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A general formulation for the spectral noise Sz of random linear resistor networks of arbitrary to-
pology is given. General calculational methods based on Tellegen’s theorem are illustrated for one-
and two-probe configurations. For self-similar networks, we show the existence of a new exponent
b, member of a whole new hierarchy of exponents characterizing the size dependence of the normal-
ized noise spectrum ¥’ =S /R2 b is shown to lie between the fractal dimension d and the resis-
tance exponent —f;. b has been calculated for a large class of fractal structures: Sierpiriski gas-
kets, X lattices, von Koch structures, etc. For percolating systems, % is investigated for p <p, as
well as for p >p.. In particular, an anomalous increase of the noise at p—p; is obtained. A
finite-size-scaling function is proposed, and the corresponding exponent b is calculated in mean-field

APRIL 1985

theory.

I. INTRODUCTION

Statistical self-similarity is emerging as an important
concept underlying the behavior of disordered systems. In
percolation clusters, for example, the fractal dimension
has been identified first;! it was immediately realized,
however, that this quantity and the correlation-length ex-
ponent did not suffice for a characterization of all the
physical properties of these clusters. Alexander and Or-
bach? and Rammal and Toulouse® introduced the spectral
dimension d to describe the spectrum of the Laplacian
operator which appears in a large variety of linear physi-
cal problems. The geometrical property which most in-
fluences the spectral dimension is the number of closed
loops of the fractal. It is an intrinsic geometrical proper-
ty* independent of the embedding Euclidean space.
Another such intrinsic property is the recently intro-
duced™® spreading dimension d. Intuitively, it is plausible
that an infinite number of exponents must be used to
characterize a fractal.

In this paper, we show that at least one physically
measurable quantity, the magnitude (not the frequency
dependence) of the resistance noise spectrum (1/f noise)
depends on a new exponent pertaining to fractal lattices.
We show that this exponent, b, can be seen as a member
of an infinite family of exponents which includes the frac-
tal dimension d as well as 8, =(d /d)(d —2). The spread-
ing dimension is the only exponent which apparently does
not fit into this family. Physically, the new exponent b
comes from a well-known fact in the 1/f noise prob-
lem:’~!° the macroscopic mean-square resistance fluctua-
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tions are much more sensitive to local inhomogeneities
than the square of the macroscopic resistance itself.®!1:12

Flicker (1/f) noise’ —° refers to the low-frequency spec-
trum of excess voltage fluctuations measured when a con-
stant current is applied to a resistor. That spectrum,
S,(w)= f e'@(V(t)V(0))dt (where the angular brackets
refer to time average) almost always has a power-law
form w~%, with a close to unity. The origin of this power
law has been the subject of innumerable controversies’ ~°
and is not the purpose of the present paper. Rather, we
use two well-established properties of 1/f noise: (a) 1/f
noise is resistance noise. In other words, a simple applica-
tion of Ohm’s law suggests that if there are voltage fluc-
tuations 8V in the presence of a constant current, they are
caused by resistance fluctuations, 8V =1 8R. This naive
picture is confirmed by the fact that (i) the noise spectrum
is proportional to I% and that (ii) the resistance fluctua-
tion spectrum which can be inferred from 1/f-noise ex-
periments can also be directly measured with no applied
current from higher-order equilibrium correlation func-
tions.!% (b) At low frequencies, resistance fluctuations are
correlated over microscopic scales only. This has been
verified experimentally in many systems'>!* and most
mechanisms suggested for 1/f noise (except diffusion) are
consistent with this hypothesis.

In this paper, flicker (1/f) noise in self-similar and
random resistor networks is considered for the first time.
Using known properties of both 1/f noise and fractals, we
study the influence of the geometrical properties of self-
similar networks (e.g., percolating clusters) on the magni-
tude of 1/f noise in these structures. The finite-size
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dependence of the noise allows us to shed new light on
self-similar structures as well as percolating systems.

The general calculational tools for resistance fluctua-
tions are given in Sec. II. With the help of Tellegen’s
theorem, we derive a formula for the spectral noise adapt-
ed to the geometry of the structure at hand. Tellegen’s
theorem is applied first to one-port circuits, then extended
to two-port configurations so as to make contact with re-
cent measurements of Vandamme et al.!’> and of Weiss-
man et al.'® Within our model, two-port measurements
do not, however, yield new information. In Sec. III, we
show the existence of a new exponent b characterizing the
scaling behavior of the normalized noise ¥ =Sg/R?
with the linear sample size L. Upper and lower bounds
are given for b and for the members of the new hierarchy
of exponents. The scaling behavior of . with L is
shown to persist for an arbitrary one-port configuration.
Certain averages of % are also shown to have a scaling
behavior. Section IV is devoted to percolation clusters
where again a scaling behavior of .#y is noted with an ex-
ponent lying between — B, and dj the fractal dimension
of the percolation backbone. The crossover between the
fractal behavior (p > p.) and the Euclidean regime (p > p,)
is also discussed. Section V discusses our results in the
light of existing theories and possible experiments on per-
colating systems.

