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Summary

The recent discovery of a correlated insulating state and superconductivity in twisted
bilayer Graphene (TBG) has opened a new platform for studying unconventional su-
perconductivity. superconductivity appears for TBG at an angle ∼ 1.08◦ for a very low
carrier density of about 1011 cm−2, with a Tc of 1.7 K .

The misalignment of the two layers of graphene at the magic angle creates a periodic
lattice called the moiré lattice. The effective model we use to describe this system is
based on the moiré lattice and was proposed by Kang and Vafek. This model includes
four Wannier orbitals located at the honeycomb lattice sites. In addition to hopping
terms between these orbitals, we also add intra-orbital and inter-orbital interactions
to the Hamiltonian and use a Hubbard or extended Hubbard model to describe the
system. Our calculations are based on quantum cluster methods. To investigate the
superconductivity we tile the lattice by the four site clusters immersed among six bath
orbitals and use the CDMFT method. In the study of the correlated insulating phase,
we use the VCA method and select clusters consisting of 12 Wannier orbitals so that we
can define inter-orbital interactions in a cluster.

We obtain a non-zero p±ip order parameter for superconductivity in a wide range of
carrier densities, which is consistent with the experimental observations. Experimental
measurements show that the system has a gap in the vicinity of n= 0.5 and n= 1.5 and
behaves like a Mott insulator. So we expect that the superconductivity to be suppressed
or eliminated in these ranges of densities, which is confirmed by our calculations. d± id
is another nonzero superconductor order parameter that we found. The size of this sin-
glet order parameter is smaller than the p ± ip. By calculating the Patthoff functional
for two kinds of superconductors, we conclude that p± ip superconductivity has a lower
free energy and therefore is the dominant phase between the two. In addition to the
superconducting phase, the study of the strongly correlated insulating phases observed
in the experiment was another objective of this thesis. Our calculations confirm the ex-
istence of these phases at quarter-, half- and three-quarter filling. Further computations
show that the insulating phase at quarter-filling is not a charge density wave and that
the insulating phase at half-filling is not antiferromagnetic.

iii





Sommaire

La découverte récente d’un état corrélé isolant et de la supraconductivité dans la bi-
couche de graphène moirée (TBG) a ouvert un nouveau canal dans l’étude de la supra-
conductivité non conventionnelle. Dans ce système, la supraconductivité apparaît à un
angle de torsion ∼ 1.08◦ et à très faible densité de porteurs de 1011 cm−2, avec une Tc
de 1.7 K .

Le défaut d’alignement des deux couches de graphène crée un super-réseau appelé
réseau moiré. Le modèle effectif utilisé pour décrire ce système est basé sur ce réseau
moiré et a été proposé par Kang et Vafek. Ce modèle comporte 4 orbitales de Wannier
centrées sur les sites d’un réseau en nid d’abeille. En plus des termes de saut entre ces
orbitales, nous ajoutons des interactions (intra- et inter-orbitales) et utilisons le mod-
èle de Hubbard étendu pour modéliser ce système. Nos calculs reposent sur les méth-
odes d’amas quantiques. Pour étudier la supraconductivité, nous utilisons un dallage
du réseau par des amas de quatre sites couplés à six sites de bain dans la théorie du
champ moyen dynamique sur amas (CDMFT). Pour l’étude des phases isolantes, nous
utilisons plutôt la méthode de l’amas variationnel (VCA) sur un amas de douze sites, de
sorte que les interactions étendues peuvent être comprises minimalement dans l’amas.

Pour une large gamme de densités, cohérente avec les observations, nous trouvons
un état supraconducteur de type p ± ip. Les expériences montrent que le système pos-
sède un gap spectral au voisinage de n= 0.5 et n= 1.5 et se comporte comme un isolant
de Mott. On s’attend donc à ce que la supraconductivité soit atténuée ou éliminée près
de ces densités, ce qui est confirmé par nos calculs. On trouve aussi un état supraconduc-
teur d ± id comme solution secondaire, avec un paramètre d’ordre plus petit. Un calcul
de la fonctionnelle de Potthoff dans ces deux solutions nous permet d’affirmer que l’état
p± ip a une énergie plus basse et constitue donc la phase dominante. L’étude des phases
isolantes était un deuxième objectif de cette thèse. Nos calculs démontrent l’existence
de phases isolantes de Mott au quart remplissage et au demi-remplissage. Des calculs
additionnels montrent que l’état isolant à quart rempli n’est pas une onde de densité de
charge et que l’état isolant au demi-remplissage n’est pas antiferromagnétique.
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Chapter 1

