
Simulation et optimisation du contôle et de la mesure du qubit
supraconducteur

par

Ross Shillito

Thèse présentée au département de physique

en vue de l’obtention du grade de docteur ès sciences (Ph.D.)

FACULTÉ des SCIENCES

UNIVERSITÉ de SHERBROOKE

Sherbrooke, Québec, Canada, 18 septembre 2023



Le Lundi, 18 septembre 2023

le jury a accepté la thèse de M Ross Shillito dans sa version finale.

Membres du jury

Professeur Alexandre Blais
Directeur de recherche

Département de physique

Professeur Michel Pioro-Ladrière
Membre interne

Département de physique

Professeur Ioan M Pop
Membre externe

University of Stuttgart

Professeur Ion Garate
Président rapporteur

Département de physique



ii

To my family and friends in New Zealand, who I love and miss dearly;
À mes amis Québécois, les personnes les plus chaleureuses et les plus accueillantes;

Y al amor de mi vida.



Sommaire

Le domaine des circuits supraconducteurs a connu une croissance spectaculaire au cours de la
dernière décennie et constitue une architecture de premier plan pour l’informatique quantique.
Le succès de cette architecture tient en partie à la simplicité du contrôle, à l’évolutivité et à
la durée de vie de plus en plus longue du qubit transmon, qui est devenu dominant dans la
plupart des processeurs. Bien que la fidélité de la plupart des opérations quantiques sur ces
dispositifs dépasse généralement 98− 99%, des améliorations significatives des performances
seront nécessaires pour parvenir à un calcul tolérant aux fautes. L’une des principales limites
actuelles de ces opérations sur les qubits est due aux “fuites”, c’est-à-dire au peuplement des
états d’énergie supérieure du qubit. Ces effets sont difficiles à appréhender d’un point de vue
numérique et théorique, car de nombreuses transitions résultent de processus hors résonance
qui sont généralement ignorés afin de rendre le problème traitable. En outre, beaucoup de
ces effets sont causés par les niveaux d’énergie plus élevés du transmon, présents hors de son
potentiel de confinement. Ceux-ci sont également négligés dans les simulations et les études
théoriques pour des raisons de simplicité, ce qui entraîne une mauvaise caractérisation de la
dynamique.

Dans cette thèse, j’étudie comment nous pouvons comprendre, simuler avec précision et
supprimer les processus à l’origine d’erreurs résultant de mesures et de contrôles forts sur
les qubits transmon. Dans le cadre de ma recherche, je présente une méthode permettant
de simuler efficacement des systèmes en présence de commandes à oscillation rapide, et
comment celle-ci nous permet d’optimiser les commandes afin d’améliorer la fidélité des
opérations. Cette méthode permet une accélération significative par rapport aux intégrateurs
numériques traditionnels, et une version de ce solveur est maintenant incluse dans Qiskit
Dynamics, un logiciel d’IBM.

Je démontre en outre comment un pilote de mesure suffisamment forts pendant la
lecture peut non seulement entraîner des fuites, mais aussi la population d’états en dehors du
potentiel de confinement du transmon, ce que nous appelons l’“ionisation”. La compréhension
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de l’impact de ces effets parasites - et de la manière dont ils peuvent être évités - sera cruciale
pour l’optimisation et le fonctionnement de la lecture dans les futurs dispositifs.

Je conclurai par mes travaux en collaboration avec l’ETH Zurich sur les résultats de
lecture de pointe utilisant des transmons et des filtres de Purcell réglables en fonction du flux,
et j’expliquerai comment le réglage de la fréquence du transmon peut améliorer la fidélité de
la lecture. Cela ouvre une autre voie pour améliorer la lecture des qubits supraconducteurs
et nous rapproche potentiellement des applications utiles de ces dispositifs.

The field of superconducting circuits has grown dramatically in the last decade and is
a leading architecture for quantum computation. Part of this architecture’s success is the
simple control, scalability, and increasingly long lifetime of the transmon qubit, which became
dominant in most processors. Whilst the fidelity of most quantum operations on these devices
generally exceeds 98− 99%, there will need to be significant improvements in performance
to reach fault-tolerant computation. A major limitation of these qubit operations today
is from ‘leakage’, or from populating the higher energy states of the qubit. These effects
are difficult to capture from both a numerical and a theoretical point of view, as many of
the transitions result from off-resonant processes that are typically disregarded in order
to make the problem tractable. Furthermore, many of these effects result from the higher
energy levels of the transmon outside of its confining potential, which are also neglected
from simulations and theoretical studies for simplicity, resulting in a mischaracterization of
the dynamics.

In this thesis, I investigate how we can understand, accurately simulate, and suppress
error-causing processes resulting from strong measurement and control drives on transmon
qubits. As part of my research, I present a method of efficiently simulating systems in the
presence of fast-oscillating drives, and how this allows us to optimize the controls to improve
the fidelity of operations. This method provides a significant speed-up over traditional
numerical integrators, and a version of this solver is now included in Qiskit Dynamics, a
software package by IBM.

I additionally demonstrate how sufficiently strong measurement drives during readout
can not only result in leakage but also in the population of states outside of the transmon’s
confining potential, which we refer to as ‘ionization’. Understanding the impacts of these
spurious effects – and how they can be avoided – will be crucial in the optimization and
operation of readout in future devices.

I conclude with my work in collaboration with ETH Zurich on state-of-the-art readout
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results using flux-tunable transmons and Purcell Filters, and provide an understanding of
how tuning the transmon frequency can improve readout fidelities. This opens up another
avenue to improving superconducting qubit readout and potentially brings us closer to useful
applications of these devices.
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Chapter 1

Introduction

In 1981, Richard Feynman proposed a radical idea: To build a new type of computer which
harnesses quantum mechanics at its core. His argument for this was rather simple [4]:

Nature isn’t classical, dammit, and if you want to make a simulation of Nature, you’d
better make it quantum mechanical, and by golly it’s a wonderful problem because it doesn’t
look so easy . . . the full description of quantum mechanics for a large system with R

particles is given by a function which we call the amplitude to find the particles at x1, x2, . .
. ,xR, and therefore because it has too many variables, it cannot be simulated with a normal
computer.
Today, more than 40 years later, our understanding of how to construct a quantum computer
has grown considerably, with the story of this journey nicely summarized in Refs. [5, 6].
As of today, there are many candidates, such as spin qubits [7, 8, 9, 10], trapped ions
[11, 12, 13, 14] and superconducting qubits [15, 16, 17, 18], which are all the subjects of
intensive study. In particular, superconducting qubits are a strong candidate, known for
their scalability and versatility and have already been shown to demonstrate useful quantum
speedup [19] and error correction [20, 21]. This architecture relies on Josephson junctions,
a circuit element [22, 23] which provides the nonlinearity required for useful computation
and control [24]. Furthermore, the two-qubit gate performance is excellent, with errors of
3× 10−3 reported [25].

Whilst the error rates of these qubits seem small, useful quantum computation will
require dramatically lower error rates. Given that future algorithms will rely on billions
of operations, the anticipated tolerable error rate for gates between logical qubits on a
quantum computer is as low as 1× 10−15 [26], orders of magnitude lower than the current
transmon error rates. Quantum error correction (or QEC for short) allows us to circumvent
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this issue by using many physical qubits, such as the transmon, to encode each of these
logical qubits. Unfortunately, current predictions for the surface code are in the thousands
of superconducting qubits per logical qubit to achieve fault tolerance [27]. The number of
required qubits per logical qubit will largely depend on the highest error rates for the system.

Many of the current gate operations on superconducting qubits are currently limited
by the qubit coherence time. Improvements to these coherence times are anticipated as
fabrication and materials research develops – for example, the use of tantalum has greatly
increased qubit lifetimes [28]. Nevertheless, it is desirable to perform gate operations as fast
as possible to limit these unavoidable decoherence effects. As the lifetime of these qubits
increases, coherent processes – spurious qubit rotations caused by miscalibration of the drive,
crosstalk and more – will contribute significantly to the total error of the quantum operation.
The control of these qubits will need to become more sophisticated which necessitates an
increased understanding and improved simulation requirements.

In this thesis, I investigate how we can understand, accurately simulate, and suppress
some of these error-causing processes. One such major performance limitation of supercon-
ducting qubit operations today is from ‘leakage’, or from populating the higher energy states
of the qubit. Leakage is generally incurred from off-resonant processes, which are hard to
capture from both a numerical and theoretical viewpoint, and our understanding of such
processes must be improved to continue improving gate fidelities. In Chapter 2, I detail how
the transmon and its readout resonator can be accurately simulated, the approximations
that are made to simply understand this system, and where such approximations fail. I
then proceed to discuss a new method of efficiently simulating systems in the presence of a
fast-oscillating drive in Chapter 3, and how this method allows us to optimize the controls
to improve the fidelity of operations. Then in Chapter 4, I extend the same formalism to
account for the aforementioned loss effects and compare it to another ubiquitous method of
simulating such systems.

One of the greatest problems in the field of superconducting qubits is qubit readout,
where the logical state |0〉 or |1〉 is measured. Whilst this process was predicted to be
straightforward and highly accurate [15, 29], the fidelity of readout rarely exceeds 99.5%
[30, 31]. This is in part due to long operation times, but also due to spurious effects and
transitions invoked by driving the system [32, 33, 34]. Understanding such effects during
these readout protocols is thus critical to improving our understanding. In Chapter 5, I
perform an investigation into the strongly-driven transmon-readout system and observe
dramatic leakage effects such that states outside of the transmon’s confining well become
populated. We refer to this process as ‘ionization’.
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A crucial component of most superconducting circuits is the Purcell filter – an additional
resonator which helps to prevent the qubit from decaying into the readout circuitry [35, 36, 37].
When simulating the readout of a transmon qubit, one generally neglects the presence of this
resonator due to the great associated increase in complexity. In many cases, simulating this
component is vital to accurately describe the system dynamics. In addition, the parameters
of this filter can be critical to the readout performance. In collaboration with ETH Zürich,
I conclude in Chapter 6 with how the combined transmon-resonator-Purcell system can
be efficiently modelled, and use the results to describe some state-of-the-art experimental
readout fidelities. I provide additional information regarding the optimal parameters of this
system in the appendix.



Chapter 2

Key Concepts for Circuit QED
Simulation

“If all you have is a hammer, then everything looks like a nail.”

– Abraham Maslow, The Psychology of Science

In this chapter, I lay the foundations needed to perform accurate simulations of the
transmon qubit and provide some context for the succeeding chapters.

2.1 Diagonalizing the Transmon Qubit

The transmon [38] is one of the most ubiquitous qubits used in current superconducting
architectures, and is a central focus of this thesis. Part of the transmon’s appeal is its
simplicity, consisting only of a shunt capacitance and a Josephson junction [22], see the
circuit in Fig. 2.1(a). By performing a standard circuit quantization procedure [39], we
readily arrive at the Hamiltonian for this qubit,

Ĥ = 4Ec(n̂− ng)2 −EJ cos(ϕ̂), (2.1)

where n̂ and ϕ̂ are the charge and phase operators respectively, with the commutation
relation [ϕ̂, n̂] = i. Further, Ec, EJ are the charging and Josephson energies respectively,
and ng is an offset gate charge. This is the same Hamiltonian as the ‘Cooper Pair Box’ qubit
[40, 41], but operated in a very different regime, with EJ/EC � 1. It has been demonstrated

4
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Figure 2.1 (a) Circuit of the transmon qubit. The square box represents the nonlinear
Josephson junction element. (b) Representative energy spectrum and first few
eigenstates, with the cosine confining potential. Adapted from Ref. [2].

in Ref. [38] that the sensitivity of the transmon’s eigenenergies to the charge offset ng
diminishes exponentially as the ratio EJ/Ec increases. This exponential suppression greatly
reduces the effects of charge noise on the qubit and increases the qubit’s coherence time.

This simple Hamiltonian has a rich and complex energy structure, but it can be non-trivial
to simulate. In the following sections, I consider three different methods for diagonalizing
this Hamiltonian – the Fock, phase, and charge bases – and detail why the charge basis is
the most reliable.

2.1.1 Fock Basis

The Fock basis description of the transmon qubit is excellent for pedagogical reasons and
describes the lowest energy states of the system with reasonable accuracy. To motivate this
expansion, we rewrite Eq. (2.1) to reveal a harmonic contribution plus a perturbation,

Ĥ = 4Ecn̂2 +
EJ
2 ϕ̂2 −EJ

[
cos(ϕ̂) + 1

2 ϕ̂
2
]

, (2.2)

where we have additionally dropped the gate charge dependence ng, given that the energies
are insensitive to this parameter in the transmon regime. Following the standard procedure
[16, 38], we can represent the charge and phase operators in terms of annihilation and creation
operators with suitable zero point fluctuations to diagonalize the harmonic contribution to
Eq. (2.2):

ϕ̂ =

(2Ec
EJ

) 1
4
(b̂† + b̂), n̂ =

i

2

(
EJ
2Ec

) 1
4
(b̂† − b̂). (2.3)
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We see that the zero point fluctuations in the phase variable ϕ̂ are indeed small in comparison
to n̂, which motivates a Taylor expansion in the cosine confinement potential:

Ĥ = 4Ecn̂2 +
EJ
2 ϕ̂2 − EJ

4!
ϕ̂4 −EJ

∞∑
n=3

[
(−1)n ϕ̂2n

(2n)!

]
. (2.4)

Using the definitions of the operators in Eq. (2.3), this yields a Hamiltonian up to fourth
order in ϕ̂:

Ĥfock =
√

8EJEcb̂†b̂−
Ec
12 (b̂

† + b̂)4. (2.5)

Finally, we can invoke the ‘Rotating-Wave-Approximation’ by ignoring non-energy conserving
terms in Eq. (2.5), or terms that involve an unequal number of creation and annihilation
operators. This yields a form of the Hamiltonian often referred to as a ‘Kerr-nonlinear
oscillator’:

Ĥfock,RWA = (
√

8EJEc −Ec)b̂†b̂−
Ec
2 b̂†2b̂2

= b̂†b̂

[
ωq −

Ec
2
(
b̂†b̂− 1

)]
.

(2.6)

Here, the qubit’s frequency is defined by ωq = (
√

8EJEc −Ec), with the anharmonicity
α = −Ec describing the non-linearity of the oscillator 1. This term decreases the transition
frequency between the n-th and (n− 1)-th energy state by (n− 1)Ec, as is evident from the
form of Eq. (2.6).

Whilst this Hamiltonian is excellent for aiding our understanding – it provides the
frequency, anharmonicity, and a simple form for the charge and phase operators – it fails
to capture the higher energy structure, which we will see in Chapter 5 has surprising and
dramatic impacts on the qubit readout. Moreover, any expansion in the Fock basis eventually
fails, even if an increasing number of terms in Eq. (2.4) are preserved. This is because the
Hamiltonian in Eq. (2.1) is periodic: The eigenstates of the Hamiltonian, when expressed
in the phase basis, must obey the relation ψ(φ+ 2π) = ψ(φ). More formally, the phase of
the transmon is said to be compact, and the eigenstates strictly are defined on the interval
φ ∈ [−π,π). On the other hand, the Fock basis is strictly non-compact, with wavefunctions
defined over φ ∈ (−∞,∞) – consequently, it will be unable to capture the transmon’s
periodicity accurately.

To see this problem more explicitly, in Fig. 2.2(a) I plot the wavefunctions corresponding
to the first few states of the transmon for EJ/Ec = 50, as calculated in the charge basis
(see Sect. 2.1.3). Similarly, in Fig. 2.2(b), I plot the wavefunctions corresponding to the
Fock basis in Eq. (2.4), keeping up to a 10th order Taylor expansion of the cos(φ) term.

1Throughout this thesis, I use the the convention h̄ = 1.
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Figure 2.2 A demonstrative set eigenfunctions of the transmon qubit, plotted in the phase
basis. (a) The eigenfunctions as calculated from the charge basis. (b) The
eigenfunctions approximated in the Fock basis, where the transparent line considers
a Taylor expansion of the cosine potential well up to 10th order.

Whilst the Fock basis captures the low energy dynamics well, there is a dramatic departure
from the results of (a) at higher energies, with the wavefunction occupying false minima
generated from the Taylor expansion at φ ≈ ±5. This problem persists when increasing the
order of the Taylor expansion and is therefore challenging to circumvent in this basis.

2.1.2 Phase Basis

To resolve the shortcomings of the Fock basis, let us now return to Eq. (2.1) and consider
the Hamiltonian in the phase basis:

4EC
(
−i d
dφ

+ ng

)2
ψn(φ)−EJ cos(φ)ψn(φ) = Enψn(φ). (2.7)

Here, I use φ for the phase coordinate in the phase basis to differentiate it from the
operator ϕ̂ in the Fock or charge bases. In this form of the Hamiltonian, we clearly see a
relation to Bloch’s theorem, with the gate charge ng functioning as a wavevector [42]. This
equation can be treated analytically, yielding solutions in the form of Mathieu functions
[38, 43, 44]. To treat this problem numerically, we begin by discretizing phase space into N
intervals each of length h = 2π/N , consequently yielding a vector of complex values {ψk,n}
which approximate the eigenstate ψn(φ) at values φ = −π + 2πk/N . The simplest way of
calculating the derivatives uses a central difference method:

ψ′i =
ψi+1 −ψi−1

2h , ψ′′i =
ψi+1 − 2ψi + ψi−1

h2 , (2.8)
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Figure 2.3 Form of the (a) first and (b) second derivative matrices for a 5 point stencil with
periodic boundary conditions in phase basis with 8 divisions.

The accuracy of the phase basis diagonalization can be increased by using additional points
ψi in the calculations of the first and second derivative, also known as a stencil [45], whilst
preserving the sparsity of the Hamiltonian. To see this more explicitly, I plot in Fig. 2.3 an
illustration of the (a) first and (b) second derivatives with 8 different phase coefficients ψk
and a five-point stencil, although a hundred or more coefficients may be needed for accurate
calculation of the eigenvalues, see Sect. 2.1.4 for more details. Note that in the case of the
transmon, which is compact, the periodicity must be maintained in the structure of the
derivative matrices. This can be enforced by simply setting ψi+N = ψi – see the matrix
elements connecting ψ7 and ψ0.

Care must be taken when expanding Eq. (2.7), as in this basis the square of the derivative
matrix in Fig. 2.3 (a) will not necessarily well approximate the second derivative in (b). As
such, when writing the Hamiltonian in this basis, we must expand out Eq. (2.7) explicitly:

Ĥ = −4Ec
d2

dφ2 − 8iEcng
d

dφ
−EJ cos(φ), (2.9)

and use the definitions for each operator individually.
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2.1.3 Charge Basis

We now finally consider the charge basis. Using the relation n̂ = −i(d/dφ), we are able to
describe eigenstates of the charge operator n̂ in the phase basis:

n̂|n〉 = n|n〉 ←→ −i d
dφ
einφ = neinφ. (2.10)

The corresponding Hamiltonian in this basis is thus of the form:

Ĥ = 4Ec
∞∑

n=−∞
(n− ng)2|n〉〈n| − EJ

2 (|n〉〈n+ 1|+ |n+ 1〉〈n|) . (2.11)

One can consider the charge basis as a Fourier series for representing wavefunctions in
phase space. This makes it the natural choice for representing compact spaces, such as the
aforementioned transmon, since the eigenstates einφ are natively periodic on the interval
[−π,π). Furthermore, the states above the transmon’s cosine confinement potential are
approximately charge eigenstates, meaning that this basis should well capture the high
energy spectrum. This is discussed further in Chapter 5.

Fractional Charge Basis

Whilst the phase space of the transmon qubit is compact, it is important to note that more
complex qubits such as the fluxonium [46] and L-shunted transmon [47] contain an inductive
shunt, which breaks the periodicity. Such a Hamiltonian is usually approximated by the
form:

H = 4Ecn̂2 −EJ cos(ϕ̂) + EL
2 (ϕ̂−ϕext)

2, (2.12)

where EL is the energy corresponding to the inductive shunt – see Fig. 2.4 for the corre-
sponding circuit and spectrum.

In the current form of the charge basis, we have no means of well approximating the
φ̂2 contribution outside of the interval [−π,π). Consequently, the Fock and phase bases
would seem like the more natural choices. Nevertheless, the charge basis can be used to
approximate these non-compact spaces. Consider the transformation of the operators n̂, ϕ̂,
which preserves the commutation relations

ϕ̂′ = ϕ̂/N , n̂′ = Nn̂, (2.13)
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Figure 2.4 (a) Circuit Diagram for the inductively shunted transmon. (b) Spectrum of the
inductively shunted transmon with EJ/Ec = EL/Ec = 25.

such that the Hamiltonian becomes:

H =
4Ec
N2 n̂

′2 −EJ cos(Nϕ̂′) + EL
2 (Nϕ̂′ −ϕext)

2. (2.14)

We can now approximate the potential terms ϕ̂ and ϕ̂2 by the corresponding lowest frequency
components in this space:

ϕ̂′ ≈ sin ϕ̂′, ϕ̂′
2 ≈ 2− 2 cosϕ′, (2.15)

such that the Hamiltonian is approximated by

H ≈ 4Ec
N2 n̂

′2 −EJ cos(Nϕ̂) + EL
2
(
N2(2− cos ϕ̂′)− 2N sin ϕ̂′ϕext

)
(2.16)

This Hamiltonian is still periodic over the interval ϕ′ ∈ [−π,π), but the phase space is N
times larger in the original phase coordinate, ϕ ∈ [−Nπ,Nπ). This approximation naturally
assumes that the wavefunction is exponentially small at the boundary, else we can expect
energy renormalizations arising from this enforced periodicity.

Note here that, like with the derivative matrices in the phase basis, it is important to
approximate the operators ϕ̂ and ϕ̂2 separately, since we would otherwise observe non-physical
local minima at the boundaries. Consider:

(ϕ̂′)2 ≈ (sin ϕ̂′)2 ≈ 1− cos 2ϕ̂′
2 , (2.17)

which has minima at ϕ′ = −π,π, unlike cos ϕ̂′. Consequently, the corresponding eigenstates of
a Hamiltonian diagonalized with this potential would have states localized at the boundaries,
not dissimilar to the issues with the Fock basis in Fig. 2.2.
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Figure 2.5 Convergence of the first 5 eigenvalues for the (a) transmon and (b) inductively
shunted transmon.

2.1.4 Example – Diagonalization Convergence

To compare the different diagonalization methods, I construct the Hamiltonians in each of
the different bases and perform numerical diagonalization using NumPy’s eigh function [48].
I consider two cases: the transmon Hamiltonian in Eq. (2.1) and the inductively shunted
transmon in Eq. (2.12) with ϕext = 0. As a performance metric, I use the differences in
energies of the first five eigenvalues:

Error =

√√√√ 4∑
i=0
|λi − λi,approx|2, (2.18)

where λi is the ‘converged’ eigenvalue (in 2π GHz).

For the transmon diagonalization in Fig. 2.5(a), these converged eigenvalues are calculated
with the charge basis and a total of 200 charge states. For the inductively shunted transmon,
this was calculated with the fractional charge basis using N = 25 and 2000 basis states,
as well as with the phase basis over the interval [−20π, 20π) with 2000 states. In both of
these bases, the eigenvalues differed by less than 10−15, confirming the convergence of the
two methods. The convergence properties for the transmon are shown in Fig. 2.5(a), where
we consider a transmon with EJ/Ec = 50 and Ec/ h̄ = 250 MHz, and for the inductively
shunted transmon in (b), with EJ/Ec = EL/Ec = 25, keeping the same charging energy Ec.
Here, the legend Fock(n) refers to the n-th order Taylor expansion of the cosine potential,
whereas Phase(n) refers to the phase basis calculated with an n point stencil. Both the
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phase and charge bases were restricted to an interval −[10π, 10π), corresponding to a choice
of N = 10 in Eq. (2.14). The charge basis is optimal for the transmon without the inductive
shunt, reaching numerical precision with as few as 25 charge states – in comparison, the
Fock basis performs poorly, even for the 26th order expansion, due to the issues discussed in
Sect. 2.1.1. The phase basis converges comparatively slowly to the charge basis, requiring
many more states.

In contrast, for the shunted transmon in (b), the Fock basis performs very well for a
small number of states. However, we see that Fock(4), and Fock(12) both diverge after a
certain Hilbert space size is reached – this is because the leading term in the Taylor expansion
is negative for these expressions – for example, −(ϕ8/8!) for Fock(8). This implies that,
for sufficient Hilbert space sizes, the potential will tend to negative infinity, leading to a
failure to characterize the lowest energy eigenstates of the system. However, for Fock(6) and
Fock(26), the leading order of the potential is positive, resulting in no such divergence of the
lowest energy eigenstates. The charge basis converges rather quickly, but not to the exact
solution – this is simply because of an insufficient choice of interval size, N = 10. A choice
of a larger interval would require more states for convergence, although would converge to a
solution closer to the true eigenvalues.

2.1.5 Diagonalization summary

As we’ve seen in this section, accurately extracting the energy spectrum of a qubit is a
non-trivial task, and careful consideration must be given to the choice of basis. In compact
systems, the charge basis is generally the most efficient choice. On the other hand, for
non-compact systems, the Fock basis with a Taylor expansion of the potential can be highly
effective, provided the appropriate order in the Taylor series is chosen. The phase basis
offers a slow but reliable method of verifying the diagonalization of either of the previous
methods.
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2.2 Reading out the qubit

In the following section, I provide an overview of key elements of the procedure to readout
the transmon qubit which are relevant to Chapters 5 and 6 – for a complete description of
readout, I encourage the reader to look at the theoretical [16] and experimental [49] reviews
on the subject.

To read out the state of the qubit, we need a means of coupling it to the external
environment. This is usually done in the form of a ‘readout resonator’ – an LC circuit that
is capacitively coupled to the transmon, as depicted in Fig. 2.6. This yields a Hamiltonian:

Ĥtr = 4Ec(n̂− ng)2 −EJ cos ϕ̂+ ωrâ
†â− ig(n̂− ng)(â− â†), (2.19)

where ωr represents the resonator frequency, and g the transmon-resonator coupling strength.
We note that the Fock basis is natural to describe the readout resonator, as it is harmonic –
we’ll revisit the accurate numerical diagonalization of this Hamiltonian in Chapter 5.

2.2.1 The Jaynes-Cummings Model and the Dispersive Approximation

As we saw in Sect. 2.1.1, while using the Fock basis for the transmon can lead to inaccuracies,
it is an excellent tool for gaining intuition on the overall Hamiltonian behaviour. Expanding
Eq. (2.19) in the Fock basis, we obtain:

Ĥtr,Fock = ωrâ
†â+ ωq b̂

†b̂− α

2 b̂
†2b̂2 − g̃(â† − â)(b̂† − b̂), (2.20)

where g̃ ≈ (g/2)(2Ec)1/4 is the renormalized coupling strength, arising from the zero-point
fluctuations of the charge operators. Here, the terms â†b̂† and âb̂ are considered ‘counter-
rotating’ since they do not conserve the excitation number in the system. As we performed
on Eq. (2.5), we can make an addition Rotating-Wave Approximation and neglect these
counter-rotating terms. This yields a ‘Jaynes-Cummings’-like Hamiltonian [50]:

ĤJC = ωrâ
†â+ ωq b̂

†b̂− α

2 b̂
†2b̂2 + g(â†b+ âb̂†). (2.21)

We are now ready to bring this Hamiltonian to an approximately diagonal form. This can be
performed with a set of unitary transformations, known as Schrieffer-Wolff transformations
[51, 52]. This procedure is well documented in [16] – as such, we will simply quote the final
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form of the Hamiltonian,

ĤDisp = ÛĤJCÛ
† ≈ â†â(ω̃r + 2χb̂†b̂) + ω̃q b̂

†b̂− α

2 b̂
†2b̂2 +

Ka

2 â†2â2 +
K ′a
2 â†2â2b̂†b̂, (2.22)

with parameters:

ω̃r = (ωr + ωq −
√

∆2
qr + 4g2)/2, ω̃q = (ωr + ωq +

√
∆2
qr + 4g2)/2,

Ka = −EC(g/∆qr)4, α ≈ Ec, χ = −g2Ec/(∆qr(∆qr −Ec)),

K ′a =

(
4EcKa

∆qr +Ec(1− g2/∆2
qr)

)
.

(2.23)

This form of the Hamiltonian is valid in the ‘dispersive regime’, where |g/∆qr| � 1, with
∆qr = ωq − ωr the detuning between the qubit and resonator. Similarly to the qubit
anharmonicity seen in Eq. (2.6), the values Ka and K ′a, referred to as the Kerr-nonlinearities,
describe the degree of nonlinearity of the readout resonator conditioned on the state of the
qubit.

We additionally see that Eq. (2.22) describes Jaynes-Cummings ‘ladders’ [53] – the set
of resonator states associated with a specific qubit state. If we consider the qubit to be in
either the ground or excited states (〈b̂†b̂〉 = 0 or 1), we find

Ĥg = ω̃râ
†â+

Ka

2 â†2â2, Ĥe = (ω̃r + 2χ)â†â+
(
Ka +K ′a

2

)
â†2â2. (2.24)

We can therefore consider the set of states {|g, 0〉, |g, 1〉, ..., |g,n〉} and {|e, 0〉, |e, 1〉, ..., |e,n〉}
to each be a distinct ‘ladder’. Each state |i,n〉 represents a ‘rung’ of the ladder, and we
climb up or down this ladder by adding or removing a photon to the resonator, for example
â†|g,n〉 = (n+ 1)|g,n+ 1〉. We’ll see how this procedure can be generalized to the case of
Eq. (2.19) in Chapter 5.

There is a vital feature of this Hamiltonian that allows us to read out the state of the
qubit – the contribution 2χâ†âb̂†b̂ in Eq. (2.22) means that the frequency of the resonator
now depends explicitly on the qubit state. This is one of the key requirements for measuring
the state of the qubit, which we’ll explore further in Sect. 2.2.4.

2.2.2 Adding the environment

To obtain useful information about the system, the resonator must be connected to the
environment. We can model this with a master equation, whereby the resonator loses photons
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to the environment at a rate κ [54]:

˙̂ρ = −i[ĤJC, ρ̂] + κD[â]ρ̂, (2.25)

where the dissipator D[â] acts on the density matrix,

D[â]ρ̂ = âρ̂â† − 1
2 â
†âρ̂− 1

2 ρ̂â
†â. (2.26)

To understand the effect of this dissipator, we must write the loss operator â in the eigenbasis
of the dispersive Hamiltonian given in Eq. (2.22). Thus, we need to apply the same set of
unitary transformations which diagonalized Eq. (2.21), yielding [55]:

Û âÛ † =

[
1− g2

2∆2
qr

− 2g2Ec
∆2
qr(∆ +Ec(1− 2g2∆2

qr))
b̂†b̂

]
â+

g

∆
b̂. (2.27)

For simplicity, we shall ignore the second-order contributions g2/∆2
qr in Eq. (2.27). We

arrive at a master equation,

˙̂ρ = −i[ĤDisp, ρ̂] + κD[â]ρ̂+ κ

(
g

∆qr

)2

D[b̂]ρ̂, (2.28)

where we have performed yet another rotating wave approximation, splitting up the dissipator
D[â+ (g/∆qr)b̂]ρ ≈ D[â]ρ̂+D[(g/∆qr)b̂]ρ. This approximation is valid if the difference of
the two frequencies corresponding to the two modes â and b̂ is sufficiently large –we’ll see a
case where this is not valid in Chapter 6.

The introduction of a decay channel for the qubit, at rate Γκ = κ(g/∆qr)2, is known as
Purcell decay [56]. For the large values of κ needed for fast qubit readout, this decay channel
typically results in unacceptable lifetimes of the transmon qubit, on the order of hundreds
of nanoseconds – strategies to avoid this problem are discussed in more detail in Chapter 6.

2.2.3 Driving the Resonator

Let us now return to Eq. (2.22), with some additional presumptions. We first assume
that the qubit is in either the ground or excited state, such that the qubit is an eigenstate
of the operator b̂†b̂ – thus, we can replace b̂†b̂ by its expectation value, 〈b̂†b̂〉, and set
〈b̂†2b̂2〉 = 0, enforcing the presumption that no higher transmon levels are occupied – indeed,
b†2b2|n〉 = n(n− 1)|n〉, and thus this operator only has non-zero eigenvalues for n ≥ 2.
Next, we assume that the population of the resonator is small, such that we can neglect
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Figure 2.6 Example circuit of a transmon qubit (green) capacitively coupled to a readout
resonator (blue). The resonator is coupled to the feedline at rate κ.

the non-linear terms â†2â2. We further assume that the decay rate of the qubit derived in
Eq. (2.28) is small and can be neglected throughout the readout process. Finally, we include
a coherent drive on the resonator at some frequency ωd and drive amplitude 2E . This allows
us to write a new, time-dependent master equation:

˙̂ρ = −i[(ω̃r + 2χ〈b̂†b̂〉)â†â+ 2iE cos(ωdt)(â† − â), ρ] + κD[â]ρ̂. (2.29)

Going into a rotating frame Û = exp(−iωdâ†ât) and, once again, neglecting fast-oscillatory
terms, we arrive at the simple equation:

˙̂ρRWA = −i[(∆rd + 2χ〈b̂†b̂〉)â†â+ E(â† + â), ρ̂RWA] + κD[â]ρ̂RWA, (2.30)

where ∆rd = ω̃r −ωd, see [16] for details. We note here that this is simply a driven harmonic
oscillator, and as such, we expect a coherent response from the resonator. Let us use
the notation |i,αi(t)〉 to demonstrate a quantum state of this system, where i = {g, e}
indicates the state of the qubit, and αi(t) represents the coherent amplitude response of the
resonator. It is straightforward to demonstrate that a density matrix initialized in the state
ρ0 = |j, 0〉〈j, 0| will evolve under the action of Eq. (2.30) as

|j, 0〉〈j, 0| → |j,αj(t)〉〈j,αj(t)|, (2.31)

where the coherent amplitude αj is governed by the equation

α̇j = −i(∆rd + 2χδej − iκ/2)αj + E , (2.32)
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Figure 2.7 (a) Trajectory in phase space of the coherent responses corresponding to the (blue)
ground and (orange) excited state. (b) Integrated signal as a function of time. For
longer measurements, the responses become increasingly resolved. The overlap
between the two distributions yields the readout infidelity.

with the kronecker delta δej = 1 if j = e and 0 otherwise. Here, it is clear that the shift
2χ imparted on the resonator by the qubit makes the resonator’s coherent response αg,e

qubit-state dependent.

