surface and the zone diagonals 
(Fig.%1). " is picture, however, was shown 
to be incomplete following the discovery 
of quantum oscillations3, coupled with the 
report that same year of a change of sign 
in the Hall e$ect at low temperatures5. 
" is latter discovery provided concrete 
evidence for the existence of small pockets 
of Fermi%surface occupying only p/2%of 
the Brillouin zone, symptomatic of some 
form of Fermi surface reconstruction and 
associated charge order. Much subsequent 
work has focused on characterizing this 
charge order and its in#uence on the 
superconductivity.

Arguably the most important 
outstanding question still remains; namely, 
what is the relationship between the 
charge order and the pseudogap? Does 
the pseudogap de! ne a precursor state, 
signalling the onset of dynamic charge 
modulations, or is it something distinct%Ñ 
a novel, correlated electronic state out of 
which a charge instability is nucleated? 
To address this question, it is important 
to establish whether the two states (the 
pseudogap phase and the charge-ordered 
state) emerge in the same region of the 
temperature versus doping phase diagram 
or are separately delineated. According to 
Badoux et!al.4 this question seems to have 
! nally been resolved in favour of the latter.

" e work reported by Badoux et!al.4 
is an extension of an earlier study of the 
Hall%e$ect in underdoped YBa2Cu3O7&'  
(p < 0.15) (ref. 5), where the critical ! eld 
required to restore the normal resistive state 
was of the order of 60%T. In this new study, 
Badoux and colleagues have measured 
samples with doping levels up to and 
beyond p!=!0.2 with correspondingly higher 
critical ! elds. " e experiment itself Ñ the 
measurement of transverse Hall voltages on 
single crystals in pulsed magnetic ! elds up 
to 90%T Ñ is technically very challenging, 
yet the quality of the data is such that the 

HIGH-TEMPERATURE SUPERCONDUCTIVITY 

Isolating the gap
Disentangling the physics of the pseudogap phase from the other electronic phases of high-temperature 
superconductors has long been a frustrating problem. A recent high-Þeld experiment has isolated it completely Ñ 
thus raising hopes that its origin can Þnally be understood. 
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Figure 1 | Cuprate phase diagram. The 
pseudogap temperature (T*; black dashed line) 
collapses to zero inside the superconducting 
(SC) dome at p ~ 0.2 doped holes per CuO2 
plaquette. Below T0 (red dashed line) some 
form of short-range charge ordering (CO) 
appears as a second competing phase, thereby 
suppressing TC (green solid line). T"  (grey solid 
line) deÞnes the temperature below which 
superconducting phase ßuctuations are also 
seen. The set of boxes above show the evolution 
of the (cylindrical) Fermi surface (only one 
quadrant is shown for simplicity) from the 
overdoped (OD) metallic side on the right, 
through optimal doping (OP) to the underdoped 
(UD) side, close to the antiferromagnetic 
insulator (AFI) state below TN (orange solid 
line). The Fermi surface (thick blue lines) Þrst 
collapses into Fermi arcs then, in the presence 
of an applied magnetic Þeld, reconstructs into 
electron pockets located near the centre of the 
Brillouin!zone. The corresponding evolution of 
the zero-temperature Hall coe" cient, RH(0), and 
the Hall!concentration, nH(0), in the di#erent 
regions, as determined by Badoux et!al.4, is also 
shown for the di#erent regimes.
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Interplay between d-wave superconductivity and a bond-density wave in the one-band
Hubbard model

J. P. L. Faye* and D. Sénéchal
D«epartement de physique and Institut Quantique, Universit«e de Sherbrooke, Sherbrooke, Qu«ebec, Canada J1K 2R1

(Received 8 December 2016; revised manuscript received 9 February 2017; published 14 March 2017)

It is now well established that superconducting cuprates support a charge-density-wave state in the so-called
underdoped region of their phase diagram. We investigate the possibility of charge order in the square-lattice
Hubbard model, both alone and in coexistence with d-wave superconductivity. The charge order has a period of
4 in one direction, is centered on bonds, and has a d form factor. We use the variational cluster approximation, an
approach based on a rigorous variational principle that treats short-range correlations exactly, with two clusters
of size 2 ! 6 that together tile the infinite lattice and provide a nonbiased unit for a period-4 bond-density wave
(BDW). We find that the BDW exists in a finite range of hole doping and increases in strength from U = 5
to U = 8. Its location and intensity depend strongly on the band dispersion. When probed simultaneously with
d-wave superconductivity, the energy is sometimes lowered by the presence of both phases, depending on the
interaction strength. Whenever they coexist, a pair-density wave (a modulation of superconducting pairing with
the same period and form factor as the BDW) also exists.

