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Orbital effect of the magnetic field in dynamical mean-field theory
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The availability of large magnetic fields at international facilities and of simulated magnetic fields that can
reach the flux-quantum-per-unit-area level in cold atoms calls for systematic studies of orbital effects of the
magnetic field on the self-energy of interacting systems. Here we demonstrate theoretically that orbital effects
of magnetic fields can be treated within single-site dynamical mean-field theory with a translationally invariant
quantum impurity problem. As an example, we study the one-band Hubbard model on the square lattice using
iterated perturbation theory as an impurity solver. We recover the expected quantum oscillations in the scattering
rate, and we show that the magnetic fields allow the interaction-induced effective mass to be measured through
the single-particle density of states accessible in tunneling experiments. The orbital effect of magnetic fields on
scattering becomes particularly important in the Hofstadter butterfly regime.
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I. INTRODUCTION

Dynamical mean-field theory (DMFT) [1,2] is one of the
most successful methods that deals with electron-electron
correlations. Consistency between local atomic multiplets
and extended lattice states is the main conceptual idea
behind this theory. This is achieved by solving a quantum
impurity problem whose hybridization function is determined
self-consistently through the requirement that the Green’s
function of the impurity is the one that can be obtained by
projecting on the impurity the lattice Green’s function with
the same frequency-dependent self-energy as the impurity.
Exact at infinite dimension, its major achievement has been
to accurately describe the so-called Mott transition, i.e., a
metal-to-insulator transition due to interactions. This theory
is also used to describe broken-symmetry phases, such as
antiferromagnetism, ferromagnetism, and superconductivity,
making DMFT a relevant choice to study three-dimensional
correlated materials.

The orbital effect of magnetic fields on electrons moving
on a lattice is nontrivial, even in the absence of interactions.
Beyond the semiclassical picture of cyclotronic closed orbitals
that occur at low magnetic fields in parabolic bands, the pres-
ence of a periodic potential can completely modify the energy
of Bloch electrons. In two dimensions, the most spectacular
effect of this modification is the appearance of the famous
Hofstadter butterfly [3,4] when energy levels are calculated
as a function of the magnetic flux per plaquette in units of
the magnetic flux quantum �0 = h/e. The appearance of this
fractal structure is most apparent when this dimensionless
magnetic flux is a rational number p/q with q being not
too large. This structure is directly linked to the presence of
competing lattice and magnetic-flux-per-plaquette periodicity.
Unfortunately, this physics is accessible only at unattainable
magnetic fields (of the order of 105 T) in real materials.
However, artificial structures, such as cold-atom lattices and
the moiré superlattice, allow one to experimentally realize the
Hofstadter butterfly [5–7].

The effect of interactions on Hofstadter’s butterfly has
already been studied by various methods such as mean-field

theory [8–10], DMFT for the Falicov-Kimball model [11], and
real-space DMFT [12–14]. The latter approach generalizes
DMFT [15,16] to the case where the electromagnetic vector
potential breaks translational invariance by using a set of
quantum impurities, one for each inequivalent site of the
lattice.

Although DMFT has been used to describe the effect of a
uniform magnetic field with a single-impurity problem in the
Falicov-Kimball model [11], the general form of the DMFT
self-consistency equation in a magnetic field has not been
proven. In Sec. II, we derive the DMFT equations in the case
where a uniform magnetic field is applied. This derivation
is gauge independent and works in any dimension and for
any lattice geometry. In Sec. III, we introduce the impurity
solver that we use in this work for the DMFT calculation.
The results for the square-lattice Hubbard model with nearest-
neighbor hopping in the presence of a magnetic field in
Sec. IV show that at low magnetic field, far from half filling,
one recovers Lifshitz-Kosevich theory, i.e., Landau levels
and quantum oscillations in measurable quantities. These
oscillations are observable as well in the electron lifetime,
which is very important for Shubnikov–de Haas oscillations.
At half filling, which corresponds to a Fermi energy that lies on
a Van Hove singularity, the signature of Hofstadter physics is
clearly visible in the electron lifetime, which would influence
Shubnikov–de Hass oscillations, for example. Our work is
particularly relevant for transport measurements of cold atoms
in optical lattices.