2.2.4 Putting it all together

A full understanding of the readout process requires knowledge of all the components in the
measurement chain, which include signal generators, amplifiers, attenuators, and IQ mixers,
components which are outside the scope of this thesis – Ref. [16] provides an overview of
these components, with Refs. [49, 57] going into finer detail. Here, I shall simply jump to
the main result – a heterodyne measurement is performed which allows for simultaneous
measurement of the two field quadratures – the ‘in-phase’ VI(t) and ‘in-quadrature’ VQ(t)
components. Each of these components contains a contribution from the internal field of
the resonator 〈â(t)〉 [58]:

VQ(t) = (
√

2κηRe 〈â(t)〉+ nQ(t)), VI(t) = (
√

2κη Im 〈â(t)〉+ nI(t)), (2.33)

where nQ(t),nI(t) are Gaussian white noise terms and η is the measurement efficiency, a
measure of information loss by the measurement chain [59]. With the assumptions made
in Sect. 2.2.3, we see a coherent, qubit-state dependent response from the resonator such
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that 〈â〉(t) = αg,e(t), see the representative example of the coherent responses of the ground
and excited states given in Fig. 2.7(a). Consequently, the measurement signal in Eq. (2.33)
depends on the qubit state, and by integrating this signal we can discriminate between the
two states, see Fig. 2.7(b). Bultink et. al. in Ref. [58] derived that for this measurement
the Signal-to-Noise ratio (SNR), used as a measure to discriminate the states, is of the form

SNR(t) = 2κη
∫ t

0
|αg(t′)− αe(t′)|2dt′, (2.34)

where this definition is adapted to be in agreement with the publication in Chapter 6.
Assuming that the resonator response is Gaussian, the SNR provides information on the
upper bound of the readout fidelity F :

F ≤ 1
2
(
1 + erf(

√
SNR/8)

)
. (2.35)

We consequently wish to maximize the SNR, achieved by maximizing the distance between
the two steady-state resonator responses {αgss,αess}, which are of the form

αg,e
ss =

−iE
∆rd + 2χδej − iκ/2. (2.36)

For a fixed drive amplitude E = E0, the distance between these responses is maximized by
choosing ωd = ω̃r + χ, the average frequency of the two qubit-dependent resonator responses.

An obvious way of improving the SNR appears to be to simply increase the drive
amplitude E . Unfortunately, the dispersive approximation in Eq. (2.22) quickly breaks
down at higher photon numbers, leading to strong resonances which can rapidly degrade
the purity of the qubit state and reduce the performance of the readout – we’ll see this
much greater detail in Chapter 5. A common metric, referred to as the ‘critical photon
number’ ncrit = ∆2

qr/(2g̃)2 [15] defines a photon population before the dispersive theory is
expected to break down. Whilst a useful approximation, experimental results often see a
breakdown in the readout process well before this photon number is reached [30, 60, 61, 62].
I contributed to some recent theoretical findings which showed that the readout can fail at
very low average photon numbers if the qubit frequency is below the resonator frequency [63].
To help understand this effect, a new definition of the critical photon number is provided.
This topic is currently under active investigation.
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2.2.5 Readout Summary

The journey from Eq. (2.19) to the formula for the coherent state responses in Eq. (2.32) is
littered with presumptions, approximations, and transformations. Whilst this derivation is
pedagogical and provides insight into how ‘ideal’ readout occurs, it does not well capture
effects seen experimentally at high photon numbers [3, 30, 60]. Indeed, Eq. (2.30) predicts
that arbitrarily strong drives can be used without repercussion, indicating that the model
is insufficient. Thus, to capture this breakdown of ‘quantum non-demolition readout’ at
high photon numbers, a more sophisticated model is needed. Chapter 5, we’ll avoid many
of the approximations made above and instead focus on the evolution of Eq. (2.19) under
a strong resonator drive, and in Chapter 6, we’ll see simulations of a more realistic setup,
which includes an additional mode to reduce the qubit decay we derived in Eq. (2.28).

2.3 Numerical Propagation

In Sect. 2.2, many approximations were made to yield a useful form of the Hamiltonian.
If we wish to understand these systems to a greater degree of accuracy, we must resort to
modelling these systems numerically, as we saw in the diagonalization of the transmon in
Sect. 2.1. Given that in Chapters 3 and 4 I introduce a novel numerical integration method,
it is appropriate to introduce the basics of how standard numerical integrators propagate
states.

The very simplest integrator uses what’s known as the ‘Euler method’ [64], and takes
finite step sizes δt:

i
d

dt
|ψ〉 = Ĥ(t)|ψ〉 −→ |ψ(t+ δt)〉 = (1− iĤδt)|ψ(t)〉. (2.37)

Such an integrator has an error on the order of (δt)2 and does not preserve the norm of
the wavefunction so that |〈ψ(Nδt)|ψ(Nδt)|2 6= 1. More advanced integrators exist, such as
Runga-Kutta [65, 66], Adams [67], and bdf [68], which integrate a time step δt in several
stages, either explicitly or implicitly. Such integrators generally have errors on the order
of (δt)4 or smaller, allowing for larger time steps, faster integration, and more accurate
simulations.

A limitation of such numerical integrators is the assumption that the time-dependence
of the Hamiltonian Ĥ(t) is slow with respect to the time step δt. Given that time-dependent
drives generally exhibit fast-oscillating behaviour, this imposes significant constraints on
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feasible step sizes. In Chapter 3, I will propose an expansion that allows for step sizes that
are independent of the drive frequencies, therefore enabling significantly larger steps.

2.3.1 Master Equation Propagation

Evolution of the master equation works in much the same way as the propagation of a ket
vector, except we now propagate a density matrix :

˙̂ρ = L(t)ρ̂, (2.38)

where L is called the Lindbladian superoperator, and describes the density matrix evolution:

L(t)ρ̂ = −i[Ĥ(t), ρ̂] +
∑
i

κiD[L̂i]ρ̂. (2.39)

A key feature of the Lindbladian is that it preserves the trace of the density matrix, such
that Tr [Lρ̂] = 0. Indeed, even the Euler steps described above will preserve the trace:

ρ̂(t+ δt) ≈ ρ̂(t) + δt ˙̂ρ,

Tr[ρ̂(t+ δt)] = 1 + δt · 0 = 1.
(2.40)

Nevertheless, the error associated with this method is still on the order of δt2 – in other
words, the preservation of the trace does not guarantee anything about the accuracy of the
solver.

Roots of unity solver

Because it will be useful later [55], we consider here an interesting approximation of the
evolution of the density matrix. If we assume that the Lindbladian is time-independent, we
can write the exact solution to the evolution:

˙̂ρ = L → ρ̂(t) = eLtρ̂(0). (2.41)

To see how this could be implemented numerically, we can start by considering the Taylor
expansion of the exponential

eLtρ̂ =
∞∑
n=0

(Lt)n

n!
ρ̂. (2.42)

A potential strategy for solving this equation without explicitly calculating powers of L is to
store two matrices – a ‘cumulative’ density matrix ρ̂, and an additional matrix ρ̂i+1 = Lρ̂i
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which has successive powers of L applied on it. More explicitly, starting with an initial
matrix ρ̂0, we find

ρ̂ = eLtρ̂0

= ρ̂0 + Lρ̂0︸︷︷︸
ρ̂1

+
1
2 Lρ̂1︸︷︷︸

ρ̂2

+
1
6 Lρ̂2︸︷︷︸

ρ̂3

+..., (2.43)

However, if the norm of L is large, the norm of the matrices ρ̂i can diverge and be prone
to numerical instability. Instead, let us consider the roots of the n−th degree polynomial
approximating the Taylor expansion of the exponential function:

pn(x) =
∞∑
n=0

1
n!
xn = 1 + x+

x2

2 + ...

=
1
n!

n∏
i=1

(x− ci) =
n∏
i=1

(1− xi/zi).
(2.44)

We can now use this form to approximate the action of the matrix exponential:

ρ̂(t, t+ δt) =
n∏
i=1

(I −Liδt/zi)ρ̂(t). (2.45)

This result is particularly useful if the density matrix is extremely large and hard to store in
memory, as we only ever have to store one copy – such a method is used in the publication
in Chapter 5.



Chapter 3

Dysolve

“I feel the need... the need for speed.”

– Tom Cruise, Top Gun

In this chapter, I provide more context to how the Dyson expansion can be used and
implemented as a numerical solver. The essential details of the algorithm are found in
the publication, in section Sect. 3.6 – consequently, the following sections are to provide
more insight into the algorithm, including a comparison against an alternative method, and
provide concrete details on how the algorithm can be implemented numerically.

3.1 Motivation

The vast majority of quantum operations – whether single and two-qubit gates, readout
schemes or qubit reset – involve one or more time-dependent oscillatory drives. If such
an operation does not involve a loss channel, we can describe this evolution with a time-
dependent Hamiltonian of the form

Ĥ(t) = Ĥ0 + V̂ (t), (3.1)

where we have a time-dependent perturbation V̂ (t),

V̂ (t) =
∑
i

X̂i [Es,i(t) sin(ωd,it),+Ec,i(t) cos(ωd,it)] , (3.2)

22
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where Ĥ0 is a diagonal Hamiltonian, X̂i is a drive operator, and Es,i(t), Ec,i(t) are drive
envelopes which vary slowly with respect to the corresponding drive frequencies ωd,i. We
are ultimately interested in the corresponding unitary operator which evolves a system from
time t0 to t – this obeys the differential equation

˙̂U = −iĤ(t)Û , (3.3)

which has the corresponding formal solution

Û (t, t0) = T exp
(
−i
∫ t

t0
Ĥ(t′)dt′

)
, (3.4)

where T is the time-ordering operator.

As detailed in Sect. 2.3, integrating equation Eq. (3.3) using a standard numerical solver
can be challenging since the chosen step size ∆t has to be significantly smaller than the
oscillation period of the drive, 2π/ωd. This requires a significant number of time steps, thus
requiring many matrix multiplications and a slow evaluation of the target unitary operator
in Eq. (3.4). Consequently, a solver capable of integrating these fast-time dynamics natively
would be invaluable in accelerating the simulation of such quantum operations.

3.1.1 Magnus Expansion – A potential solver?

The Magnus expansion [69] is a powerful method for approximating the evolution of quantum
systems. Here, the average Hamiltonian over the relevant timestep δt is calculated through
a sum of commutators:

H̄ =
∞∑
k=1

H̄k, H̄1 =
∫ t

t0
Ĥ(t1)dt, H̄2 =

1
2

∫ t

t0

∫ t1

t0
[Ĥ(t1), Ĥ(t2)]dt1dt2, (3.5)

with higher order contributions Ĥk evaluated from a corresponding set of nested commutators.

This method has two drawbacks: there are strict conditions regarding the norm of Ĥ(t)

for the truncation of the series to be valid, and this method requires the exponentiation
of the average Hamiltonian to approximate the unitary Û (t, t0) ≈ exp(−iH̄δt). Matrix
exponentials can be very costly to calculate or approximate numerically, which makes this
solver less attractive. Furthermore, in the context of optimal control, which frequently
involves gradient ascent [70], it becomes necessary to calculate derivatives of the unitary
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operator with respect to the drive amplitudes. However, the Magnus expansion does not
automatically provide these derivatives.

Nevertheless, a Magnus solver can be very effective in the correct context, such as
understanding and correcting leakage processes [71]. Moreover, in this thesis the Magnus
expansion was used to propagate a large density matrix [2] (see Chapter 5), in conjunction
with the roots-of-unity solver introduced in Chapter 2. A Magnus and Dyson solver, which
was inspired by my work on the Dysolve algorithm detailed in this chapter, was implemented
by a team at IBM in the Qiskit Dynamics package [72].

3.2 Dyson Series

The Dyson series is a standard tool to help understand the effect of a perturbation V̂ (t) on
an unperturbed Hamiltonian Ĥ0. The original series as posed by Dyson is given in the form
[73]

Û (t) = Î +
∞∑
n=1

Ûn(t, t0), (3.6)

where
Ûn(t, t0) =

(−i)n

n!

∫ t

t0
dt1

∫ t

t0
dt2...

∫ t

t0
dtnT V̂I(t1)V̂I(t2)...V̂I(tn). (3.7)

Here, the problem is posed in the interaction picture, such that V̂I(t) = eiĤ0tV̂ (t)e−iĤ0t.
The error for such a series will be on the order

Uerr = Û (t)−
m∑
n=1

Ûm(t, t0) =
(δt)m+1

(m+ 1)!O(V̂
m+1), (3.8)

which will be negligible for sufficiently large m, and systems with weak perturbations (i.e.
drives). However, the form of Eq. (3.7) is not instructive on how to calculate the terms
Ûn(t, t0) in general, given the complexity of time-ordering and nested integrals. In Ref. [1], I
demonstrate how the unitary in Eq. (3.7) corresponding to the Hamiltonian in Eq. (3.2) can
be decomposed efficiently. In this chapter, I provide additional context into the decomposition,
which can be understood more simply from a time-independent Hamiltonian:

Ĥ = Ĥ0 + ΩX̂, (3.9)
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where Ω is some small constant, Ĥ0 is diagonal and X̂ is a Hermitian operator:

Ĥ0 =
∑
k

λk|k〉〈k|, X̂ =
∑

k(0),k(1)
〈k(1)|X̂|k(0)〉|k(1)〉〈k(0)|. (3.10)

Here, the superscripts k(0), k(1) are simply used to differentiate different summation indices.
Replicating the derivations in Ref. [1] with this simpler Hamiltonian, we arrive at the form
of the unitary

Û (t, t+ δt) = e−iĤ0δt +
∞∑
n=1

ΩnŜn(δt), (3.11)

where the Dyson series operators Ŝ(n)(δt) are defined as

Ŝ(n)(δt) =

(−iδt)n
∑
kn

f (λn(kn)δt) 〈k(n)|X̂|k(n−1)〉〈k(n−1)|X̂ · · · |k(1)〉〈k(1)|X̂|k(0)〉|k(n)〉〈k(0)|. (3.12)

Here, each kn = (k(0), k(1), · · · , k(n)) is a set of indices which specify a set of (n + 1)
eigenstates {|k(m)〉} of Ĥ0 with corresponding eigenvalues λn(kn), and we sum over all
possible kn. These eigenvalues are written in vector form:

λn(kn) ≡ (λk(0) , · · · ,λk(n)) . (3.13)

The sum over kn implies a summation over all sets of eigenstates which the operator X̂
couples in Eq. (3.12). The functions f (λn(kn)δt) are divided difference functions [74, 75],
defined by Equations (13) and (17) in the publication, and discussed in more detail below.

3.3 Calculating the divided difference functions

As defined in Ref. [1] and replicated here for clarity, the the n-th order weighting functions
f(λn) can be obtained recursively:

f(λn) = i
f(g(λn))− f(g2(λn) ∪ λn[n])

λn[n− 1]− λn[n]
, (3.14)

where g(vn) returns vn without its last element, g2(vn) = g(g(vn)), and the notation ∪
indicates appending an additional element to a vector such that

λn = g(λn) ∪ λn[n], (3.15)
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where λn[n] refers to the n-th element of the vector λn. In the case of degenerate eigenvalues
(for example, λn[n] = λn[n− 1]), Eq. (3.14) can be defined in terms of limits, but this is
challenging to implement numerically. Take for example the following divided difference
function, which from the above definition would suffer from a division-by-zero error:

f(λ0,λ1,λ1,λ1) = i
f(λ0,λ1,λ1)− f(λ0,λ1,λ1)

λ1 − λ1
. (3.16)

This can be defined in a limit by replacing the last eigenvalue by λ′ and taking λ′1 → λ1.
However, expanding the equation leads to two additional division by zero occurrences:

f(λ0,λ1,λ1,λ1) = lim
λ′1→λ

i
f(λ0,λ1,λ′1)− f(λ0,λ1,λ1)

λ′1 − λ1

= lim
λ′1→λ

i

(
f (λ0,λ1)−f (λ0,λ1)

λ1−λ1

)
−
(
f (λ0,λ′1)−f (λ0,λ′1)

λ′1−λ
′
1

)
λ′1 − λ1

.
(3.17)

There is a simple way of circumventing these issues. Let us consider the same function but
with arbitrary eigenvalues : f(λ0,λ1,λ2,λ3). First, noting from Ref. [1] that we can permute
the eigenvalues, we assume λ0 ≤ λ1 ≤ λ2 ≤ λ3. Then, we calculate all the first order divided
difference functions based on sequential pairs of the eigenvalues: f(λ0,λ1), f(λ1,λ2) and
f(λ2,λ3). Here, for any pair of degeneracies, the analytical solution f(λj ,λj) = exp(−iλj)
can be used.

The next order of divided differences is calculated using the previous functions, but done
in the same sequence the original divided difference functions were calculated in:

f(λ0,λ1,λ2) = i
f(λ0,λ1)− f(λ1,λ2)

λ0 − λ2
, f(λ1,λ2,λ3) = i

f(λ1,λ2)− f(λ2,λ3)

λ1 − λ3
. (3.18)

We see here that if there is a division by zero in the first function, this requires λ0 = λ2,
but λ0 ≤ λ1 ≤ λ2 and so λ1 = λ2. This means we can once again resort to the third-order
analytical expression f(λ0,λ0,λ0) = exp(−iλ0)/2.

We return to the example in Eq. (3.16) and use the above methodology. Assuming
λ0 < λ1 this would be calculated in a numerically stable fashion as

f(λ0,λ1,λ1,λ1) = i

(
f(λ0,λ1)− e−iλ1

)
/(λ0 − λ1)− e−iλ1 /2

λ0 − λ1
, (3.19)

which avoids any more occurrences of division by zero.
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3.4 Calculation of the Dyson Series Operators

In this section I provide additional insight into how the Dyson series operators in Eq. (3.12)
can be calculated, and how degeneracies can be avoided. For concreteness, we begin by
considering the first order operator Ŝ(1)(δt). This term can be simply calculated by a
Hadmard product:

Ŝ(1)(δt) = (−iδt)
∑
k1,k0

f (λk1δt,λk0δt) 〈k1|X̂|k0〉|k1〉〈k0|

= (−iδt)F1 � X̂.
(3.20)

where the Hadamard product is defined by:

Â =
∑
ij

aij |i〉〈j|, B̂ =
∑
ij

bij |i〉〈j|, Â� B̂ =
∑
ij

aijbij |i〉〈j|. (3.21)

Here we have defined a matrix F1, whose elements are the divided difference functions:

F1 =
∑
k0,k1

|k1〉〈k0|f (λk1δt,λk0δt). (3.22)

At second order, we must consider the sum over three indices:

Ŝ(2)(δt) = (−iδt)2 ∑
k2,k1,k0

f (λk2δt,λk1δt,λk0δt) 〈k2|X̂|k1〉〈k1|X̂|k0〉|k2〉〈k0|

Ŝ
(2)
k2,k0

(δt) = (−iδt)2∑
k1

F (2)
k2,k1,k0

G(2)k2,k1,k0

= (−iδt)2∑
k1

(
F (2) �G(2)

)
k2,k1,k0

.

(3.23)

Similarly to Eq. (3.20), this is still represented by a Hadamard product, albeit with tensors.
These are defined element-wise:

G(2)k2,k1,k0
= 〈k2|X̂|k1〉〈k1|X̂|k0〉, F (2)

k2,k1,k0
= f(λk2δt,λk1δt,λk0δt), (3.24)

which can be extended to arbitrary order:

Ŝ
(n)
kn,k0

(δt) = (−iδt)n
∑
kn

(
F (n) �G(n)

)
kn

, (3.25)
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and where the elements of the tensors defined as

G(n)kn
= 〈k(n)|X̂|k(n−1)〉〈k(n−1)|X̂ · · · |k(1)〉〈k(1)|X̂|k(0)〉, F

(n)
kn

= f (λn(kn)δt) . (3.26)

These definitions allow for calculating the Dyson operators only with tensor operations,
allowing for parallelized computation. The tensor G(n)kn

is easy to calculate from outer
products of X̂, but care must be taken in calculating all of the elements of F (n) numerically
since degeneracies in the eigenvalues can cause divergences. Proceeding, I shall set δt = 1
for notational simplicity.

3.5 Efficient Calculation of Dyson Operators

If the drive operator X̂ is sparse, constructing and contracting the tensors G(n) and F (n) in
sparse format is generally efficient and straightforward. However, if X̂ is dense, constructing
the tensors G(n) and F (n) can become highly memory intensive for a large Hilbert space size
N since the number of coefficients of these tensors scales as Nn+1.

The Dyson series generally converges best in the eigenbasis of the considered problem,
since this reduces the number of perturbative terms. The drive operators are generally
dense after an arbitrary frame transformation – consequently, we seek a more efficient way
of calculating the Dyson operators in this case.

3.5.1 Second order evaluation

Let us start with a pedagogical case, where Ĥ0 = 0. Here, we trivially find f(λn) = 1
n! , and

the elements of Dyson operator at n−th order simply become

Ŝ
(n)
kn,k0

(1) = (−i)n
1
n!

∑
kn

G(n)kn
. (3.27)

However, this problem is equivalent to exponentiating the Hamiltonian Ĥ = ΩX̂, and thus
the Dyson operator in Eq. (3.27) must simply be proportional to the n-th power of X̂:

Ŝ(n)(1) = (−i)n
1
n!
X̂n. (3.28)

For this case, calculating the tensor G(n) was unnecessary – this term can be calculated by
matrix multiplication only. Inspired by this, we can ask ourselves whether these higher-order
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terms, defined in Eq. (3.25) as a contraction of two tensors, can also be calculated solely
through matrix multiplications.

Let us suppose that the second-order divided-difference function can be approximated
as a sum of the product of two different functions, which each depends on a different pair of
eigenvalues:

f(λ1,λ2,λ3) ≈
∑
i

gi(λ1,λ2)hi(λ2,λ3). (3.29)

Inserting this term into the definition of Ŝ(2)(1), we find

Ŝ(2)(1) ≈ (−i)2∑
i

∑
k2,k1,k0

hi(λk1 ,λk2)gi(λk1 ,λk0)〈k2|X̂|k1〉〈k1|X̂|k0〉|k2〉〈k0|

≈ (−i)2∑
i

∑
k2,k1,k0

(
hi(λk1 ,λk2)〈k2|X̂|k1〉|k2〉〈k1|

) (
gi(λk1 ,λk0)〈k1|X̂|k0〉|k1〉〈k0|

)
≈ (−i)2∑

i

(
Hi � X̂

) (
Gi � X̂

)
,

(3.30)
where

Gi =
∑
jk

|j〉〈k|gi(λj ,λk), Hi =
∑
jk

|j〉〈k|hi(λj ,λk). (3.31)

Such an expansion would entirely circumvent the need to construct tensors, relying solely
on Hadamard products and matrix multiplications of the size of the original Hilbert space
only. This would thus dramatically reduce the memory and potential computational time
required to calculate these operators.

Calculating the decomposition described in Eq. (3.29) is no trivial task – to do so
rigorously, we would have to define how such a function converges, bases functions and more.
Before detailing this method further (in Sect. 3.5.3), we can provide more motivation by an
analogy – the Singular Value Decomposition (SVD).

3.5.2 Singular Value Decomposition

To proceed, we must make use of one of the identities used in Ref. [1], namely:

f(λ0,λ1,λ2) = eiλ0f(0, ∆10, ∆20), (3.32)

such that the modified divided difference function f(0, ∆10, ∆20) depends only on two
variables which are eigenvalue differences, ∆ij = λi − λj . This motivates a simpler form of
the decomposition in Eq. (3.29), such that the functions gi, hi are dependent on one variable
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only:
f(0, ∆10, ∆20) ≈

∑
i

gi(∆10)hi(∆21), (3.33)

noting that ∆20 = ∆10 + ∆21. To see how these functions gi(∆21) could be calculated, we
will first consider the function f(0, ∆10, ∆21 + ∆10) for a large range of ∆21, ∆10, which is
displayed in Fig. 3.1 (a). This data is stored in a matrix F , where the two axes are given as
a function of ∆10 and ∆21. Then, we consider the SVD decomposition of F ,

F = UΣV † =
∑
i

siuiv
†
i , (3.34)

where si is the i−th singular value of F and Σ is the diagonal matrix of singular values. Given
that the sampling interval is small, this SVD decomposition immediately yields discretized
approximations to the desired functions, ui → gi(∆21), hi → gi(∆32).

In Fig. 3.1(b-e) I plot the functions gi(∆10)hi(∆21) corresponding to the first four singular
values, with the individual functions gi(∆10) and hi(∆21) plotted on the sides of each subplot.
The first function well captures the features in (a) for small values of ∆ij , as well as the
behaviour along the lines ∆10 = 0 and ∆21 = 0. The decomposition, however, struggles to
capture the diagonal ∆21 = −∆10 behaviour corresponding to λ0 = λ2. As the order in the
SVD decomposition increases, we see an iterative correction along this diagonal – this is
more easily demonstrated in Fig. 3.2, where I plot the sum of the functions corresponding
to the first (a) 1, (b) 3, (c) 5 and (d) 7 singular values. From this data, it is clear that
the usefulness of this method will be primarily dictated by the order of this ‘SVD-like’
decomposition, and the maximum eigenvalue difference ∆ij , recalling that these differences
will scale with the time step.

3.5.3 GeneRalized Order Nth degree Decomposition (GROND)

Whilst the SVD decomposition in Sect. 3.5.1 gave a strong intuition on what the functions
hi(∆jk) would look like, it is not necessarily clear how these functions could be calculated.
Moreover, we wish to extend this method beyond the second order, i.e. seek expansions for
the third order of the form

f(0, ∆10, ∆20, ∆30) ≈
∑
i

gi(∆10)hi(∆21)ki(∆32), (3.35)
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Figure 3.1 (a) Real part of the function f(0, ∆10, ∆20). (b-d) SVD Decomposition of
f(0, ∆10, ∆20), showing the functions corresponding to the first 4 singular values.
The blue curves on the top and right-hand side of the subplots are the functions
gi(∆10) and hi(∆21), respectively. As can be seen, the decomposition fails to
capture the diagonal behaviour (where λ2 = λ0), meaning that additional terms
in this series would be required to capture this resonance for large eigenvalue
differences.
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Figure 3.2 Approximating the divided difference function f(0, ∆10, ∆20) using the SVD
(see Fig. 3.1(a)), with (a) one, (b) three, (c) five and (d) seven singular value
contributions. The diagonal behaviour along the line ∆21 = −∆10 is gradually
captured as more singular value contributions are used.
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such that the third-order Dyson operator would be written as

Ŝ(3)(1) ≈ (−i)3∑
i

(
Gi � X̂

) (
Hi � X̂

) (
Ki � X̂

)
, (3.36)

with Gi, Hi, Ki defined as in Eq. (3.31).

Unfortunately, there is no direct analogy to a Singular Value Decomposition of a tensor,
only a more general scheme known as a ‘Tucker decomposition’ [76, 77]. However, there is a
closely related alternative that can construct the approximation in Eq. (3.35), referred to as
‘Candecomp-parafac’ (CP) decomposition [78], which can be extended to arbitrary tensor
dimensions. Fig. 3.3 provides a visualization of this decomposition, where an M ×M ×M
tensor is decomposed into a sum of outer products of vectors.

Similarly to Sect. 3.5.1, we could theoretically conduct M3 evaluations of this function,
evenly sampled over the three variables ∆i1, store them in an M ×M ×M tensor, and
conduct a CP decomposition of this tensor, which would yield a discretized approximation to
our targeted functions in Eq. (3.35). However, these divided difference functions are highly
oscillatory, making the problem challenging without taking a very large M. Additionally,
we aim for the solver to be most precise when dealing with small eigenvalues differences, as
these correspond to resonant transitions.

As an alternative, one could consider the Taylor expansion of the divided differences
functions and construct a CP decomposition of the coefficient tensor C, i.e. the tensor of all
the coefficients of from the Taylor expansion.:

f(0, ∆10, ∆20, ∆30) =

 d∑
k0,k1,k2=0

Ck0,k1,k2 ∆k0
10∆k1

20∆k2
30

 . (3.37)

A CP decomposition of this coefficient tensor C would yield:

C =
b∑
i=1

gihiki, Ck0,k1,k2 =
b∑
i=1

i(gi[k0])(hi[k1])(ki[k2]), (3.38)

where gi,hi, ki are vectors of coefficients and b is the order of the CP expansion. We can
easily map these vectors to functions with an input ∆,

gi(∆) =
∑
j

cj∆j . (3.39)
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⊗ ⊗Σi

gi hi ki

Figure 3.3 Example of the CP decomposition of a N ⊗N ⊗N tensor.

This means we can rewrite Eq. (3.37) in the form

f(0, ∆10, ∆20, ∆30) =
∑
i

gi(∆10)hi(∆21)ki(∆32) (3.40)

which is exactly the form of Eq. (3.35), allowing us to compute the third order Dyson
operator as in Eq. (3.36) without the need to calculate tensors.

The above methodology can be extended to arbitrary order – hence the name ‘GeneRal-
ized Order Nth Decomposition’ (GROND) for this general procedure. This decomposition
works excellently for small to moderate eigenvalue differences –from numerical tests, with
eigenvalue differences |∆ij | ≤ 7, I found that even the fourth order divided difference expres-
sions converged within machine precision to the analytical functions in Eq. (3.19) with a
Taylor expansion of order d = 20 and of order b = 7 in the CP decomposition. Furthermore,
this method only requires operations of matrices of size N2 at all orders in the Dyson series,
resulting in significant memory saving in comparison to the analytic method in Sect. 3.3,
which for dense matrices scales as Nn+1, with n the Dyson series order. This allows for the
simulation of large N ≥ 1000 system sizes for which the analytical method would be out of
reach.

3.5.4 Outlook and Future Work

Whilst the above procedure works excellently for small eigenvalue differences and provides
a pathway to building the Dyson operators for large, dense Hilbert space sizes, there are
several drawbacks – most notably, this method cannot capture large eigenvalue differences.
Calculating the coefficients using an alternative basis – such as spherical Bessel functions
or a Fourier series – could result in better stability and convergence over a larger range of
∆. Further, it is unclear how or whether this decomposition should be weighted such that
small eigenvalue differences are penalized more, encouraging convergence for small ∆. I leave
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addressing these questions to future work.

3.6 Publication – Fast and Differentiable Simulation of Driven
Quantum Systems [1]

In this publication, I look at how the Dyson series can be applied more generally to Eq. (3.2)
proving the forms of the divided difference expressions and operators defined in this chapter
in the presence of an oscillatory drive. I illustrate the solver’s numerical prowess showing
orders of magnitude speed-up over the implemented solver for unitary dynamics in QuTiP.
Finally, I demonstrate that the generated unitary evolution is differentiable with respect to
the drive amplitude, allowing for simple pulse optimization, and show how this can be used
to optimize a two-qubit gate implemented on superconducting qubit hardware.

For this work, I proposed the idea of the Dysolve algorithm, developed the python
scripts and wrote the manuscript. Jonathan Gross helped extensively with the mathematical
derivations and inductive proofs, Agustin Di Paolo and Alexandre Blais helped guide the
project with the proposed applications of the algorithm, and Élie Genois made the code
significantly more efficient, performed many of the simulations and provided the benchmarking
results.

The Dysolve algorithm was adapted and implemented in Qiskit Dynamics by a team
from IBM and can offer significant performance improvements over standard numerical
integrators, see Ref. [72] for more details.
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The controls enacting logical operations on quantum systems are described by time-dependent Hamiltonians
that often include rapid oscillations. In order to accurately capture the resulting time dynamics in numerical
simulations, a very small integration time step is required, which can severely impact the simulation run
time. Here, we introduce a semianalytic method based on the Dyson expansion that allows us to time-evolve
driven quantum systems much faster than standard numerical integrators. This solver, which we name Dysolve,
efficiently captures the effect of the highly oscillatory terms in the system Hamiltonian, significantly reducing
the simulation’s run time as well as its sensitivity to the time-step size. Furthermore, this solver provides the
exact derivative of the time-evolution operator with respect to the drive amplitudes. This key feature allows for
optimal control in the limit of strong drives and goes beyond common pulse-optimization approaches that rely
on rotating-wave approximations. As an illustration of our method, we show results of the optimization of a
two-qubit gate using transmon qubits in the circuit QED architecture.

DOI: 10.1103/PhysRevResearch.3.033266

I. INTRODUCTION

High-fidelity logical gates are paramount to the realization
of useful quantum computation. It is important in the develop-
ment of these gates that they be simulated with great precision
to ensure that they meet the particularly strict requirements for
fault-tolerant quantum computation. Several techniques are
used for simulating the time dynamics of quantum devices,
including dynamical solvers such as Runge-Kutta integrators
and direct matrix exponentiation [1,2]. However, capturing
the full time dynamics with the necessary accuracy requires
integration methods with a sufficiently small time step. As
a result, simulations can be computationally very expensive,
even for relatively simple cases such as optimizing a two-qubit
gate.