DOI: 10.1103/PhysRevB.95.115127

I. INTRODUCTION

Charge order in underdoped superconducting cuprates has
been observed by many techniques and in many compounds.
Nuclear magnetic resonance measurements on YBa2Cu3Oy
indicate the presence of a long-range, static charge order
without any signature of spin order [1,2]. In Bi2Sr2CaCu2O8+! ,
scanning tunneling microscopy (STM) shows a periodic
modulation in the density of states [3,4]. Charge-density-wave
correlations have also been observed in x-ray scattering [5– 7],
and the charge-density wave seems to be directed along copper
oxygen bonds [8]. STM measurements also indicate that the
charge-density-wave modulation resides on Cu-O-Cu bonds
[4,9,10]. The dependence of the peak intensity as a function of
magnetic field clearly indicates the possibility of a competition
between d-wave superconductivity and charge-density-wave
order [7]. More recently, the pair-density wave (PDW) that
coexists with d-wave superconductivity and charge order has
also been observed [11].

Theoretical investigations of charge order in cuprates
roughly fall into two categories: (i) those that study the
effect of static charge order on observables and (ii) those
that attempt at explaining the origin of charge order from a
model Hamiltonian with interactions. This work belongs to
the second category. A few attempts have been made in that
direction in the literature. For instance, Vojta [12] applied
mean-field theory to the t-J model plus extended interactions
and mapped out various charge-order phases that appear
when J is low enough, whereas d-wave superconductivity
dominates at higher J . A pure exchange model (without
correlated hopping) has also been studied at the mean-field
level by Sachdev and La Placa [13]. Atkinson et al. applied
the generalized random-phase approximation to the full three-
band Hubbard model [14] and view charge order, like the
pseudogap, as a side effect of short-range antiferromagnetic

*Present address: Abdus Salam International Center for Theoretical
Physics, Strada Costiera 11, Trieste 34014, Italy.

correlations. The Gutzwiller approximation was applied to
the Hubbard model (without extended interactions) but no
charge order was found with that approach [15]. Renormalized
mean-field theory (based on the Gutzwiller approximation)
applied to the t-J model indicated that a large variety of nearly
degenerate spin- and charge-order states may coexist with
d-wave superconductivity [16,17]. Charge order at half filling
in the extended Hubbard model was recently investigated with
the dynamical cluster approximation [18], where it should be
competition with antiferromagnetism. That competition was
also studied in the context of the Hubbard-Holstein model
[19], in which optical phonons would favor charge order over
antiferromagnetism.

There is also a vast literature on stripe order, i.e., a
coexistence of charge- and spin-density waves, which we
do not review here. Let us mention nonetheless the work of
Corboz et al. [20] in which the nearest-neighbor t-J model
is studied using the projected-entangled pair states (PEPS)
variational ansatz, and where stripe order occurs naturally in
coexistence with d-wave superconductivity. This is consistent
with the previous work of Capello et al.[21] on the same model
using the variational Monte Carlo approach. Finally, the PDW
state has been the focus of many studies [22– 26] (for a recent
review, see Ref. [27]).

In this work we investigate whether a particular charge-
density-wave (CDW) order can arise from local repulsive
interactions alone, and whether it can coexist with d-wave
superconductivity. To this end, we apply the variational cluster
approximation (VCA) [28– 30] to the one-band repulsive
Hubbard model. The charge-density wave studied is bond
centered, has a d-wave form factor, and is henceforth referred
to as a bond-density wave (BDW). The VCA, and other
quantum cluster methods such as cluster dynamical mean-field
theory [31,32] and the dynamical cluster approximation [33]
already predict the presence of d-wave superconductivity in
the doped one-band Hubbard model [34– 36]. We find that a
bond-density wave is indeed possible in the doped Hubbard
model and that this phase is more robust when increasing
the interaction strength U . Its location is also sensitive to the

2469-9950/2017/95(11)/115127(8) 115127-1 ©2017 American Physical Society
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Coexistence of Superconductivity and Antiferromagnetism in the Hubbard model for cuprates

A. Foley,1 S. Verret,1 A.-M. S. Tremblay,1, 2 and D. SŽnŽchal1

1DŽpartement de physique and Institut quantique, UniversitŽ de Sherbrooke, Sherbrooke, QuŽbec, Canada J1K 2R1
2Canadian Institute for Advanced Research, Toronto, Ontario, Canada, M5G 1Z8

(Dated: July 29, 2018)

Antiferromagnetism and d-wave superconductivity are the most important competing ground-state
phases of cuprate superconductors. Using cellular dynamical mean-Þeld theory (CDMFT) for the Hub-
bard model, we revisit the question of the coexistence and competition of these phases in the one-band
Hubbard model with realistic band parameters and interaction strengths. Using an exact diagonalization
solver, we improve on previous works with a more complete bath parametrization which is carefully chosen
to grant the maximal possible freedom to the hybridization function for a given number of bath orbitals.
Compared with previous incomplete parametrizations, this more general bath parametrization shows that
the range of microscopic coexistence of superconductivity and antiferromagnetism is reduced and conÞned
to electron-doping, with parameters relevant for hole-doped YBCO and LSCO, as well for electron-doped
NCCO.