II. THE DYNAMICAL MEAN-FIELD EQUATIONS
WITH MAGNETIC FIELD

Here we derive [17] the DMFT equations when the orbital
effect of the magnetic field is taken into account in the Hubbard
model. The effect of a Zeeman coupling [18] is trivial to
introduce and will not be discussed here. As usual, the orbital
effect of the applied magnetic flux is taken into account through
the Peierls substitution which, in second quantization, consists
of a change of the hopping term in the kinetic part of the
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Hamiltonian. The Hubbard model takes the form

H = −
∑
m,n,σ

tmne
ifmn ĉ†mσ ĉnσ + U

∑
m

n̂m↑n̂m↓ − μ
∑
mσ

n̂mσ .

(1)

Here ĉmσ (ĉ†mσ ) destroys (creates) an electron of spin σ on site
m, and n̂mσ is the number operator for electrons of spin σ on
site m, while U and μ are, respectively, the on-site Coulomb
repulsion and the chemical potential. The hopping amplitude
between sites m and n is described by the real-symmetric
matrix tmn. The magnetic flux is taken into account through
the Peierls phase fmn:

fmn = 2π

�0

∫ n

m

A(r) · dl, (2)

where A(r) is a vector potential corresponding to the external
magnetic flux density B and �0 = h/e is the magnetic flux
quantum. The line integral is along a straight line connecting
sites m and n. We adopt natural units where h̄ = kB = 1.
Although in the next section we present numerical results
for the two-dimensional square lattice, the derivation in this
section is valid for an arbitrary lattice in arbitrary dimension.

In the following, we denote the generalized hopping term
tmn exp(ifmn) as t̃mn to simplify the notation and derive the
DMFT equations. The lattice self-energy can be written in the
following form: �mn(iωn,B) = eifmn�̄mn(iωn,B), where �̄ is
a translation- and gauge-invariant self-energy [19]. Rewriting
the self-energy in this form proves that, even if we take the
local part of the self-energy, i.e., m = n, the dependence on the
external magnetic field is still present. This statement is par-
ticularly important in DMFT since it approximates the lattice
self-energy by a purely local impurity self-energy. Since the
local self-energy is, in principle, measurable through lifetimes
or densities of states, it cannot depend on position because the
magnetic field and the lattice are uniform. Although it is not a
rigorous proof, a fourth-order perturbative development of the
self-energy shows that the on-site self-energy does not depend
on the site [17].

Knowing that, Dyson’s equation relating the interacting and
noninteracting Green’s functions can be rewritten in a useful
way. Setting U = 0 in the Hamiltonian (1) and using matrix
notation in the space of site indices, the equation of motion for
the noninteracting Green’s function G0

mn is

(iωn + μ)IG0 = I − t̃G0, (3)

G0(iωn) = [(iωn + μ)I + t̃]−1, (4)

where G0 is the matrix whose m,n element is G0
mn, t̃ is the

hopping matrix in the presence of magnetic field, and I is the
identity matrix. Using Dyson’s equation in the case of local
and site-independent self-energy, we find

Gint = G0 + G0[�(iωn,B)I]Gint (5)

= [(G0)−1 − �(iωn,B)I]−1 (6)

= {[iωn + μ − �(iωn,B)]I + t̃}−1 (7)

= G0[iωn − �(iωn,B)], (8)

where we used Eq (4). This link between the noninteracting
and interacting Green’s functions is very convenient since the

equation of motion of the latter takes the simple form

[iωn + μ − �(iωn)]Gmn(iωn) = δmn −
∑

k

tmke
ifmkGkn(iωn).