II. NETWORKS OF ARBITRARY GEOMETRY:
GENERAL THEOREMS

In this section we summarize the general calculational
methods for S;. Only purely resistive networks are con-
sidered. It is easy to generalize all the results for net-
works made of complex impedances.

Let us consider a resistor network as a graph made of
N nodes (i) and resistances r; between nodes i and j
(s4i). In the presence of an external current source, the
basic circuit equations can be written as usual,

GvV=I, (1)

where I denotes the (column) vector I=(I,I,,...,
I, ... ,Iy) of current sources V=(V,V,, ...,
Vi, ..., Vy)' refers to the relative voltages at different
nodes, and G to the conductance matrix. The matrix ele-

ments of G are given by
Gij=—8ij, Gi= 2 8y - ()
J

Here, g,~j=r,‘j—x denotes the conductance of the branch
(ij). In the one-port configuration (two-terminal) where
the current is injected at node a and extracted at node b,
the vector I takes the simple form, I, =1, I,=—1I, and
I,=0 for as£a,b. The current pattern in different
branches is therefore easy to obtain from the inverse of
the conductance matrix G: From G ~!, one extracts the
voltages at each node and then the currents
i;j=g;j(V;—V;) for each branch (ij) (at least one node is
at the reference voltage).

We consider the following model. The resistance of
each branch (ij) has a small fluctuating part so that 7;; is
replaced by r;+8r;;, where the 8r;’s are uncorrelated

2663

random variables with mean zero and covariance
(8ryj 8ria ) =piidudjr - 3)

These fluctuations in the resistance could be produced by
an arbitrary noise mechanism. For identical r;;’s, p,?j =p?
is assumed to be independent of (ij). Given a constant
current source configuration, we calculate the fluctuating
part of the resistance R measured in a one-port configura-
tion, the correlation between the measured resistances in a
two-port configuration, etc.
To be specific, we denote by

S r=Sr/R*=(8R S8R )/R? 4)

the relative fluctuation of the measured resistance R
(one-port case) due to resistance fluctuations. Similar
quantities (see below) will be defined for two-port configu-
rations, etc. Sk so defined is the relevant quantity for the
magnitude of 1/f noise, measured under constant external
current. Other quantities pertaining to other situations
can be deduced from Sy through the simple relation
(6R 8R) (SV 8V) (8I8I)

R? = 2 = 2 . ‘ (5)
As defined by Eq. (4), we need the expression of R as a
function of all r;;i’s in order to calculate Sg. However, it
is clear that such a direct approach leads to formidable
calculations and cannot be used in practice. Simplified
procedures can be used however: composition rules and
sensitivity calculations based on Tellegen’s theorem.

A. Composition rules

Starting from the definition of Sy, it is easy to establish
the following composition rules for uncorrelated resis-
tance fluctuations.

Series resistances. When two resistances are connected
in series, the resulting . for the equivalent total resis-
tance can be written

Fr=(R{/RPF g, +(Ry /RS, 6)
or more generally,

S r= }I; (R;/RPFg, » @)

where R = Y, R is the equivalent total resistance.
Parallel resistances. Similarly, for two resistors in

parallel,
Fr=(R/R )L g +(R/R, SR, (8)
r
r
Pl r N Pl r \

(a) (b)
FIG. 1. Two elementary resistor networks where » denotes
the common value of the branch resistances. Arrows indicate
the location of current probes.
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(a) (b)

FIG. 2. Sign convention adopted in Tellegen’s theorems: (a)
voltage across, and current through, a given branch; (b) two-port
configuration.

and more generally,

Fr= }I‘, (R /R,)ZYRI , 9)

where R 1= 2 ! R[‘l. Here and above, the summation is
taken over all branches in the network.

Note the different weights appearing in Egs. (7) and (9)
according to the topology of the network. However, for n
identical resistors, arranged either all in series or all in
parallel, one obtains the same result: .# 5 ~1/n.

Combined with the star-triangle transformation, the
above rules can be used to calculate ¥ for simple net-
works. For instance, using these simple rules, one obtains,
respectively (see Fig. 1), R=%r and ¥ g =p?/2r? for the
network (a) and R=10r/9, £ ::11/:»2/50;'2 for the net-
work (b): Here, R denotes the measured resistance in the
- corresponding configuration.