To ensure that simulations of quantum systems are feasi-
ble, approximations must be made. For example, a common
approximation is to neglect counter-rotating terms within the
rotating-wave approximation (RWA) to greatly reduce the
complexity of the simulation while capturing the dominant
dynamics. This approximation renders the Hamiltonian time
independent, which can then simply be exponentiated to
obtain the propagator. However, effects such as the Bloch-
Siegert shift which do not appear under a RWA need to be
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‡adipaolo@mit.edu

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
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and the published article’s title, journal citation, and DOI.

taken into account to accurately model the system [3]. In
addition, many gate optimization methods, such as GRadient
Ascent Pulse Engineering (GRAPE), require the calculation
of gradients, something which greatly adds to the complexity
of the numerical calculations [4]. More specifically, when
including the effects of the counter-rotating terms, there exists
no simple derivative of time-ordered unitaries with respect to
the drive amplitudes, and one must resort to approximating
the gradients. Consequently, this approach may not converge
to the optimal solution, which is problematic when targeting
very high-fidelity gates.

In this work, we develop an algorithm based on a Dyson
series expansion of the time-ordered problem that addresses
all of the above difficulties. In this approach, which we
call Dysolve, the time-ordered unitary evolution operator
is written as a product of time-independent operators which
are weighted by the drive amplitudes and dynamical phases.
This algorithm captures the full fast-oscillatory dynamics
irrespective of the integration step size, thereby decreasing
the complexity of the numerical problem. This also greatly
decreases the simulation time in comparison to traditional
integration-based solvers without loss of numerical preci-
sion. Importantly, this approach trivializes the derivative with
respect to the drive strength, which can be calculated to
an accuracy equivalent to the order of the Dyson series.
Moreover, this approach is compatible with non-Hermitian
dynamics, allowing for the simulation of open quantum
systems.

We begin by introducing our approach in Sec. II in the
case of a single, sinusoidal drive with a constant amplitude,
and then extend the formalism to the case of multiple drives,
accounting for filtering effects on envelope functions. We then
define the Dysolve algorithm in Sec. III, and demonstrate
its application to driven quantum systems with random drive

2643-1564/2021/3(3)/033266(13) 033266-1 Published by the American Physical Society
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envelopes. We proceed to apply our algorithm to the GRAPE
optimization routine in Sec. IV, and show as an example
optimized two-qubit gates in the circuit QED architecture.

II. OSCILLATORY DRIVE PROBLEM

A. Simple time-dependent Hamiltonians

We begin by considering a simple time-dependent Hamil-
tonian with a cosinusoidally oscillating control drive term,

Ĥ (t ) = Ĥ0 + V̂ (t ), V̂ (t ) = X̂ cos(ωt ). (1)

Here, Ĥ0 = ∑
k λk|k〉〈k| is a generic system Hamiltonian ex-

pressed in its eigenbasis, while X̂ is a dipole operator that
connects the eigenstates of Ĥ0 and which we take to account
for the amplitude of the drive. As will become important later,
we note that we are not using the RWA.

The propagator under Ĥ (t ) for some time increment δt
takes the usual form of a time-ordered integral

Û (t, t + δt ) = T exp
(

−i
∫ t+δt

t
dt ′Ĥ (t ′)

)
, (2)

with T the time-ordering operator. Due to the fast oscillatory
cos(ωt ) term, evaluating the propagator Û (t, t + δt ) is a nu-
merically challenging problem, and there exist few analytic
solutions to even the simplest case of a driven two-level qubit
[5]. In special cases, one can invoke the RWA to remove
the explicit time dependence from the Hamiltonian, thereby
allowing for calculation of the propagator from matrix expo-
nentiation directly [6].

However, when the RWA cannot be used due to a break-
down of the approximation or because a greater degree of
accuracy is needed, we propose using a truncated Dyson
series. Consider Eq. (2), written using the definition of the
time-ordering operator:

Û (t, t + δt )

=
∞∑
n=0

(−i)n
∫ t+δt

t

∫ tn

t
· · ·

∫ t2

t
Ĥ (tn) · · · Ĥ (t1)dt1 · · · dtn.

(3)

It is useful to express this expansion in terms of powers of the
drive operator V̂ (t ), forming the Dyson series

Û (t, t + δt ) =
∞∑
n=0

Û (n)(t, t + δt ), (4)

where we have defined

Û (n)(t, t + δt ) =
∑
ωn

exp

(
i

n∑
p=1

ωn[p]t

)
Ŝ(n)(ωn, δt ). (5)

Here, ωn is an n-vector whose entries are ±ω originating from
the decomposition of the cos(ωt ) of the control into complex
exponentials, and ωn[p] is the pth element of ωn. The sum
over ωn implies a summation over all 2n possible ωn vectors.

Equation (5) also introduces the Dyson series operator
Ŝ(n)(ωn, δt ) which takes the form

Ŝ(n)(ωn, δt ) = 1
2n

∑
m∈Zn+1

+

Ŝ(n)
m (ωn, δt ), (6)

FIG. 1. Tree diagram showing the different branches of the time-
ordered integral, with two example branches highlighted.

and which corresponds to a summation over all Dyson path
operators of nth order, where m = [mn, . . . ,m0] with each
index mi ranging from zero to infinity. These nth-order path
operators are given by

Ŝ(n)
m (ωn, δt )

=
∫ δt

0

∫ t ′M

0
· · ·

∫ t ′2

0
(−iĤ0)mn X̂ (−iĤ0)mn−1 · · ·X̂ (−iĤ0)m0

× (−i)n
n∏

p=1

exp(iωn[p]tι(p) )dt ′1 · · · dt ′M, (7)

where we have introduced

M =
n∑

i=0

mi + n, ι(p) =
p−1∑
j=0

mj + p. (8)

Each Ŝ(n)
m (ωn, δt ) corresponds to different ways to have n

contributions from the control X̂ (i.e., different terminated
branches of the tree diagram), with the mi’s labeling the num-
ber of applications of Ĥ0 before the subsequent application
of X̂ . The total number of operators in the path operator
is given by M. To simplify the notation, we introduce an
indexing function ι(p), which can be interpreted as the total
number of Ĥ0 and X̂ operators before the pth application of
the control X̂ . These definitions can be visualized as in Fig. 1
where the highlighted branches correspond to sets of path
operators Ŝ(n)

[m1,2](ωn, δt ) and Ŝ(n)
[m1,0](ωn, δt ), respectively, with

m1 determined by where the path terminates. For example,
Ŝ(n)

[0,2](ωn, δt ) and Ŝ(n)
[2,0](ωn, δt ) terminate at the points in the

branches marked by a star.
Below, we give explicit expressions for these operators to

zeroth and first order in the control. Building on these results,
we then construct expressions that are easily amenable to
efficient numerical evaluation to arbitrary orders.

B. Evaluation to zeroth and first order

The zeroth order corresponds to the leftmost branch of the
tree diagram of Fig. 1 for which it is straightforward to obtain
an explicit expression. Indeed, the path operator simply takes
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the form

Ŝ(0)
[m0](0, δt ) =

∫ δt

0

∫ tm0

0
· · ·

∫ t2

0
(−iĤ0)m0dt1 · · · dtm0−1dtm0

= (−iĤ0δt )m0

m0!
. (9)

Summing all of the elements in the branch, we obtain

Ŝ(0)(0, δt ) =
∞∑

m0=0

Ŝ(0)
[m0](0, δt ) = e−iĤ0δt , (10)

which corresponds, as expected, to the drift evolution of the
Hamiltonian in the absence of drive. In a similar fashion, the
path operator to first order takes the form

Ŝ(1)
[m1,m0](ω1, δt ) =

∫ δt

0

∫ tM

0
· · ·

∫ t2

0
(−iĤ0)m1 X̂ (−iĤ0)m0

× exp(±i[ω]tι(1) )dt1 · · · dtM, (11)

and therefore leads to the following Dyson series operator:

Ŝ(1)(ω1, δt ) = − iδt

2

∑
k,k′

f (λkδt, (λk′ ∓ ω)δt )〈k|X̂ |k′〉|k〉〈k′|.

(12)
This operator weights the matrix elements of X̂ by a func-
tion f whose inputs are weighted eigenvalues {λk} of the
free Hamiltonian Ĥ0 with corresponding eigenstates {|k〉},
where the second eigenvalue is shifted by the drive frequency
ω1[1] = ±ω. This function is defined as

f (λk, λk′ ) = i

λk − λk′
(e−iλk − e−iλk′ ). (13)

We refer to this function as the first-order weighting function.
The above expressions are derived in the Appendix A, and
are unsurprisingly in exact agreement with first-order time-
dependent perturbation theory.

Crucially, the Dyson operators depend on the size δt of
the time increment, but not the current time of the evolution
t . As a result, for a total evolution time T = Pδt , where P
is an integer, the set of P incremental evolution operators
Û (pδt, (p+ 1)δt ) can be evaluated simultaneously. As will
become clearer in the next section, this holds true to arbitrary
order.

C. Evaluation to nth order

To model quantum systems with sufficient accuracy, it is
necessary to consider second- and higher-order terms in the
Dyson series. This can be done following a similar approach
as described above. Indeed, we introduce the nth-order Dyson
operator in a similar fashion to Eq. (12):

Ŝ(n)(ωn, δt )

=
(−iδt

2

)n ∑
kn

f (λn(kn)δt − c(ωn)δt )〈k(n)|X̂ |k(n−1)〉

× 〈k(n−1)|X̂ · · · |k(1)〉〈k(1)|X̂ |k(0)〉|k(n)〉〈k(0)|. (14)

Here, each kn = (k(0), k(1), . . . , k(n) ) is a set of indices which
specify a set of (n + 1) eigenstates {|k(m)〉} of Ĥ0 with corre-
sponding eigenvalues λn(kn), and we sum over all possible kn.

These eigenvalues are written in vector form:

λn(kn) ≡ (λk(0) , . . . , λk(n) ), Ĥ0|k(m)〉 = λk(m) |k(m)〉. (15)

The sum over kn implies a summation over all sets of eigen-
states which the dipole operator X̂ couples in Eq. (14).
Additionally, we have introduced the cumulative vector

c(ωn) =
(

n−1∑
p=0

ωn[n − p],
n−2∑
p=0

ωn[n − p], . . . ,ωn[n], 0

)
.

(16)
The nth-order weighting function f (λn) entering Eq. (14) can
be obtained recursively using the relation (see Appendix A)

f (λn) = i
f (g(λn)) − f (g2(λn) ∪ λn[n])

λn[n − 1] − λn[n]
, (17)

where g(vn) returns vn without its last element, g2(vn) =
g(g(vn)), and the notation ∪ indicates appending an additional
element to a vector such that

λn = g(λn) ∪ λn[n]. (18)

In the case of degenerate eigenvalues, we simply define
Eq. (17) by taking the limit λn[n − 1] → λn[n].

Using Eq. (4) with the above results, we can now form
the truncated Dyson series yielding an approximation to the
evolution operator to nth order in the perturbation

Ûp ≈
n∑

r=0

Û (r)
p , Û (r)

p ≡ Û (r)(pδt, (p+ 1)δt ), (19)

thus yielding the total evolution operator for time T = Pδt to
the same order,

Û (0,Pδt ) ≈ T
P∏

p=0

Ûp. (20)

In this formalism, the time-ordering operator T becomes a
trivial operation since we need only arrange the set of ma-
trices {Ûp} in ascending order from right to left. Using this
method, we can thus calculate an arbitrary number of terms
in the Dyson series, with each subsequent order increasing
the accuracy of the approximation to the propagator operator
Û (0,T ).

D. Generalization to more complex drives

So far, we have only considered a single, cosinusoidal
drive. In practice, for applications such as Derivative Removal
Adiabatic Gates [7], it is useful to consider more complicated
drives of the form

V̂ (t ) = 2[�x cos(ωt ) + �y sin(ωt )]X̂ ,

= (�eiωt + �∗e−iωt )X̂ , (21)

where � = �x + i�y is the complex drive amplitude. This
generalization requires only a minor modification to the result
of Eq. (5) which now reads

Û (n)(t, t + δt ) =
∑
ωn

exp

(
i

n∑
p=1

ωn[p]t

)
�(ωn)Ŝ(n)(ωn, δt ),

(22)
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FIG. 2. An example set of pulse amplitudes. The black bars indi-
cate the chosen drive amplitudes uj , where �t = 1 ns. The red bars
indicate the subpixels, which provide an approximate interpolation
of the true pulse delivered to the system (blue), with a bandwidth
ω0/2π = 851 MHz.

and where we have introduced

�(ωn) = �μ(ωn )�∗(n−μ(ωn )). (23)

We see from Eq. (21) that � and �∗ will appear according
to the number of positive and negative frequency elements in
the vector ω, respectively, leading to a simple expression for
μ(ωn) in �(ωn):

μ(ωn) =
(
n +

n∑
p=1

ωn[p]

)
/(2ω). (24)

As shown in the Appendix B, this formalism can be further
extended to an arbitrary number of drives of different frequen-
cies, and acting on different system operators.

E. Envelope functions and Gaussian filtering

Having established the necessary notation, we can now
take into account control drives with time-dependent ampli-
tudes �(t ). To do so, we discretize the drive envelope of
total time T = Np�t into Np increments, called pixels, each
of duration �t . For a given pixel i, the drive is characterized
by its complex amplitude ui such that the envelope can be
expressed as [4]

�(t ) =
Np−1∑
i=0

ui  (i�t, (i + 1)�t ), (25)

where (t, t + �t ) = 	(t ) − 	(t − �t ), with 	(t ) the
Heaviside function.

Additionally, following Motzoi et al. [8], we take into
account the finite bandwidth of the control by applying a
Gaussian filter on the discretized enveloped. To do so, each
pixel is subdivided into Ns subpixels of width δt with �t =
Nsδt (see Fig. 2). The subpixel amplitudes sl are then defined
as

sl =
Ns−1∑
j=0

Tl, ju j, (26)

where the Gaussian filter matrix T has elements

Tl, j = 1
2

{
erf

[
ω0

(
lδt − j�t

2

)]

− erf
[
ω0

(
lδt − ( j + 1)�t

2

)]}
. (27)

Following Eq. (22), the nth-order evolution operator over the
lth subpixel takes the form

Û (n)
l =

∑
ωn

exp

(
i

n∑
p=1

ωn[p]lδt

)
�l (ωn)Ŝ(n)(ωn, δt ), (28)

where the drive function in Eq. (23) picks up an additional
subscript l to denote the lth subpixel:

�l (ωn) = sμ(ωn )
l s∗(n−μ(ωn ))

l . (29)

As can be seen in Fig. 2, the subpixels (red) will of-
ten overestimate or underestimate the filtered pulse (blue)
amplitude depending on its gradient, something which can
become a leading contribution to the error in simulations. In
Appendix C, we generalize the amplitudes sl to have a linear
time dependence to compensate for the change in amplitude
of the continuous pulse across a single subpixel, providing a
more accurate approximation to the filtered pulse.

III. THE DYSOLVE ALGORITHM

As already explained, the Dyson series operators
Ŝ(n)(ωn, δt ) for which we have expressions at arbitrary order n
are functions of the time increment δt and, crucially, are inde-
pendent of the total evolution time T . The Dysolve algorithm
leverages this fact to parallelize the time evolution.

The algorithm operates in two parts: a preparation stage
and a contraction stage. In the preparation stage, the Dyson
operators Ŝ(n)(ωn, δt ) for a Hilbert space size N are computed
up to a chosen truncation order n, and arranged in a tensor.
This tensor has dimensions (R × N × N ), where R is the total
number of Dyson operators. In the case of a single drive with-
out linear interpolation, R = 2n+1 − 1, where n is the order of
the expansion.

Once the preparation stage is completed, it is in principle
possible to consider arbitrary gate times and drive envelopes.
Suppose we wish to simulate a time evolution of length
T = Pδt , where P is an integer. We first generate a (P × R)
tensor whose elements are the envelopes and oscillatory terms
exp(i

∑n
p=1 ωn[p]lδt )�l (ωn) in Eq. (28). We then multiply

these tensors to obtain a (P × N × N ) time-evolution tensor,
where the p th (N × N ) matrix corresponds to a time-step
operator Ûp. This multiplication constitutes the parallelized
portion of the algorithm, with all P time-evolution operators
calculated simultaneously. As in Eq. (20), we multiply all of
the individual evolution operators in the time-evolution tensor
to obtain the final evolution operator Û (0,T ). This whole
procedure forms the contraction step of our algorithm.

Below, we will refer to the computation of the evolution
operator Û (0,T ) to nth order following the above approach
as Dysolve-n.
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FIG. 3. Dysolve benchmarks. Frobenius norm distance from the propagator Ûref (0, T ) for the Dysolve algorithm for a T = 500 ns
evolution with (a) one input drive, (b) two input drives, and (c) three input drives. Contraction time of the Dysolve algorithm as a function of
the subpixel number Ns for (d) one, (e) two, and (c) three input drives. The slope of the data is precisely 1, meaning that the computational time
scales linearly with the number of subpixels. Preparation stage computation times are (10 ms, 18 ms, 24 ms) for (Dysolve-2, 3, 4) and one
input drive, (22 ms, 68 ms, 136 ms) for two input drives, and (45 ms, 200 ms, 442 ms) for three input drives. In panels (a) and (d), we compare
the error and computation time, respectively, of Dysolve with QUTIP bdf and adams solvers using high-precision settings (see Appendix D
for more details).

A. Benchmarking

Before turning to examples of application of Dysolve, we
first benchmark this algorithm. To do so, there are a number
of factors to consider: (i) the size of the Hilbert space, (ii) the
drive amplitude, (iii) the number of independent drive chan-
nels, and (iv) the shape of the envelope function. To quantify
the performance of our algorithm, we use two metrics. Given
a number of subpixels Ns, we evaluate (1) the computation
time and (2) the Frobenius norm distance between Û (0,T ),
the propagator calculated under the Dysolve algorithm with
a chosen number of subpixels, and a reference Ûref(0,T ),
the same unitary calculated with very high precision. As
discussed further in Appendix D, we use Dysolve-4 with
104 subpixels to compute Ûref(0,T ), since Dysolve is able
to reach precisions on the benchmark setup that are up to
three orders of magnitude greater than QUTIP’s propagator,
a comparable dynamical solver [9].

For our benchmarks, we use diagonal system Hamiltonians
with a Hilbert space size N = 25. As a concrete example, we
take the eigenvalues to be normally distributed about 7 GHz,
the typical operating frequency of superconducting qubits
[10]. We consider between one and three input drive operators,
at the frequency of the |0〉 ↔ |1〉, |2〉 ↔ |3〉, and |4〉 ↔ |5〉
transitions with |k〉 the kth lowest-lying system eigenstate.
The matrix elements of each operator corresponding to these
transitions are set to 1. To emulate an arbitrary drive operator
with off-resonant terms, we populate 20% of the remaining

matrix elements of the drive operators with complex numbers
normally distributed about zero, after which Hermiticity is
enforced by the addition of the complex conjugate. The en-
velope function associated to each drive operator is centered
around an amplitude such that the duration of the simulation
is equivalent, in the absence of the other drives, to a total of
20 Rabi oscillations. In the context of superconducting qubits
with their microwave drives, this corresponds to the simula-
tion a 500-ns evolution with a drive amplitude of 40 MHz. We
take the pixel amplitudes u j of the envelope functions to be
normally distributed about 40 MHz with a standard deviation
of 1 MHz. To reduce statistical fluctuations, the results pre-
sented in Fig. 3 are averaged over 30 simulations, each with
different random envelope functions and system eigenvalues.

The numerical simulations reported in Fig. 3 are per-
formed on a 2.8-GHz Intel Xeon Gold 6242 Processor (16
cores/32 threads) using PYTHON. Since the preparation stage
only needs to be performed once for a particular system
Hamiltonian, the reported computation time accounts only
for the contraction stage of the Dysolve algorithm. We re-
port the preparation times in the figure caption for reference.
Figures 3(a)–3(c) present the norm distance between
Dysolve-n for n = 2, 3, and 4 as a function of the num-
ber of subpixels, and for increasing number of input drives.
Even with large drive amplitudes and long evolution times,
we obtain an excellent approximation to the final unitary
operation with relatively few subpixels. For example, using
a fourth-order Dyson expansion with 40 subpixels yields a
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norm distance error of less than 10−5 in all cases. Importantly,
as shown in Figures 3(d)–(f), the computation time needed
to reach this level of accuracy is only on the order of a few
seconds (less than 3 s). In comparison, QUTIP’s propagator
function takes about 16 min to perform the calculation to an
equivalent accuracy for a single input drive. Such a significant
speedup proves to be particularly useful when, as discussed in
section Sec. IV, the contraction stage of the algorithm needs
to be repeated many times in an optimization loop. Additional
benchmarking results are provided in Appendix D.

IV. APPLICATION TO OPTIMAL CONTROL

Optimal control is an essential tool in the development of
high-fidelity gates for quantum computation. Most optimiza-
tion algorithms, such as GRAPE [4], rely on calculating the
gradient of the gate fidelity with respect to the drive amplitude
at each pixel. With most approaches, this requires recalculat-
ing the evolution operator at each time interval, something
which can be as expensive as the original calculation of the
unitaries. Moreover, this calculation is generally performed
with the presumption that the Hamiltonian is time independent
over the duration of a subpixel, thus invoking a form of the
RWA. In our expansion, such an assumption is not required.

Here, we show how Dysolve can be applied to optimiz-
ing control pulse envelopes to maximize gate fidelity. More
precisely, we consider optimizing the fidelity of an evolution
Û (T ) with respect to a target gate unitary Ûtarget. In general,
Û (T ) acts on the full Hilbert space of the system while Ûtarget
is defined on its computational subspace. The objective is thus
to maximize the performance function [8]


 = 1
d2 |TrÛ †

targetÛ (T )P̂ )|2, (30)

where d is the dimension of the computational subspace (d =
2 for a single qubit), and P̂ is the projector on that subspace.
Although our approach can in principle deal with an arbitrary
number of drives, for simplicity here we consider control of a
single set of complex drive amplitudes u j .

We use a GRAPE-like approach to maximize the gate fi-
delity which requires the gradient of the cost function 
 with
respect to the drive amplitude at each pixel u j and subpixel sl
[8]:

∂


∂u j
=

M−1∑
l=0

Tl, j
∂


∂sl
,

∂


∂sl
= 1

d2 2Re
{

Tr
[
Û †

target
∂Û

∂sl
P

]
Tr[ÛtargetÛ

†P]
}
. (31)

Within the framework of the Dysolve algorithm, it is simple
to evaluate the operator (∂Û/∂sl ). Indeed, using Eq. (20), we
find that for the nth-order Dyson expansion, the derivatives of
the unitaries take the form
∂Û

∂sl
=

(
M∏

m=l+1

Ûm

)
∂Ûl

∂sl

(
l−1∏
p=0

Ûp

)
,

∂Ûl

∂sl
=

n∑
m=0

∑
ωm

exp

(
i

m∑
p=1

ωm[p]lδt

)
∂�l (ωm)

∂sl
Ŝ(m)(ωm, δt ),

∂�l (ωm)
∂sl

= μ(ωm)s(μ(ωm )−1)
l s∗(n−μ(ωm ))

l . (32)

Importantly, note that the Dyson operators Ŝ(n)(ωn, δt ) remain
unchanged by the derivative. As such we only need to perform
the preparation stage of the Dysolve algorithm once, with the
calculation of ∂Û/∂sl . Thus, the optimization iterations only
require the contraction stage computation to be performed.
Further, these derivatives are exact. Consequently, the effects
of off-resonant and counter-rotating terms are accounted for in
the derivatives. This is the strength of the Dysolve algorithm
for optimization.

Recall from Eq. (21) that the real and imaginary com-
ponents of the drive amplitudes are associated with the
magnitudes of the cosine and sine quadratures, respectively.
Thus, to calculate the relevant amplitude derivatives for the
cosine and sine drive envelopes, one simply calculates the
appropriate sum or difference of the derivatives in Eq. (31):

∂


∂u j,x
= 1

2

(
∂


∂u j
+ ∂


∂u∗
j

)
,

∂


∂u j,y
= −i

2

(
∂


∂u j
− ∂


∂u∗
j

)
,

(33)

where uj = u j,x + iu j,y. To perform the GRAPE algorithm,
the set of drive amplitudes is simply updated by taking steps
in the direction of the gradient of the fidelity [4]

uj,(x,y) → uj,(x,y) + ε
∂


∂u j,(x,y)
, (34)

where ε is a small, positive number which need not be fixed
during the optimization process. For example, one could use
a backtracking line search to maximize the gain in fidelity
[11,12]. In the examples presented below, we simply use a
sufficiently small ε for the updating process to be stable.

Example: Cross-resonance gate for coupled transmons

As an example of application of our implementation of
the GRAPE algorithm with Dysolve, we present results of
the optimization of a two-qubit gate. We also demonstrate the
importance of off-resonant terms in the optimization process.
To this end, we consider two capacitively coupled fixed-
frequency transmon qubits, illustrated in Fig. 4. Each qubit
is described by a Hamiltonian of the form [10]

Ĥj = 4EC jn̂
2
j − EJ j cos ϕ̂ j, (35)

FIG. 4. Superconducting circuit for cross-resonance gates be-
tween transmon qubits. The leftmost transmon, of frequency ωc/2π ,
plays the role of the control qubit and is strongly driven by the volt-
age source Vc at the frequency ωt/2π of the target qubit (rightmost
transmon). The target qubit is also driven by Vt using a relatively
weak tone that serves to give additional control. ϕ̂c and ϕ̂t correspond
to the phase degrees of freedom associated with the control and target
qubits, respectively.
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where n̂ j and ϕ̂ j with j = c, t are the conjugate charge and
phase operators of the transmon, while EC j and EJ j are the
charging and Josephson energies. More precisely, we consider
the cross-resonance gate, which performs an X rotation on a
target qubit conditional on the state of a control qubit which is
driven at the target qubit’s frequency [13,14]. Optimal control
has been applied to this gate before in Refs. [15,16]. However,
these approaches have made use of simplified models for the
device and of the rotating-wave approximation. Taking ad-
vantage of the Dysolve algorithm, our approach generalizes
previous work on the cross-resonance gate by considering
the full circuit Hamiltonian and including all counter-rotating
terms.

Following the standard circuit-quantization procedure [17],
the two-transmon Hamiltonian can be put in the form Ĥ (t ) =
Ĥ0 + V̂ (t ) with

Ĥ0 = Ĥc + Ĥt + h̄gn̂cn̂t , V̂ (t ) = fc(t )n̂c + ft (t )n̂t , (36)

where Ĥc and Ĥt are the Hamiltonians of the control and target
qubits, respectively, and h̄gn̂cn̂t results from the capacitive
interaction between the qubits. The quantities fc(t ) and ft (t )
are the time-dependent drives

fc(t ) = 2[�cx(t ) sin(ωt t ) + �cy(t ) cos(ωt t )],

ft (t ) = 2[�tx(t ) sin(ωt t ) + �ty(t ) cos(ωt t )], (37)

with {�cx,�cy,�tx,�ty} the drive envelope functions to be
optimized by GRAPE. While activating the cross-resonance
gate only requires driving the control qubit at the frequency
of the target, the additional control over the target qubit �̂t (t )
is useful to eliminate single-qubit rotations and obtain higher
fidelities to the target unitary [18,19].

The above Hamiltonians capture the dynamics of the sys-
tem beyond the rotating-wave approximation. To illustrate the
impact of the fast-oscillating terms in this Hamiltonian, we
make the RWA by eliminating transitions that are off resonant
by more than some threshold frequency ωthres. More specifi-
cally, our drive operator now takes the form

V̂ (t, ωthres)

= eiωt t [�c(t )n̂c(ωt , ωthres) + �t (t )n̂t (ωthres, ωt )]

+ e−iωt t [�∗
c (t )n̂c(−ωt , ωthres) + �∗

t (t )n̂t (ωthres,−ωt )],
(38)

where � j = � jx + i� jy with the modified operators
n̂(c,t )(ω,ωthres) that are such that matrix elements are set
to zero,

n̂(c,t )(ω,ωthres)[k, k′] ≡ 0, (39)

if they connect states |k〉 and |k′〉 that are separated in fre-
quency by more than the threshold, |Ek − (Ek′ − ω)| > ωthres.
Note that this is equivalent to the usual RWA made on a
two-level qubit driven on resonance where ωthres < 2ω.

We choose to operate this gate with control and target
frequencies of ωc/2π = 5.1 GHz, ωt/2π = 4.9 GHz, and an-
harmonicities αc/2π = −355 MHz and αt/2π = −352 MHz,
respectively. Moreover, the qubit-qubit coupling is set to
g/2π = 4.29 MHz and the target unitary is taken to be a ZX90
gate [20,21]. Additionally, we optimize the pulses for several
different choices of threshold frequencies, ωthres, and compute
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ωthres = 2.0 GHz

ωthres → ∞

Constant pulses

ωthres = 0.2 GHz

FIG. 5. Infidelity of the cross-resonance gate as a function of
the chosen gate time when the gate is operated at the qubit-qubit
detuning �/2π = (ωc − ωt )/2π = 210 MHz. The different curves
demonstrate the result of optimization of the pulse shape under
RWAs at different threshold frequencies ωthres, followed by a sub-
sequent calculation of the true fidelity in the RWA-free case.

the fidelity of the pulse shapes found in this way using the
RWA-free Hamiltonian. Figure 5 shows the infidelity of the
cross-resonance gate obtained in this way as a function of the
gate time and for different choices of threshold frequencies.
We first note that, for a flat pulse (red diamonds), a gate
fidelity approaching 99% can be reached. The other data sets
in Fig. 5 correspond to different values of ωthres ranging from
200 MHz to 2 GHz (blue symbols, from top to bottom). The
darkest blue circles correspond to simulations without RWA
and to which the other blue symbols should be compared. The
impact of terms oscillating at high frequency can be seen in
the results obtained with a ωthres of 200 MHz which coincide
with those obtained for an unoptimized flat envelope. Even for
ωthres/2π = 500 MHz the results agree with the full simula-
tion only for gate times exceeding 150 ns. To reach agreement
with the full simulation for all gate lengths, terms oscillating
as fast 1 GHz must be kept. Omitting these fast-oscillating
terms can therefore lead to lower-fidelity gates. We stress
that, in contrast to the usual solvers, within the framework of
Dysolve, there is no computational advantage to eliminating
any of the off-resonant transitions. In short, Dysolve is a
numerically efficient approach to optimize pulse envelopes to
reach high-fidelity gates.

To further demonstrate that GRAPE under Dysolve can
successfully optimize the cross-resonance gate more gener-
ally, Fig. 6 shows the fidelity of an optimized 300-ns gate as a
function of the qubit-qubit detuning �/2π = (ωc − ωt )/2π .
In the numerical simulations, this detuning is varied by chang-
ing the target qubit frequency while keeping the qubit-qubit
coupling and the control-qubit frequency fixed. We note that
the performance of the gate at positive detunings is ap-
proximately in line with those predicted by Schrieffer-Wolff
perturbation theory for an echoed cross-resonance gate per-
formed on a similar device [22]. The results are excluded
at � = 0,±α, as the qubits strongly hybridize due to res-
onances. The slight variations in the GRAPE fidelity in the
wide detuning range are partially attributable to variations in
higher-order two-qubit coupling amplitudes across, alongside
the performance of gradient ascent for different optimization
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FIG. 6. Infidelity of the cross-resonance gate as a function of the
detuning of the qubits when optimized under GRAPE for 5000 iter-
ations. The control qubit frequency is fixed to ωc/2π = 5.10 GHz.

landscapes. This also constitutes evidence for the robustness
of our algorithm, as excellent fidelities are obtained in a broad
range of parameters.

V. FUTURE WORK AND CONCLUSION

We have demonstrated that the Dysolve algorithm pro-
vides a means to quickly and accurately simulate driven
systems while accounting for all of the effects of the counter-
rotating and off-resonant terms. Analysis of ultrafast quantum
gates and the quantum speed limit [23], where counter-
rotating effects are particularly important, would also be
possible with our algorithm. Additionally, this method triv-

ializes the calculation of the gradient, allowing for rapid
optimization without the need for additional approximations,
and can be modified to include dissipative effects. Indeed, a
simple extension of the optimization scheme would allow for
optimization of lossy quantum systems specifically, through
an open GRAPE-like scheme [24], or the simulation of larger
lossy systems through the use of trajectories. We also note that
as the expressions depend explicitly on the drive amplitudes,
second derivatives and the Hessian matrix can also be cal-
culated exactly, opening the door to second-order optimizers
such as Newton’s method.

We anticipate that future iterations of the Dysolve al-
gorithm improve the efficiency of both the preparation and
contraction stages of the algorithm. Given the parallelized
nature of this solver, we also envision a direct extension to
graphics processing units (GPUs), which could allow for fast
simulation of significantly larger systems. We leave this for
future work.

Note added. Recently, the authors were made aware of a
recent paper [25] which uses a different approach to obtain a
result similar to that which we provide in Sec. II. Our derived
weighting functions are equivalent to divided differences [26]
utilized in their method.
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APPENDIX A: DERIVATION OF nTH-ORDERWEIGHTING FUNCTIONS

In this Appendix, we derive the nth-order weighting function and the form of the Dyson series operators. We begin by defining
a frequency-dependent set of path operators

R̂[mn,...,m0](vn, δt ) = (−i)n
∫ δt

0
dtM · · ·

∫ t2

0
dt1(−i(Ĥ0 − vn[n]))mnX̂ · · · (−i(Ĥ0 − vn[1]))m1 X̂ (−i(Ĥ0 − ivn[0]))m0 , (A1)

where, for now, vn is an arbitrary vector and M = ∑n
i=0 mi + n. Since there is no explicit time dependence in Eq. (A1), we can

evaluate its M integrals simultaneously:

R̂[mn,...,m0](vn, δt ) = (−i)n(−i(Ĥ0 − vn[n]))mnX̂ · · · (−i(Ĥ0 − vn[1]))m1 X̂ (−i(Ĥ0 − vn[0]))m0 (δt )M

M!