(9)
To derive the DMFT equations, we use the cavity method

[2]. The basic idea of this method is to divide the lattice
problem into two parts: the lattice in the presence of a
cavity (i.e., the absence of one site) and the cavity site. After
integrating out the degrees of freedom of the lattice in the
presence of the cavity, one can obtain the dynamics for the
cavity site.

The partition function of the Hubbard model with magnetic
field can be written as a functional integral over Grassmann
variables,

Z =
∫

�m,σDc†mσDcmσ e−S . (10)

At finite temperature, the action S can be written as an integral
over imaginary time τ :

S =
∫ β

0
dτ

[∑
m,σ

c†mσ (τ )

(
∂

∂τ
− μ

)
cmσ (τ )

−
∑
m,n,σ

t̃mnc
†
mσ (τ )cnσ (τ ) + U

∑
m

nm↑(τ )nm↓(τ )

]
. (11)

By construction, the cavity method divides the action into three
parts: the action of the lattice with the cavity; the action of the
cavity site, which is from now on denoted by the l index;
and the action of the hybridization between the cavity and the
lattice. The latter piece of the action takes the form

�S = −
∫ β

0
dτ

∑
σ,i

[t̃ilc
†
iσ clσ + t̃lic

†
lσ ciσ ], (12)

where the sum over i does not include the cavity.
Following the steps of the usual derivation of the dynamical

mean-field equations for the cavity method, we use the linked
cluster theorem and obtain the effective action at the site of
the cavity,

Seff,l = −
∫ β

0
dτ1

∫ β

0
dτ2

∑
σ

c
†
lσ (τ1)G−1

0,l (τ1 − τ2)clσ (τ2)

+ U

∫ β

0
dτnl↑(τ )nl↓(τ ). (13)

HereG−1
0,l (τ1 − τ2) plays the role of a Weiss effective field at the

cavity site whose expression in terms of Matsubara frequencies
and the interacting lattice Green’s function Gl with the l site
missing is

G−1
0,l (iωn) = iωn + μ − 1

2

∑
jk

[
t̃ljG

l
jk(iωn)t̃kl

+ t̃lkG
l
kj (iωn)t̃j l

]
= iωn + μ −

∑
jk

t̃ljG
l
jk(iωn)t̃kl . (14)
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We dropped the spin index σ for the sake of clarity. This
expression is similar to the one presented in Ref. [2]. The
last term of Eq. (14) can be seen as a hybridization function
between the cavity and the lattice without the cavity site,
making the impurity solvers for DMFT available in the
presence of magnetic field.

The next step is to express the effective Weiss field in terms
of G, the lattice Green’s function with all the sites present, and
then to write the resulting expression in terms of the cavity-site
Green’s function in order to find the self-consistency relation.
In Eq. (14), we use the formula that links the lattice Green’s
function in the presence of the cavity with the lattice Green’s
function without the cavity [20],

Gl
ij = Gij − GilGlj

Gll

, (15)

and make repeated use of the equation of motion (9) to finally
obtain the Weiss field in the following form:

G−1
0,l (iωn) = iωn + μ +

∑
n

t̃lnGnl

Gll

. (16)

It is clear that in the presence of magnetic field, the Green’s
function is not translationally invariant, making the Weiss field
not trivial to simplify at first sight. Yet one can construct
a translation- and gauge-invariant Green’s function Ḡ by
using the following transformation: Ḡmn = e−ifmnGmn [21,22].
Using this result, the equation of motion for the cavity site
Green’s function (9) gives us the relation between Gll and
Ḡln:

[iωn + μ − �(iωn)]Gll(iωn) = 1 −
∑

n

tlnḠnl(iωn). (17)

Substituting the right-hand side of this equation in the equation
for the Weiss field (14) gives the following translationally
invariant final form for the Weiss field:

G−1
0 (iωn) = �(iωn) + [Gll(iωn)]−1. (18)

This expression is convenient because it is exactly the same
expression as in the absence of magnetic field. The effect of
the magnetic field on the self-energy and the hybridization
function comes only from the noninteracting density of states,
allowing the use of all existing impurity solvers. To our
knowledge, this statement was often affirmed without rigorous
proof.