B. General theorems

The previous direct approach is clearly not easy to use
for large or more complicated networks, like random
resistor networks. The more appropriate approach, based
on Tellegen’s theorems,!” is called the sensitivity calcula-
tion method and is widely used in computer-aided net-
work design. In network design problems, one is generally
interested in the following question: What is the amount
of change of the potential measured at a port, given that
in some branches of the circuit some resistance (or some
other circuit element) does not have its prescribed value?
This change can be due to some damage or simply to a
fluctuation within the prescribed tolerance or to noise.
The answer to this question is given in fact by Tellegen’s
theorems. To be self-contained, we summarize briefly the
sensitivity calculation method. For a more detailed dis-
cussion, we direct the reader to Ref. 17.

1. Tellegen’s theorems

Theorem 1 (simplified version). In a given network, the
branch currents i, and the voltage differences v, across
the corresponding branches satisfy the following sum rule:

S iave=0. (10)

The proof of this theorem is somewhat elementary. The
set of currents satisfies Kirchhoff’s current law (KCL):
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i, =0. (11)

The summation is taken over all branch currents i, in-
cident upon a given node n. Similarly the voltages v,
satisfy Kirchhoff’s voltage law (KVL):

S v,=0. (12)
al -

Here the summation is taken over the branches forming
any closed loop /. The power in branch a, given by
DPa=Vq4lq, can also be written as (see Fig. 2)

Pa=l(V,=V)=ipV, —irV; ) (13)

and taking the sum over all branches, one obtains the
claimed result:

%pa=§iava=§[n§im]=0. (14)

In Eq. (14) we have used KCL [Eq. (11)].

This general and powerful theorem simply expresses the
conservation of energy within the network. The result Eq.
(14) holds also for networks possessing different input-
output ports (see Fig. 2 for sign convention):

SiaVa= 3, ipvp - (15)
a P

In Eq. (15) i, and v, correspond to different ports p.
Theorem 2. If a set of voltages v, satisfies KVL
around all closed loops in .a network, and if a set of

- currents i, satisfies KCL at all nodes, then

Siwl=0. (16)
<

More generally, for a multiple-port network, Eq. (16) can
be generalized as above:

Siwa= i, . 17
a P .

This theorem can be proved as was theorem 1. However,
the vy and i, in Egs. (16) and (17) need not refer to the
values at the same instant of time, nor need the branches
be the same at the times that the v and i, are measured.
The only requirements are that the v} satisfy KVL, that
the i, satisfy KCL, and that the associated sign conven-
tion be adopted. In addition, nothing needs to be specified
about the nature of the network branches. Equations (16)
and (17) are a very general theorem. For instance, i, can
refer to a given network and v, to another network hav-
ing different branch resistances, but possessing the same
topology.

Theorem 3 (generalized). Let .’ and .£""’ be two linear
operators acting on the v’s or on the i’s. Within the con-
ditions of theorem 2, we have

S (L i L vg)= (L0, L") (18)
a . P

for an n-port network. In particular,
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S UL i L 0a)— (L ig)( L va)]
=F (L L ") = (L, (Lvp)] . (19)
P

2. The sensitivity calculation method

Among different applications of the above theorems,
two important examples are of interest in the calculation
of the noise spectrum Sg.

(i) Cohn’s theorem. Assume a one-port configuration
for a given network where I denotes the external current
and V the voltage between the two.contacts. Let R be the
resistance R =V /I so measured. Cohn’s theorem!® tells
us about the variation of R resulting from a small varia-
tion in the value of the resistances inside the network and
can be stated as follows:

8R= 38R, (i /I}. (20)

Here 8R, denotes the variation of the value of the resis-
tance in the branch a and i, the current through this
branch in the unperturbed original network.

This basic equation (20) is a consequence of Eq. (19). If
L’ is taken to be the identity operator and .Z"" the small
increment 8, then Eq. (19) becomes

ISV—V8I=T (ig804—048iy) , 1)
' a

but v, =i,R, and Eq. (20) results immediately.

(ii) Transpose network. Let us consider a multiple-port
network N. The voltages (V,) and currents (I, ) measured
at these ports can be related linearly as

Vo= Zul, , (22)
b

where Z,, are elements of the (square) impedance matrix
Z.

The transpose network N’ of N is defined as having the
same topology as N but with an impedance matrix Z’
-which is the transpose of Z: Z'=2Z". The application of
Eq. (19) to these two networks leads to the following re-
sult:7

8R=36Z,,(I,I,/I') (23)
a,b

giving the variation of the resistance measured at port 1
resulting from variation of resistances inside the network.
The summation is taken over all other ports
a,b=2,3,4,... and I' and I refer to the currents [see Eq.
(22)] associated with N and N’, respectively. Equation
(23) holds in particular for two ports and will be used in
the next section.