= (−iδt )n
(−iδt (Ĥ0 − vn[n]))mnX̂ · · · (−iδt (Ĥ0 − vn[0]))m0

M!
. (A2)

Inserting identity operators IN = ∑
k |k〉〈k|, with Ĥ0|k〉 = λk|k〉 and N the size of the system’s Hilbert space, between groups of

Ĥ0 and each X̂ operator leads to

R̂[mn,...,m0](vn, δt ) = (−iδt )n
∑
kn

〈k(n)|X̂ |k(n−1)〉〈k(n−1)|X̂ ...|k(1)〉〈k(1)|X̂ |k(0)〉|k(n)〉〈k(0)|

× (−i(λn(kn) − vn)[0] δt )m0 · · · (−i(λn(kn) − vn)[n] δt )mn

M!
. (A3)
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To obtain the Dyson operator, we sum Eq. (A3) over all m ∈ Zn+1
+ . To this end, we define the nth-order weighting function f (λn)

as

f (λn) =
∑

m0,...,mn

(−iλn[0])m0 · · · (−iλn[n])mn(∑n
z=0(mz ) + n

)
!

=
∑

m0,...,mn−2

(−iλn[0])m0 · · · (−iλn[n − 2])mn−2

∞∑
P=0

P∑
p=0

(−iλn[n − 1])P−p(−iλn[n])p( ∑n−2
n=0(mn) + P − p+ p+ n

)
!

=
∑

m0,...,mn−2,P

(−iλn[0])m0 · · · (−iλn[n − 2])mn−2
(
(−iλn[n − 1])P+1 − (−iλn[n])P+1)(∑n−2

n=0(mn) + P + 1 + n − 1
)
!(−iλn[n − 1] + iλn[n])

= i

[
f (g(λn)) − f (g2(λn) ∪ λn[n])

λn[n − 1] − λn[n]

]
, (A4)

where f (λ0) = exp(−iλ0[0]). This gives us the form of R̂(n)(vn, 0, δt ):

R̂(n)(vn, δt ) =
(−iδt

2

)n ∑
kn

〈k(n)|X̂ |k(n−1)〉〈k(n−1)|X̂ ...|k(1)〉〈k(1)|X̂ |k(0)〉|k(n)〉〈k(0)| × f ((λn(kn) − vn) δt ). (A5)

We then note that

eiωt0 f (λn) = f (λn − ωt0). (A6)

To prove this, first note that this is trivially true for f (λ0). We then make the inductive step, assuming Eq. (A6) to be true for
n − 1. Then,

eiωt0 f (λn) = i

[
eiωt0 f (g(λn)) − eiωt0 f (g2(λn) ∪ λn[n])

λn[n − 1] − λn[n]

]

= i

[
f (g(λn) − ω0t ) f (g2(λn) ∪ λn[n] − ω0t )
(λn[n − 1] − ω0t ) − (λn[n] − ω0t )

]
= f (λn − ω0t ). (A7)

By linearity, this implies that eiaδt R̂(n)(vn, δt ) = R̂(n)(vn + a, δt ).
We now consider the effect of a set of oscillatory terms. To this end, we first note that the Dyson path operator in Eq. (7), as

well as the Dyson operators themselves, can be defined recursively:

Ŝ(n)
[mn,...,m0](ωn, δt ) = (−iĤ0)mn X̂

∫ δt

0
dtM · · ·

∫ tM−mn+1

0
dtM−mne

iωn[n]tM−mn Ŝ(n−1)
[mn−1,...,m0](g(ωn), tM−mn ), (A8)

Ŝ(n)(ωn, δt ) = 1
2

∑
mn∈Z+

(−iĤ0)mn X̂
∫ δt

0
dtM · · ·

∫ tM−mn+1

0
dtM−mne

iωn[n]tM−mn Ŝ(n−1)(g(ωn), tM−mn ), (A9)

R̂(n)(vn, δt ) = 1
2

∑
mn∈Z+

(−iĤ0 − ivn[n])mnX̂
∫ δt

0
dtM · · ·

∫ tM−mn+1

0
dtM−mn R̂

(n−1)(g(vn), tM−mn ). (A10)

We now wish to demonstrate that R̂(n)(c(ωn), δt ) = Ŝ(n)(ωn, δt ), where c(ωn) is the cumulative vector introduced in Eq. (16). To
first order,

Ŝ(1)(ω1, δt ) = 1
2

∑
m1∈Z+

(−iĤ0)m1 X̂
∫ δt

0
dtM · · ·

∫ tM−m1+1

0
dtM−m1e

iω1[1]tM−m1 Ŝ(0)(0, tM−m1 )

= 1
2

∑
m1∈Z+

(−iĤ0)m1 X̂
∫ δt

0
dtM · · ·

∫ tM−m1+1

0
dtM−m1

[∑
i

|i〉〈i|eiω1[1]tM−m1 f (λitM−m1 )

]

= 1
2

∑
m1∈Z+

(−iĤ0)m1 X̂
∫ δt

0
dtM · · ·

∫ tM−m1+1

0
dtM−m1

[∑
i

|i〉〈i| f ((λi − ω1[1])tM−m1 )

]

= 1
2

∑
m1∈Z+

(−iĤ0)m1 X̂
∫ δt

0
dtM · · ·

∫ tM−m1+1

0
dtM−m1 R̂

(0)([ω1[1]], tM−m1 )
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= 1
2

∑
m1∈Z+

(−i(Ĥ0 − 0))m1 X̂
∫ δt

0
dtM · · ·

∫ tM−m1+1

0
dtM−m1 R̂

(0)(g([ω1[1], 0]), tM−m1 )

= R̂(1)([ω1[1], 0], δt )

= R̂(1)(c(ω1), δt ). (A11)

We again make the inductive step with the assumption that R̂(n−1)(c(ωn), δt ) = Ŝ(n−1)(ωn, δt ). To proceed, we first show the
following result:

c(g(vn)) =
([

n−1∑
p=1

vn[n − p]

]
,

[
n−2∑
p=1

vn[n − p]

]
, . . . , vn[n − 1], 0

)
.

=
([

n−1∑
p=0

vn[n − p]

]
,

[
n−2∑
p=0

vn[n − p]

]
, . . . , vn[n − 1] + vn[n], vn[n]

)
− vn[n]

= g

([
n−1∑
p=0

vn[n − p]

]
,

[
n−2∑
p=0

vn[n − p]

]
, . . . , vn[n − 1] + vn[n], vn[n], 0

)
− vn[n]

= g(c(vn)) − vn[n]. (A12)

Then,

Ŝ(n)(ωn, δt ) = 1
2

∑
mn∈Z+

(−iĤ0)mnX̂
∫ δt

0
dtM · · ·

∫ tM−mn+1

0
dtM−mne

iωn[n]tM−mn Ŝ(n−1)(g(ωn), tM−mn )

= 1
2

∑
mn∈Z+

(−iĤ0)mnX̂
∫ δt

0
dtM · · ·

∫ tM−mn+1

0
dtM−mne

iωn[n]tM−mn R̂(n−1)(c(g(ωn)), tM−mn )

= 1
2

∑
mn∈Z+

(−iĤ0)mnX̂
∫ δt

0
dtM · · ·

∫ tM−mn+1

0
dtM−mn R̂

(n−1)(c(g(ωn)) + ωn[n], tM−mn )

= 1
2

∑
mn∈Z+

(−iĤ0 − i0)mn X̂
∫ δt

0
dtM · · ·

∫ tM−mn+1

0
dtM−mn R̂

(n−1)(g(c(ωn)), tM−mn )

= R̂(n)(c(ωn), δt ), (A13)

finishing the induction and giving the final desired form in Eq. (14).

APPENDIX B: MULTIPLE DRIVE INPUTS

Suppose there are q-independent drive inputs each with its
own drive frequency and operator. For an nth-order Dyson
expansion, we define an n-dimensional vector β with values
ranging from 1 to q, each value referring to one of the drive in-
puts. To simplify the notation, we drop all subscripts n, which
are implied. The new Dyson series operators corresponding to
a particular vector β are

Ŝ(n)
β

(ωβ, δt ) =
∑
kn

〈k(n)|X̂β[n]|k(n−1)〉〈k(n−1)|· · ·〈k(1)|X̂β[1]|k(0)〉

× |k(n)〉〈k(0)| f (λ − δtvβ ), (B1)

with ωβ an n-vector where the pth element of this vector is
±ωβ[p], or more simply, plus or minus the drive frequency
corresponding to the β[p]th input. Similarly, X̂β[p] refers to the
β[p]th input operator. The definition of vβ remains unchanged
from Eq. (16), albeit with the new drive frequency vector ωβ.

The drive function is also modified and now reads

�(ωβ ) =
n∏

p=1

�
μ

β[p]�
∗(1−μ)
β[p] , (B2)

where
μ = 1

2 (1 + sign{ωβ[p]}), (B3)

thus allowing us to define our generic nth-order Dyson series,

Û (n)(t, t+δt )=
∑

β

∑
ωβ

exp

(
i

n∑
p=1

ωβ[p]t

)
�(ωβ )Ŝ(n)

β
(ωβ, δt ),

(B4)
which reads as a version of Eq. (22) with multiple drive
operators and frequencies.

APPENDIX C: LINEAR INTERPOLATION OF SUBPIXELS

The accuracy of the Dyson expansion is insensitive to the
drive frequency ω—rather, it depends only on the number of
subpixels and the drive amplitudes. However, if each subpixel
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FIG. 7. Linear interpolation of the pulse sequences (solid yellow
lines) with two subpixels per pixel. The black bars indicate the orig-
inal Gaussian filtering, with the blue dashed line the “true” filtered
pulse.

assumes a constant amplitude, a leading error can be caused
by the change in amplitude of the drive over a single sub-
pixel. In Fig. 7, we illustrate this issue, where the subpixel
amplitudes (black bars) will over- or underestimate the true
pulse amplitude, depending on the gradient of the envelope
function. To circumvent this issue, we consider a new linear
interpolation of the drive envelope over a single subpixel. We
define yl (t ) as the new time-dependent amplitude for the lth
subpixel:

yl (t ) = s′l + sl+1−sl
δt (t − lδt ), lδt < t < (l + 1)δt,

(C1)

where s′l is calculated from a modified filter function to ensure
that the integral of the subpixel matches that of the continuous
pulse. The yl (t ) time-dependent subpixels are shown in yel-
low, and well approximate the true pulse even for relatively
few subpixels. To determine the impact of the linear time
term t0 on the time-ordered integral, we consider the (n − j)th

iteration of a Dyson series operator,∫ δt

0
dtM · · ·

∫ tM−m( j+1)

0
dtM−mj tM−mj exp(iωn[ j]tM−mj )

× Ŝ( j−1)(g( j−1)(ωn), tM−mj ),

=
∫ δt

0
dtM · · ·

∫ tM−m( j+1)

0
dtM−mj (−i∂ωn, j ) exp(iωn[ j]tM−mj )

× Ŝ( j−1)(g( j−1)(ωn), tM−mj ),

= (−i∂ωn, j )
∫ δt

0
dtM · · ·

∫ tM−m( j+1)

0
dtM−mj exp(iωn[ j]tM−mj )

× Ŝ( j−1)(g( j−1)(ωn), tM−mj ),

= (−i∂ωn, j )Ŝ
( j)(g( j)(ωn), tM−mj+1 ), (C2)

where we define ∂ωn, j as the derivative with respect to the jth
component of the vector ωn. For example,

∂ωn, j (ωn) = [0, 0, . . . , 1︸︷︷︸
jth

, . . . , 0]. (C3)

This result allows us to modify Eq. (29) to the following result,
replacing the drive amplitude function by a drive amplitude
operator:

�̂l (ωn) =
n∏

p=1

(
sl − is′l∂ωn,p

)μ(
s∗l + is′∗l ∂ωn,p

)1−μ
,

where μ = 1
2

(1 + sign{ω[p]}), (C4)

where the derivatives are to act upon the Dyson series oper-
ators. It is important to note that s′l � sl in the majority of
cases; as such, it is possible to consider a partial truncation
of the series, where only up to a certain power of derivative
terms s′l are included in the set of Dyson series operators.

To make use of the drive amplitude function, we must
determine the derivatives of the weighting function f (λn). We
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FIG. 8. Comparison of the Dysolve algorithm and QUTIP’s propagator over an evolution of 20 Rabi oscillations, with the same
parameters as in Fig. 3 of the main text. (a) Frobenius norm distance between the Dysolve algorithm with different subpixel numbers and
QUTIP’s propagator with adams (circles) and bdf (x’s) methods. The squares are the norm distance between Dysolve-n and Dysolve-4

with 104 subpixels. The dashed line indicates the error between propagator with the adams and bdf methods. (b) Computational time of
Dysolve and propagator for results of the left panel. The dashed lines refer to the computational time for propagator with adams and bdf

with the high-precision settings described in Appendix D.
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begin with the base case with λ0 = [λ0],

d

dλ0
f (λ0) = d

dλ0
e−iλ0 = −ie−iλ0

= lim
ε→0

e−i(λ0+ε) − e−iλ0

ε
= i f (λ0 ∪ λ0). (C5)

Now, we assume that ∂λn, j f (λn) = i f (λn[ j] ∪ λn). Then,

∂λn, j f (λn) = i∂λn, j
f (g(λn)) − f (g2(λn) ∪ λn[n])

λn[n − 1] − λn[n]

= i

λn[n − 1] − λn[n]

× [
∂λn, j f (g(λn)) − ∂λn, j f (g2(λn) ∪ λn[n])

]
= i

λn[n − 1] − λn[n]
[i f (g(λn[ j] ∪ λn))

− i f (g2(λn[ j] ∪ λn) ∪ λn[n])]

= i f (λn[ j] ∪ λn). (C6)

APPENDIX D: BENCHMARK CALCULATIONS

In order to calculate the Frobenius norm error used as a
metric in our benchmarks, we required an excellent approx-
imation to the reference propagator operator Ûref (0,T ). We
first considered an alternative numerical solver, propagator
from the PYTHON package QUTIP. We selected highly accurate
settings for this computation, namely, absolute and relative
tolerances of 10−16, two different numerical methods with
their maximal order (12 for adams and 5 for bdf), dis-
cretizing each pixel into 104 subpixels and allowing for 1017

internal substeps. After averaging over many simulations of
T = 500 ns with a single drive, it became apparent that the
propagator function was converging and unable to return
solutions with a Frobenius norm error less than 5 × 10−6, as
seen in Fig. 8. The shortcoming of this numerical method was
confirmed by the fact that the norm distance between adams
and bdf was found to be significantly greater than the norm
distance between adams and the Dysolve algorithm for a suf-
ficient subpixel number. This is in addition to a computational
time at least two orders of magnitude larger with the standard
QUTIP approach as seen in Fig. 8(b).
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Chapter 4

Master Equation Integrator for Driven
Time-Dependent Systems

“I’ve decided to get into shape, and the shape I’ve selected is a triangle.”

– Howie Mandel

In Chapter 3, I demonstrated that the Dysolve algorithm offers a significant improvement
over standard numerical integrators for time-dependent unitary evolution. However, some of
the most complex quantum simulations require modelling a master equation, such as the
readout master equation introduced in Chapter 2 whereby excitations can exit the system
via a ‘bath’. As we will see in Sect. 4.1, it is possible to apply Dysolve directly to a master
equation, but at great expense. In this chapter, we propose a method of approximating
the master equation by evaluating sets of Volterra integrals, which results in a significant
speed-up over Qutip’s Mesolve integrator whilst constraining memory requirements.
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4.1 Master Equation

In Chapter 2, I introduced some of the concepts required to simulate a master equation.
The goal here is to see how Dysolve could be extended to tackle this more complex class of
equations. We begin with a simple master equation

˙̂ρ = −i[Ĥ0 + X̂ sin(ωdt), ρ̂] + κD[L̂]ρ̂, (4.1)

where L̂ is a collapse operator, Ĥ0 is a diagonal Hamiltonian and X̂ is some drive operator
with corresponding drive frequency ωd acting in a Hilbert space of size N . Like in Chapter 3,
we choose the simplest case to demonstrate the algorithm – it can naturally be generalized
to multiple loss operators, which we’ll consider in Sect. 4.1.3.

To facilitate numerical simulations, we rewrite this master equation using a non-Hermitian
Hamiltonian:

˙̂ρ = −i[Ĥ(t)ρ̂− ρ̂Ĥ(t)†] + κL̂ρ̂L̂†, (4.2)

where the non-Hermitian Hamiltonian is defined as

Ĥ(t) = Ĥ0 + X̂ sin(ωdt)− i
κ

2 L̂
†L̂. (4.3)

Let us briefly imagine that the ‘jump’ term κL̂ρ̂L̂† wasn’t present in Eq. (4.2). In this case,
we can simply evolve the density matrix using a propagator: ρ̂(t) = V̂(t)ρ̂0V̂†(t), where

V̂(t) = T exp
(
−i
∫ t

0
Ĥ(t′)dt′

)
(4.4)

is a time-ordered non-Hermitian matrix exponential which can be easily evaluated by the
methods detailed in Chapter 3. Unfortunately, the jump term κL̂ρ̂L̂† means that we cannot
rely on the non-Hermitian propagator in Eq. (4.4) alone to solve the master equation
evolution.

4.1.1 Dysolve – Superoperator notation

There is a rather straightforward method to make Eq. (4.1) compatible with the Dysolve
algorithm – to calculate the matrix corresponding to the Lindblad superoperator L [79]. To
do so, we begin by employing superoperator notation and rewrite Eq. (4.2) as

Lρ̂ =
(
−i(Ĥ(t) • Î − Î • Ĥ(t)†) + κL̂ • L̂†

)
ρ̂, (4.5)
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where we use the notation (Â • B̂)ρ̂ = Âρ̂B̂, and Î is simply the identity matrix. Next, we
note that Eq. (4.5) can be mapped to a matrix-vector form, whereby the N ×N matrix
ρ̂ is rearranged to form an N2 × 1 vector, and L is constructed as an N2 ×N2 matrix by
employing the Kronecker product:

Â • B̂ ≡ Â⊗ B̂T . (4.6)

See Ref. [79] for more details on this procedure. As a result of this mapping, we arrive at a
matrix-vector equation of the form

˙̂ρ =
[
−i(Ĥ0 ⊗ Î − Î ⊗ Ĥ0)− i(X̂ ⊗ Î − Î ⊗ X̂) sin(ωdt)

+κL̂⊗ L̂†T − κ

2 L̂
†L̂⊗ Î − κ

2 Î ⊗ (L̂†L̂)T
]
ρ̂.

(4.7)

Here we can directly apply the Dysolve algorithm, defining the required eigenvalues from the
matrix (Ĥ0 ⊗ Î − Î ⊗ Ĥ0) and treating every other operator as a perturbative drive term.
However, the size of these superoperators scales as N4, severely limiting the usefulness of this
approach. To put this into context, a density matrix with Hilbert space size of N = 1000,
assuming complex double precision, requires about 15 MB of memory – the corresponding
Lindbladian would require more than 14 TB of memory to store, putting such a simulation
out of reach of the vast majority of computers. As a result, a general-purpose solver cannot
rely on the above superoperator forms.

4.1.2 A Dyson Series of Dyson Series?

As we saw in Chapter 3, using the Dyson series as a solver has excellent convergence properties
if the drive amplitudes are sufficiently small and the order in the series is adequately large.
Superconducting qubits generally have frequencies on the order of GHz and control field
amplitudes on the order of tens of MHz, making them only a perturbation to otherwise
unitary dynamics. The loss rates in these circuits are also generally small, with a typical
readout resonator having a loss rate κ/2π on the order of tens of MHz, with qubit intrinsic
loss as low as KHz or less. Inspired by this, we can construct a Dyson series in the ‘jump’
superoperator term, κL̂ • L̂†. To do so, we first choose to enter the non-unitary frame defined
by the matrix exponential in Eq. (4.4). Given that the Hamiltonian is non-Hermitian, care
must be taken using the identities: in particular, V̂(t, 0)V̂†(t, 0) 6= I, but V̂(t, 0)V̂(0, t) = I.
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It is further useful to note the following identities:

ˆ̇V(t, 0) = −iĤV̂(t, 0), ˆ̇V(0, t) = iV̂(0, t)Ĥ,
ˆ̇V†(t, 0) = iV̂†(t, 0)Ĥ†, ˆ̇V†(0, t) = −iĤ†V̂†(0, t).

(4.8)

Defining the density matrix in the interaction picture ρ̂I(t) = V̂(0, t)ρ̂(t)V̂†(0, t) and taking
the time derivative, we obtain

˙̂ρI = iV̂(0, t)Ĥρ̂(t)V̂†(0, t)− iV̂(0, t)ρ̂(t)Ĥ†V̂†(0, t)

+ V̂(0, t)
(
−i[Ĥ(t)ρ̂(t)− ρ̂(t)Ĥ(t)†] + κL̂ρ̂(t)L̂†

)
V̂†(0, t)

= κV̂(0, t)L̂ρ̂(t)L̂†V̂†(0, t)

= κL̂I(t, 0)ρ̂I L̂†I(t, 0),

(4.9)

where we define L̂I(t, 0) = V̂(0, t)L̂V̂(t, 0). As in the original definition of the Dyson series
[73], we can define the density matrix self-consistently:

ρ̂I(T ) = ρ̂0 + κ

∫ T

0
L̂I(t

′, 0)ρ̂I(t′)L̂†I(t
′, 0)†dt′

= ρ̂0 + κ

∫ T

0
L̂I(t

′, 0)
(
ρ̂0 + κ

∫ t′

0
L̂I(t

′′, 0)ρ̂I(t′′)L̂†I(t
′′, 0)†dt′′

)
L̂†I(t

′, 0)†dt′

+ ....

(4.10)

Finally, we can revert to the original frame, ρ̂(T ) = V̂(T , 0)ρ̂I(T )V̂†(T , 0), in which the
trace of the density matrix is preserved. This yields a sum of operators:

ρ̂(T ) =
∞∑
i=0

ρ̂i(T ), (4.11)

where

ρ̂0(T ) = V̂(T , 0)ρ̂(0)V̂†(T , 0),

ρ̂1(T ) = κ

∫ T

0
V̂(T , t)L̂V(t, 0)ρ̂(0)V̂†(0, t)L̂†V̂†(T , t)dt,

ρ̂2(T ) = κ2
∫ T

0

∫ t1

0
V̂(T , t1)L̂V̂(t1, t)L̂V(t)ρ̂(0)V̂†(t, 0)L̂†V̂†(t1, t)L†V̂†(T , t1)dtdt1,

(4.12)

and so on. Here, each contribution ρ̂n corresponds to an evolution of the original density
matrix ρ̂ which undergoes n ‘jumps’, or applications of the jump superoperator L̂ • L̂† during
the time interval [0,T ]. This is closely related to the technique of using jump trajectories
to approximate the master equation [54, 80], which evolves a quantum state with the non-
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Hermitian propagator V̂(t), and uses Monte-Carlo sampling to determine when jumps occur.
I’d like to stress that the formulation in Eq. (4.12) differentiates itself from Monte-Carlo
sampling since each ρ̂n(T ) corresponds to all possible trajectories with n jumps during this
interval. To make this more concrete, consider the evolution of a Monte-Carlo trajectory
from time 0 to T which contains two jumps, at times t and t′. This trajectory, along with
all other possible two-jump trajectories occurring at times 0 ≤ t ≤ t′ ≤ T , is contained in
ρ̂2(T ). As the error of Monte-Carlo integration scales as 1/

√
M , where M is the number of

trajectories, evaluating each integral directly in Eq. (4.12) shows great promise in reducing
the computational complexity of integrating a master equation.

Given that the decay rate κ is small, we anticipate the contribution to the series of the
(n+ 1)-th order to be significantly smaller than the n-th order, just like the Dyson series
used in Chapter 3. Moreover, this form naturally tells us about the relative probabilities of
having several jumps in a given evolution:

pn = Tr [ρ̂n(T )] : The probability of n jumps in the interval [0,T ]. (4.13)

Consequently, the trace can be used as a useful metric for the convergence of this series, as
we can choose to truncate the series at nth order when the trace loss of the approximated
density matrix (1−

∑n
i pi) is negligible. This is the goal of this method – to evaluate up to

the nth order in Eq. (4.12) such that we have an excellent approximation to the true density
matrix.

Given that the equations in Eq. (4.12) are Volterra integral equations [81], and to
differentiate this method from the Dysolve algorithm, I will refer to this method as ‘Voltsolve’.

4.1.3 Superoperator Notation

Before proceeding to demonstrate how each of the integrals in Eq. (4.12) can be calculated,
it is useful to simplify the notation. We switch to superoperator notation, keeping in mind
that these superoperators are never explicitly calculated for reasons listed in Sect. 4.1.1, and
also generalize to allow for an arbitrary number of loss operators L̂i. In this new notation,

ρ̂(T ) =
∞∑
i=0

ρ̂i(T ),

ρ̂i(T ) =Miρ̂0,
(4.14)
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where
M0 = E(T , 0),

E(T , 0) = V̂(T , 0) • V̂†(T , 0),

V̂(T , 0) = T exp

−i ∫ T

0
Ĥ(t)−

∑
j

κj
2 L̂
†
jL̂jdt

 .

(4.15)

We also define S =
∑
j κjL̂j • L̂

†
j . Then,

M1 =
∫ T

0
E(T , t)SE(t, 0)dt, (4.16)

M2 =
∫ T

0

∫ t1

0
E(T , t1)SE(t1, t)SE(t, 0)dtdt1, (4.17)

and so on, making the evolution captured in the integrals much easier to parse.

Here, I wish to emphasize that each set of collapse superoperators S captures all possible
combinations of jumps at different times – for example, let us consider two collapse operators,
L̂1 and L̂2, with corresponding decay rates κ1 and κ2. Then, we can expandM2 to yield

M2 =
∫ T

0

∫ t1

0
E(T , t1)(κ1L̂1 • L̂†1 + κ2L̂2 • L̂†2)E(t1, t)(κ1L̂1 • L̂†1 + κ2L̂2 • L̂†2)E(t, 0)dtdt1

= κ2
1

∫ T

0

∫ t1

0
E(T , t1)(L̂1 • L̂†1)E(t1, t)(L̂1 • L̂†1)E(t, 0)dtdt1

+ κ1κ2

∫ T

0

∫ t1

0
E(T , t1)(L̂1 • L̂†1)E(t1, t)(L̂2 • L̂†2)E(t, 0)dtdt1

+ κ1κ2

∫ T

0

∫ t1

0
E(T , t1)(L̂2 • L̂†2)E(t1, t)(L̂1 • L̂†1)E(t, 0)dtdt1

+ κ2
2

∫ T

0

∫ t1

0
E(T , t1)(L̂2 • L̂†2)E(t1, t)(L̂2 • L̂†2)E(t, 0)dtdt1.

(4.18)
As such, the form of Eq. (4.17) allows for efficient and accurate encoding of the dynamics.

4.2 Volterra Integral Evaluation

Whilst the method proposed in Sect. 4.1.2 seems promising in theory, evaluating the action
of the maps on the density matrix Miρ̂ poses a serious challenge – it is not immediately
clear how to analytically or numerically approach these integrals. In this section, I provide
intuition on how these maps can be approximated using Gaussian quadrature [82], a class of
numerical integration methods used extensively in applied mathematics and engineering.
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4.2.1 Basics – Linear Interpolation

The goal of this and the succeeding sections is to demonstrate that the integrals encoded
in each superoperatorMi can be approximated by evaluating their integrands at different
points and taking a linear combination of the results. For pedagogical reasons, let us assume
that the integrand ofM1 is well approximated as a linear function of time – that is,

E(T , t)SE(t, 0) ≈ B0 + tB1, (4.19)

where B0 andB1 are some unknown superoperators. Then, we can evaluate the corresponding
integral trivially,

M1 ≈
∫ T

0
(B0 + tB1)dt = T (B0 + TB1/2). (4.20)

Consequently, by simply setting t = T/2 in Eq. (4.19), we can approximate the action of
the mapM1 on ρ̂ as

ρ̂1 ≈ TE(T ,T/2)SE(T/2, 0)ρ̂. (4.21)

We can extend this linear method to arbitrary order – for example, the n-th order mapMn

would evaluate the approximate integrand

Mn ≈
∫ t1

0
...
∫ tn−1

0

∫ T

0

(
B̂0 +

n∑
i=1

Biti

)
dtdt1...dtn−1. (4.22)

Here, 0 < t < t1 < ... < tn−1 < T refers to the times of the subsequent collapses. The region
of integration in this n-dimensional ‘time-space’ thus defines an n-dimensional simplex, or
the generalization of a triangle/trapezoid, see Ref. [83] for more details. Since the integrand
in Eq. (4.22) varies linearly, the map can be calculated by simply evaluating the function at
the ‘centre-of-mass’ of the simplex, which corresponds to equal times between the trajectory
jumps: ti − ti−1 = T/n. This yields the approximation for the n-th order map,

Mnρ̂ ≈
Tn

n!
E(T , (n− 1)T/n)S...E(2T/n,T/n)SE(T/n, 0)ρ̂, (4.23)

where Tn/n! corresponds to the volume of the integrated simplex.

4.2.2 Gauss-Legendre Quadrature – First Order

Unless we consider a very small time step T , we anticipate that the above integrands will
change much more rapidly than just linearly, thus rendering the approximation in Sect. 4.2.1
inaccurate. Thankfully, there exists a simple method to accurately approximate the integrals
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of arbitrary one-dimensional polynomials over the interval [−1, 1]. This method, known
as Gauss-Legendre Quadrature [84], requires multiple function evaluations at locations
{xi}, which are chosen to be the roots of the n-th order Legendre polynomials Pn(x), with
corresponding weights

wi =
2

(1− xi)2[P ′n(xi)]
2 . (4.24)

This form is exact if f(x) is polynomial of degree 2n− 1 or lower, where n can be extended
almost arbitrarily [85]. More explicitly, we see that the approximation to the integral of
some function f(x),

∫ 1

−1
f(x)dx ≈ 5

9f
(
−
√

3
5

)
+

8
9f(0) +

5
9f
(√

3
5

)
, (4.25)

will be exact if f(x) is an arbitrary polynomial of 5th order or lower. The idea for evaluating
the first-order Volterra integral is almost the same – we simply map the region of integration
[−1, 1]→ [0,T ], and obtain, for arbitrary order,

M1ρ̂ ≈ T
n∑
i=0

wiE(T , ti)SE(ti, 0)ρ̂,
∑

wi = 1. (4.26)

For standard numerical integrators, computing Eq. (4.26) would be prohibitively expensive,
since computing the action of the E is computationally difficult with fast oscillating drives,
see Chapter 2. However, this evolution is much simpler for Dysolve (see Chapter 3), thus
opening a pathway for computing these functions.

4.2.3 Gauss-Legendre Quadrature – Second and Higher Orders

Whilst evaluating Gauss-Legendre quadrature on one-dimensional integrals is a standard and
well-understood problem, extrapolating this method to higher orders is non-trivial and is
the subject of ongoing research [86, 87, 88]. Further, approximating these integrals requires
many more function evaluations than for the one-dimensional case to achieve the same
(2n− 1) scaling of the Gauss-Legendre quadrature in Sect. 4.2.2. Nevertheless, since we are
assuming the decay rates of the system to be small, the relative contribution of the second
order jump term ρ̂2 should be small with respect to ρ̂1, and consequently tolerate a greater
degree of error, and thus a lower order polynomial approximation.

Reddy et. al. [89] showed that by calculating the roots of integrated two-dimensional
polynomials over the 2D simplex of order 4 and 7, a solution can be expressed with 4 and 7
points, respectively - see Fig. 4.1 for an illustration. Thus, the action of the mapM2 would
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Figure 4.1 Locations of the 2D jumps for n = 4 and n = 7, able to accurately integrate up
to 4-th and 7th order polynomials, respectively. The sizes of the red dots indicate
their relative weight, and the lines are drawn for visualization. In each case, the
central trajectory is located at (1/3,1/3), the centre-of-mass of the triangle.

be approximated as:

M2ρ̂ ≈ T 2
7∑
i=1

wiE(T , ti2)SE(ti2, ti1)SE(ti1, 0)ρ̂,
7∑
i=1

wi =
1
2, (4.27)

where tix, tiy correspond to the set of function evaluations shown in Fig. 4.1. This method
also works with symmetric coordinates [90, 91], but at the cost of more function evaluations.
Keeping in mind that each function evaluation requires building time-ordered propagators
and several matrix multiplications, we must balance speed and accuracy.

Simpler, albeit less efficient forms, exist for the higher order simplexes [92, 93]. We
can, in theory, continue approximating each order in the series of Volterra integrals un-
til convergence, although again we have to compromise between the number of function
evaluations and the accuracy of the solver. For Voltsolve, we limit ourselves to the 4 and
7-point evaluation of the second-order Volterra integral, and a 4 point evaluation of the
third-order, equivalent to integrating a cubic polynomial exactly [92]. For fourth and higher
orders, there is generally negligible advantage from integrating the function more accurately
than the linear approximation, and so I choose to simply evaluate a single trajectory at the
centre-of-mass, as in Eq. (4.23).
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4.3 Alternative Method – Correction

From Sect. 4.2.3, it is clear that calculation of the mapsMi using Gauss-Legendre quadrature
becomes increasingly challenging for higher orders. An alternative way of performing this
calculation is to attempt to calculate all orders simultaneously by iterating over the previous
order. Instead of calculatingM1ρ̂ explicitly, let us consider the following expansion:

Mρ̂ =

[
n∏
i=1
E(ti+1, ti)(I +wiTS)E(ti, 0)

]
ρ̂, (4.28)

such that wi satisfy the roots of the n-th order Gauss-Legendre polynomial. Then, we note
that

Mρ̂ =M0ρ̂+M1ρ̂+
n∏
j>i

T 2wiwjE(T , tj)SE(tj , ti)SE(ti, 0)ρ̂+ ....