In closing, note that once the hypothesis of a site-
independent local self-energy is accepted, the self-consistency
equation also follows simply within a Luttinger-Ward formal-
ism. Indeed, the local Green’s function entering the calculation
of the Luttinger-Ward functional is the same as the local
Green’s function obtained from the projection of the lattice
Green’s function that contains that self-energy.

III. METHOD AND MODEL

As pointed out above, the effect of the magnetic field
is contained in the local Green’s function Gll ; therefore,
the strategy to solve the DMFT problem is to compute the
eigenvalues of the noninteracting lattice in the presence of
uniform magnetic field and use them in the self-consistency
loop. There are numerous methods to solve the noninteracting

case [3,23,24]. For the numerical example presented below,
we take the case of a uniform magnetic field perpendicular to
a square lattice, and we compute the energy level of Bloch
electrons by solving an almost Mathieu equation named the
Harper equation [25] for rational ratios of magnetic flux,
i.e., eBa2/h = p/q, where a is the lattice constant (taken
to be unity) and p and q are coprime integers. This choice
looks arbitrary at first sight, but it allows us to define a
commensurable magnetic unit cell and simplifies at the same
time the computational work. The question of the rational or
irrational ratio has been discussed since the original paper of
Hofstadter [3]. It is important to stress that our derivation of the
DMFT equation does not depend on this choice. In practice, in
the Landau gauge and in a model with only nearest-neighbor
hopping t , we obtain the following Harper equation for the
wave function on the sites of the magnetic unit cell:

ψn+1 + ψn−1 + 2 cos

(
2πn

p

q
− ky

)
ψn = ε

t
ψn. (19)

Here n = 1, . . . ,q indexes the sites in the magnetic cell, and
ky is the momentum along the y axis. For realistic magnetic
fields, say on the order of 1 T, one must diagonalize a
105 × 105 matrix, which is out of reach for numerical methods.
This constraint can be bypassed by using perturbation theory,
but we will rather focus on values of q corresponding to
an intermediate regime between Landau level physics and
Hofstadter butterfly physics, i.e., q of the order of hundreds.
This regime has two advantages: The eigenproblem (19) is
then easily solvable numerically, and the energy between
two eigenvalues is large enough compared to the lowest
temperature we can reach that effects of the magnetic field
are not washed out by thermal effects.

In order to solve the Anderson impurity problem, we use
iterated perturbative theory (IPT) [26,27]. IPT is an interpo-
lation method between second-order perturbation theory and
the atomic limit for the impurity self-energy. Although it was
one of the first impurity solvers used in DMFT, IPT captures
qualitatively the main physics of the Hubbard model. However,
it has issues when the system studied is far from half filling
and in the strong interaction limit [28]. The IPT solver has the
advantage of being more easily analytically continued in the
present context where effects are often small.

The IPT self-energy for a given spin σ at a finite temperature
T has the following expression in Matsubara frequencies iωn:

�σ (iωn) = U
n

2
+ A�(2)

σ (iωn)

1 − B�
(2)
σ (iωn)

, (20)

with

�(2)(iωn)σ = −U 2
∫ β

0
Gσ

0 (τ )G−σ
0 (−τ )G−σ

0 (τ )dτ, (21)

where

G0(iωn) = 1

iωn + μ0 − �(iωn)
. (22)

Note that, in the absence of a Zeeman term, the only link
between the self-energy and the magnetic field lies in the
hybridization function �(iωn). From a physical point of view,
the Green’s function G0 corresponds to the amplitude for a
particle to return to the impurity after a voyage in the bath.
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Finally, the constants A and B are chosen in such a way that the
self-energy in the strong-coupling regime far from half filling
is exact in the atomic limit and has the correct high-frequency
behavior, that is,