3. Noise calculations

(i) One-port configurations. It is easy to deduce from
Eq. (20) the following expression for Sg:

S r={6R8R)/R?
: 2

2
/R2 . (24)

However, R can also be written as follows:

= 2 <8Ra 8Rﬁ>

ig
a,B 1

la
I
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R=T R,li,*/I*, (25)
a
from which we extract
2
(26)

Fr=T3 (5R, 8R,,><ia>2u3)2/ S Ryliy)?
a,B a

Only the knowledge of the values of the currents in all the
branches of the unperturbed original network and the co-
variance matrix of the elementary resistance fluctuations
are needed to evaluate this general expression for /.
Furthermore, for uncorrelated fluctuations [Eq. (3)] and
identical resistances R, =r, one obtains the simple result

2
zuar‘]/ S (P

This expression for #¢ is used extensively in the follow-
ing sections.

(ii) Two-port configurations. Recently, it has been ar-
gued by Weissman et al. 16 that precise information about
the microscopic origin of 1/f noise can be gained by
measuring voltage correlation functions using two-port
configurations (four-point probe). The notion of the
transpose network is very useful for the calculation of
such correlation functions (i.e., resistance noise matrix).
To see this, let us consider two ports 4 and B where the
measured voltages are V4 and Vp, respectively. Accord-
ing to Eq. (22) we have the following relations:

2
Fr= fr’—z 7)

Vy=R4I,+Rclg, Vy=Rcl +Rplp, (28)
or

V4 Ry Rc | |1a

Vs |~ |Rc Rg | |I

where I, and I are, respectively, the currents at the as-
sociated ports. Compare now the two configurations A4
and B of the same network shown in Fig. 3, where I 4540
and Ip=0 in the first, and I,=0 and I3#0 in the
second. The difference between configuration 4 and con-
figuration B is simply the interchange between the probe
and the source: The impedance matrix for A is the
transpose of that for B and vice versa. Using Tellegen’s
theorems, one obtains, for the configuration 4,

8VB=—1—- S8R, iGP . (29)
Ip <
Here i" (i?) denotes the branch currents in configura-
. tion A (B). Using Eq. (28) one deduces
jA ;B
8Rc=8Vy/I,= S8Ry |— | |— | . (30)
« 1, Ip
Similarly, )
j4 )2
8R,= 3 6R, ; , 31
o 4
‘ B )2 .
8Rz= S8R, | — (32)
a I
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Equations (30)—(32) can be used to calculate various
correlation functions and, in particular, the correlation ra-
tio defined by

QO=(8R,8Rp)/(8RcORc) . : (33)
In general, Q takes the following form:
Z <8R 8RB>I A) (BB) (BB)
a,B
Q= (34)
> (8R, SRﬁ)zﬁ{“za IBA) fg )
a,B

For uncorrelated resistance fluctuations [Eq. (3)], one ob-
tains the following result: Q=1. For completely
coherent fluctuations and identical resistors, i.e., R =r for
all @ and (8R, 8Rp) =p? independent of a and 3, one ob-
tains the following results:

fRAszB=fRC=.VRA’RB=p2/r2 N (35)

where g g, = (8R,8Rgp)/R, Ry. This result agrees
with that of Ref. 16, obtained through a two-dimensional
continuum approach.

The result Q=1 appears as a very general one for un-
correlated resistance fluctuations. Q=1 holds for arbi-
trary networks of any spatial dimension, in particular for
the random resistor networks discussed below. Note,
however, that it is possible to imagine physical models
with correlations between effective resistors representing
different directions:'® For example, a “site” problem,
with the conduction done by grains. In such cases, Q=~1.
Note also that for coherent fluctuations [Eq. (35)]

Q=R Rp/R¢ . (36)

(iii) Higher-order correlation functions. The result Eq.
(27) can easily be generalized to higher-order correlation
functions. Equation (27) was derived for networks made
of identical resistances # which fluctuate independently
and have the same p. From now on, we restrict ourselves
to such a model. Higher-order cumulants of the resis-
tance fluctuations then have a simple expression in terms
of the steady-state currents and of the cumulants of the
elementary resistance fluctuations (which also are as-
sumed all identical). For example (recall {&r) =0),

((8R)*) —3((8R)*)?
- [E(ia)sJ[((Sr)4)——3<(6r)2)2] 6

We thus define the quantities (n integer)
Gyp=3 (i)™ (38)

a

which for an arbitrary geometry of the network relates
microscopic and macroscopic correlation functions of the
resistance fluctuations.