=M0ρ̂+M1ρ̂+
n∑
i=2
M′iρ̂.

(4.29)

We now see that there are now additional contributions above justM1 – indeed, there are
a number of maps M′i, each consisting of terms with i jumps. Specifically, we see that
each two-jump contribution has a weight wiwj and times ti and tj associated with the first
collapse and second collapses, respectively. To illustrate this, I plot the relative distributions
of the jump times in Fig. 4.3, which are unevenly distributed around the centre-of-mass of
the triangle, (1/3, 1/3).

The primary problem here is that to preserve trace, we require the weight of the n-th
order contribution to be 1/n! (corresponding to the volume of the n-th order simplex),
which is not satisfied by this expansion. To see this more explicitly, I plot in Fig. 4.2 the
convergence of the relative weight of each order as a function of the Gauss-Legendre order.
For example, at second order, the weight W2 is

W2 =
∑
j>i

wiwj <
1
2. (4.30)

Consequently, we seek a correction term,Mc
n, such that we approximate the mapMn:

Mn ≈M′n +Mc
n. (4.31)

A simple remedy is to calculate the centre-of-mass of the contributions from M′2 and
add a single correction of weight wc and jump times t1c, t2c such that the total weight and
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Figure 4.2 Convergence of the weights of the corresponding mapMn. The dashed lines show
the asymptote at 1/n!, the weight required to preserve the trace of the density
matrix.

centre-of-mass of the jumps realigns with the simplex, as seen in Sect. 4.2.1. This yields:

n∑
j>i

wiwj +wc =
1
2,

n∑
j>i

wiwjti +wct1c =
n∑
j>i

wiwj(tj − ti) +wc(t2c − t1c) =
1
6. (4.32)

An identical methodology follows for the higher orders, allowing for an excellent approximation
to each order whilst maintaining the correct contribution from the corresponding jump term.
The times and corresponding weights of these correction trajectories are plotted in Fig. 4.3
as blue dots. Capturing how this series converges, and the impact of including additional
corrections, is part of my ongoing research.

4.3.1 Performance Benchmark – Transmon Readout

The expansion utilized in Voltsolve relies on the decreasing likelihood of a larger number
of jumps in a time interval ∆t. As such, we expect the solver to behave optimally for
driven systems with small decay rates –for example, simulating a Surface-17 Quantum
Error Correction cycle with qubit T1 lifetimes in the tens of microseconds [20]. This
notwithstanding, qubit readout is known to be challenging to simulate, thanks to the
presence of loss and periodic driving of the readout resonator. Further, as we will see in
Chapter 5, it is important to keep many levels of the transmon and resonator subspaces
and avoid rotating-wave approximations in order to accurately capture the dynamics, which
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Figure 4.3 Locations of the jump evaluations (t1, t2 − t1) corresponding to the second order
mapM2 at different orders in the Gauss-Legendre expansion, with (a) n = 3, (b)
n = 7 and (c) n = 21. The sizes of the dots indicate their relative weight, and
the blue dots correspond to the evaluation of the correction term Mc

2.

adds to the complexity. In keeping with the themes of the following chapters, we consider
the simulation of a driven transmon-resonator system with a lossy resonator to test this
solver. The simulated Hamiltonian and master equation are of the form

˙̂ρ = −i[Ĥ(t), ρ̂] + κD[â]ρ̂,

Ĥ(t) = 4Ec(n̂t − ng)2 −EJ cos ϕ̂t + ωrâ
†â− ig(n̂t − ng)(â− â†) + iΩ0(â

† − â) sin(ωdt).
(4.33)

Here, we use the parameters ωr/2π = 5.156 GHz, g/2π = 200 MHz, EJ/2π = 10.512
GHz, EC/2π = 281.2 MHz, κ/2π = 35.3 MHz, Ω0/2π = 80 MHz and ωd/2π = 5.19 GHz
for the simulation. Further, we use tdim = 13 states to represent the transmon subspace
and rdim = 12 states for the resonator, corresponding to evolving a density matrix of size
N = 156, and consider an evolution time of t = 20 ns.

We consider two versions of Voltsolve – one where each order is calculated individually
(see Sect. 4.2.3) and the other where the orders are calculated simultaneously and corrections
added (see Sect. 4.3). For the former solver, we use 7, 4 and 1 trajectories to evaluate
the second, third and fourth-order Volterra integrals respectively. For the latter solver,
which I will refer to as Voltsolve(alt), we consider an expansion up to the 7th order in
the Gauss-Legendre quadrature and add corrections up to 4th order in the jump operator,
see Sect. 4.3. The Dysolve algorithm is used in both cases to calculate the propagators in
Eq. (4.4), where I consider up to 4th order in the drive term iΩ0(â− â†).

For comparison, we shall use the standard numerical integrator built into qutip, Mesolve
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[94], which uses an adaptive step Runga-Kutta solver [66]. In doing so, we must realize that
Mesolve is optimal for sparse inputs. For the optimal performance of both solvers, we solve
the master equation in the bare frame for Mesolve, and in the eigenbasis of the undriven
Hamiltonian for Voltsolve. Further, we consider Mesolve for three different tolerances,
ranging from 10−9 to 10−11. Some simulation results are summarized in the table below:

tdim = 13, rdim = 12

Method Tol. ∆t (2π ns) Time Accuracy

mesolve 1e−9 adaptive 137s 1.83e−4

mesolve 1e−10 adaptive 145s 1.75e−5

mesolve 1e−11 adaptive 161s ×

voltsolve × 0.5 31s 2.22e−6

voltsolve(alt) × 0.5 10.4s 3.08e−6

Table 4.1 Comparative performance of Mesolve and Voltsolve for integrating the master
equation in Eq. (4.33), corresponding to a transmon-readout simulation.

The accuracy of the solver is simply defined as the L2 norm ||ρ̂(tf )− ρ̂c(tf )||, where ρ̂(tf )
is the final density matrix from one of the solvers and ρ̂c(tf ) is calculated from Mesolve using
a tolerance of 10−11. We find that not only do both versions of Voltsolve outperform Mesolve
concerning computational time, boasting at least a 4.4× and 13× speed-up respectively for
the two solvers, but additionally find that the accuracy of Voltsolve is greater than qutip for
error tolerances of 1e−9 and 1e−10, with a similar computational advantage found at larger
system sizes. This demonstrates that, whilst Voltsolve is a perturbative solver, we are still
able to achieve excellent precision and speed.
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4.4 Future Work and Outlook

The Voltsolve algorithm is very much a work in progress – the code is far from optimized,
and there likely exist many different approaches, both theoretically and programmatically,
to evaluate the Volterra integrals more efficiently. As demonstrated by IBM in Ref. [72], the
Dysolve algorithm offers a powerful way of solving time-dependent systems, and adapting
the algorithm to master equations could unlock currently out-of-reach simulations of highly
complex systems. Preliminary analysis indicates that the dominant errors for Voltsolve(alt)
in the above simulations are from the corrections at second order. To compensate, we could
consider multiple correction trajectories, rather than just a single correction trajectory as
detailed in Sect. 4.3. This would likely yield a greater accuracy of the solver than the original
method detailed in Sect. 4.2.3. I leave this to future work.

My thanks to Élie Genois and Ronan Gautier for many discussions and assistance in
developing the method.



Chapter 5

Transmon Ionization

“There are three ways to do things. The right way, the wrong way, and the Max
Power way!

“Isn’t that the wrong way?"

“Yeah, but faster!”

– Homer and Bart Simpson, The Simpsons

In this chapter, I provide some insights into non-QND effects observed when readout is
performed with a strong drive, and provide the necessary background for my publication in
collaboration with Sandbox [2]. I additionally demonstrate the importance of the external
gate charge and how it can impact readout.

5.1 Transmon Readout – Background

Over the past few years the field of circuit QED has evolved greatly, with recent demon-
strations of a surface code implemented with transmon qubits [20, 21]. However, readout
remains a limiting factor of these processes – for example, the readout time and average
fidelity in Ref. [21] was 500 ns and 98%, which lags significantly behind the two-qubit gate
performance (35 ns and 99.5%, respectively). The readout makes up for more than half of
the error correction cycle time (921 ns) and accounts for 12.1% of the ‘error budget’ for each
error correction cycle – however, when including the error associated with data qubit idling
(predominantly due to the long readout process), the contribution to the total error budget
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increases to more than 30%. Similarly, the readout fidelities and times in Ref. [20] were
99% and 400 ns respectively, with a cycle time of 1.1 µs. Increasing the readout fidelity and
reducing the integration time is thus critical to advancing the field.

The primary reason that readout is comparatively slow is that the measurement drives
need to be relatively weak to ensure that the measurement remains QND. Using stronger
drives could theoretically accelerate this process, but this is known to result in ‘leakage’, or
population of the higher energy levels of the transmon, which greatly reduces the readout
fidelity and can disrupt the subsequent operations in the surface code cycles. A commonly
used metric is the ‘critical photon number’, ncrit, which is used to indicate the maximum
number of photons in the readout resonator before the theory of dispersive measurement is
predicted to fail – however, experimental results have demonstrated that the readout can
break down well before this critical photon number is reached [30]. Consequently, there is a
need to better understand what photon numbers cause measurements to breakdown, so as
to optimize readout parameters, fidelities, and integration times.

The breakdown of the readout can be challenging to capture from both a numerical and
theoretical point of view. Since many of the damaging processes are caused by resonances of
the low-lying energy states with states that lie outside of the transmon confining potential,
the Kerr nonlinear oscillator model does not capture these effects, as we saw in Chapter 2.
Moreover, to simulate the readout process whilst capturing these resonances, it can be
necessary to preserve up to 23 transmon eigenstates, which greatly increases the numerical
complexity. In this chapter, I first describe how analysing the static Hamiltonian (without
the readout drive) can help us identify these resonances, and how we can identify sets of
states which become populated during the readout process. This puts into greater context
my publication (Ref. [2]). Finally, I demonstrate how the offset gate charge can impact
readout, which could explain some experimentally observed effects [95].

5.2 Transmon Readout – Diagonalization

In this section, we return to the Hamiltonian introduced in Sect. 2.2. The transmon-resonator
model, without making an RWA or using the Fock basis for the transmon, is given by

Ĥtr = 4Ec(n̂t − ng)2 −EJ cos ϕ̂t + ωrâ
†â− ig(n̂t − ng)(â− â†). (5.1)
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The goal here is to diagonalize the above Hamiltonian and associate its eigenstates with
qubit and resonator states. In this section, all calculations are done with the following set of
parameters:

EJ/h = 22.66 GHz, EJ/Ec = 134, g/2π = 240 MHz, ωr/2π = 6.852 GHz. (5.2)

These parameters correspond to a qubit frequency ω̃q/2π = 5.279 GHz, an anharmonicity
α/2π = 163 MHz, a resonator pull χ/2π = −8.8 MHz and critical photon number ncrit ≈ 11.

5.2.1 Identifying the computational states

As described in Sect. 2.1, the charge and Fock bases are the appropriate choices to represent
the transmon and resonator subspaces, respectively. After constructing the Hamiltonian in
Eq. (5.1) and using a standard numerical diagonalization procedure, we obtain the spectral
decomposition of the Hamiltonian Ĥtr =

∑
λ λ|λ〉〈λ|. Without further information on the

structure of the eigenstates, such a decomposition gives little insight into the underlying
physics. We would like to label each eigenstate according to its transmon-like or resonator-like
character, Ĥtr =

∑
i,nEi,n|i,n〉〈i,n|. Here, i and n represent the ‘transmon’ and ‘resonator’

indices, respectively, and Ei,n the corresponding energy.

The simplest state to identify is the ground state, |g, 0〉, which is the eigenstate associated
with the smallest eigenvalue: Eg,0 = min{λ}, noting that the minimum energy may be
non-zero due to the presence of counter-rotating terms in the charge-charge coupling of
Eq. (5.1). Moreover, in the dispersive regime, we expect the excited state of the qubit to
only be dressed weakly by the resonator. Consequently, we can identify the excited state to
be the eigenstate which has maximum overlap with the bare state |e, 0〉 = |e〉 ⊗ |0〉:

|e, 0〉 ≡ argmax |〈λ|e, 0〉|2. (5.3)

From the dispersive theory in Sect. 2.2 we anticipate this overlap to be of the order 1− g2/∆2,
and thus close to unity and simple to identify.

5.2.2 Generalizing the Jaynes-Cummings Ladder

Recall from Sect. 2.2.1 in Chapter 2 that we could approximate the transmon-resonator
model with a Hamiltonian similar to the Jaynes-Cummings model [50]. After diagonalization,
this yielded a distinct ladder for each qubit state, which we can climb or down by adding or
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removing photons. Here we seek to generalize the notion of the ladder to work for Eq. (5.1),
including the effects of the counter-rotating terms and the cosine potential. In other words,
we seek divide the Hilbert space into subspaces {|g,n〉}, {|e,n〉}, ..., with each subspace
consisting of n states, such that the drive on the resonator induces dynamics predominately
within each subspace. Let us reconsider the driven system:

Ĥ(t) =
∑
i,n
Ei,n|i,n〉〈i,n|+ iE(â† − â) sin(ωdt). (5.4)

Inspired by the Jaynes-Cummings ladder, we can therefore ask ourselves a simple question –
what eigenstate of the Hamiltonian is principally populated after adding a resonator photon
to the state |i,n〉? This motivates a simple definition:

|i,n+ 1〉 ≡ argmax
|λ〉∈S

|〈λ|â†|i,n〉|2, (5.5)

where S is the set of eigenstates |λ〉 which have not been labelled. Extending this concept
further, we can define the normalized overlap metric [2]:

|i,n+ 1〉 ≡ argmax
|λ〉∈S

Ci(n), Ci(n) =

∣∣∣∣∣ 〈λ|â†|i,n〉〈i,n|ââ†|i,n〉

∣∣∣∣∣
2

. (5.6)

To differentiate this method from the Jaynes Cummings ladder, we refer to each set of n
states {i} = {|i,n〉} as a branch of the resonator.

Using this metric, we can systematically label every eigenstate of the system. Suppose
that the initial diagonalization of Eq. (5.1) was performed with tdim transmon states and
rdim resonator states. Then, the branches are generated by the following procedure:

• Identify the ground state |0, 0〉;

• Identify the remaining (rdim − 1) states in the branch by iteratively maximizing the
overlap metric as in Eq. (5.6), and subsequently removing each identified state from
the set S;

• Increase the transmon index i by 1 and reset the resonator index n = 0. Label the
lowest energy state in the set S as |i, 0〉, the first element in the new branch {i};

• Repeat the previous two steps.
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Figure 5.1 Convergence of the eigenvalue difference log10(|∆Ei,n|) corresponding to states (a)
|0, 0〉, (b) |0, 10〉 and (c) |0, 20〉 when diagonalized with tdim transmon eigenstates
and rdim resonator states as compared to diagonalization with 40 transmon and
70 resonator states.

5.2.3 Eigenvalue convergence

A common pitfall in simulating and diagonalizing the transmon-resonator system is to use
an insufficient number of transmon states, tdim, in the diagonalization procedure. In Fig. 5.1,
I plot log10(|∆Ei,n|), the logarithm of the difference between the converged eigenvalues
(in GHz) corresponding to states (a) |0, 0〉, (b) |0, 10〉, and (c) |0, 20〉 and the eigenvalues
computed from diagonalization of the system with the dimensions quoted in the x and y
axes. The converged eigenvalues were computed by diagonalizing the system with tdim = 40,
rdim = 70 – increasing the dimension further only leads to machine precision fluctuations in
the eigenvalues. We see a surprising need to conserve as many as 22 transmon eigenstates
for convergence of the |0, 20〉 state due to the hybridization of states in the {0} branch with
highly energetic states.

5.2.4 Master Equation Example – Branch Population

To demonstrate the usefulness of this branch analysis, I plot in Fig. 5.2 (a) the overlap
metric for the ground branch Cg(n) as a function of the resonator index n. This metric
remains close to unity over the entire range of n. This indicates that neighbouring states
within a branch, |i,n〉 and |i,n+ 1〉, are strongly coupled by the creation operator â†, even
though some weak resonances with states in other branches will occur – for example, the
feature at n ≈ 30, where the overlap metric drops to 0.9. In comparison, in Fig. 5.2 (b)
I plot the overlaps of each of the identified eigenstates in the ground state branch with
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Figure 5.2 (a) Overlap metric Cg(n) used to define the ground state branch. (b) Overlap of
the identified states in the ground state branch with corresponding bare states
|g,n〉 and |e,n− 1〉.

the bare states |g,n〉, |e,n− 1〉 and |f ,n− 2〉. Somewhat surprisingly, we see the overlap
between the identified eigenstate and the equivalent bare state |〈g,n|g,n〉|2 drop below the
overlap with the excited state, |〈g,n|e,n− 1〉|2 around index n = 26. We further see a
significant contribution of the bare states |f ,n− 2〉 at high photon numbers, which would
naïvely suggest that populating the resonator with a relatively low photon number results in
an unmanageable level of leakage.

Whilst this may appear alarming, it is of remarkably little consequence. The reason is
straightforward: the dispersive approximation is not valid at this resonator population, and
consequently, the eigenstates cannot be expected to be perturbatively close to the bare basis
states as I have defined them. To illustrate this point more concretely, I consider a simple
readout experiment. I initialize the qubit in the ground state, ρ0 = |g, 0〉〈g, 0| and evolve
the system using the master equation:

ρ̇ = −i[Ĥ(t), ρ̂] + κD[â]ρ̂, (5.7)

where I choose κ/2π = 30 MHz. For the first 48 nanoseconds, the drive amplitude is chosen
to be constant, E/2π = 180 MHz, corresponding to a steady state resonator population
〈â†â〉 ≈ 35 for the chosen parameters. After time t = 48 ns, the drive is turned off and the
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Figure 5.3 Evolution of the ground state ρ0 = |g, 0〉〈g, 0| governed by the master equation
in Eq. (5.7). The drive is turned off at 48 nanoseconds. The blue, orange and
green curves correspond to the population of the ground, excited and leakage bare
subspaces – the dashed line indicates the population of the dressed subspace. The
inset details the deviation of the dressed subspace population away from unity.

system is allowed to relax. In Fig. 5.3, I plot the population of the density matrix projected
onto the different bare subspaces Πi =

∑
n |i,n〉〈i,n|, and compare this to the occupation of

the dressed ground-state branch Π̃g =
∑
n |i,n〉〈i,n|. Whilst we see a significant population

of the bare excited and leakage subspaces Πe, Πf , which first exceeds the population of the
bare ground subspace Πg at approximately 15 nanoseconds, there is a negligible deviation
from the population of the dressed ground-state subspace Π̃g throughout the entire evolution.
Moreover, we see vanishing population remaining in the bare excited and leakage subspaces
at the end of the evolution, which confirms that the population of the bare leakage state
|f〉 is irrelevant for readout. However, as we’ll see in Sect. 5.3, the population of transmon
eigenstates close to and outside of the cosine potential well is a strong indicator of ionization.
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5.3 Publication – Dynamics of Transmon Ionization [2]

In this publication, we simulate the readout of a superconducting transmon qubit using a
strong drive. These simulations included up to 32 transmon states and 1024 resonator states
to ensure we captured all of the relevant dynamics. The resulting computational complexity
required the use of Tensor Processing Units (TPUs) for numerical integration. We observe
and make sense of ionization dynamics, whereby eigenstates of the transmon close to and
above its confining potential well are populated.

In this joint effort, Alexandru Petrescu, Joachim Cohen and Alexandre Blais gave
invaluable theory support and helped direct the project, with the Sandbox team providing
extensive help in using and managing the Tensor Processing Units for the simulations.
I developed and launched the simulation scripts, proposed the branch and semiclassical
analyses, and wrote the manuscript.
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transmon-resonator system under strong and nearly resonant measurement drives and find clear signatures
of transmon ionization where the qubit escapes out of its cosine potential. Using a semiclassical model,
we interpret this ionization as resulting from resonances occurring at specific resonator-photon popula-
tions. We find that the photon populations at which these spurious transitions occur are strongly parameter
dependent and that they can occur at low resonator-photon population, something that may explain the
experimentally observed degradation in measurement fidelity.

DOI: 10.1103/PhysRevApplied.18.034031

I. INTRODUCTION

Dispersive readout in circuit quantum electrodynamics
(QED) is realized by driving a measurement resonator cou-
pled to the qubit [1]. In principle, increasing the drive
amplitude, and thereby the resonator-photon population,
increases the measurement rate, something that is expected
to lead to fast, high-fidelity, and quantum nondemolition
(QND) readout [2]. However, experimentally the fidelity
and QND character of the measurement of transmon qubits
[3] is often observed to decrease beyond a photon-number
threshold, which can be as small as a few photons [4,5].
Perturbative models have been made in attempts to explain
these observations but have limited applicability beyond
low photon numbers [6–8].

In this paper, we go beyond perturbative treatments by
numerically investigating the full dynamics of a strongly
driven transmon-resonator system. At distinct resonator
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populations, we find clear signatures of transmon ioniza-
tion where transmon states above the Josephson-junction
potential are occupied [9,10]. Because these states are not
strongly influenced by the Josephson potential, they are
well described by charge states. Consequently, for states
above the transmon well, the transmon-resonator coupling
appears longitudinal and the system dynamics are con-
sequently modified. Importantly, the term ionization is
used loosely here and refers only to the escape of the
transmon population to states lying above the Josephson
cosine-potential well.

Accurate simulation of the dynamics of transmon ion-
ization requires description of the density matrix of the
system on a truncated Hilbert space of very large dimen-
sion, something that is made possible here by the use
of large-scale computational accelerators known as tensor
processing units (TPUs). While other studies have been
limited to steady-state calculations with strongly detuned
drives [9], the computational power of TPUs allows us
to simulate the full time dependence with drives that are
resonant with the resonator, as is relevant for qubit mea-
surement. Accounting for tens of transmon levels and hun-
dreds of resonator states, we moreover see signatures of the
high-power readout [11–13]. We interpret these numerical
results using a semiclassical model capturing the nonlinear
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response of the driven system. Using this model, we iden-
tify parameter regimes where ionization is expected to
occur at sufficiently small photon number to affect disper-
sive readout, observations that are in qualitative agreement
with experiments [4].

This paper is organized as follows. In Sec. III, we
introduce the model, provide details on its TPU implemen-
tation, and present the numerical results on the dynamics
of transmon ionization. Next, in Sec. III, we formulate a
semiclassical theory that allows us to interpret the dynam-
ics of the coupled transmon-resonator system as governed
by transitions between qubit-state-dependent effective res-
onators (Sec. III A) obeying nonlinear equations of motion
(Sec. III B). In Sec. III C, we choose system parameters
that illustrate how ionization can reduce readout fidelity
even at the low drive powers that are typical of disper-
sive readout in circuit QED. We summarize our findings
in Sec. IV.

II. MASTER-EQUATION SIMULATIONS WITH
TENSOR PROCESSING UNITS (TPUs)

A. Model

We consider a transmon capacitively coupled to a res-
onator [see Fig. 1(a)]. In the presence of a drive of ampli-
tude E and frequency ωd on the resonator, the Hamiltonian
of the system takes the usual form (� = 1) [2]

Ĥ(t) = 4Ecn̂2
t − EJ cos ϕ̂t + ωrâ†â

− ign̂t(â − â†) − iE(â − â†) sin(ωdt). (1)

The first two terms correspond to the free transmon Hamil-
tonian with charging energy Ec, Josephson energy EJ ,
charge operator n̂t, and phase operator ϕ̂t. We denote the
eigenenergies and eigenstates of the free transmon Hamil-
tonian Ei and |i〉, respectively. The first two of those
eigenstates, labeled {|0〉, |1〉}, span the computational basis
of the qubit. Of the higher excited states, an approximate
number 2EJ /ωp are bound states lying within the cosine-
potential well illustrated in Fig. 1(b). Here, ωp = √

8ECEJ

(a) (b)

FIG. 1. (a) A transmon (green) capacitively coupled to a
driven resonator (blue). (b) The cosine potential of the trans-
mon with its first nine eigenstates. For our choice of parameters,
the last three states are ionized states lying above the top of the
potential.

is the plasma frequency, which is approximately the 0–1
transition frequency of the transmon [3]. Moreover, we
label as |n〉 the eigenstates of the free-resonator Hamilto-
nian of frequency ωr, corresponding to the bosonic anni-
hilation operator â. The transmon-resonator coupling of
amplitude g in the second line of Eq. (1) includes fast-
rotating terms that are beyond the rotating-wave approx-
imation (RWA) and are important to capture the contribu-
tion of high-energy states [14]. In the absence of the drive,
the dressed energies and states of the coupled system are
denoted Ei,n and |i, n〉.

Including cavity loss at a rate κ , the driven transmon-
resonator system is described by the usual Lindblad master
equation [2],

˙̂ρ = −i[Ĥ(t), ρ̂] + κD[â]ρ̂, (2)

with the dissipator

D[Ô]ρ̂ = Ôρ̂Ô† − 1
2

{
Ô†Ô, ρ̂

}
. (3)

Because we are interested in capturing the dynamics
of the system in the presence of a large-amplitude nearly
resonant drive on the resonator, leading to several hun-
dred of photons and highly excited states of the trans-
mon, we keep up to 32 states in the transmon and 1024
states in the resonator for the most demanding simula-
tions, corresponding to a total Hilbert-space dimension
215 = 32 768. That is, the joint density matrix ρ̂ for the
transmon-resonator system is a Hermitian matrix of size
215 × 215, which thus contains 230 = 1 073 741 824 time-
dependent complex coefficients. Furthermore, given that
the unbound transmon states are approximately eigenstates
of the charge operator, their eigenvalues increase quadrati-
cally rather than linearly, as is the case for the bound states.
This increases the complexity of numerical simulations, as
larger eigenvalues require smaller integration step sizes for
convergence. Additional details, including a prescription
for adapting the resonator Hilbert-space size, are given in
Appendix A.

In order to perform these challenging numerical simula-
tions, we resort to TPUs. Google’s TPUs are application-
specific integrated circuits designed exclusively to acceler-
ate large-scale machine-learning workloads [15]. Recently,
they have been repurposed for other high-performance
computational tasks [16–28], including simulations of
quantum systems in large Hilbert spaces [24–28]. Due
to their (i) matrix-multiply units capable of accelerat-
ing matrix multiplication, (ii) large amounts of high-
bandwidth memory, and (iii) fast intercore interconnects
directly connecting up to thousands of cores, TPUs are par-
ticularly fast at performing large-scale dense linear-algebra
operations, which are required, e.g., to numerically inte-
grate the above Lindblad master equation. More details on
TPUs can be found in Appendix B.
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For a given drive amplitude E , simulations begin with
the system initialized in either the dressed ground |0, 0〉
or excited |1, 0〉 states. To reduce the simulation time
while capturing the transient dynamics including the ion-
ization of the transmon, we simulate the evolution over a
time of at least κ−1. After each period of the drive, the
reduced transmon, ρ̂t, and resonator, ρ̂r, density matrices
are recorded.

Unless otherwise stated, in all of our simulations as well
as in the semiclassical model discussed in Sec. III, we use
the parameters EJ /EC = 50 and EC/h = 280 MHz, corre-
sponding to a transmon of frequency ωt/2π = 5.304 GHz
and anharmonicity α/2π = 322 MHz. These parameters
result in approximately six bound transmon states within
the cosine potential (see Fig. 1). The resonator frequency is
ωr/2π = 7.5 GHz and g/2π = 250 MHz. A resonator loss
rate of κ/2π = 20 MHz is chosen to ensure fast resonator
dynamics and the drive amplitude takes values in the
range E/2π ∈ [0, 440] MHz. We fix the drive frequency to
the bare-resonator frequency, ωd = ωr. The above param-
eters place the system in the dispersive regime, with
χ/2π = −5.6 MHz and χ/κ = 0.28, where the dispersive
shift is defined here as χ = (E11 − E10 − E01 + E00)/2.
Note that the resonator population is much smaller than
the critical photon number ncrit = (	/2g′)2 ≈ 15, with

g′ = (EJ /32EC)1/4g [2]. Finally, to minimize the number
of simulations that are required, we note that we ignore a
possible offset gate charge on the transmon. The effect of
the gate charge on the ionization will be studied in a future
work [29].

B. Numerical results

Figures 2(a) and 2(b) illustrate the average photon num-
ber Nr = 〈â†â〉 (red lines) and the average transmon pop-
ulation Nt = ∑

i i〈i|ρ̂t|i〉 (black lines) as a function of time
for the drive amplitude E/2π = 280 MHz. The system is
initialized in the dressed ground state |0, 0〉 in Fig. 2(a) and
in the dressed excited state |1, 0〉 in Fig. 2(b). Also shown
is the instantaneous distribution Ni,t = 〈i|ρ̂t|i〉 of the trans-
mon states (color scale). The difference between the two
initial states is striking. For this drive amplitude, when
starting in the ground state, the transmon leaks out of its
initial state but the distribution largely remains confined
within the cosine potential of the Josephson junction. In
contrast, when the transmon is initialized in its excited
state, we observe a sudden jump of the average transmon
population with a distribution extending well above the
top of the cosine potential. This is a clear illustration of
the ionization of the transmon. For the drive amplitudes
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FIG. 2. (a),(b) The transmon and photon population as a function of time with E/2π = 0.28 GHz for (a) the ground state and (b) the
excited state. The black line indicates the average transmon population Nt (left axis) and the solid red line depicts the resonator average
population Nr (right axis). The full distribution log10(Ni,t) of the transmon population for each transmon level |i〉 is also plotted, with
the color bar above providing the scale. (c),(d) The purity of the reduced transmon density matrix as a function of the drive amplitude
and time for the transmon initialized (c) in the ground state and (d) in the excited state. The dashed red lines indicate when the resonator
reaches a population of 105 and 42 photons for the ground and excited states, respectively. The white dashed lines indicate the drive
amplitude E/2π = 0.28 GHz of (a) and (b). Because the drive amplitude is not sufficiently large to reach a population of Nr = 105
photons when the qubit is the ground state, ionization is not observed in (a).
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considered here, the simulated measurement is far from
QND and the dynamics are therefore not well described
by a dispersive Hamiltonian [2].

As illustrated in Figs. 2(c) and 2(d), transmon ioniza-
tion is accompanied by a sudden drop in the purity P =
Tr[ρ̂2

t ] of the reduced transmon density matrix. The rapid
decline of the purity is observed at specific resonator-
photon populations indicated by the dashed red line: Nr =
105 when initialized in the ground state in Fig. 2(c) and
Nr = 42 for the excited state in Fig. 2(d). The dashed red
lines terminate whenever the drive is too weak for the
resonator to reach those populations. That transmon ion-
ization occurs at specific photon populations suggests that
the phenomenon is due to resonances, which we discuss
in more detail below. These observations are compati-
ble with Ref. [9], where steady-state calculations with
an off-resonant drive have also shown drops in trans-
mon purity in steady-state numerical calculations. Reso-
nances at large photon numbers have also been observed
in Ref. [14].

As a further illustration of transmon ionization at dis-
tinct photon numbers, we plot in Fig. 3(a) the transmon
population Nt as a function of the resonator population
Nr, both values taken from time traces such as shown
in Figs. 2(a) and 2(b). The different curves correspond
to different drive amplitudes and the initial state of the
transmon is identifiable from the starting transmon pop-
ulation. Remarkably, the responses essentially collapse to
single curves for each of the initial states. Below the ioniz-
ing photon population, the transmon population remains
close to the computational manifold and the resonator
population exhibits transient oscillations due to the drive
being off resonant with the Lamb-shifted resonator fre-
quency. Together with Purcell decay, these transient oscil-
lations are responsible for the features observed at small
Nr. Above the ionizing photon populations, the trans-
mon population rapidly increases. This coincides with
the sudden drop in the purity observed in Figs. 2(c)
and 2(d).

Focusing now on the dynamics of the resonator, Fig. 4
shows the Wigner function of the resonator at different
times with the transmon starting in its excited state and
with the same drive amplitude E/2π = 0.28 GHz as used
in Figs. 2(a) and 2(b). For small features to appear more
clearly, we plot the logarithm of the absolute value of
the Wigner function. As expected, the cavity is initially
well described by the single coherent states |α1〉 associated
with the first excited state of the transmon [see Fig. 2(a)].
As the transmon population in other levels increases,
additional features emerge corresponding to the coherent
states associated with the now occupied transmon levels.
Additionally, “bananization” caused by transmon-induced
nonlinearities becomes apparent [30,31]. The dashed lines
correspond to fixed photon numbers and are used as a guide
to the eye. The full colored lines overlying the Wigner
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FIG. 3. (a) A parametric plot of the average transmon popu-
lation versus the average resonator population for an evolution
time of κ−1. Each line represents a unique simulation with a
different drive amplitude E and starting either in the ground or
excited state. These metrics are calculated in the bare basis and
are defined as in Sec. II B. (b) The average transmon population
as a function of the bare-resonator population for each resonator
branch {i}. Each branch is represented by a different color, with
dashed gray lines indicating branches that do not feature signif-
icantly in the dynamics. The nearly vertical dark lines represent
the overlap Ci(n) between the different branches, darker lines
indicating stronger overlap.

functions are obtained from a semiclassical approximation
that we now introduce.