A = n(2 − n)

n0(2 − n0)
, (23)

B =
(
1 − n

2

)
U + μ0 − μ

n0
2

(
1 − n0

2

)
U 2

. (24)

Here n = G(τ = 0−), and n0 = G0(τ = 0−), while μ and μ0

are the corresponding chemical potentials for the densities: n0

has no physical meaning far from half filling, but it is taken to
be equal to n. The latter corresponds to the electronic density
of the lattice, the lattice Green’s function being

G(iωn) =
∑
m

1

iωn + μ − εm − �(iωn)
, (25)

with εm being the single-particle excitation energies of the
noninteracting system.

The IPT implementation requires the use of fast Fourier
transforms. Thus, we need to increase the convergence of
the sums over Matsubara frequencies of Green’s functions.
One way to achieve this increase consists of substracting and
adding the asymptotic high-frequency behavior of the Green’s
function. The high-frequency behavior of the hybridization
function up to order (iωn)−1 and that of the local Green’s
function up to order (iωn)−3 are independent of magnetic
field, which simplifies the calculation. This independence can
be proven [17] by an easy generalization of the procedure in
Ref. [29]. This is discussed in the Appendix.

IV. RESULTS

We first present the results for the self-energy in Matsubara
frequencies; then we show that oscillations in the local density
of states allow one to extract the effective mass. We end with
results for the field dependence of scattering time in the normal
state.

A. Matsubara frequency results

We take the hopping term t as the unit of energy. In
Fig. 1, we plot the imaginary part of the local Matsubara
self-energy for different dimensionless magnetic fluxes at
β = 100, U = 2, and half filling, n = 1. When the magnetic
flux per plaquette in units of the flux quantum approaches
unity, �/�0 = 1/10, the difference from the �/�0 = 0 case
is clear. This is Hofstadter’s regime, i.e., the regime where,
due to the ky dependency of the eigenvalues of the Harper
matrix, the density of states has drastic changes in topology,
leading to a rich physics which is well captured by DMFT
and which is visible for this value of β. Although we give
more results in this regime when we discuss the scattering
rate below, we do not enter into the many details for this case
since numerous studies have already tackled the interacting
Hofstadter butterfly [8–14].

In the Landau regime, i.e., when the ky dependence of
the eigenvalues in the Harper matrix (19) can be neglected,

0 1 2 3 4
ωn

−0.12

−0.10

−0.08

−0.06

−0.04

−0.02

0.00

Σ
(i

ω
n
)

p/q=0

p/q = 1/100

p/q = 1/10

FIG. 1. Local self-energy as a function of Matsubara frequencies
for β = 100 and U = 2 at half filling in units where hopping t is unity.
The solid line interpolates the solution without magnetic field. Green
circles (1/q = 1/100) and red triangles (1/q = 1/10) represent the
self-energy for a magnetic flux per plaquette in units of the flux
quantum eBa2/h = �/�0 = 1/q.

the self-energy appears to be unmodified compared to the
�/�0 = 0 case, as can be seen for �/�0 = 1/100 in Fig. 1:
The self-energy has only minor corrections compared with the
�/�0 = 0 case. These minor corrections can be tracked by
changing the magnetic field at a given temperature and focus-
ing, for example, on �′′ at the lowest Matsubara frequency,
whose value is close to the scattering rate. After analytic
continuation, these minor corrections lead to sizable changes
in real-frequency observables, as we discuss in the following
sections. Since the self-energy in Matsubara frequencies is
weakly affected by the presence of Landau levels, statistical
errors may make it hard to see those effects when Monte Carlo
impurity solvers are used.