Finally, note that in the calculation of the resistance
noise correlation functions, only the current patterns in
the unperturbed original network {i,} are needed. This
situation is reminescent of linear response theory where

I Ig
S L
u] e wl s

(a) : (b)

FIG. 3. Network with two ports (four-point probe) used in

‘the calculation of voltage correlation functions.

the response functions (susceptibility for instance) are
given by correlation functions pertaining to the unper-
turbed system.

4. General upper and lower bounds for the noise

Let us consider the expression for the noise given in Eq.
(27). Tt is easy to show that for any current pattern {i,},
Ny 3 lia)*>[ 3, (iq)*]* leading to

Pl

SR> N, (39)
where N, denotes the number of conducting bonds in the
network. In addition, the equality is reached if and only
if the currents i, are all equal. To find an upper bound
for the noise, note that the driving current I can be chosen
equal to unity which implies that (i,)?><1 for all @ and
hence ¥, (iy)*< 3, (i,)? from which one obtains

r
LR P?E : (40)

III. NOISE IN SELF-SIMILAR NETWORKS

Before considering self-similar networks, let us consider
the case of Euclidean networks made of L“d resistances
arranged in a d-dimensional hypercubic lattice. Assume
the noise is measured with two parallel electrodes connect-
ing two opposite faces of the network. The measured
resistance is given by R =r/L%~? (L is measured in units
of the lattice spacing). Assuming uncorrelated resistance
fluctuations, we obtain Sy :p2L4"3d and

Fr={(5R6R)/R*=(p*/r)L 9 .

This simple result shows that for Euclidean networks .#¢
scales as L ~9 i.e., the inverse of the volume. A natural
question therefore arises: What happens for fractal net-
works? Is there a new exponent controlling the size
dependence of .#R?

This question is motivated by the anomalous size
dependence of the resistance R(L) in the case of fractal
lattices. More precisely, it has been shown that?

R(L)~L™? (Ls>1), 41)

where B; =(d/d)(d—2) is an exponent controlling the
transport properties on the considered structure. Here, d
and d denote, respectively, the fractal and spectral dimen-
sions of the structure.

Another motivation comes from the recent progress in
our understanding of random resistor networks. There
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(a’ &
(b) 5 z (c) X X

(d) ’_— [ 1

(e) [ ]

L] L] O

FIG. 4. Fractal lattices for which the resistance noise ex-
ponent b is calculated. (a) Stage n =2 of the two-dimensional
Sierpiniski gasket. (b) Stage n=2 of the von Koch curve. (c)
Stage n =2 of the branching von Koch curve. (d) Generators of
the “phi lattices” of scaling factor 3, 5, and 7, respectively. (e)
Two checkerboard lattices of scaling factor 3 and 5, respectively.

the concept of self-similarity has also been shown to be
very useful, particularly in the investigation of the univer-
sality®? of the spectral dimension d =4/3.

Let us assume that .#; obeys the following scaling
form (this assumption will be supported by specific exam-
ples given below): s

S rRALY=A"2F (L),
ie.,
SFrL)~L™% (L>1), 42)

where A denotes a scaling factor, and b is a characteristic
exponent. %» is measured in an arbitrary one-port con-
figuration. For Euclidean networks, where d =d, we have
b =d. How is the exponent b influenced, if at all, by the
geometry?

Before considering specific examples, we give upper and
lower bounds for b. On a fractal structure where
Nb~L‘7, we deduce from Egs. (39) and (42) the upper
bound for b: b <d. Note that this bound is reached on
- Euclidean lattices. Using then the general result Eq. (40)
and the scaling in Eq. (41) we find another bound,
b > —f3;. Combining these two bounds we have

—BrL<b<d. 43)

Using B, =(d/d)(d—2), Eq. (43) may be written in the
form

(2—d)/d<b/d<1.

One can think of other upper bounds for .#; (lower
bounds for b) but they are not as stringent as the above.
For example, *i <p?/r%. Another bound may also be
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found from the inequality
(8R8R) <Linp*, (44)

where L., denotes the shortest path between the port
nodes. From Egs. (41) and (44) and>® L ;,~L asa we ob-
tain

2B, —d/d<b . (45)

Here d refers to the spreading dimension of the structure.
This lower bound is not as strict as that in Eq. (43) be-
cause R < L ;, implies

—B, <d/d . (46)

Note that the latter inequality has not appeared in the
literature before.