III. STATE IDENTIFICATION AND
SEMICLASSICAL INTERPRETATION

The TPU-based large-scale numerical simulations pre-
sented in Sec. clearly illustrate the breakdown of the
dispersive approximation. Notably, at specific resonator-
photon populations, we observe a sudden jump in transmon
population above the cosine-potential well, which is asso-
ciated with a sharp drop in transmon purity. This results
in complex dynamics of the resonator field, as illustrated
by its Wigner function. In this section, we develop a semi-
classical model to understand the main features of these
observations.
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FIG. 4. The logarithm of the absolute value of the Wigner function log10(|W|) of the resonator at different times for a drive amplitude
E/2π = 0.28 GHz and the transmon initialized in its dressed excited state. The logarithm is chosen to reveal the smaller features.
Overlaid are the semiclassical flows of the relevant branches following the color convention of Fig. 3(b). The dashed circles are a
guide to the eye at constant photon numbers (50, 100, 150, and 200).

A. Identification of dressed states and resonator
branches

Our semiclassical approach is based on the dressed
states |i, n〉 and energies Ei,n of the transmon-resonator
Hamiltonian in Eq. (1) in the absence of the drive. More
precisely, at arbitrary photon number, we identify the
dressed states that are closest to transmon eigenstates.
At low photon number, this identification is simple in
the dispersive regime. However, as the photon population
approaches and even exceeds ncrit, the dressed states are
highly entangled and identification becomes difficult.

Building on Ref. [13], our approach relies on first iden-
tifying the eigenstates of the Hamiltonian of Eq. (1) for
E = 0 obtained from numerical diagonalization with the
largest overlap with |i, 0〉, the bare transmon states at zero
photon population. Then, given an identified state |i, n〉 for
n ≥ 0, the next state |i, n + 1〉 is chosen from the subset of
remaining eigenstates {|λ〉} such that the overlap

Ci(n) =
∣∣∣∣

〈λ| â† |i, n〉
〈i, n| ââ† |i, n〉

∣∣∣∣
2

(4)

is maximized. Following this procedure recursively, we
obtain a set of states {|i, n〉}, where the bare transmon label
i is fixed and n spans a desired range of resonator popula-
tion. We refer to each such set of states as a branch {i} of

the resonator. In Fig. 3(b), we plot the average transmon
population of the first 16 of these resonator branches as a
function of the photon number. The full colored lines are
branches that play an important role in the understanding
of the numerical results. Branches playing a more minor
role for our particular choice of parameters are illustrated
as dashed gray lines. At finite transmon-resonator coupling
and because we include non-RWA terms in the system
Hamiltonian, the different branches have a nonzero overlap
Ci(n).

To illustrate this, in Fig. 3(b) we plot, with dark and
nearly vertical lines, the overlap Ci(n) between branches
whenever it rises above 0.01. Darker lines indicate a
stronger overlap between the states. At small photon num-
ber, the overlap between {0} and {1} corresponds to Purcell
decay, which is seen to decrease with increasing photon
number [32]. More importantly, we note a strong over-
lap between the branches {0} and {9} for Nr ∼ 110 and
between {1} and {5} for Nr ∼ 50, in agreement with the
photon numbers at which sudden drops of transmon purity
are observed in Figs. 2(c) and 2(d) (red dashed lines).
To further emphasize the link between the large overlaps
and transmon ionization, we reproduce as solid blue and
red lines the first two branches {0} and {1} of Fig. 3(b)
together with the numerical data in Fig. 3(a). The sharp
elbows, which are indicative of the fact that transmon
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ionization results from a resonance, align well between the
semiclassical results and the numerical data.

A strong overlap is also observed between {0} and {8}
close to Nr = 30 [see Figs. 3(a)and 3(b)]. In contrast to
what is observed at Nr ∼ 50 and 110, this sharper reso-
nance results in little population transfer, seen as a small
drop of purity for E ∈ (0.2 − 0.3)/2π GHz in Fig. 2(c).
This can be understood from the framework of Landau-
Zener transitions. In our semiclassical picture, as the res-
onator rings up toward its transmon-state-dependent steady
state, the photon number is swept at a rate related to κ

and to the drive amplitude. A large drive amplitude leads
to a rapid sweep through the narrow feature at Nr ∼ 30,
resulting in a diabatic passage with little leakage [see
the darker-blue numerical lines in Fig. 3(b)]. We note
that similar effects have been observed in the study of
a resonator-induced phase gate, in which qubit-resonator
leakage is maximized near avoided crossings [33]. On the
other hand, for our choice of parameters, the features at
Nr ∼ 50 and 110 are broader and the sweep rate therefore
comparatively slower. This slower sweep rate results in a
nondiabatic process, leading to leakage out of the transmon
computational subspace and to the observed drop in purity.
This interpretation is further confirmed in Appendix C for
numerical experiments with a different drive frequency and
loss rates. In the steady state, the above concepts are not
applicable and ionization is determined only by the chosen
parameters and drive amplitude [9].

B. Semiclassical dynamics

Following Ref. [13], we assign to each branch {i} an
effective oscillator of photon-number dependent frequency

ωi(n) = Ei,n+1 − Ei,n. (5)

As seen in Fig. 5, where we plot ωi(n) versus n, Eq. (5)
accounts for the photon-number dependence of the res-
onator frequency, including that the resonator responds at
its bare frequency at large photon numbers. Assuming that
the transmon remains in a given branch {i}, the dynamics
of this effective oscillator approximately obey the classical
equation of motion of a driven damped oscillator,

α̇i = −i[ωi(|αi|2) − ωd]αi − iE/2 − καi/2, (6)

where nonlinear effects are encapsulated in the depen-
dence of the branch frequency on the photon number
ωi(|αi|2) according to Eq. (5). Because the quantity |αi|2
takes arbitrary real values, we generalize Eq. (5) from dis-
crete values n to a continuous function. To do this, we
smooth ωi(n) with a first-order Savitzky-Golay filter and
linearly interpolate between each n. Doing this addition-
ally removes large discontinuities in the photon-number
dependence of the effective frequencies ωi(n) caused by
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FIG. 5. The effective frequency ωi(Nr) of the resonator
branches as a function of the resonator population. The fre-
quency is smoothed using a Savitzky-Golay filter to remove
discontinuities caused by strong interactions with other branches.
The dashed line indicates the bare-cavity frequency ωr/2π =
7.5 GHz.

strong interactions with other branches. This semiclassi-
cal approximation is expected to accurately describe the
system for large photon number |αi|2 
 1.

Numerically integrating Eq. (6), we plot in Fig. 4(a) the
time dependence of α1(t) (red lines) together with a snap-
shot of the Wigner function at time t = 0.13κ−1 assuming
that the effective oscillator starts in vacuum. The arrows
indicate the flow of time and the different lines are obtained
from Eq. (6) for a set of initial conditions in an area close
to vacuum representing zero point fluctuations. The red dot
corresponds to the steady-state value αs

1.
To account for transitions between transmon states, the

evolution of αi(t) associated with other branches is illus-
trated whenever the semiclassical evolution reaches pho-
ton numbers at which we anticipate non-negligible rates
for transitions into those branches according to the over-
laps observed in Fig. 3(b). To distinguish between the
different branches, we use the color scheme of Fig. 3(b).
For example, the blue lines in Figs. 4(a)–4(d) correspond
to branch {0}, which appears as a result of Purcell decay.
In the same way, starting in Fig. 4(b), we include the flow
of α5(t) associated with branch {5} (brown lines), which
has a strong overlap with {1} when Nr ∼ 50. Following the
evolution of the Wigner function from panel to panel, it is
possible to see a feature following the flow of α5(t) and
settling at the expected steady-state value αs

5 in Fig. 4(d)
(brown dot). Applying this procedure whenever the res-
onator number is such that an occupied branch has a strong
overlap Ci(n) with another branch, the vast majority of the
Wigner-function transient behavior can be understood. In
particular, starting in Fig. 4(d), we see the bistable behav-
ior of {α1} in both the semiclassical results (red lines) and
the numerical data.

Rather than focusing on the steady-state response, in
Fig. 6(a) we plot, for different drive amplitudes and as a
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function of time, the difference in the resonator popula-
tions 	Nr obtained by solving the semiclassical expression
in Eq. (6), given that the transmon is initialized in its
ground or excited state. As expected from Fig. 5, at some
threshold power, the photon number rapidly increases if
the qubit is initially in its excited state, while the increase
is not as pronounced for ground state. This results in the
observed large 	Nr. Figure 6(b) shows the same quantity
obtained from numerical simulations. Given that the pop-
ulation of the resonator Nr ≥ 450 for the strongest drive
amplitude E/2π = 440 MHz, these simulations are par-
ticularly demanding and require Hilbert-space sizes up to
215. The agreement between the full numerical simula-
tions and the simple semiclassical model is remarkable. In
particular, in both approaches, we observe that the photon-
number difference 	Nr goes to zero at the strongest drive
amplitudes. This is expected from Fig. 5, where at very
large photon numbers, the frequencies ωi(|αi|2) eventually
collapse to the bare value ωr. The different drive ampli-
tude at which this collapse occurs depend on the initial
transmon state and the resulting large 	Nr is exploited
in the high-power qubit readout [11–13]. The choice of
drive amplitude range E/2π ∈ [0, 440] MHz for the TPU
simulations is made to demonstrate the full range of the
high-power readout behavior and demonstrate the decrease
in 	Nr at the largest amplitudes.

A possible interpretation for the observed large response
at the bare-resonator frequency is that once the transmon
is ionized, mostly chargelike states are occupied. Because
these states couple longitudinally to the resonator, they
do not lead to a resonator frequency pull [10]. However,
the numerical results show that even for the highest drive
powers, a significant distribution of states inside the well
remain populated (not shown). As a result, the collapse of
the resonator to its bare frequency cannot be explained as
resulting alone from the longitudinal-type coupling of the
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FIG. 6. The difference in the resonator population 	Nr given
that the transmon is initialized in its ground or excited state as
a function of the drive amplitudes and time as obtained from (a)
the semiclassical model and (b) the numerical TPU data.

unbound states. We leave a more detailed analysis of this
effect to future work [29].

C. Resonances at low photon number

For the parameters used above, the first resonance lead-
ing to non-QNDness occurs at a relatively large photon
number of approximately 30, followed by resonances at
even larger photon numbers. Such resonances can, how-
ever, occur at much lower photon numbers. To demonstrate
this, we now use parameters based on the experiment of
Ref. [4]: EC/h = 314 MHz, EJ /EC = 55.47, g/2π = 211
MHz, and wr/2π = 4.804 GHz, corresponding to ncrit ≈
10. The cavity damping rate is set to κ/2π = 40 MHz. The
drive amplitude is varied in the range E/2π ∈ [0.02, 0.14]
MHz and the evolution time is set to 48 ns, correspond-
ing to the smallest measurement time used in Ref. [4]. We
note that these are bare system parameters chosen such as
to approach the dressed parameters reported in Ref. [4].

In a similar fashion to Fig. 3(a), in Fig. 7(a) we para-
metrically plot the transmon population Nt against the
resonator population Nr for the transmon initialized in the
excited state. For this choice of parameters and integra-
tion time, Purcell decay is apparent for the three lowest
drive amplitudes (see the sharp decrease of Nt). For larger
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FIG. 7. (a) A parametric plot of the average transmon popu-
lation versus the average resonator population for an evolution
time of 48 ns. Each line represents a unique simulation with
a different drive amplitude E and starting in the excited state.
Because of the small Hilbert-space size, these results are obtained
using CPUs. (b) The average transmon population as a function
of the bare-resonator population for each resonator branch {i}.
The dashed lines indicate the overlap between different branches
when Ci(n) > 0.01.
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measurement amplitudes corresponding to an average res-
onator population of approximately 2.5 photons, upward
transition of the transmon population is clearly observed.
Interestingly, this corresponds to the average photon num-
ber at which a decrease in measurement fidelity is observed
in Ref. [4] [see Fig. 3(b) of that reference].

To understand the origin of this population leakage
under measurement, we show in Fig. 7(b) the average pho-
ton population for the resonator branches {i} as obtained
from our semiclassical model. At Nr ≈ 5, the transmon
population rapidly rises for branch {1} associated with
the first excited state of the transmon (red line). In the
numerical simulation shown in Fig. 7(a) as well as in
experiments, the resonator field is in a coherent state. As
a result, because of the

√
n fluctuations of coherent states,

the resonance at Nr ≈ 5 already plays a role at Nr ≈ 2.5,
leading to the observed non-QNDness. While care must
be taken when using a semiclassical model at such a small
photon population, these observations are suggestive of the
fact that the resonances that are observed here could play a
role in the drop of measurement fidelity and QNDness that
is experimentally observed at low photon number.

IV. CONCLUSIONS

We leverage the computational power of TPUs to
perform large Hilbert-space size time-dependent master-
equation simulations of transmon readout in circuit QED.
From these simulations, we identify resonances occurring
at a distinct resonator-photon number where the transmon
population escapes to states above the Josephson cosine-
potential well. To interpret these results, we develop a
semiclassical model capturing the nonlinear transmon-
state-dependent change of the resonator frequency with
photon number. In particular, this model correctly captures
which states play a significant role in transmon ioniza-
tion. Using a different set of parameters, we show that
these resonances can occur at small photon population.
These results suggest that the non-QND nature of the dis-
persive readout experimentally observed at small drive
amplitudes could be due to these resonances. The location
of ionization events can be predicted from the semiclassi-
cal branch analysis, thus providing an upper bound on the
maximum population of the measurement photons to main-
tain the QND character of the readout. Moreover, because
the location of these ionizing events is strongly parame-
ter dependent, this work suggests a pathway to avoid these
spurious effects when optimizing device parameters for
readout.
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APPENDIX A: NUMERICAL IMPLEMENTATION

To simulate the master equation in Eq. (2), we move to
a rotating frame defined by

Ûrf(t) = exp(iωdâ†ât). (A1)

In that frame, the system Hamiltonian takes the form

ĤI (t) = Ûrf(t)Ĥ (t)Û†
rf(t) − iÛrf(t)

˙̂U†
rf(t),

= ĤI0 + X̂I (t), (A2)

with

ĤI0 = 4Ecn̂2
t − EJ cos(ϕ̂t) + (ωr − ωd)â†â − E

2
(â† + â)

(A3)

and

X̂I (t) = −ign̂t(â†eiωdt − âe−iωdt) + E
2

(â†e2iωdt + âe−2iωdt).

(A4)

Moreover, in this rotating frame the master equation reads

˙̂ρI (t) = −i[ĤI (t), ρ̂I ] + κD[â]ρ̂I ≡ L̂ρ̂I , (A5)

with ρ̂I (t) = Ûrf(t)ρ̂(t)Û†
rf(t) and where the dissipator D[â]

is unaffected by the transformation.
To solve this master equation on TPUs, we approximate

the action of the time-ordered Lindbladian exponential
T exp

( ∫ t
0 L̂(t′)dt′

)
. To do this, we first solve for the roots

{zi} of the Taylor approximation of the exponential to nth
order and rearrange the terms:

ex ≈
n∑

i=0

xi

i!
= 1

n!

n∏
i=1

(x − zi) =
n∏

i=1

(1 − x/zi), (A6)
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where
∏

i zi = n!. We then evolve the system by time δt by
iterating through the n roots:

ρ̂(t + δt) = ρ̂n(t), ρ̂i=0(t) = ρ̂(t)

ρ̂i(t) =
[
1 − (δt/zi)L̂(t, t + δt)

]
ρ̂i−1(t),

(A7)

where L̂(t, t + δt) is calculated using a second-order Mag-
nus expansion. The order n and step size δt required for
convergence depend on the number of transmon and res-
onator states, with values of n = 8 − 15 and 1/(ωdδt) ≈
50–100 found to be optimal for our choice of parameters.

The Hilbert space of the cavity is adapted through-
out the evolution. At each step, the quantity E = |1 −
Tr{ρ(Nδt)[â, â†]}| is calculated to ensure minimal occupa-
tion of the highest cavity excited states. The cavity size is
doubled if E > 10−6, with the previous step recalculated
with the larger Hilbert-space size once this condition is
met.

In the case of a transmon-resonator system driven off
resonantly, a simple frame change can be used to follow
the linear response of the oscillator, subsequently reducing
the required Hilbert space [9]. In the case of a resonant
drive, such a transformation does not exist.

APPENDIX B: TENSOR PROCESSING UNITS

Google’s TPUs are application-specific integrated cir-
cuits (ASICs) originally designed to accelerate and scale
up machine-learning workloads [15]. By leveraging the
JAX library [34], it is possible to repurpose TPUs to also
accelerate other large-scale computational tasks [16–28].
For instance, in Refs. [24–27], TPUs are used to simu-
late the wave function of up to 36–40 (two-level) qubits.
In this work, we use the power of TPUs to simulate,
instead, the time evolution of the joint density matrix of a
transmon-resonator system, as given by a Lindblad master
equation.

We employ TPUs of the third generation, denoted v3.
Each single TPU v3 core is equipped with two matrix-
multiply units (MXUs) to formidably accelerate matrix-
matrix multiplication (matmul), resulting in about ten
teraflops (TFLOPs) of measured single-core matmul per-
formance in single precision.

The smallest available TPU configuration consists of
eight TPU v3 cores with a total of 128 GB of dedicated
high-bandwidth memory (HBM), controlled by a single
host with 48 CPU cores. The largest configuration is a pod
with 2048 TPU v3 cores and 32 TB of HBM, controlled
by 256 hosts. Given a choice of configuration, the avail-
able TPU cores are directly connected to nearest neighbors
in a two-dimensional torus network through fast inter-
core interconnects (ICIs). The ICIs play an essential role
in the ability of the TPUs to maintain high performance
when distributing matmuls and other dense linear-algebra

operations over all available TPU cores. In this work, we
use the JAX library [34] to write single-program multiple
data (SPMD) code and execute it on configurations made
of multiple TPU cores. Specifically, for the largest den-
sity matrix under consideration, of size 215 × 215, we use
128 TPU v3 cores. The density matrix is distributed over
all available cores and updated according to the differ-
ent terms in the Lindblad operator, with a typical update
ρ̂(t) → ρ̂(t + δt) for n = 15 in Eq. (A7) taking on the
order of seconds.

APPENDIX C: LANDAU-ZENER TRANSITIONS
FOR DIFFERENT PARAMETER CHOICES

Figure 8(a) shows the average transmon population
versus the average resonator population for the same
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FIG. 8. Parametric plots of the average transmon population
versus the average resonator population for an evolution time of
κ−1 for (a) κ/2π = 20 MHz as in the main text and (b) κ/2π =
80 MHz. Each line represents a unique simulation with a differ-
ent drive amplitude E starting in the ground state. The frequency
of the drive is set to the mean of the pulled resonator frequencies
associated with the ground and excited states of the transmon, as
is often the case in dispersive readout. For the larger κ , the sys-
tem sweeps through the resonance Nr ∼ 30 at a faster rate. The
transition becomes more diabatic and the leakage through other
states is reduced, as expected from the Landau-Zener theory.
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parameters as in the main text, except for a slightly dif-
ferent drive frequency corresponding to the mean of the
pulled resonator frequencies associated with the ground
and excited states of the transmon. This different drive
frequency only leads to a small quantitative change with
respect to Fig. 3. More importantly, Fig. 8(b) is obtained
with that same drive frequency but now a larger decay
rate κ/2π = 80 MHz. Here, the resonance around Nr ∼ 30
mentioned in Sec. III A leads to smaller leakage. This is
compatible with Landau-Zener theory, since with a larger
κ the photon number rises more rapidly, corresponding to
a faster sweep through this resonance and therefore a more
diabatic transition.

In addition, we note that the numerically observed slow
increase of the transmon population in Fig. 8(b) is over-
estimated by the semiclassical model. This is not the
case for Fig. 3(a), where the drive frequency is set to
the bare-resonator frequency. We suspect that the follow-
ing mechanism is responsible for this discrepancy: for the
drive frequency used in Fig. 8, we expect the cavity state
to evolve to two very distinct coherent states depending
on whether one initializes the transmon in the ground or
the excited states. As has been highlighted in Leroux et
al. [35], the distance between the resulting polaronic states
is likely to diminish mixing of the states. This effect is,
however, not accounted for by the semiclassical model,
since the branches {i} are derived from the static spectrum,
where the drive frequency is not involved.
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5.4 Gate charge dependence

One of the intended goals of the above manuscript was to explore the dependence of gate
charge on the ionization physics seen in the results. Unfortunately, due to time constraints
and limited TPU runtime, this was not possible during the internship. Nevertheless, after
this publication I had the opportunity to explore some of this physics in a modified parameter
regime where hardware acceleration is not strictly needed. I provide some of these insights
in this final section.

The transmon is referred to as a ‘charge-insensitive’ qubit since its energy spectrum
becomes insensitive to the offset gate charge with increasing values of the ratio EJ/EC . The
dispersion of the m-th energy level is defined as [38]:

εm ≡ Em(ng = 0.5)−Em(ng = 0). (5.8)

For the transmon qubit, a ratio EJ/Ec > 50 results in negligible dispersion of the computa-
tional states – indeed, in the limit EJ/Ec � 1, Koch et. al. in Ref. [38] showed:

εm ≈ (−1)mEc
24m+5

m!

√
2
π

(
EJ
2Ec

)m
2 + 3

4
e−
√

8EJ /Ec , (5.9)

which shows the exponential suppression of the charge dispersion as a function of the ratio
EJ/Ec. In the publication reproduced in Sect. 5.3, the master equation simulations of the
transmon-resonator system were only conducted with an offset gate charge ng = 0 due to
limits on the computational time. In this section, I explore in more detail the effect of this
offset gate charge, which was predicted in Ref. [63] to have significant effects in the presence
of a strong periodic drive.

We begin by investigating how the eigenenergies of the transmon-resonator system
depend on the offset gate charge. In Fig. 5.4 (a) I plot the energies of the dressed transmon
eigenstates |0, 0〉, |1, 0〉, |2, 0〉 as a function of this offset gate charge. As expected, we observe
almost negligible dispersion, since these states remain close to the charge-protected transmon
state at the bottom of the cosine well. However, this story changes dramatically with (b)
22 photons and (c) 44 photons, where we observe significant changes in the energies of
eigenstates with non-zero resonator populations. This indicates that the dressed states with
large photon numbers have a significant hybridization with the higher energy transmon
states close to and outside of the potential well, which are sensitive to charge, and that
ionization may potentially occur at these photon numbers. We further note that the smallest
and largest energies do not necessarily occur at ng = 0 and ng = 0.5. Motivated by these
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observations, I adapt the expression for calculating the charge dispersion in Eq. (5.8):

εi,n ≡ max{Ei,n(ng)} −min{Ei,n(ng)}, (5.10)

where the maximium and minimum values are taken to be over the range of ng. Using this
new expression, I plot the charge dispersion as a function of the photon number n for the
first branches in Fig. 5.4(d) (transparent lines). For comparison, I additionally plot with
solid lines the charge dispersion calculated from the difference in energies at ng = 0.5 and
ng = 0, similarly to Eq. (5.8), but now including the resonator index:

ε′i,n ≡ Ei,n(ng = 0.5)−Ei,n(ng = 0). (5.11)

For comparison, the charge dispersion of the isolated transmon states (in the absence of
any resonator coupling, g = 0) is plotted, see dashed lines. In agreement with Ref. [63], we
see that the transmon-resonator system becomes sensitive to offset gate charge fluctuations
even at modest photon numbers, potentially exposing the system to dephasing due to charge
noise.

5.4.1 Master Equation Simulations – Gate Charge

A key feature of the charge dispersions in Fig. 5.4 are discontinuities as a function of the
photon number – this means that the resonances between branches are dependent on this
offset gate charge. Given these resonances can ultimately result in the qubit ionizing (see
Ref. [2]), it would be informative to determine whether varying the gate charge significantly
alters the conclusions reached so far.

Similarly to Sect. 5.2.4, we integrate the master equation in Eq. (5.7) for a duration of
100 ns, with a drive amplitude E/2π ≈ 140 MHz, yielding a steady-state resonator population
of 〈â†â〉 ≈ 22. We then turn the drive off and allow the resonator to relax for another 100
ns. Two offset gate charges are considered – ng = 0 and ng = 0.34. Fig. 5.5(a) shows a
parametric plot of the ground state branch population against the resonator population,
beginning at 〈Π̃g〉 = 1 and with 0 resonator population, with arrows indicating the flow
of time. For the ng = 0 trajectory, there is a small decrease in the ground state branch
population from unity as the resonator reaches the steady state. This drop-off appears to
begin at a resonator population 〈â†â〉 ≈ 19, as indicated by the blue marker. This is followed
by an abrupt drop-off corresponding to the drive being turned off. In stark contrast, for the
ng = 0.34 trajectory, there is a significant depopulation of the ground-state branch when
the resonator reaches 〈â†â〉 ≈ 11, with up to 5% of the population lost to another branch. A
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considerable amount of this population returns when the drive is turned off – nevertheless,
once the resonator has returned to vacuum, the final population in the ground-state branch
is only 99%. This deviation cannot be trivially explained by state identification, since the
charge dispersion for the ground state |i, 0〉 should be exponentially small (see Fig. 5.4(a)),
and thus virtually independent of gate charge when the resonator is in vacuum.

This difference can be explained by gate-charge-dependent resonances between branches.
In Fig. 5.5(c), I plot the overlap metric Cg(n) as defined in Eq. (5.6) as a function of the
resonator population for both ng = 0 and ng = 0.34. At ng = 0, this overlap remains very
close to unity, with a small resonance occurring at 〈â†â〉 ≈ 30 photons. For ng = 0.34,
we note a strong resonance at 〈â†â〉 ≈ 20 photons, suggesting hybridization with another
branch.

The impact of these resonances occurs well before the mean photon number in the
resonator reaches the location of the resonance, which can be explained by the finite photon-
number variance of the coherent state entering the resonator when the drive is applied. In
Fig. 5.5(a), I plot the Poisson distribution corresponding to two coherent states with mean
photon numbers |α|2 = 11 and 19, corresponding respectively to the photon numbers at
which we see significant deviations from unity in the ground state branch population [see
blue and orange circles in (a) and (b)]. The dashed lines indicate the 99% threshold for these
distributions, – in other words, the higher energy states contribute to 1% of the population.
These align almost perfectly with the resonances observed in (c), indicating that it is indeed
these resonances likely causing the dramatic changes in behaviour and the deviation in final
populations. This also suggests that only a small occupation probability of the resonator at
inter-branch resonances is sufficient to significantly alter the branch population.

Drift in the external gate charge can occur over long time scales on the order of minutes
or longer [96, 97]. Recent experimental data demonstrated that the readout fidelities of
ostensibly identical experiments performed at different times had dramatically different de-
pendence on photon number [60]. The numerical simulations provide a possible explanation
for this behaviour.
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Figure 5.4 (a) The energies of the first five dressed transmon eigenstates as a function of
the offset gate charge ng with the resonator in vacuum. (b-c) The dispersion of
the dressed eigenstates as in (a), but with 22 photons (b) and 44 photons (c)
respectively. (d) The charge dispersion of the first five branches as a function
of the eigenstate photon-number index n. The dashed lines indicate the charge
dispersion of the states in the absence of the resonator, i.e. for the isolated
transmon. The solid lines are calculated from Eq. (5.11), and the transparent
lines using Eq. (5.10).
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Figure 5.5 (a) A parametric plot of the dressed ground state branch population against the
resonator population for two offset gate charges for an otherwise identical readout
process. The different final populations of ≈ 99% and ≈ 99.7% indicate that
the gate charge has had a significant impact on the dynamics. Arrows indicate
the flow of time. (b) Poisson distributions corresponding to coherent states with
amplitudes |α|2 = 11 and 19. The dashed lines indicate the 1% population
threshold. (c) Overlap metrics for the ground state branch at the two different
offset gate charges. We see a strong resonance for ng = 0.34 with a resonator
population of ≈ 20.



Chapter 6

Optimizing Superconducting Qubit
Readout with Purcell Filters

“FYI, my noise-cancelling headphones proved ineffective last night.”

– Sheldon Cooper, The Big Bang Theory

In this chapter, I overview the basics of the Purcell filter, how they can be modelled
efficiently in a simulation, detail how the parameters of such a filter should be optimized for
efficient qubit readout, and finish with a joint publication in collaboration with ETH Zürich.

6.1 Introduction

Chapters 2 and 5 detail a transmon-resonator system, where the state of the transmon can
be determined by driving the resonator. Due to the hybridization of the qubit and resonator,
we saw that this leads to a decay channel of the qubit state through the resonator, known
as Purcell decay [56]:

ΓP = κ
∣∣〈g, 0|a|e, 0〉

∣∣2 ≈ κ( g̃
∆

)2
. (6.1)

Purcell decay can dramatically reduce the lifetime of a qubit – specifically when considering
typical parameters such as g̃/2π = 200 MHz, ∆qr/2π = 1 GHz, and κ/2π = 40 MHz, the
Purcell rate results in a mere 100 nanoseconds of qubit lifetime. In comparison, modern
transmon qubits exhibit an intrinsic T1 on the order of tens to hundreds of microseconds

86
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[20, 28, 98], representing a reduction in its potential lifetime by more than two orders of
magnitude.

This problem can be addressed with the use of a Purcell filter [35, 36, 37]. These
filters are used extensively in modern superconducting architectures because of the vast
improvement to qubit lifetimes, whilst simultaneously allowing for a large coupling κ to the
environment, permitting fast qubit readout [19, 99, 100]. However, they introduce a degree
of complication that must be treated carefully in analysis. This is achieved by engineering
the electomagnetic environment at the qubit frequency, which is usually far detuned from
the readout resonator. This can be achieved with different approaches, including the use of
a ‘notch’ or band-rejection filter which almost entirely eliminates the spectrum of noise at
the qubit’s operating frequency [35]. Here, we consider the case of a ‘band-pass’ filter, where
the Purcell filter can simply be considered as another resonator mode [101]. This reduces
the spectrum of noise at all frequencies other than the resonator frequency, meaning that
flux-tunable qubits will continue to be Purcell protected over their range of operation.

6.2 Circuit Hamiltonian and Rate Analysis

To understand how the Purcell filter protects the qubit from decaying into the readout
circuitry and how we can readout the qubit state, we begin with the Hamiltonian describing
the combined transmon-resonator-Purcell-filter system

Ĥtrf = 4Ec(n̂t − ng)2 −EJ cos ϕ̂t + ωrâ
†â

− ig(n̂t − ng)(â− â†) + ωpf̂
†f̂ + J(f̂ † − f̂)(â† − â),

(6.2)

where ωp is the frequency of the Purcell filter mode and J is the strength of the capacitive
coupling between the filter and resonator modes. An example of this circuit is given in
Fig. 6.1. In Chapters 2 and 5, readout was performed by driving the resonator mode. Here,
since the resonator is coupled to the feedline via the Purcell filter, we cannot drive it directly,
only through a coherent drive on the filter mode:

ĤD(t) = −iΩ(t)(f̂ † − f̂) sin(ωdt), (6.3)

where Ω(t) is an envelope function which varies slowly compared to the drive frequency ωd.
Perhaps most importantly, only the Purcell mode is coupled to the environment at rate κ.
Incorporating this loss rate, we thus formulate a standard Lindblad master equation

˙̂ρ = −i[Ĥtrf + ĤD(t), ρ] + κD[f̂ ]ρ̂. (6.4)
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Figure 6.1 Example circuit diagram of the coupled transmon (green), resonator (blue) and
Purcell filter (red) circuit. The Purcell filter is coupled to the feedline (grey) at
rate κ.

To observe the properties of this master equation, we begin by analysing the static system
in the absence of drive, i.e. Ω(t) = 0.

6.2.1 Diagonalizing the resonator-Purcell subspace

To obtain some insight, we can first consider diagonalizing the two coupled linear modes –
the resonator and Purcell filter – and find its normal modes before including the transmon.
Later on in Sect. 6.2.2, we shall consider a more accurate approach. For simplicity we
consider an ideal case where ωp = ωr, which yields two equally hybridized normal modes,
û± with frequencies ωr ± J respectively:

â =
1√
2
(û+ + û−), f̂ =

1√
2
(û+ − û−). (6.5)

In this normal mode basis and treating the transmon as a Kerr oscillator, we find a
Hamiltonian

Ĥtr = ωq b̂
†b̂− α

2 b̂
†b̂†b̂b̂+ (ωr + J)û†+û+ + (ωr − J)û†−û−

− ig̃√
2

[
b̂†(û+ − û−)−H.c.

]
,

(6.6)

where g̃ is the renormalized coupling rate, 2g̃ ≈ g(EJ/2Ec)1/4. By employing the transfor-
mation Ŝ = exp[− ig̃b̂√

2 (
û†+

∆qr−J −
û†−

∆qr+J
)−H.c.], we can diagonalize Eq. (6.6) to first order in

g̃. This transform reveals the approximate dressed eigenstates – in particular, the excited
state of the qubit becomes

|e, 0, 0〉 ≈ Ŝ|e, 0, 0〉 ≈ |e, 0, 0〉+ g̃

(∆qr − J)
√

2
|g, 1, 0〉+ g̃

(∆qr + J)
√

2
|g, 0, 1〉. (6.7)
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We can use this form to approximately evaluate the Purcell decay rate

ΓP ≈
κ

2 |〈g, 0, 0|û+ − û−|e, 0, 0〉|2

=
κ

4

∣∣∣∣∣ g̃

∆qr − J
− g̃

∆qr + J

∣∣∣∣∣
2

≈ κg̃2

4

∣∣∣∣∣ 2J
∆2
qr + J2

∣∣∣∣∣
2

≈ κg̃
2J2

∆4
qr

,

(6.8)

valid for small J . This is a dramatic improvement over the original Purcell rate – using
the same parameters given in Sect. 6.2 with a typical value J/2π = 20MHz, the new
Purcell-limited lifetime would be approximately 248 microseconds, putting it on par with
the state-of-the-art intrinsic lifetimes of transmon qubits [98]. Corrections to this form can
be made by looking at the effects of the non-Hermitian Hamiltonian in the single-excitation
subspace [101], although for our purposes the differences are negligible.