The weak effect of Landau levels on functions in Matsubara
frequency can be seen from the following form of the DMFT
self-consistency loop:

Gint(iωn) =
∫

dε
N (ε)

iωn + μ − ε − �(iωn)
, (26)

where N (ε) is the noninteracting density of states. If the
temperature is such that iωn is larger than the Landau level
separation appearing in N (ε), their effect will be essentially
washed out in Gint(iωn) by the integration over ε. This corre-
sponds physically to the expectation that quantum oscillations
cannot be seen if temperature is much larger than Landau level
separation. At lower temperature, suppose one would like to
obtain information on the value at zero real frequency to detect
the effect of a dimensionless magnetic flux per plaquette of
order, say, 1/100 using only the first Matsubara frequency
instead of the full analytic continuation. Then a value of β of
order 300 is required to obtain the same accuracy as iωn →
ω + iη in Eq. (26) with a Lorentzian broadening η = 0.01.
This value of β is hard to reach for Monte Carlo impurity
solvers or IPT. In this case, the effect of a magnetic field might
be easier to detect with a real-frequency-based impurity solver
such as the numerical renormalization group [30].
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FIG. 2. (a) Density of states near Fermi energy for different values
of U at flux 1/q = 1/100 and β = 100. Those densities are obtained
by analytic continuation using the Padé approximant method [32,33].
The position of the maxima is a function of U . (b) Blue circles show
the energy separation between the two peaks closest to the Fermi
energy as a function of the quasiparticle spectral weight Z. The solid
line is not a linear fit but the function �ε0 × Z, where �ε0 is the
Landau level separation at U = 0. This shows that the cyclotron
frequency is modified by the quasiparticle mass renormalization.

B. Effective mass from the local density of states

Kohn’s theorem [31] states that the cyclotron resonance
frequency and the de Haas–van Alphen period are indepen-
dent of electron-electron interactions. However, this theorem
is valid for correlation functions such as magnetization-
magnetization that involve particle-hole excitations. The mass
renormalization caused by interactions should be visible in the
single-particle density of states, an effect that is reproduced
by DMFT. It gives an alternative to the usual way of accessing
the effective mass through the Lifshitz-Kosevich temperature
dependence of the amplitude of quantum oscillations.

Figure 2 shows, for various values of interaction strength
U , the local density of states that can be measured by
tunneling near ω = 0. The distance between the Landau peaks
is renormalized by the change in cyclotron frequency caused
by the interaction-induced mass renormalization. This can be

understood as follows. The local density of states takes the
form

A(ω) = − 1

π

∑
n

�′′(ω)

[ω + μ − εn − �′(ω)]2 + [�′′(ω)]2
, (27)

where εn labels the eigenenergies of the Harper equation. In the
metallic phase one can, as usual in Fermi liquid theory, expand
the real part of � in powers of ω. This renormalizes the energy
difference between Landau levels �εU=0 by the quasiparticle
spectral weight Z: �εU = Z�εU=0, where, as usual,

Z−1 = 1 − ∂�′(ω)

∂ω

∣∣∣∣
ω=0

. (28)

Since the self-energy is purely local, Z is equivalent to the
ratio between masses m/m∗. One can obtain �ε by using in
the expression for the cyclotron frequency the mass dressed
by interactions instead of the bare band mass of the electron.
As seen in Fig. 2, the energy of the peak nearest the Fermi
energy is modified linearly by Z. Note that the solid line is
not a linear fit but is directly the product Z�εU=0 with �εU=0

obtained by solving the Harper equation.