A. Examples
In order to illustrate these considerations, it is useful to

study some fractal structures (see Fig. 4).
(i) 2D Sierpiski gaskets. It is easy to calculate R ‘™ and

S at  each stage of the construction
(B, =In% /In2, d =In3/In2)

RO=2/, yg@:%f;’;,

Ry, o tie

RE=3r, 7% (25?)?2%‘

For this example, Eq. (42) holds trivially (A= 2) and
S r(2L)/F g(L)=45. This leads to b=In3>/In2
=1.1844 to be compared with d. As for the exponent BL,
b does not depend on the particular position of the source
and drain. For instance, if the current is injected at one
corner of the gasket and extracted at the two opposite
corners, we obtain the same value of b.

Similarly for the gaskets introduced in Ref. 19 having
different scaling factors, we find b=1.15693
(d=1.63092, —f, =0.6937) for the scaling factor A =3,
and b=1.13112 (d=1.66096, —B; =0.6644) for A=4.
Therefore, in this case, increasing d results in lowering the
value of the exponent b.

(ii) Linear structures. For the von Koch curve,

d=In4/In3, B, =—d; for the Peano curve, d=2,
Br=—2; and for the random-walk trajectory, d=2,
Br = —2. For these structures, d=1 and we obtain b=d.
In these cases, the upper bound of Eq. (43) is reached be-
cause of the equality of all branch currents.

(iii) Branchmg von Koch structure. d=In5/In3,
—BL _ln /In3 and a direct calculation gives
b=Int /1113 As for the Sierpinski gasket, due to the
presence of loops the exponent b is smaller than d.

(iv) “Phi lattices.” These fractal lattices can be generat-
ed for different scaling factors A=3,5,7,... . The fractal
dimension is the same d =2 for all A and —f3; =0.8698,
0.7415, and 0.6777, respectively, for A=3, 5, and 7 (83,
going to zero as A— o, as expected). The corresponding
values of the exponent b are, respectively, 1.0473 (A=3),
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1.0044 (AL=5), and 0.9584 (A=7). As A increases, the ex-
ponent b decreases becoming smaller than 1.

(v) “Checkerboards.” For the scaling factors A=3 and
5 corresponding to the generator shown in Fig. 4, we
have, respectively, A=3, d=In5/In3, B, =—1 and A=S5,
d=In13/In5, B, =—0.8243. The exponents b we find
are, respectively, b=1 (A=3) and b =1.3857 (A=5).

Other examples have been studied but we shall limit our
discussion only to the above ones. In all cases shown here,
Eq. (43) is fulfilled (as it should).

B. A new family of exponents

The new exponent b associated with the noise ampli-
tude Sg=."xR? appears as the third in a series of new
exponents associated with the various “moments” of the
branch currents. In fact, the first two in this series are
given by

EINL‘7 and R(L —rz(z ~Pe
as recalled above. The next one is given by Sk which is
proportional to ¥, , (i,)*

Clearly, all of the above quantities are special cases of
the more general G,, defined in Eq. (38). We have seen
that the G,,’s have a natural physical meaning even for
n>2. It is legitimate to associate an exponent x, to G,,
which describes its power-law behavior: Gp,~L " for
large L. As for b, these exponents can be bounded. In
particular [(i,)? < 1]

Xp 2Xp 1 (47a)
for all values of n. Also, the Lyapunov inequality?
wl/">ul/ "= where u, =G,,/G, implies (for n > 1)

Xn an—l 1 + dl . (47b)

With xo=—d, x;=8., and x,
inequalities immediately lead to Eq. (43).
Eq. (47b) implies x, <nB; +(n—1)d

The main point we want to emphasize here is that Sy
provides a new quantity describing-the fractal structure.
Quantities like G,, give us further and further details on
the fractal structure. The exponents x, as well as d and
other exponents introduced for studying the self-avoiding
walk statistics'? appear as exponents containing more and
more detailed information. about physical properties of
fractals.

=b+2pB;, the last two
Note also that

C. Average resistance and average noise-

In general, for a given finite network, there is no natur-
al choice for the contact points in the measurement of R
or . In order to avoid this difficulty, it is necessary to
define the average resistance and the average noise associ-
ated with the considered network.

A natural definition for the average resistance of a fi-
nite network is the following:

R=3R;/ 31, (48)

(i,7) ()]

R.RAMMAL, C. TANNOUS, AND A.-M. S. TREMBLAY v 31

where- R;; denotes the measured resistance when the
current is injected at node i and extracted at node j. The
summation is extended over all the possible N(N —1)/2
pairs (ij) of the N-node networks. Note that R as defined
by Eq. (48) is reminiscent of the notion of resistive suscep-
tibility, Xg = ,; ; Rij, introduced in Refs. 21 and 22.