Correlated Decay

We stress here that correlated decay is vital to explain the reduction in the Purcell rate.
Let us consider the dissipator D[f̂ ]ρ̂ = 1

2D[û+ − û−]ρ̂. Going into a rotating frame Û =

exp(−i(ωr + J)tû†+û+ − i(ωr − J)tû
†
−û−), each mode picks up an oscillatory term, which

leads to the dissipator
D[û+e−iJt − û−eiJt]ρ̂. (6.9)

As we did in Eq. (2.28), it can be tempting to make the RWA, which is standard practice
for dissipators [102, 103]. This would split the dissipator in two:

D[û+e−iJt − û−eiJt]ρ̂ ≈
1
2D[û+]ρ̂+

1
2D[û−]ρ̂. (6.10)

This procedure would however yield an incorrect Purcell rate:

κ

2 |〈g, 0, 0|û+|e, 0, 0〉|2 + κ

2 |〈g, 0, 0|û−|e, 0, 0〉|2 ≈ κ g
2

∆2
qr

. (6.11)

In other words, the Purcell suppression is lost. As such, for simulations performed in this
dressed basis, it is vital to not make an RWA on this dissipator, since the difference in
frequency (2J) between these two modes is not sufficiently large. Only in the strong coupling
case |J | � κ does the Purcell suppression rate indeed decrease and the RWA once again
becomes valid. In comparison, the RWA made in Eq. (2.28) is generally valid, since the
detuning between the resonator and qubit is on the order of GHz.



90

6.2.2 Diagonalizing the transmon-resonator subspace

The majority of devices have a transmon-resonator coupling g on the order of 100− 200
MHz, with the resonator-filter coupling J on the order of 20 MHz. Consequently, in contrast
to what I did above, it is reasonable to diagonalize the transmon-resonator subsystem first,
and later include the effects of the weakly coupled filter mode. Using the form in Eq. (2.22)
and the dressed resonator mode defined in Eq. (2.27) we find the relevant Hamiltonian to be

Ĥ = ω̄q b̂
†b̂+ ωpf̂

†f̂ + ωgr â
†â

+ 2χâ†âb̂†b̂− α

2 b̂
†2b̂2 − Ec

2 λ4â†2â2 − 2λ′λ3EC â
†2â2b̂†b̂

+ J
([

1− λ2/2− 2λλ′b̂†b̂
]
â†f̂ + λb̂†f̂ +H.c.

)
.

(6.12)

where λ′ = λEc/
[
∆qr +Ec(1− λ2)

]
and λ = g/∆qr. The remaining parameters are defined

in Eq. (2.23).

The form of Eq. (6.12) is almost diagonal in the qubit mode, with a small Jλb̂†f̂ +H.c.
coupling between the transmon and filter modes – the same term that will lead to the Purcell
decay derived in Eq. (6.8). Whilst this term is critical in understanding how the Purcell rate
is suppressed, it only results in a very small renormalization of the system frequencies – for
the example parameters given in Sect. 6.1 and J/2π = 20 MHz, we anticipate a shift in the
qubit frequency of about 64 kHz. As such, we need not consider this term when analysing the
readout dynamics, which is dominated by the other terms in Ĥ, each having contributions
at least on the order of MHz. Assuming the qubit is in one of the two computation states
(〈b̂†b̂〉 = 0 or 1), we can write reduced Hamiltonians which help us understand how the
resonator and filter modes will respond during qubit readout:

Ĥ ≈ ĤL + ĤNL,

ĤL = ωpf̂
†f̂ + ωgr â

†â+ 2χâ†â〈b̂†b̂〉+ Jg,e(â†f̂ +H.c.),

ĤNL = −Ecλ
3

2 (λ+ 4λ′〈b̂†b̂〉)â†2â2,

(6.13)

where we have defined a resonator-Purcell coupling Jg,e = J
[
1− λ2/2− 2λλ′〈b̂†b̂〉

]
which

depends on the qubit state. We can further define qubit-state dependent Kerr nonlinearities,
Kg = −Ecλ4/2 and Ke = −Ecλ3(λ+ 4λ′)/2. Further, we note that for ∆qr < 0, it is simple
to demonstrate |λ+ 4λ′| < |λ| and we consequently find |Ke| < |Kg|.

For small drive powers, we expect a small population of the readout resonator. As such,
HNL becomes negligible and the linear Hamiltonian ĤL in Eq. (6.13) is sufficient to analyse
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the readout. As such we can, to an excellent degree of approximation, assume that the
resonator and filter modes both have coherent state responses. Consequently, we assume
that the computational states |g, 0, 0〉 → |g,αg(t),βg(t)〉 and |e, 0, 0〉 → |e,αe(t),βe(t)〉
under the action of the Hamiltonian and loss channel, where αg,e(t), βg,e(t) refer to the
time-dependent coherent amplitude of the resonator and filter modes, respectively This
approximation of course only remains valid at low photon numbers, which is the emphasis
of the preprint in Sect. 6.4. I shall discuss the effects of nonlinearities in Sect. 6.3.5.

6.2.3 Normal Mode Hamiltonian

The assumption of a coherent response in both the resonator and filter modes allows us to
dramatically simplify the analysis, turning the master equation into a description of two
coupled linear oscillators. Following the results in Sect. 6.4, the master equation in Eq. (6.4)
effectively reduces to the simple matrix equation

α̇g,e

β̇g,e

 = −i

∆g,e Jg,e

Jg,e ∆p − iκ/2


αg,e

βg,e

+
0

E

 , (6.14)

where ∆g,e = ωg,e
r −ωd is the detuning between the dressed resonator conditioned on the qubit

state and the drive, and ∆p = ωp − ωd is the filter-drive detuning. Further, ωer = ωgr + 2χ
includes the χ shift imparted on the resonator by the qubit.

In this section, we are principally interested in the optimal choices of the Purcell filter
parameters and coupling (J ,ωp,κ), rather than optimizing the χ-shift and other parameters
of the transmon-resonator – a more detailed discussion of this aspect of the parameter
optimization can be found in the preprint in Sect. 6.4.
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6.3 Signal-to-Noise Ratio

As discussed in Chapter 2, the signal-to-noise ratio (or SNR for short) tells us information
about how well the pointer states are resolved in the phase space of the resonator and will
be one of the major predictors of the readout fidelity. However, unlike Chapter 2, we are
measuring the output field of the Purcell filter, since only this resonator is directly connected
to the feedline. Consequently, we must adapt the definition in Eq. (2.34) to the Purcell filter,
which reduces to a simple description of the distance between the formed coherent states in
the internal filter mode:

SNR(t) = 2κη
∫ t

0
|βg(t′)− βe(t′)|2dt′. (6.15)

We seek to maximize the SNR for obtaining the largest upper bound on the readout fidelity
– however, this is a non-trivial multivariable optimization, and care must be taken to
understand the SNR landscape as a function of all of the relevant variables. For the rest
of this chapter, I shall assume that the transmon-resonator subsystem is fixed, and only
consider the parameters ωd,κ, J ,ωp, the readout integration time t and the drive amplitude
E in the optimization. Further details can be found in Appendix A.

The analytical expression for the time-dependent filter-mode responses βg/e(t) is provided
in the preprint in Sect. 6.4. Of particular interest are the steady-state responses in both the
filter and resonator modes, given by the expressionαg,e

ss

βg,e
ss

 =
E

∆g,e(∆p − iκp/2)− J2

−J
∆g,e

 . (6.16)

From the above form, it is clear that the displacement between the two filter responses will
increase linearly as a function of the drive amplitude E – however, from Chapter 5 and
an abundance of experimental evidence [30, 61, 62, 95], large drive amplitudes result in a
decrease in the readout fidelity due to breaking the weak-drive approximation, with a more
significant contribution from the non-linear Hamiltonian. At even higher drive amplitudes,
this model will also break down and ionization can occur, as in Chapter 5.

6.3.1 How strong is too strong?

In Chapter 5, I detailed how the states of the combined transmon-resonator system can be
systematically identified, and that resonances occur at specific photon numbers which can
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lead to the ionization of the transmon. Here, I wish to emphasize that, even in the transmon-
resonator-Purcell system, the dominant indicator of ionization and strong nonlinearities will
be the population of the resonator, and the Purcell filter population is irrelevant.1 This
is fairly intuitive –in Eq. (6.2), the transmon is only coupled to the resonator, not the
filter. After the transmon-resonator subspace is diagonalized as in Eq. (6.12), the effective
Purcell filter-qubit coupling is negligible. Consequently, I expect the Purcell mode to be
predominantly linear, and its population alone should not govern nonlinear effects.

To demonstrate this further, I consider a representative set of parameters (see caption
in Fig. 6.2) and diagonalize the entire transmon-resonator-Purcell system with methods
detailed in Chapters 2 and 5. To perform this, the transmon-resonator subspace is first
diagonalized with tdim = 18, rdim = 125, which is then projected onto the first 10 branches,
preserving 35 resonator states per branch. I then add the Purcell mode with 35 levels,
leading to the diagonalization of a Hilbert space size of 12250. Then, for each eigenstate,
I calculate the transmon and resonator populations Nt and Nr as in Chapter 5, but in
addition the average filter population of each state, Nf = 〈f̂ †f̂〉. Then, in Fig. 6.2(a), I
plot the transmon population against the resonator population, and in (b) the transmon
population against the filter population. As can be seen in (a), there are strong correlations
between the resonator and transmon populations – these are indeed closely related to the
branches identified from the transmon-resonator population alone (see faint thick lines).
In comparison, there is negligible relationship between the Nf and Nt populations seen
in panel (b). This strengthens the conclusion that indeed, the number of photons in the
resonator, not the filter, is the limiting factor before strong nonlinearities enter the system
and ionization can occur.

6.3.2 Defining an optimization procedure

In our pursuit of optimizing the readout, we must take into account experimental considera-
tions and limit the complexity. With this in mind, here I presume that

• the drive frequency ωd is chosen independently of the drive amplitude and readout
integration time;

• the number of photons that can be used in the readout process before spurious effects
1Due to the hybridization of the resonator and Purcell filter, their populations are inextricably linked,

and the degree to which each is populated depends on which normal mode is driven. Nevertheless, the onset
of ionization only depends explicitly on the resonator mode.
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Figure 6.2 (a) Plot of the expected resonator population Nr against the transmon population
Nt for all eigenstates of the combined transmon-resonator-Purcell system. The faint
lines indicate the identified branches, obtained from diagonalizing the transmon-
resonator alone. (b) A plot of the filter population Nf against the transmon
population Nt. No strong correlations are observed between these two populations.
The parameters used were: Ec/ h̄ = 200 MHz, EJ/Ec = 50, ωr/2π = 5.74 GHz,
ωp/2π = 5.8GHz, J/2π = 20 MHz, g̃/2π = 200 MHz.

enter is equal to ncrit:2

• the linear Hamiltonian remains a good approximation during the readout process;

• the Kerr nonlinearity limits the performance before the presence of spurious transitions.

Given the second assumption, we can begin by fixing the number of photons in the resonator
|αssg |2 = ncrit, which simply restricts E :

ncrit =

∣∣∣∣∣ −JE
∆g(∆p − iκ/2)− J2

∣∣∣∣∣
2

. (6.17)

Given we can change the drive phase, we choose αgss to be entirely real and set

Ecrit = −J−1√ncrit[∆g(∆p − iκ/2)− J2], (6.18)

so that αgss =
√
ncrit. We note that there is now a different photon number response in the

excited state,

|αess|2 = ncrit

∣∣∣∣∣1 + 2χ(∆p − iκ/2)
(∆e(∆p − iκ/2)− J2)

∣∣∣∣∣
2

. (6.19)

2From the previous chapters and Ref. [2], it is clear that ncrit is not a perfect metric. Nevertheless, it is
useful in this context to help simplify the optimization procedure.
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Depending on the choice of drive frequency and parameters, we commonly find |αess|2 > |αgss|2,
which may seem detrimental given the excited state branch generally ionizes before the
ground state [2, 63]. However, drawing attention to the first and final assumptions, we
cannot reoptimize the drive frequency based on the drive shift/induced Kerr nonlinearities
and, more notably, the Kerr nonlinearity of the excited state branch is significantly lower
than the ground state branch as predicted by the dispersive theory – see Eq. (6.13). As
a result, for this optimization procedure, we assume that the excited state can tolerate a
larger resonator response. Specifically, we can define a maximum photon number ratio:

|αess|2

|αgss|2
≤ Kg

Ke
= r, (6.20)

such that the nonlinearities for the excited state are, at most, equivalent to the ground state.

6.3.3 Choosing the drive frequency

As explained in the preprint in Sect. 6.4, the readout drive frequency can be chosen rather
simply: the spectral function is measured at a range of relevant drive frequencies with a
constant amplitude, and the frequency that exhibits the largest response is chosen as the
readout frequency. Here, I’d like to stress that the choice of readout frequency can be
further optimized by considering the resonator response. In Fig. 6.3, I plot in blue the
‘performance’, or the normalized SNR rate, taken to be |βgss − βess|2/max(|βgss − βess|2), as a
function of the drive frequency ωd at constant power. The peak here corresponds to one of
the two normal mode responses – see Sect. 6.4 for more details. However, this metric does
not consider the corresponding steady-state population in the resonator, which ultimately
dictates the maximum drive power based upon the above assumptions. By renormalizing
this performance metric by the population of the ground state, |αgss|2, we find the optimal
drive frequency to decrease slightly on the order of 1− 2 MHz. Finally, we must ensure that
the excited state resonator response is not too large – consequently, we filter out a range of
drive frequencies for which |α

e
ss|2
|αg

ss|2
>

Kg

Ke
, indicated by the dashed line. Finally, the optimal

drive frequency is indicated by the arrow.

6.3.4 Readout Performance

Using the methodology above, we are now ready to plot the relative performance of the
readout. For this, I consider a realistic transmon-resonator-Purcell system, with parameters:
EJ/2π = 22.65 GHz, EJ/EC = 134, ωr/2π = 6.86 GHz, and g/2π = 210 MHz, which
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Figure 6.3 Performance of the readout as a function of the drive frequency, as indicated by
constant drive (blue) and when renormalized by the resonator response (orange).
The grey dashed line and orange lines overlap for drive frequencies giving an
acceptable photon ratio response according to Eq. (6.20).

yields a qubit frequency ωq/2π = 5.3 GHz and a chi-shift χ/2π ≈ 7 MHz. Then, using the
above optimization procedure, I perform sweeps of the Purcell-resonator coupling strength
J , the decay rate κ, and the filter frequency ωp, integrating for a readout integration time
of up to 400 ns, and calculate the SNR in Eq. (6.15) assuming a measurement efficiency
η = 20%. In Fig. 6.4, I plot a representative example of these results, with panels (a-c)
corresponding to a readout integration time of 50 ns and (d-f) to 400 ns, and the different
columns corresponding to detunings of the Purcell filter away from the central frequency
response of the resonator, ωc = (ωer + ωgr )/2.

This data provides invaluable insights into parameter optimization. For example, at short
readout times (a-c), we see that the readout performance is very poor for κ/2π < 50 MHz,
which suggests that broadband Purcell filters are required for high-fidelity fast readout.
Perhaps more surprisingly, we find that large SNRs can still be obtained at short readout
times when the Purcell filter is detuned away from the central frequency, see Fig. 6.4(a),
although this requires very precise engineering of the coupling strength J to compensate.
For even larger detunings in Fig. 6.4(c), loss rates as high as 200 MHz are required for
reasonable SNR.

At longer readout times of 400 ns (d-f), we see much broader features and can obtain
excellent readout fidelities with small J and κ, in particular for (e), where ωp = ωc. We
additionally note that good readout can be obtained for small κ and large J – however, in
this limit, the two normal modes are strongly separated in frequency, leading to an increased
Purcell decay rate.

Experimentally, the filter frequency is generally hard to precisely fabricate [104], with
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Figure 6.4 Performance of the readout as a function of the drive frequency at 50 ns (a-c) and
400 ns (d-f) for various parameters. Fast readout times require a large decay κ
and more precise fabrication of the coupling strength J .

deviations on the order of 10s of MHz expected. This sort of analysis can provide a pathway
for optimizing the relative parameters to ensure the fabricated couplings yield effective
readout rates for various qubit setups. In Appendix A I provide additional details and
analysis of the SNR function in different limits.

6.3.5 Nonlinear Effects – Semiclassical approach

As discussed in Chapter 5, the use of nonlinear semiclassical equations of motion proved
useful in accurately describing important aspects of ionization dynamics. A suitable ques-
tion therefore arises in this context – does accounting for the Kerr-nonlinearities in the
semiclassical equations lead to better predictions of the dynamics at higher powers?

In Fig. 6.5, I plot in blue an example trajectory calculated from the non-linear equations
of motion, i.e. where we preserve the Kerr nonlinearity in the resonator (see [2]) for the
qubit initialized in the ground state:

α̇g,e = −i(∆g,e − Kg,e

2 |α|2)αg,e − iJg,eβg,e,

β̇g,e = −i(∆p − iκ/2)βg,e − iJg,eαg,e + E ,
(6.21)
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with parameters J/2π = 30 MHz, ωp/2π = 6.88 GHz, Kg/2π ≈ 600 kHz, Ke/2π ≈ 100
kHz, and κ/2π = 35.3 MHz, with the remaining parameters identified above. I additionally
solve the linear set of equations Eq. (6.14), given in orange and compare these solutions to
the predicted field from the master equation (see Sect. 6.4). The master equation, calculated
using the voltsolve(alt) algorithm detailed in Chapter 4, was solved with 4 transmon levels,
and 16 states in both the resonator and Purcell filter, corresponding to a Hilbert space size
of 1024. The nonlinearity provides a small but important correction, bringing the dynamics
closer to the true solution. This therefore suggests that the parameters for low-power qubit
readout with Purcell filters, including the drive frequency and power, could be optimized
without the need of simulating the entire master equation and Hamiltonian.
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g
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0.35

0.40

Figure 6.5 Parametric trajectory of the filter response βg(t) when the qubit is in the ground
state, as calculated from the nonlinear coupled semiclassical equations of motion
in Eq. (6.21) (blue), from the standard linear relation in Eq. (6.14)(orange) and
from the solution to the master equation (green) for a duration of 400 ns. The
inset more clearly shows the deviation at the system’s steady state.

6.4 Publication – Enhancing Dispersive Readout of Supercon-
ducting Qubits Through Dynamic Control of the Dispersive
Shift: Experiment and Theory [3]

In this publication, in which I worked as the theory support for the experimental results,
we present a method by which the readout fidelity can be optimized by changing the qubit
frequency. In doing so, we can increase the dispersive shift χ and the effective linewidth of
the targeted mode, increasing the rate of SNR and optimizing the readout in a short time. As
of writing, these results are state-of-the-art, reaching a readout fidelity of 99.75% in only 100
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ns. This functions as a complement to the above work, where in this experimental setup, the
resonator-qubit coupling J is fixed but the dispersive shift and the Purcell-resonator detuning
varies. We additionally clearly see at which drive powers the dispersive measurement breaks
down, which is indicated by a large drop in SNR and readout fidelity.
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The performance of a wide range of quantum computing algorithms and protocols depends crit-
ically on the fidelity and speed of the employed qubit readout. Examples include gate sequences
benefiting from mid-circuit, real-time, measurement-based feedback, such as qubit initialization,
entanglement generation, teleportation, and perhaps most importantly, quantum error correction.
A prominent and widely-used readout approach is based on the dispersive interaction of a super-
conducting qubit strongly coupled to a large-bandwidth readout resonator, frequently combined
with a dedicated or shared Purcell filter protecting qubits from decay. By dynamically reducing
the qubit-resonator detuning and thus increasing the dispersive shift, we demonstrate a beyond-
state-of-the-art two-state-readout error of only 0.25% in 100 ns integration time. Maintaining low
readout-drive strength, we nearly quadruple the signal-to-noise ratio of the readout by doubling
the readout mode linewidth, which we quantify by considering the hybridization of the readout-
resonator and its dedicated Purcell-filter. We find excellent agreement between our experimental
data and our theoretical model. The presented results are expected to further boost the performance
of new and existing algorithms and protocols critically depending on high-fidelity, fast, mid-circuit
measurements.

Realizing high-fidelity and fast single-shot readout of a
qubit [1–3] is essential for quantum error correction pro-
tocols [4–8] in which qubit decoherence during readout
and reset contributes significantly to the logical error. It
is also key for algorithms requiring real-time feedback,
such as teleportation [9–12], distillation [13, 14] and ini-
tialization [15–18].
In superconducting circuits, the most commonly used

readout architecture employs the state-dependent disper-
sive shift of the resonance frequency of a resonator cou-
pled to the qubit to infer the qubit state [19–21]. Whilst
the frequency of the resonator is typically fixed, flux-
tunable transmons allow to control the qubit-resonator
detuning by modifying the transmon frequency [22], en-
able high-fidelity fast entangling gates [23–25] and avoid
frequency collisions. Additionally, each qubit is often
coupled to a microwave transmission line via a dedicated
[6, 7, 26] or common Purcell filter [8, 27, 28] to pro-
tect the qubit from radiative decay [29–31]. Such mea-
surements are usually performed with weak measurement
tones to avoid nonlinearities and detrimental qubit state
transitions, although high-power readout has been stud-
ied both theoretically [32] and experimentally [2].
In the past few years, significant improvements to the

single-shot readout have been realized, reaching a two-
level readout assignment fidelity of 4× 10−3 in 88 ns [3].

∗ francois.swiadek@phys.ethz.ch

Faster readout protocols have been realized, with a
9 × 10−3 fidelity readout achieved in 40 ns by utilizing
the distributed-element, multimode nature of the read-
out resonator [33].

One of the critical parameters governing dispersive
qubit readout is the detuning between the qubit and the
readout resonator, which controls both the magnitude
of the dispersive shift and the nonlinearities induced in
the resonator. Different detuning regimes have been ex-
plored, including cases where the resonator frequency is
lower than the qubit [3, 34]. Notably, the measurement
fidelity has been shown to improve for smaller detun-
ings [7, 35], although these observations were not fully
explained.

In this work, we demonstrate an increase in the signal-
to-noise ratio (SNR) and assignment fidelity by bringing
the qubit frequency closer to the readout resonator’s fre-
quency using a flux pulse, see illustration in Fig. 1 (a,b),
achieving a minimum two-level readout error of 2.5×10−3

in 100 ns. We accredit this remarkable performance not
only to an increase in the dispersive shift χ imparted by
the qubit on the cavity, but also to an increase in the ef-
fective linewidth of the targeted normal mode response,
caused by bringing the Lamb-shifted readout resonator
closer to resonance with the Purcell filter, see Fig. 1 (c).
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FIG. 1. (a) Schematic of a qubit coupled to a readout
resonator-Purcell-filter system. The qubit of transition fre-
quency ωq is coupled capacitively at rate g to a readout res-
onator of frequency ωr. The readout resonator in turn is
coupled at rate J to a Purcell filter of frequency ωp, which
is coupled to a feedline at rate κp. We probe the system by
measuring the transmission of a readout pulse at frequency ωd

through the feedline. The effective decay rate of the readout
resonator is indicated as κ. (b) Schematic of time-dependence
of qubit frequency ωq relative to the readout resonator fre-
quency ωr. The qubit, initially idling at the lower flux sweet
spot, is pulsed to a smaller detuning from the readout res-
onator using a fast Gaussian-filtered, rectangular flux pulse.
(c) Illustration of the rise of the SNR of the qubit read-
out with integration time τ parameterized by the effective
linewidth of the readout resonator κ at approximately con-
stant dispersive shift χ. Increasing color saturation in panels
(b) and (c) indicate increasing κ at reduced detuning between
ωq and ωr.

I. READOUT PARAMETER
CHARACTERIZATION

We perform the experiment with a transmon qubit of
transition frequency ωq/2π = 4.14GHz at the lower flux
sweet spot [36] and anharmonicity α/2π = −181MHz.
It has a lifetime T1 = 30.4 µs and is capacitively cou-
pled to a readout resonator with a coupling strength
g/2π = 224MHz. The readout resonator is coupled to
a feedline used for multiplexed readout [26] via a dedi-
cated Purcell filter of linewidth κp and with a coupling
strength J , see Fig. 1 (a). The qubit is located on a de-
vice used to execute a distance-three surface code (see
Fig. 7, Appendix A). Further information on the device
properties and its fabrication can be found in Ref. [7].

To determine the readout parameters as a function of
the frequency detuning between the qubit and its read-
out resonator, we perform pulsed spectroscopy experi-
ments. We first prepare the qubit in the ground state
|g⟩ or excited state |e⟩, pulse the qubit to a chosen read-
out frequency ωq using a baseband flux pulse, and probe
the readout circuit using a 2.2 µs long microwave tone.
This duration corresponds to the maximum integration
time of our readout electronics (see Appendix A). The

flux pulses are Gaussian-filtered rectangular pulses with
short rising and falling edges minimizing coupling to two-
level systems [7], see Fig. 1 (b).
We repeat the experiment for five different qubit—

readout-resonator detunings ∆qr/2π, spanning −2.7GHz
to −1.3GHz, where ∆qr = ωq − ωg

r . We denote

ω
g/e
r as the readout resonator frequency with the qubit

prepared in the ground/excited state. The measured
(light colored lines) and calculated (dark colored lines)
transmission response is shown in Fig. 2 (a), with
blue/red lines corresponding to the qubit prepared in
the ground/excited state. From a fit to a coupled qubit—
readout-resonator—Purcell-filter model (see Appendix A
and solid blue and red lines in Fig. 2 (a)), we extract
the relevant readout parameters for each value of ∆qr.
The measured (dots) and calculated (lines) dressed read-
out resonator frequencies ωg

r and ωe
r = ωg

r + 2χ are
shown in Fig. 2 (b) (blue and red circles) as a func-
tion of the detuning ∆qr, along with the Purcell filter
frequency ωp/2π = 6.900GHz, which remains constant.

The variation in the resonator frequencies ω
g/e
r is due to

the Lamb shift g2/∆qr caused by the qubit [22]. Fur-
thermore, we extract both a large intended Purcell filter
linewidth κp/2π = 34.5MHz and a large intended cou-
pling strength between the readout resonator and the
Purcell filter J/2π = 27.5MHz.
We consider a standard circuit-QED approach to

model the transmon—resonator—Purcell-filter system,
see Appendix B for details. In the case of a weak drive
E applied to the filter mode, the readout resonator and
the Purcell filter responses can be considered as linear.
As such, the dynamics can be effectively mapped to the
equations of motion [37]

[
α̇g/e

β̇g/e

]
=− i

[
ω
g/e
r J
J ωp − iκp/2

] [
αg/e

βg/e

]

+

[
0

Ee−iωdt

]
,

(1)

where α and β represent the coherent fields of the readout
resonator and Purcell filter, respectively. In the regime
J ≈ κp, we observe two distinct hybridized readout-
resonator—Purcell-filter modes, see Fig. 2 (a). We de-
note these as the low and high readout modes, respec-
tively, the lowest and highest of the two modes in the
transmission spectrum. The frequency and linewidth of
these modes can be determined, respectively, from the
real and the imaginary part of the eigenvalues of the
equations of motion in Eq. (1) in the absence of a drive:

ω
g/e
l,h =

ω
g/e
r + ωp

2
± 1

2
Re

√(
∆

g/e
rp +

iκp

2

)2

+ 4J2,

κ
g/e
l,h =

κp

2
∓ Im

√(
∆

g/e
rp +

iκp

2

)2

+ 4J2.

(2)
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FIG. 2. (a) Readout circuitry transmission spectra measured for five qubit—readout-resonator detunings (∆qr/2π ∈
[−2.7,−2.4,−1.9,−1.6,−1.3]GHz from bottom to top, vertically shifted by increments of one). Spectra are shown for both the
qubit prepared in the ground state |g⟩ (blue) and in the excited state |e⟩ (red). Solid lines are fits based on a coupled qubit—
readout-resonator—Purcell-filter model (see Appendix A). Dashed black lines indicate the selected readout frequency, chosen

such that the response in transmission |S|e⟩
out,in−S

|g⟩
out,in| is maximum. (b) Resonator frequency ωg

r (ωe
r) conditioned on the qubit

being prepared in the ground (excited) state, and Purcell filter frequency ωp as a function of ∆qr. (c) Measured dispersive shift
χl (χh) of the lower (higher) frequency hybridized readout mode (see green (purple) points), as a function of ∆qr. The two
contributions sum up to the bare readout resonator mode dispersive shift (solid black line) χ = χl + χh ≈ αg2/∆2

qr. The solid
lines (purple and green) are fits based on a qubit—readout-resonator—Purcell-filter model (see Appendix A). (d) Measured
effective readout resonator linewidth κl (κh) for the lower (higher) frequency hybridized readout mode for the qubit prepared in
the ground/excited (see blue/red), as a function of ∆qr. Solid lines are fits based on a qubit—readout-resonator—Purcell-filter
model (see Appendix A). In (b,c,d) the corresponding detunings ∆rp = ωg

r − ωp between the Purcell filter and the readout
resonator, indicating the degree of hybridization of the two resonator modes, are shown on the top axis.

The readout-resonator—Purcell-filter hybridization
leads to a distribution of the total qubit-induced dis-
persive shift χ on the readout-resonator—Purcell-filter
system. Using the model in Eq. (2), we can extract
the dispersive shifts of the low and high modes respec-
tively, χl/h = (ωe

l/h − ωg
l/h)/2, see purple (green) cir-

cles for the low (high) mode in Fig. 2 (c). While the
total dispersive shift χ = χl + χh shows the expected
αg2/∆2

qr dependence in Fig. 2 (c) (solid black line), with
2χ/2π ∈ [−5.67,−19.49]MHz, the low mode dispersive
shift only shows small variations in that range, staying
between 2χl/2π ∈ [−4.17,−6.69]MHz (see solid purple
line in Fig. 2 (c)). In contrast, the high mode dispersive
shift shows a similar scaling with ∆qr as the total dis-
persive shift, with 2χh/2π ∈ [−1.5,−13.18]MHz (solid
green line in Fig. 2 (c)).

We observe that the dispersive shift of the low mode
is dominant for qubit—readout-resonators detunings be-
low −1.6GHz, after which the dispersive shift of the high
mode becomes larger. The crossing point where χl = χh,
in the vicinity of the qubit—readout-resonator detun-
ing ∆qr/2π = −1.6GHz, corresponds to an equal hy-
bridization of the two readout modes. It coincides with
ωp = ωg

r + χ = ωe
r − χ being equidistant to the ground

and excited state responses of the readout resonator, see
Fig. 2 (b).

Our model also gives us valuable information about
the linewidth of the low and high modes, for the qubit
prepared in the ground |g⟩ or excited state |e⟩, namely
κg
l (κg

h) and κe
l (κ

e
h), as a function of the qubit—readout-

resonator detuning ∆qr. As shown in Fig. 2 (d), while

|χl| > |χh| for ∆qr/2π ≤ −1.6GHz, we have κ
g/e
l < κ

g/e
h .

This is expected as for ∆qr/2π ≤ −1.6 GHz, the low
mode has a larger weight in the readout resonator. The
difference between κg

l and κe
l for the low mode derives

from the frequency detuning ∆
g/e
rp = ω

g/e
r − ωp, between

the readout-resonator frequency and the Purcell-filter fre-
quency. In particular, for the low mode, κg

l > κe
l for all

detunings while for the high mode κg
h < κe

h, which can be
seen from the analysis of the normal mode Hamiltonian
in Appendix B.
In the vicinity of the detuning leading to an equal

hybridization of the low and high modes ∆qr/2π ≈
−1.6GHz, we further note that all κe

h/2π ≈ κg
l /2π ≈

19MHz and κg
h/2π ≈ κe

l /2π ≈ 14MHz. After this
crossing point, we observe that while |χl| > |χh| for

∆qr/2π ≥ −1.6GHz, we find κ
g/e
l > κ

g/e
h , which we ex-

ploit in Sec. II. The detailed parameters are summarized
in Table I.

II. SINGLE-SHOT READOUT

We perform single-shot readout for the
qubit—readout-resonator detunings ∆qr/2π ∈
[−2.7,−2.4,−1.9,−1.6, −1.3]GHz (see Fig. 2) as a
function of the readout-pulse power and integration time
τ ∈ [50, 100, 200, 300, 400] ns. Each experiment consists
of 104 single-shot measurements with the qubit prepared
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in the ground or excited state. The detuning is varied
by tuning the qubit to a chosen frequency ωq, using a
flux pulse as described above. We use a rectangular
readout pulse with a duration of 450 ns convolved with
a Gaussian filter of width σ = 0.5 ns, and integrate the
readout signal for a time τ using mode-matched weights
[38] to discriminate the ground |g⟩ and excited |e⟩ qubit
state responses. The flux pulse lasts longer than the
readout pulse. In addition, we use a preselection readout
to reduce residual excited state population of the qubit
to below 0.1% [39].

We express the readout power as a function of the
number of photons in the readout resonator ng when
the qubit is prepared in the ground state, relative to
the critical number of photons in the resonator ncrit =
∆2

qr/4g
2 [19] at a given qubit—readout-resonator detun-

ing ∆qr. By measuring the qubit-induced ac-Stark shift
∆ac = 2g2/∆qr on the readout resonator at ∆qr/2π =
−2.7GHz we can infer the number of photons ng in the
resonator when the qubit is prepared in the ground state,
ng = ∆ac/2(χl+χh) (see Appendix D). The photon num-
ber ng at other detunings and the photon number ne

when the qubit is prepared in the excited state for all
detunings are inferred using semi-classical analysis, see
Appendix B.