C. Quantum oscillations in the lifetime

Far from half filling, we recover well-known properties
of metals subject to a uniform external magnetic field, i.e.,
quantum oscillations. In Fig. 3, we show quantum oscillations
of the electron’s lifetime for n = 0.6 as a function of the inverse
of the magnetic field. The period is constant in the range of
magnetic field that we investigated. This is the usual behavior
of observables in an electron gas and can be derived by using
second-order perturbation theory on the (local) self-energy
and a Poisson summation formula. This constant period is
a direct signature of Landau’s regime. Here we have taken
different values of p and q in order to obtain a finer grid
of magnetic-field values. We define the electron’s lifetime as
τ−1 = −2Z�′′(ω = 0). We compute the self-energy at zero
frequency using a polynomial extrapolation of the self-energy
on a few of the lowest Matsubara frequencies [34]. At
low magnetic fields (on the right of the plot), the lifetime
has a nice cosine behavior which leads to Shubnikov–de
Haas oscillations since the Drude conductivity is directly
proportional to the scattering time. At high magnetic fields
our nice sinusoidal oscillations are replaced by asymmetric
periodic peaks that announce the beginning of the quantum
Hall effect where the scattering rate eventually vanishes in
the quantum Hall plateaus (that we do not reach here). We
stress that the oscillations of τ come mainly from �′′(ω = 0)
and, to a lesser extent, from Z. The latter oscillates with the
same periodicity as �′′ but with a much smaller amplitude
(around ±10−4 for the same parameters as in Fig. 3. The
imaginary part of the self-energy is much more sensitive to
Fermi-surface effects than Z, which depends on the real part
of the self-energy and hence on virtual processes on many
energy scales (as follows from Kramers-Kronig).

Striking differences between the high- and low-field cases
occur when the Hofstadter butterfly regime becomes visible.
One of the most remarkable features of this regime is the dif-
ference between even and odd values of q when �/�0 = 1/q.
For odd q, the system is in a metallic phase in the sense that it

235135-5



ACHECHE, ARSENAULT, AND TREMBLAY PHYSICAL REVIEW B 96, 235135 (2017)

80 90 100 110 120 130 140 150
Φ0

Φ = q
p

0.5

1.0

1.5

2.0

τ B
=

0

τ B

(a)

0.00 0.02 0.04 0.06 0.08 0.10
1
q(∼ B)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

τ B
=

0

τ B

(b)

q even

q odd

80 85 90

1

2

FIG. 3. (a) Scattering rate, or inverse of the scattering time, of
electrons as a function of inverse dimensionless magnetic flux q/p

far from half filling (n = 0.6) for U = 4 and β = 80. We used
different values of p and q in order to obtain a fine grid. q/p

is directly proportional to 1/B. We thus conclude that we are in
the Landau regime since the period of oscillation is constant. The
inset is a zoom of the high-magnetic-field regime that illustrates that
asymmetry between maxima and minima develops there. (b) Inverse
of the scattering time of electrons at half filling as a function of
1/q for U = 2 and β = 80. Depending on the parity of q, two
different behaviors are visible in the high-field Hofstadter’s regime,
i.e., a scattering time tending either to zero or to a finite value. All
normalizations are with respect to the scattering time at zero flux.

has a finite density of states at the Fermi energy. For even q, the
system is in a semimetallic phase with q nonequivalent Dirac
cones in the magnetic Brillouin zone [35]. This property is
directly visible in the scattering rate of electrons. This is illus-
trated in Fig. 3 where we plot τB=0/τB as a function of magnetic
flux at U = 2 and β = 80. For low magnetic fields compared to
the thermal energy, the system makes no differences between
odd and even values of q. When 1/q is of the order of 1/β,
details of the density of states at the Fermi energy become
noticeable, leading to two different tendencies, i.e., a scattering
rate tending either to zero or to a finite value depending on the
parity of q. At low field one would expect a plateau when
thermal effects wash out simple Landau levels arising from a
density of states that is constant at B = 0. Here, this argument

does not work, possibly because of the presence of a Van Hove
singularity at half filling on the square lattice [36].

V. CONCLUSION

We have shown how to include the orbital effect of a uniform
magnetic field within dynamical mean-field theory using the
cavity method. The self-consistency relation is not modified.
The magnetic field comes in through the noninteracting
band structure, and a single translationally invariant impurity
problem needs to be solved. This result has already been
used without rigorous proof to study various problems such
as the Hofstadter butterfly and the Falicov-Kimball model.
The advantage of DMFT compared to real-space dynamical
mean-field theory (RDMFT) lies in the reduction in needed
computational power since one has to solve only one quantum
impurity problem.