I. INTRODUCTION

The proximity of antiferromagnetism (AF) with super-
conductivity (SC) is common in unconventional supercon-
ductors: Bechgaard salts, heavy-fermion supercondutors,
high-temperature superconductors (cuprates), iron pnic-
tides and selenides, can all go from antiferromagnetic to su-
perconducting upon varying some control parameter (dop-
ing, pressure, etc.). Microscopic, i.e., spatially homoge-
neous, coexistence of superconductivity with antiferromag-
netism is a deÞnite possibility in iron pnictides [1] and se-
lenides [2] , in the heavy-fermion compound CeRhIn5 [3, 4]
and in electron-doped cuprate superconductors[5] . A clear
difÞculty is to distinguish homogeneous coexistence (pure
phase) from inhomogeneous coexistence (mixed, phase-
separated phase) resulting from inhomogeneities in the
sample or from thermodynamic separation of competing
phases.

Theoretically, antiferromagnetism is a phase that breaks
rotation symmetry ( SO(3)) and can be characterized by an
order parameter M, the staggered magnetization. Super-
conductivity, on the other hand, breaks the U(1) symmetry
associated with electron number conservation and the as-
sociated order parameter is the pairing amplitude ! . A sig-
nature of the homogeneous coexistence of these two phases
would be the presence of the so-called! -triplet order pa-
rameter, which is necessarily nonzero if both M and the
d-wave order parameter ! are nonzero. A uniÞed descrip-
tion of the two broken symmetries can be formulated in
the language of SO(5) symmetry [6] . A phenomenological
Landau-Ginzburg theory of the interplay and coexistence of
the two phases can also be formulated without reference to
the SO(5) description [7] .

The issue of a possible AF-SC coexistence in high-Tc su-
perconductors has been addressed theoretically using the
one-band Hubbard model and its strong-coupling limit, the
t -J model. Inui et al. found homogeneous AF-SC coexis-
tence in a slave-boson (mean Þeld) treatment of the Hub-
bard model [8] . Himeda et al. found it in a variational
Monte Carlo study of the t -J model [9] . The presence of
the ! -triplet order parameter was studied in the mean-Þeld

approximation by Kyung [10] , also in the t -J model. Be-
yond the mean-Þeld approximation, AF-SC coexistence was
predicted to occur within the Hubbard model with the Vari-
ational Cluster Approximation (VCA) [11] and Cluster Dy-
namical Mean Field Theory (CDMFT)[12, 13] . In ref. [ 12] ,
coexistence for the nearest-neighbor hopping model was
found only for small interaction strength ( U ! 8t ). Func-
tional Renormalization Group (FRG) methods, although
more relevant to weak and moderate coupling, also predict
the occurence of such a coexisting phase[14, 15] .

Given the lack of AF-SC coexistence in hole-doped
cuprates, its prediction by quantum cluster methods seems
to cast some doubt either on the validity of these meth-
ods or on the relevance of the one-band Hubbard model
to these materials. In this paper, we show that a more
careful application of CDMFT to the one-band Hubbard
model makes AF-SC coexistence disappear in models rel-
evant to hole-doped cuprates, while reducing its range in
a model of electron-doped cuprates. We use a CDMFT im-
purity solver based on exact diagonalizations at zero tem-
perature, like in Refs [12, 13] above, and compare the sim-
ple parametrization that they used with the most general
parametrization of the bath orbitals, as pioneered by Lieb-
sch et al.. [ 16, 17] . Quantum Monte Carlo solvers, espe-
cially state of the art continuous-time solvers [18] are free
of bath parametrization ambiguities. Up to now, they have
studied only the superconducting [19Ð33] and the antifer-
romagnetic phases[19, 34, 35] separately. Although the
question of coexistence can in principle be addressed with
these approaches, this has yet to be done.

This paper is organized as follows: In Section II we
present the model and explain the method used (ED-
CDMFT), with a particular attention towards the bath
parametrization. In Section III we present and discuss our
results, before concluding.

II. MODEL AND METHOD

Although high-temperature superconductors are charge-
transfer insulators, they are often modeled by the one-band
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D ∼ 4L
2

πL

! EŽƵƐ ƐŽŵŵĞƐ ůŝŵŝƚĠƐ ă ĚĞƐ ƉĞƟƚƐ ĂŵĂƐ
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;L ≤ 16Ϳ
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Calcul du fondamental du hamiltonien
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