We define similarly the average noise of a finite net-
work by

Fr=255/ 31, (49)
(i, ) (5,)
where .*’;; denotes the measured noise using nodes i and
j- Similarly, one can define the equivalent of Xz by
Xs= 2(:‘, ) =2
For a fractal network of linear size L, we deduce from
the previous discussion the following behavior for R:

R~L7P, xq~L® 7Pt (50)
Zr is expected to obey a scaling law:
Fr~L~" (51)

with a characteristic exponent b.

Another quantity of interest would be the average of
the resistance fluctuations: 3 ) (8RBR);/ 3 »l
where (SR SR ); j denotes the resistance fluctuations mea-
sured between i/ and j. In general, it should be noted
that other averages can be defined For in-
stance, E(,J (8R S8R >u/2(u)(Ru 2”)(8R 8R);/

(X J,R,J) etc., are other candldates for averaging pro-
cedures. However, we believe that Egs. (48) and (49) are
more appropriate for our purpose.

The average resistance as well as the average noise so
defined can be calculated for simple systems. For in-
stance on Euclidean lattices, we find b=d as expected.
For fractal lattices, we have calculated X for the systems
shown in Fig. 5. In Fig. 6 Xs=3,,;.”;; versus the
length scale L is shown for (i) branching von Koch struc-
tures, b=1.0587; (ii) 2D Sierpinski gasket (scaling factor
A=2), b=1.1843; and (iii) the X lattice denoted C1 in
Ref. 19 (scaling factor A=2), b=1. The straight lines of
slope L*~b show the expected asymptotic behavior (large
L) of Xs. In spite of the small sizes, the slopes reproduce
very well the expected values.

IV. APPLICATION TO PERCOLATING SYSTEMS

The fractal geometry of percolation clusters is at the
basis of our present understanding of the percolation
problem. At p <p,, the random resistor network is divid-
ed into isolated finite clusters which are self-similar and
have a fractal dimension dp =d —pB, /v, and a spectral di-
mension d =2( dvp By) /(t—Bp+2vp) At p >p,, the in-
finite cluster remains self-similar at short length scales up
to the correlation length §,,~(Ap)_v", Ap=p—p.. The
branches carrying the current belong to the backbone.
Therefore, the exponent b satisfies

—BrL<b<dy, (52)

where dp denotes the fractal dimension of the backbone.
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(a) (b)

(c)

FIG. 5. Fractal lattices used in the calculation of the “noise
susceptibility.” (a) Branching von Koch structure. (b) Two-
dimensional Sierpiriski gasket. (c) Two first stages of the con-
struction of the X lattice.

_A. Below p,

The size distribution of finite clusters is given by?®

57T, s<(§ )g"

(53)
0, s ()% .

n(s)~

Here s denotes the number of bonds inside the finite clus-
ter. The average [Xg] of Xy resulting from the above
cluster size statistics is :

Z
()P _ =
[Xr]~ fo P dss—Ts T Pel%
~(ap) PP S
In obtaining Eq. (54) we have used the known relation
7—3=—7v,/v,d,. This expression can also be written
[Xr1~(Ap) "%, (55)

where ygr=v, —v,BL=vp+{. Here p refers to percola-
tion and R to resistance. Equation (55) is identical to that
of Refs. 21 and 22 where it was derived by a different
method. In Eq. (55), § denotes the exponent
=t—(d—=2)v,=—v,B.

The same calculation for the average of X; over the
cluster size distribution yields

[Xs1=~(Ap)
By analogy with y g, we have denoted this exponent by v,:

TR (ap) T (56)
Vs=Vp—Vpb . (57
Using the inequality Eq. (52), we deduce .
Yo—C>Vs>Vp—vpdp . (58)

By using the known estimates of various exponents,?* we
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FIG. 6. log-log plot of [Xs] for the structures in Fig. 5 [L <9
for (a), L <4 for (b), and L <8 for (c)].

find that y vanishes at d =1 and for d > 6 but takes posi-
tive values for 2<d <5. Therefore, [X,] diverges at fi-
nite dimensions as p—p. . The mean-field value (d > 6)
of the exponent b can be obtained from Eq. (52),
— B <b <dy by taking for the fractal dimension of the
backbone* dp=2 and for the resistance exponent
Br=—2. This leads to b=2, and y,=0.

The result for d >6 can also be obtained directly by
performing a low-p expansion for X; at large d. For d
large, it is sufficient?! to keep only self-avoiding walk dia-
grams. For n-step walks, X is equal to the noise mea-
sured between the ends of the walk: 1/xn. Thus

X1~ 3 p"2d — 1 (59)

which gives a logarithmic divergence at p.~1/2d. This
divergence is consistent with b =2 and confirms the above
result. Note that at d > 6 where the mean-field theory is
correct, b coincides with its upper bound d, s as well as its
lower bound —f; [Eq. (52)]. In addition, at d > 6, all x,
become equal to —2. This value is consistent with the
qualitative picture of the percolation clusters viewed as
branched polymers* at large dimensions.