As an example application, we used the DMFT method
to recover effects of the magnetic field on interacting lattice
electrons. The scattering time and the density of states are two
measurable properties that are affected by the combined effect
of magnetic field and interactions. The scattering time shows
quantum oscillations and has a nontrivial dependence on the
magnetic field that can vary according to the filling and the
amplitude of B, while the cyclotron frequency observable in
the density of states is modified because of the interaction-
induced effective mass. Quantum oscillations in the effective
mass are negligibly small. In the Hofstadter regime, the density
of states and the self-energy are both strongly affected by the
combined effects of magnetic field and interactions.

It would be interesting to verify the results depicted in Fig. 3
in cold-atom experiments. Note also that since our approach
takes into account the magnetic field exactly in the interacting
Green’s function, transport quantities can be calculated to all
orders in magnetic field. In other words, corrections to the
magnetic vertex are automatically taken into account for any
order in an expansion in powers of B when vertex corrections
are neglected. More interestingly, this approach allows one to
study the effect of the magnetic field on phase transitions such
as metal-to-antiferromagnet transition, where the interplay
between quantum correlations and magnetic field could have
a significant impact on the self-energy. Further applications of
our work could include systematic studies as a function of U ,
T , and n of magnetic-field effects. For realistic calculations,
the Zeeman interaction can easily be taken into account within
the DMFT framework.
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APPENDIX: ASYMPTOTIC BEHAVIOR OF THE LOCAL
GREEN’S FUNCTION AND HYBRIDIZATION

Start with the expression for G0 given by the self-
consistency equation (18). Using translational invariance,
rewrite Gll(iωn) on the right-hand side in the following site
representation [17]:

Gll(iωn) = 1

N

N∑
l

Gll(iωn) = Tr[G(iωn)] (A1)

= Tr({[iωn + μ − �(iωn)]I − H0}−1), (A2)

where I is the identity matrix and H0 is the Hamiltonian
matrix whose expression can be deduced from Eq. (1)
with the interaction and chemical potential terms removed.
Expanding the above equation to leading order in (iωn)−2, we
find [29]

Gll(iωn) � 1

iωn

Tr

[
I − X

iωn

+ XX
(iωn)2

+ · · ·
]

, (A3)

with

X = [μ − �(iωn)]I − H0 . (A4)

Inverting, expanding again. and substituting in the self-
consistency equation (15). we find, whatever the asymptotic

behavior of the self-energy, the following expression for the
asymptotic behavior of the hybridization function:

�(iωn) � Tr[H0H0] − Tr[H0]2

iωn

, (A5)

which should be used in the definition of the asymptotic form
of G0 in Eq. (22). Given that the Peierls phase vanishes in the
diagonal elements of H0 and that it changes sign when H0 is
transposed, both Tr[H0] and Tr[H0H0] = ∑

i.j H 0
ijH

0
ji/N are

independent of magnetic field [17] and can be easily calculated
in the diagonal basis for H0. Note that Tr[H0] = 0 in our case.

The complete asymptotic behavior of the local Green’s
function Gll(iωn) can be found using the usual procedure
of expanding the spectral representation up to order (iωn)−3,
which leads to coefficients of the successive terms that are
expressed as moments of the spectral function. These moments
are, in turn, obtained from equal-time commutators. An
equivalent procedure starting from Eq. (A3) leads to Tr[H0]
and Tr[H0H0] terms whose Peierls phase disappears and also to
terms that depend on the expansion of �(iωn) to order (iωn)−1,
which is found using the equal-time commutator procedure
mentioned above. It is found that the expansion of �(iωn)
up to order (iωn)−1 does not depend on B [17]. This is not
surprising since the expansion of �(iωn) up to order (iωn)−1 in
the B = 0 case depends only on U and on occupation number.
So, finally, the expansion of Gll(iωn) up to order (iωn)−3 does
not depend on B.
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