The readout drive frequency ωd is chosen such that
the difference in the response in transmission when the

qubit is prepared in the ground or excited state |S|e⟩
out,in−

S
|g⟩
out,in|, is maximum for the low mode, see vertical black

dashed lines in Fig. 2 (a). In the theoretical model
(see Appendix. C), this choice corresponds to selecting
the drive frequency which leads to the largest steady-
state displacement between the coherent g-state and e-
state Purcell-filter-mode responses. This assumes a fixed
weak drive power, such that the response is in the linear
regime. We found that this choice consistently leads to
a stronger resonator response for the qubit being in the
excited state (ne > ng). We accredit this to a smaller ef-
fective linewidth for the excited state for the lower mode,
κe
l < κg

l , see Fig. 2 (d). We find this to be an appropri-
ate choice of drive frequency, as the Kerr nonlinearity
imparted on the resonator is weaker for the excited state
than the ground state (see Appendix B).

We extract the signal-to-noise ratio (SNR) in terms of
power, of the acquired single-shot histograms (see Fig. 3)
from a bimodal Gaussian distribution as [38]

SNR ≡
∣∣∣∣

µg − µe

(σg + σe)/2

∣∣∣∣
2

, (3)

where µg/e and σg/e are, respectively, the mean and the
standard deviation of the Gaussian distributions of the
g/e-state responses. In Fig. 3 the solid black line indi-
cates the distance between the means µg and µe, and
radii of the black circles are given by the square root of
the diagonal covariance matrix elements of the bimodal
Gaussian distribution.
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FIG. 3. Single-shot readout histogram for a qubit—readout-
resonator detuning of ∆qr/2π = −1.3GHz, a readout integra-
tion time of τ = 100 ns, and ng/ncrit = 0.93. We assign the
measured state using a bimodal Gaussian mixture model. The
marginal distributions of this model along each axis are plot-
ted along the corresponding axis. A solid black line indicates
the distance between the means µg and µe of the Gaussian
distributions of the ground and excited state responses. The
square root of the covariance matrix diagonal elements of the
Gaussian distributions σg and σe are used as the radii of the
black circles.

We characterize the measurement by the average as-
signment error εa for two-state readout, limited by the
overlap error between the Gaussian distributions and the
qubit lifetime T1, defined as [38]

εa = 1−Fg,e

= [P (e|g) + P (g|e)] /2

≳ 1

2

[
1− erf

(√
SNR/8

)]
+

τ

2T1
,

(4)

where P (i|j) is the probability of measuring the state
|i⟩ when having prepared the state |j⟩, and where the
average two-state readout fidelity Fg,e characterizes the
quality of the readout. The factor two present in the T1

limit term arises from the fact that only P (g|e) is affected
by loss events.
In Fig. 4 (a) we present the lowest measured av-

erage assignment errors εa as a function of the
qubit—readout-resonator detuning ∆qr/2π ∈ [−2.7,
−2.4,−1.9,−1.6,−1.3]GHz and as a function of the read-
out integration times τ ∈ [50, 100, 200, 300, 400] ns.
We observe that εa < 1 × 10−2 for τ ≥ 100 ns. When
τ ≥ 100 ns and for all qubit—readout-resonator detun-
ings, the variations in the average assignment error are
small and stay between 2.5× 10−3 ≤ εa ≤ 1× 10−2, ex-
cept for ∆qr/2π = −2.7GHz and τ = 100 ns. The best
assignment error εa = 2.5×10−3 is reached at τ = 100 ns
and ∆qr/2π = −1.3GHz.
This observation suggests that beyond this integration

time the assignment error is no longer limited by the
SNR, which would continue to increase for longer readout
times. This is further demonstrated in Fig. 4 (b), where
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FIG. 4. (a) Minimum assignment error εa measured as a
function of the qubit—readout-resonator detuning ∆qr/2π
∈ [−2.7,−2.4,−1.9,−1.6,−1.3]GHz and the readout integra-
tion time τ ∈ [50, 100, 200, 300, 400] ns. Annotated values
are in per mille unit of probability: the lowest assignment er-
ror εa = 2.5× 10−3 is reached at a qubit—readout-resonator
detuning of ∆qr/2π = −1.3GHz, for an integration time of
τ = 100 ns. (b) Measured SNR corresponding to the mini-
mum assignment error in (a).

we indicate the measured SNR corresponding to each
lowest measured average assignment error in Fig. 4 (a)
as a function of the same qubit—readout-resonator de-
tuning and readout-integration-time range. We observe
that a SNR ≥ 30 leads to 2.5 × 10−3 ≤ εa ≤ 1 × 10−2

for τ ≥ 100 ns and for all detunings ∆qr. On the other
hand, SNR ≤ 14 leads to a larger assignment error
3.87 × 10−2 ≤ εa ≤ 2.87 × 10−1. In particular, we
find that the best assignment error εa = 2.5 × 10−3

is reached for SNR = 48.5. An SNR ≥ 200 leads to
assignment errors on the same order as an SNR ≈ 50
(see for example at ∆qr/2π = −1.6GHz compared to at
∆qr/2π = −1.3GHz, with τ ∈ [300, 400] ns).
We next compare the readout performance in terms

of SNR at different qubit—readout-resonator detunings
as a function of the readout power ng/ncrit, for a fixed
integration time τ = 100 ns, see Fig. 5 (a). The shaded
regions indicate the theoretical SNR prediction from the
linear response to the readout drive power [40]

SNR(t) = 2ηκp

∫ t

0

|βe(t
′)− βg(t

′)|2dt′, (5)

where η is the measurement efficiency. This expression is
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FIG. 5. (a) SNR as a function of ng/ncrit for the indi-
cated qubit—readout-resonator detunings ∆qr and at a fixed
readout-integration time of τ = 100 ns. The shaded regions
provide estimates from the analytical solution in the linear
regime, detailed in Appendix C. (b) Average assignment er-
ror εa as a function of ng/ncrit for the indicated readout
integration times τ at a fixed qubit—readout-resonator de-
tuning ∆qr/2π = −1.3GHz. Solid lines are plotted for ease
of visualization. Dashed lines correspond to the theoretical
limit imposed by the relaxation time of the qubit given by
εmin
a = 0.5[1− erfc(

√
SNR/8)] + τ/2T1.

in line with Eq. (3). We note that the SNR for the small-
est detunings ∆qr ∈ [−1.6,−1.3]GHz is significantly
higher, which we accredit to the increase in the linewidth

of the targeted lower mode κ
g/e
l , see Fig. 2 (d). This

increased linewidth results in the pointer states βg/e(t)
reaching the steady state faster, thus maximizing the
SNR rate. The shaded region contains the upper- and
lower- bound estimates of the SNR based on uncertain-
ties in the model parameters, see Appendix C.

In all instances we observe a saturation of the SNR at
a readout power ng ≳ ncrit, where the dispersive approx-
imation is known to break down [32, 41, 42]. This is in
part due to the broadening of the pointer states caused
by the qubit-induced Kerr nonlinearity of the resonator
(see Fig. 9), measurement-induced state transitions [43]
and ionization [44].

Finally, we compare in Fig. 5 (b) the average assign-
ment error εa at different readout integration times τ ∈



6

0 100 200 300 400 500 600 700 800
Integration time,  (ns)

10 3

10 2

10 1
As

sig
nm

en
t e

rro
r, 

a
Johnson, '11

Jeffrey, '14
Bultink, '16

Walter, '17

Dassonneville, '20 Touzard, '19

Chen, '22

Swiadek, '23

Sunada, '22
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son et al. [41], Jeffrey et al. [30], Bultink et al. [45], Walter
et al. [3], Dassonneville et al. [46], Touzard et al. [47] (blue
circles) and in this work (red circle) as a function of the read-
out integration time. Jurcevic et al. [48] reached a two-level
assignment error of 3.5× 10−2 using the excited state promo-
tion technique [49] and is not plotted here.

[50, 100, 200, 300, 400] ns for a fixed qubit—readout-
resonator detuning ∆qr/2π = −1.3GHz as a function of
the readout power ng/ncrit. For ng/ncrit < 1, we find ex-
cellent agreement between the experimental data (dots)
and the approximate theoretical limit (dashed lines) in
Eq. (4). Here, we note that the 50 ns measurement is
clearly limited by the SNR, which consistently improves
at higher drive powers. For 100 ns, the minimum assign-
ment error εmin

a = 2.5 × 10−3 is limited by the intrinsic
lifetime of the qubit T1 rather than the SNR, which can
be seen by comparison to the calculated assignment er-
ror (gray dashed line), which plateaus at higher readout
powers. We notice a distinct upturn in the 100 ns mea-
surement at higher drive powers, which we attribute to
non-linearities and measurement-induced transitions.

For the longer readout times τ ∈ [200, 300, 400] ns,
the minimum assignment error is obtained at lower drive
powers, since these measurements reach a larger SNR.
Given that the assignment fidelity is limited by the qubit
lifetime, the increase in SNR by increasing drive power
has little impact on the final assignment error εa, as in-
dicated by the plateaus (dashed lines).

III. CONCLUSION

We have demonstrated beyond-state-of-the-art single
shot readout reaching a minimum assignment error of
2.5×10−3 in only 100 ns when reducing the qubit detun-
ing from the resonator by applying a flux pulse, see our
work in perspective with other techniques in Fig. 6. We
provided new insights on dispersive readout for a qubit—
readout-resonator—Purcell-filter system, in a strongly
hybridized regime where the coupling strength between
the readout resonator and the Purcell filter J is compa-

rable to the Purcell filter linewidth κp. We showed that
by probing the dispersive regime via flux pulses we can
increase the effective decay rate of the targeted readout
mode, thus allowing us to reach larger SNR in a shorter
integration time.

Our findings open opportunities to study other regimes
and help optimize the readout parameters in the design
stage of quantum processors in order to adjust the ef-
fective decay rate of the readout mode depending on
the applications. For instance, we expect this work to
help reduce the readout contribution to the quantum er-
ror correction cycle time on superconducting qubit plat-
forms [7], without compromising on the readout fidelity
constraints. Such techniques combined with machine
learning methods as in Ref. [50] for the optimization of
pulse shapes, could continue to decrease readout times
while maintaining low readout errors.
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Appendix A: Experimental setup and device
characterization

We used a qubit of a 17-qubit quantum device, shown
in Fig. 7, to perform the experiment. We fabricated
the 17-qubit quantum processor by sputtering a nio-
bium 150-nm-thin film onto a high-resistivity intrinsic
silicon substrate. All coplanar waveguides, capacitors
and qubit islands were patterned using photolithogra-
phy and reactive-ion etching. The aluminium-titanium-
aluminium trilayer airbridges establish a well-connected
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FIG. 8. Schematic of the wiring and control electronics.
The qubit (yellow) on the quantum device is connected to
the room-temperature electronics via flux lines (green), drive
lines (pink) and readout lines (purple) through its readout
resonator (red) and Purcell filter (blue). The background col-
ors indicate to the temperature stages of the experimental
setup.

ground plane on the device and connect signal lines split
by crossings. We fabricated aluminium-based Joseph-
son junctions using shadow evaporation of aluminium
through a resist mask defined by electron-beam lithog-
raphy.
We characterized the properties of the qubit using

spectroscopy and standard time-domain measurements.
The qubit has an idling frequency ωq/2π = 4.144GHz,
an anharmonicity α/2π = −181MHz, a lifetime T1 =
30.4 µs, a Ramsey decay time T ∗

2 = 29.2 µs, and an echo
decay time T e

2 = 33.9 µs.
Following the method in Ref. [26], we fit the transmis-

sion amplitude of the readout signal through a feed-line
to the function

|Sout,in|(ω) = (A+ k(ω − ω0))×∣∣∣∣∣cos(ϕ)− eiϕ
κp(−2i∆

g/e
r )

4J2 + (κp − 2i∆p)(−2i∆
g/e
r )

∣∣∣∣∣ ,
(A1)

where A is the amplitude, k describes a tilt in the spec-
trum centered at ω0, ϕ is a phase rotation induced by the
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qubit—readout-resonator detuning ∆qr/2π GHz -2.7 -2.4 -1.9 -1.6 -1.3
Qubit frequency during readout ωq/2π MHz 4144 4500 5000 5300 5600
Bare readout resonator frequency ωr,b/2π MHz 6854.63 6858.02 6857.98 6859.74 6864.86

Dressed readout resonator frequency ωg
r/2π MHz 6876.27 6881.98 6896.09 6906.33 6928.43

Purcell filter frequency ωp/2π MHz 6899.86 6899.86 6899.86 6899.86 6899.86
Readout drive frequency ωd/2π MHz 6857.4 6861.2 6870.0 6874.0 6881.6

Qubit readout resonator coupling gb/2π MHz 224.32 205.61 211.49 204.2 205.53
Qubit charge-readout resonator coupling g/2π MHz 284.01 271.40 293.71 292.27 302.34
Readout resonator-Purcell filter coupling J/2π MHz 27.9 27.9 27.9 27.9 27.9
Low mode linewidth, qubit in |g⟩ state κg

l /2π MHz 10.16 11.61 15.81 19.07 25.00
Low mode linewidth, qubit in |e⟩ state κe

l /2π MHz 8.88 10.03 12.66 14.84 19.87
High mode linewidth, qubit in |g⟩ state κg

h/2π MHz 23.86 22.41 18.21 14.95 9.02
High mode linewidth, qubit in |e⟩ state κe

h/2π MHz 25.14 23.99 21.36 19.18 14.15
Low mode dispersive shift 2χl/2π MHz -4.17 -4.35 -6.11 -6.69 -6.31
High mode dispersive shift 2χh/2π MHz -1.50 -1.90 -4.24 -6.64 -13.18

Critical readout resonator photon number ncrit 23.14 19.26 10.42 7.55 4.83

TABLE I. List of readout parameters extracted for the qubit—readout-resonator detunings ∆qr/2π spanning -2.7GHz to -
1.3GHz using pulsed-spectroscpy measurements.

capacitive couplings to other lines, κp is the external cou-
pling rate of the Purcell filter, ∆p = ω−ωp is the detuning
between the drive frequency ω and the Purcell-filter fre-

quency ωp, and ∆
g/e
r = ω−ω

g/e
r is the detuning between

the drive frequency and the resonator frequency condi-
tioned on the state of the qubit. The relevant parameters
for the studied qubit at the indicated qubit-resonator de-
tunings are provided in Table I.

We installed the device in a magnetically-shielded sam-
ple holder mounted at the base plate (9mK) of a cryo-
genic measurement setup [51] and connected it to the
control and measurement electronics as shown in Fig. 8.
We use a DC signal to generate a current inducing a
magnetic flux in the SQUID-loop of the transmon qubit,
to control its idle frequency. We use arbitrary waveform
generators to apply voltage pulses (2.4GSa/s sampling
rate) to the qubit to tune its frequency for readout. The
DC and AWG signals are combined using a bias-tee. A
precompensation of distortions in the flux line is applied,
as in Ref. [7].

We perform the single-shot readout experiments with
an ultra-high frequency quantum analyzer (UHFQA)
by using an IQ-mixer to upconvert the frequency-
multiplexed readout pulses from an intermediate fre-
quency signal sampled at 1.8GSa/s to the gigahertz
frequency range of the readout circuitry. At the
output of the device feedline, the readout signal
passes through a wide-bandwidth near-quantum lim-
ited traveling-wave parametric amplifier (TWPA) [52], a
high-electron-mobility transistor (HEMT) amplifier, and
room-temperature amplifiers. It is then down-converted
with an IQ-mixer and digitally demodulated and inte-
grated in the UHFQA. Further details on the device fab-
rication, characterization, and the experimental setup,
can be found in Ref. [7].

Appendix B: Model

To model the system, we use the Hamiltonian

Ĥtrp = 4Ecn̂
2
t − EJ(Φ) cos φ̂t

+ ωr,bâ
†â− ig(n̂t − ng)(â− â†)

+ ωpf̂
†f̂ + J(f̂† − f̂)(â† − â)

+ 2iE sin(ωdt)(f̂
† − f̂),

(B1)

where n̂t is the charge operator of the transmon, â the

readout resonator mode creation operator and f̂ the Pur-
cell filter mode creation operator. Ec is the charging en-
ergy of the transmon, EJ(Φ) the flux-tunable Josephson
energy of the transmon, ωr,b, ωp the bare resonator and
Purcell filer frequencies, and g, J the transmon-resonator
and resonator-Purcell coupling rates respectively. E , ωd

are the the drive amplitude and drive frequency. Further,
we consider a master equation

˙̂ρ = −i[Ĥtrp, ρ̂] + κpD[f̂ ], (B2)

where κp is the coupling rate between the Purcell fil-
ter and the feedline. We first diagonalize the transmon-
resonator subsystem. We follow the notation of Ref. [21],
and assume a Kerr-nonlinear oscillator model for the
transmon, valid in the low readout power regime. A
Schrieffer-Wolff transformation yields an effective Hamil-
tonian

Ĥ = ω̄q b̂
†b̂+ ωpf̂

†f̂ + ωg
r â

†â+ 2χâ†âb̂†b̂ (B3)

− 2λ′λ3EC â
†2â2b̂†b̂− α

2
b̂†2b̂2 − Ec

2
λ4â†2â2

+ J
([

1− 2λλ′b̂†b̂
]
â†f̂ + λb̂†f̂ +H.c.

)
,

where

χ = −g2EC/(∆qr(∆qr − EC)), (B4)

λ′ = λEc/
[
∆qr + Ec(1− 2λ2)

]
(B5)
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FIG. 9. (a), (b) Overlap error P (e|g) and P (g|e) for the indicated qubit—readout-resonator frequency detunings ∆qr at a fixed
integration time of τ = 100 ns. (c), (d) Gaussian width σg of the ground state single-shot histogram as a function of ng/ncrit

and ne/ncrit. (e), (f) Gaussian width σe of the ground state single-shot histogram as a function of ng/ncrit and ne/ncrit.

with λ = g/∆qr and ∆qr = ωq − ωr,b. Further, the
qubit and resonator frequencies become Lamb-shifted,
with ω̄q ≈ ωq + g2/∆qr, ωg

r ≈ ωr,b − g2/∆qr. The con-

tribution −2λ′λ3EC â
†2â2b̂†b̂ normalizes down the effec-

tive Kerr nonlinearity when the qubit is in the excited
state, and we note that Ke/Kg ≈ 1 + 4λ′/λ, where
4λ′/λ < 0 for ∆qr < 0. This nonlinearity leads to a
significantly larger increase in the Gaussian width of the
ground state response than the excited state response, as
seen in Fig. 9 (c,d,e,f) [53, 54]. For this reason, we quote
the drive power in the main text as a function of ng/ncrit

as opposed to ne/ncrit.

We also note a correlation between the broadening of
the ground state response and an increase in the overlap
errors P (g|e) and P (e|g) for ng/ncrit ≳ 1 where non-
linear effects are expected to be more important, see
Fig. 9 (a,b). Frequency renormalizations from the ef-
fective coupling of the filter to the qubit are on the order
of J2λ2/∆2

qr and can be safely ignored in this regime,
which was corroborated by numerical diagonalization of
Eq. (B1) and simulation of the master equation. More
importantly, we note that the effective coupling strength

between the resonator and Purcell filter, J [1 − 2λλ′b̂†b̂],
only weakly depends on the qubit state.

Appendix C: Linear response

For sufficiently small drive amplitudes, we can assume
negligible impact from the Kerr nonlinearity and take the
resonator and filter responses to be linear. As such, we
can use the relation
[
α̇g/e

β̇g/e

]
=− i

[
ω
g/e
r − ωd Jg/e

Jg/e ωp − ωd − i
κp

2

] [
αg/e

βg/e

]

+

[
0
E

]
,

(C1)

where α and β represent the coherent fields of the read-
out resonator and Purcell filter respectively, E is the
drive amplitude and Jg/e = J [1− λλ′(⟨σ̂z⟩+ 1)] is the
effective readout-resonator—Purcell-filter coupling, and
ωe
r = ωg

r + 2χ. Diagonalizing the equation of motion in
the absence of a drive (E = ωd = 0) yields eigenvalues

λ
g/e
l,h =

ω
g/e
r + ωp − iκp/2

2

± 1

2

√(
∆

g/e
rp +

iκp

2

)2

+ 4J2,g/e.

(C2)

For 4J ≫ κ, the eigenvalues approximately correspond
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FIG. 10. Example comparison of the master equation
βg/e,ME , against the semi-classical trajectories βg/e,SC , plot-
ted in the phase space of the Purcell filter mode for ∆qr/2π =
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ter modes, ⟨a⟩, and ⟨f⟩, respectively, where ⟨X⟩ = Re{a, f},
⟨Y ⟩ = Im{a, f}. Transparent lines correspond to the semi-
classical solution.

to a normal mode, where the indices l, h corresponds to
the low and high mode respectively. In this fashion, the

real and imaginary components of λ
g/e
l,h correspond to the

frequency and linewidth of these low and high modes

ω
g/e
l,h = Re[λ

g/e
l,h ], κ

g/e
l,h = −2Im[λ

g/e
l,h ]. (C3)

To obtain a qualitative understanding of the eigenvalues,

we perform an expansion of the square root in (∆
g/e
rp +

iκ/2). Assuming Jg/e ≈ J , this yields

λ
g/e
l,h =

ω
g/e
r + ωp − iκp/2

2

±
(
J +

∆2ge
rp − i∆

g/e
rp κp − κ2/4

8J

)
.

(C4)

Consequently, we see that the frequency ω
g/e
l,h of the two

sets of normal modes are approximately separated by 2J ,
with the relative dispersive shift of each mode χl,h be-
tween the low and high mode being

2χl = ωe
l − ωg

l ≈ χ− ∆g
rpχ+ χ2

2J
,

2χh = ωe
h − ωg

h ≈ χ+
∆g

rpχ+ χ2

2J
,

κ
g/e
l ≈ κp

2
+

∆
g/e
rp κp

4J
,

κ
g/e
h ≈ κp

2
− ∆

g/e
rp κp

4J
.

(C5)

Noting that ∆e
rp < ∆g

rp, we see that κ
g
h < κe

h and κg
l > κe

l
for ∆g

rp < 0, and vice versa for ∆g
rp > 0.
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FIG. 11. Measured (dots) ac-Stark shift ∆ac of the qubit pre-
pared in the ground state at ωq/2π = 4.14 GHz as a function
of the normalized readout power (real range spans 2.0 µV to
12.5 µV). The corresponding inferred resonator photon num-
ber ng = ∆ac/2(χl + χh) (solid line) is shown on the right
axis.

The relevant frequencies and linewidths extracted from
the normal-mode Hamiltonian in Eq. (C1) are plotted in
Fig. 2.
The steady state expressions are found to be

[
α
g/e
ss

β
g/e
ss

]
=

E
∆g/e(∆p − iκp/2)− J2

[ −J
∆g/e

]
. (C6)

Using this expression, the full time-dependent response
takes the form

βg/e(t) = βg/e
ss − E λh − (ωr + χ⟨σz⟩)

d

e−i(λh−ωd)t

(λh − ωd)

+ E λl − (ωr + χ⟨σz⟩)
d

e−i(λl−ωd)t

(λl − ωd)
,

(C7)

where d =
√
(−∆rp − iκp/2− χ⟨σz⟩)2 + 4J2.

We then use Eq. (C7) to express the SNR as [40]

SNR(t) = 2ηκp

∫ t

0

|βe(t
′)− βg(t

′)|2dt′, (C8)

where η is the measurement efficiency. We note that
this expression is the square of the often used expression
but is in line with Eq. (3). We then plot these results
for Fig. 5 (a) allowing for a ±1 MHz deviation in the
calculated values of g, J, ωr and κp to allow for uncer-
tainties in the fitted parameters and nonidealities caused
by spurious couplings to two-level systems, alongside a
variation of up to 5% in the measurement efficiency at
different frequencies. The shaded region contains the up-
per and low bound estimates of the SNR based on these
uncertainties.
Finally, we verify the validity of the semiclassical ap-

proximation. Negligible difference was noted in the tra-
jectories in phase space between the expected internal
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coherent fields ⟨â⟩, ⟨f̂⟩, calculated by solving the mas-
ter equation (B2), and the corresponding semiclassical
predictions α and β of the resonator and Purcell filter
respectively, confirming that the semiclassical model (in
Appendix C) captures the state separation at low pow-
ers. Example trajectories at low power for the Purcell
filter mode are plotted for the ∆qr/2π = −1.3 GHz case
in Fig. 10.

Appendix D: Photon number and drive power
calibration

We measure the ac-Stark shift ∆ac caused on the qubit
prepared in the ground state by the readout resonator as
a function of power, see Fig. 11. To this mean we simul-
taneously apply a readout tone with a length of 0.6 µs

of variable power and a π-pulse of variable frequency.
We measure the excited state population as a function
of the drive pulse frequency for each readout power for
the ωq/2π = 4.14GHz qubit frequency. The frequency
at which the excited state population is maximum cor-
responds to the instantaneous and ac-Stark shifted qubit
frequency.
We determine this frequency using a Gaussian fit. We

infer and then calibrate the steady state readout res-
onator photon number ng with the qubit prepared in
the ground state from ng = ∆ac/2(χl + χh) for the
chosen drive powers [55]. Then, using the steady state
resonator response from Eq. (C1), this allows us to ex-
tract the effective drive amplitudes E . The steady state
resonator responses for the qubit-resonator detunings
∆qr/2π ∈ [−4.5,−5.0,−5.3,−5.6]GHz are then inferred
from Eq. (C6) at the same drive powers.
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Conclusion

“Farewell, King under the Mountain! This is a bitter adventure, if it must end so;
and not a mountain of gold can amend it. Yet I am glad that I have shared in your
perils – that has been more than any Baggins deserves.”

– Bilbo Baggins, The Hobbit

The journey to fault-tolerant quantum computing is a long and treacherous one, filled with
unwelcome surprises. Some of the greatest challenges – including improving gate performance,
reducing spurious effects during readout, and decreasing leakage – will inevitably require
increasingly accurate simulations to help obtain the next order of magnitude in the fidelity
of operations. In this thesis, I have presented concepts and methodologies which I hope will
contribute to the field of circuit quantum electrodynamics and lead to a better understanding
of the limiting factors in qubit control and readout.

In Chapter 3, I introduced a tailored solver for systems with a fast-oscillating drive,
enabling a significant speedup over traditional numerical integrators. Furthermore, I extended
this solver to master equations in Chapter 4. Such a solver could be used for much larger
system sizes than I demonstrated in this thesis – for example, the simulation of a surface
code – without the necessity of rotating-wave approximations, which could lead to a better
understanding of the leakage processes and cross-talk. Further, the solver could be applied
to simulate dynamics of different quantum architectures such as spin qubits, so long as a
matrix formulation of the system exists. Many questions still remain, such as whether there
exists a more effective approach to approximate the Dyson operators, how to optimally
select step sizes, and how to best incorporate additional corrections to the Volterra integrals.
In my future work, I hope to answer some of these problems and push forward toward highly
efficient integrators that can tackle the most challenging quantum simulations.

Qubit readout remains one of the greatest challenges in circuit QED – in Chapter 5, I
detailed how the readout process can be corrupted due to resonances between the low and
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high energy states, and provided more insight into the role of the external gate charge. As
the location of these resonances becomes better understood, this could eventually lead to
more tailored choices of the system parameters to help minimize the non-QND nature of the
readout process. Moreover, the methods developed in this thesis can be extended to other
types of qubits, which would again help understand the limiting factors for qubit readout.

While spurious resonances remain problematic, there are still other ways we can improve
upon readout – namely, optimization of the Purcell filter parameters, which I addressed in
Chapter 6. Whilst the properties of this filter are well understood in the broadband and
strong-coupling regimes, there are still many unanswered questions for the intermediate and
weak coupling cases which only I touched on – for example, how do we understand spurious
resonances of the transmon-resonator-Purcell filter system in the context of the resonator
branches and ionization? Is there a more efficient method of simulating the dynamics
without resorting to semiclassical approaches? How does having different resonator photon
populations conditioned on the qubit state impact the readout?

The field of circuit quantum electrodynamics is undeniably rich, fascinating, and of great
promise in the years to come. Whilst there are a multitude of challenges remaining on the
road to useful quantum computation, I am thrilled to be part of and contribute to this area
of research, and see their resolutions in the years to come.



appendix A

SNR Analysis

“You’ll have some tea. . . are you sure you don’t want any? Aw go on, you’ll have
some. Go on go on go on go on go on go on go on go on GO ON!”

– Mrs Doyle, Father Ted

In this appendix, I provide some additional context to the SNR and the performance of
readout in different parameter regimes.

In order to understand how to optimize the SNR function, we must first consider the
steady state separation between the filter pointer states:

|βgss − βess|2 = J−2ncrit

∣∣∣∣∣∆g − ∆e
(∆g(∆p − iκ/2)− J2)

(∆e(∆p − iκ/2)− J2)

∣∣∣∣∣
2

= 4χ2J2ncrit

∣∣∣∣∣ 1
(∆e(∆p − iκ/2)− J2)

∣∣∣∣∣
2

.
(A.1)

If we assume that the system is always in the steady state, then the SNR scales as

SNR(t) = 2κt|βgss − βess|2. (A.2)

Thus, the SNR rate at steady state is simply given by the time derivative,

SNR′ = dSNR
dt

= 2κ|βgss − βess|2. (A.3)

Proceeding we must make assumptions about the drive frequency. Since we wish to obtain
analytic expressions, the optimization procedures in Sect. 6.3.3 are not particularly useful.
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Instead, we estimate that the optimal drive frequency is the average frequency of one of the
two normal modes, translating to:

ωd ≈
1
2 Re [λgl,h + λel,h], (A.4)

where the eigenvalues are given by

λg/e
l,h =

ωg/e
r + ωp − iκp/2

2 ± 1
2

√(
∆g/e
rp +

iκp
2

)2
+ 4J2,g/e, (A.5)

where ∆g/e
rp = ωg/e

r − ωp.

A.1 Strong Coupling Regime – 4J � κp

In the strong coupling regime, we expect two distinct low and high normal mode responses,
separated in frequency space on the order of 2J . We begin by assuming that the renormal-
ization to the real part of the eigenvalues λg/e

l,h from the imaginary κp term present in the
square root is negligible, yielding the optimal drive frequency for each normal mode,

ωd,l,h =
ωgr + χ+ ωp

2 ± 1
4

(√
∆2,g
rp + 4J2,g +

√
∆2,e
rp + 4J2,e

)
. (A.6)

We then assume 4J � ∆g,e
rp and Jg,e ≈ J , yielding the expansion

ωd,l,h ≈
ωgr + χ+ ωp

2 ± (J +C) , (A.7)

where
C =

(∆g2
rp + 2χ∆grp + 2χ2)

8J . (A.8)

Let’s assume we’re targeting the lower mode, choosing the − term. Thus, we find

∆e =
∆grp + 3χ

2 − (J +C) ,

∆p =
−∆grp − χ

2 − (J +C) .
(A.9)

Then, differentiating the SNR function at steady state by κ and setting this result to zero,
we find

dSNR’
dκ

= 0 −→ κopt = −2
(
J2

∆e
− ∆p

)
. (A.10)
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Then, assuming (∆rp + 3χ)/2−C is small, we find

J2

∆e
≈ −J +C −

∆grp + 3χ
2 , (A.11)

thus yielding
κopt = −2 (χ+ 2C) . (A.12)

This is only a correction to the well known optimal decay rate for a transmon-resonator
system, κ = −2χ (here we use the notation χ < 0.)

A.2 Broadband Filter Regime – κp � 4J , ∆g/e
rp

In the broadband filter regime, we cannot ignore frequency renormalizations from the
broadband Purcell filter. Instead, we treat the imaginary part under the square root
perturbatively, yielding

√
−κ2/4 + 4J2 + ∆2,g/e

rp − i∆g/e
rp κ ≈

−i
2 κ′ +

κ∆g/e
rp

κ′
, (A.13)

where
κ′ =

√
κ2 − 16J2 + 4∆2,g/e

rp ≈ κ−
8J2 − 2∆2,g/2

r,p
κ

. (A.14)

.Thus, we find the approximate pairs of eigenvalues for the ‘low’ and ‘high’ modes are

λg/e
l =

ωg/e
r + ωp

2 − κ(ωg/e
r − ωp)
2κ′ − i

4 (κ+ κ′),

≈ωp −
iκ

2 ,

λg/e
h =

ωg/e
r + ωp

2 +
κ(ωg/e

r − ωp)
2κ′ − i

4 (κ− κ
′),

≈ ωg/e
r − i

4J2 − ∆g/e
rp

2κ .

(A.15)

Here, one set of normal mode responses λg/e
l has virtually no dependence on the qubit state

– thus, we must target the other mode, with optimal drive frequency ωd = ωr. This simplifies
the formula for the optimization of the SNR rate,

SNR′ = 8χ2J2κncrit

∣∣∣∣∣ 1
χ(ωp − ωr − iκ/2)− J2

∣∣∣∣∣
2

. (A.16)
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Figure A.1 Plot of the SNR functions at after 400ns as in Chapter 6, including the optimal
parameters κopt, Jopt defined in the limits 4J � κ (blue lines) and κ � 4J
(orange lines), respectively.

Now taking the derivative with respect to J and setting the result to 0, we obtain an equation

J4
opt = χ2(ωp − ωr)2 + χ2κ2/4. (A.17)

To see how well these approximations match the predictions from the optimization in
Chapter 6, I replot the figures of the SNR at steady state, this time including the curves
indicating the optimal parameters κopt (blue lines) and Jopt (orange lines) in the two distinct
parameter regimes, 4J � κ and κ � 4J , respectively. These well capture the behaviour
at small resonator-Purcell detunings, but show some more significant deviations for large
detunings, see Fig. A.1(c). Using this methodology may help with the optimization of the
targeted parameters for readout during the fabrication and design process.
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