B. Above p,.

Close to p =1, the network is slightly perturbed and its
behavior is governed by the Euclidean regime. More pre-
cisely, starting from #g =(p?/r*)L =% at p=1, S in-
creases when p decreases, satisfying the inequality Eq.
(39). The number of conducting bonds N, decreases,
therefore . increases at least as fast as 1/B(p). Here
B(p) denotes the probability for a given bond to be on the
backbone of the infinite cluster. %y is therefore expected
to follow 1/B(p) close to p=1. This Euclidean regime is
maintained for values of p far from p., where £, <<L.
For values of p very close to p., a Euclidean to fractal
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a(p,L) /g (1L)

N

1

1 i L | Epe<l
° 1

° P, P

FIG. 7. Variation of #r(p,L)/ 5 r(p=1,L) as a function
of p for a finite box of size L% d denotes the Euclidean dimen-
sion and b the noise exponent.

crossover is expected to occur.

To be more precise, let us denote by R(p,L) the mea-
sured resistance when the potential difference is applied
between two opposite (d — 1)-dimensional faces of a hy-
percubic box. Similarly, let us denote by % (p,L) the as-
sociated noise. From general arguments, R(p,L) is ex-
pected to have the following behavior:

R(p,L)=L"Prf(L/g,), (60)
2-dtBy_ —t/
B . )

The
and Euclidean

where f(u <<1)~1, f(u>>1)~u
crossover between the fractal R(L)~L ~
R(L)~L?~%Ap)~"* takes place at £,~L.
Following the same line of argument, the measured
noise has its crossover at §,~L, between the Euclidean
regime Fg(p,L)~L~% and the fractal one
Zr(p,L)~L % Assuming a scaling form for #¢(p,L)

SLrlp,L)=L~%g(L/E,), (61)

where g(u <<1)~1 and glu>>1)~u’, one deduces
y=b—d and Fx(p,L)~L~%ap) 7" ™" at £, «<L.
This behavior is consistent with the increase of # 3 as p
approaches p. from above (recall b <dp <d). The ex-
pected behavior of #z(p,L) is depicted in Fig. 7 where

FLrp, L)/ F r(p=1,L) is shown as a function of p. In
both regimes , &, 2 L, the inequalities given by Eq. (43)
hold.

V. CONCLUSION

In this paper, we have considered the influence of dilu-
tion disorder on the amplitude of 1/f noise (or more gen-
erally, resistance noise). A new exponent, belonging to a
new hierarchy, has been identified first on fractal struc-

tures and then on percolating systems. These exponents
in a sense characterize the conductance matrix G and can
be measured experimentally from higher-order cumulants
of the resistance noise. It is not clear whether this family
of exponents is related or not to that recently introduced
in Ref. 25 to describe the power-law behavior of the resis-
tance cumulants in the random resistor problem. Howev-
er, from a practical point of view, it is easier to measure
the cumulants of the resistance noise®® than the cumulants
of the resistance. It should be pointed out though that in
most cases, resistance fluctuations are Gaussian hence
higher cumulants do not contain more information and
only the exponent b is really meaningful.

The value of this exponent b, which controls the size
dependence of the noise, has been calculated in mean-field
theory. Both regions p <p. and p >p, have been investi-
gated. At p <p., a new quantity [X,] pertaining to the
average noise of finite clusters has been studied. [X;] has
been shown to diverge as p—p, as does the resistive sus-
ceptibility [Xg]. At p >p,, an anomalous increase of g
has been obtained. Both regimes are controlled by the ex-
ponent b. It would be very interesting to calculate b, as
well as other exponents by e-expansion techniques®? at
d =6—¢, or using numerical simulations.

Finally, two comments are in order. The first is rela-
tive to the distinction between the prediction of this model
and the diffusion noise model.?”?® It has been shown?®®
that anomalous diffusion near p, can lead to an additional
noise at low frequency, described by co1 (or w ™)
where v,,, =d /2d. In the case discussed in the present pa-
per, no attempt has been made to identify the origin of the
frequency dependence. Only the geometrical features
have been considered. The second comment is relative to
recent measurements of 1/f noise in metal-insulator mix-
tures.?>3® It would be very interesting to make contact
with the predictions given here. In these systems, the
change in the amplitude of the noise as a function of
filling fraction can indeed be measured.

—Vp
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