The graphene bilayer

1.1 Graphene

Graphene was isolated for the first time by Konstantin Novoselov and André K. Geim in
2004 at the University of Manchester. For this and other contributions to this eld, they
were awarded the Nobel prize in physics in 2010. Following this discovery, graphene
has received a lot of attention from theoretical and experimental scientists in order to
understand the amazing properties of this 2D crystal. This was the first time that a truly
2D material was observed in Nature. This simple 2D crystal has remarkable electrical,
chemical and mechanical properties. One of these exiting properties is the relativis-
tic behavior of its electrons. Electrons in graphene are massless charged particles that
obey the Dirac equation. Therefore this system is an ideal candidate for testing quantum
eld-theoretical models and making a bridge between condensed matter and high-energy
physics. Graphene is an isolated layer of graphite, the most available allotrope of carbon
that is made up of very tightly bonded carbon atoms. Graphite has a multilayer structure
and in each layer, carbon atoms are organised into a hexagonal lattice. The electronic
conguration of carbon is 1s22s22p2 which shows that it has 4 valence electrons (2s and
2p) in its outer shell. These valence electrons contributed to make chemical bonds with
neighboring atoms. The atomic orbitals of each carbon atom form a sp2 hybridization
in which three electrons are distributed into three in-plane σ bonds, which are strongly
covalent. These strongσ bonds and the monolayer character of graphene make it a very
special material that breaks many records in terms of strength, electricity, heat conduc-
tion, etc. In addition to these three electrons which make σ bands, there is one extra
electron per atom that remains in the pz orbital that is perpendicular to graphene plane.
These pz electrons form the weaker π bond between different layers in graphite. The
Electronic structure calculations show that the σ bands are far away from the Fermi
level and therefore only the electrons in the π bond contribute to the electronic prop-
erties of graphene [100]. Because of this, it is sufcient to treat graphene as a collection
of atoms with single pz orbitals per site. In graphene, carbon atoms are located at the
vertices of a hexagonal lattice, which is a bipartite lattice and consists of two sublattices
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A and B. To have a Bravais lattice we have to put each two atoms in a repeated unit cell
with the basis vectors (a1,a2).

a1 =
a0

2
(3,
⎷

3)

a2 =
a0

2
(3,−

⎷
3), (1.1)

where a0 = 1.42 Å is the carbon-carbon distance in the hexagonal lattice. The corre-
sponding reciprocal-lattice vectors are given by:

b1 =
2π
3a0
(1,
⎷

3)

b2 =
2π
3a0
(1,−

⎷
3). (1.2)

In Fig. 1.1, we see the hexagonal lattice of graphene which tiles two-sites unit cells,
and the corresponding first Brillouin zone. The first Brillouin zone, in this case, has a
hexagonal shape and its vertices are called Dirac points. There are only two inequivalent
Dirac points denoted K and K′. We will see that near each Dirac point the energy of the
system is a linear function of the wave vector.

Figure 1.1
Hexagonal structure of graphene and its Brillouin zone. Left panel: honeycomb lattice of
single-layer graphene, made out of two triangular sublattices, A (red circles) and B (blue
circles); red ellipses indicate the two sites unit cells, a1,2 are the lattice unit vectors and δi are
the nearest-neighbor vectors. Right panel: the first Brillouin zone of graphene is a hexagon
in momentum space. The reciprocal lattice vectors are b1,2. The Dirac points are denoted by
K and K′.



The simplest tight binding Hamiltonian of this system is:

Ĥ = −t
∑︂

〈i j〉σ

a†
iσb jσ +H.c., (1.3)

where we only retain the first nearest neighbor hopping terms and t is the hopping
amplitude, a†

iσ(b
†
iσ) creates an electron on site i of the sublattice A(B). The index σ

labels spin projections, the brackets 〈...〉 stand for nearest-neighbor sites, and H.c. stands
for the Hermitian conjugate term. Since each unit cell has two carbon atoms A and B,
the single-electron spectrum of Hamiltonian (1.3) consists of two bands, both of which
are doubly degenerate with respect to the spin projectionσ. We will follow the standard
procedure to find the spectrum. We use the Fourier transform of the electron operators
and rewrite the Hamiltonian in k-space,

a†
iσ =

1
⎷

N

∑︂

k

e−ik·ri a†
kσ, b jσ =

1
⎷

N

∑︂

k

eik·r j bkσ, (1.4)

where N is the number of unit cells in the lattice and the sums run over all the quasi-
momenta k of the Brillouin zone. In this representation the Hamiltonian becomes:

Ĥ = −t
∑︂

iδ jσ

1
N

∑︂

kk′
e−i(k−k′)·ri eik′·δ j a†

kσbk′σ +H.c., (1.5)

where the index i runs over all the unit cells of the honeycomb lattice and δ j is the
relative position of the nearest neighbor atoms. Using the property

∑︁

i e−i(k−k′)·ri =
Nδkk′ the Hamiltonian becomes:

Ĥ = −t
∑︂

kσ

a†
kσbkσ

∑︂

δ j

eik·δ j +H.c., (1.6)

where,

δ1 =
a0

2
(1,
⎷

3), δ2 =
a0

2
(1,−

⎷
3), δ3 = −a0(1,0), (1.7)

Thus:

Ĥ = −t
∑︂

kσ

f (k)a†
kσbkσ +H.c.,

f (k) =
∑︂

δ j

eik·δ j = exp(−ia0kx)

�

1+ 2exp
�

3ia0kx

2

�

cos

⎷
3a0ky

2

�

. (1.8)

It is convenient to group the two electron operators into a single spinorΨ†
kσ = (a

†
kσ, b†

kσ).
In this representation the Hamiltonian becomes:

Ĥ =
∑︂

kσ

Ψ†
kσHkΨkσ, where Hk = −t

⎛

⎝

0 f (k)

f ∗(k) 0

⎞

⎠ . (1.9)



Where f ∗(k) is the complex conjugate of f (k). It is easy to diagonalize this 2×2 matrix
and find its eigenvalues and eigenvectors. The energy spectrum is given by:

ϵ
(1,2)
k = ±t| f (k)|. (1.10)

Now we can plot the energy spectrum of this system in k-space. As we can see in Fig. 1.2,
the energy spectrum has two energy bands, the upper and lower bands are called the
conduction and valence band, respectively. These two bands are connected together
at the Dirac points, located at the corners of the first Brillouin zone. It is important
to remind ourselves that only two points of these six points are non-equivalent and
all the other points are connected to them by a reciprocal lattice vector. These points
are conventionally denoted as K and K′ (see Fig. 1.1). A possible choice of two non-
equivalent points is:

K=
2π
3a0
(1,

1
⎷

3
), K′ =

2π
3a0
(1,
−1
⎷

3
). (1.11)

As we can see in Fig. 1.2 the energy spectrum near the Dirac points is a linear function
of the quasimomentum k. To find this linear relation it is convenient to dene a 2D vector
as q= k−K around a Dirac point (let us say for deniteness the point K′) and to expand
the expression for f (k) around q = 0.

Using the Taylor expansion we nd:

f (k) =
3a0

2
(−ie−i 2π

3 )(qx − iqy), (1.12)

and the Hamiltonian matrix become:

Hk = ħhvF

⎛

⎝

0 qx − iqy

qx + iqy 0

⎞

⎠≡ ħhvF σ̂ · q, vF =
3a0 t
2ħh
≃ 106m/s, (1.13)

Here I extracted a constant phase factor (−ie−i 2π
3 ) which clearly has no effect on phys-

ical results. By expanding around the second Dirac point (K) the Hamiltonian matrix
become:

Hk = ħhvF

⎛

⎝

0 qx + iqy

qx − iqy 0

⎞

⎠ . (1.14)

This two matrix representation of the Hamiltonian is similar to the Dirac equation. The
standard Dirac equation in four dimensions is:

iħh
∂

∂ t

⎛

⎜

⎜

⎜

⎜

⎜

⎝

Ψ1

Ψ2

Ψ3

Ψ4

⎞

⎟

⎟

⎟

⎟

⎟

⎠

=

⎛

⎝

mc2I cσ̂ · p

cσ̂ · p −mc2I

⎞

⎠

⎛

⎜

⎜

⎜

⎜

⎜

⎝

Ψ1

Ψ2

Ψ3

Ψ4

⎞

⎟

⎟

⎟

⎟

⎟

⎠

, (1.15)



Figure 1.2
Electronic dispersion of single-layer graphene. The conductance and valence bands touch
each other at six Dirac points in reciprocal space.

where p is a 2D momentum vector in the x y plane. Explicitly:

iħh
∂

∂ t

⎛
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⎜

⎜

⎜

⎜

⎝
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⎞

⎟

⎟

⎟

⎟

⎟

⎠
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⎜

⎜

⎜

⎜

⎜

⎝

mc2 0 0 c(px − ipy)

0 mc2 c(px + ipy) 0

0 c(px − ipy) −mc2 0

c(px + ipy) 0 0 −mc2

⎞

⎟

⎟

⎟

⎟

⎟

⎠
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⎜

⎜

⎜

⎜

⎝
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Ψ4
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⎟
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. (1.16)

Now I can decompose the previous equation and write it as two equations:

iħh
∂

∂ t

⎛

⎝

Ψ1

Ψ4

⎞

⎠=

⎛

⎝

mc2 c(px − ipy)

c(px + ipy) −mc2

⎞

⎠

⎛

⎝

Ψ1

Ψ4

⎞

⎠ , (1.17)
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c(px − ipy) −mc2

⎞

⎠

⎛

⎝

Ψ2

Ψ3

⎞

⎠ . (1.18)



The two matrix representations of the Hamiltonian of Eqs. (1.17,1.18) are the same that
we had before about single-layer graphene (Eqs. (1.13,1.14)), but in the latter case the
electrons behave like some massless pseudoparticles which move with the Fermi velocity
(vF ), not the speed of light. This is the reason that we say electrons in graphene behave
like relativistic particles that have no rest mass.

1.2 Bilayer graphene

Experimentally, the graphene bilayer exists in three different structures: AA, AB (the
so-called Bernal phase), and the twisted bilayer. The AA structure is the simplest one:
all the carbon atoms of the second layer are located exactly above the carbon atoms of
the first layer. However, this structure is not stable and therefore its manufacture was
reported only in a few pieces of literature [58, 52, 51, 12]. The AB bilayer is made by
shifting the second layer of the AA structure by a carbon-carbon bond length and in the
same direction. Therefore, half of the carbon atoms of the second layer are on top of the
carbon atoms of the lower layer, and the other atoms are located above the centers of
the lower layer hexagons, like the construction of successive layers in natural graphite.
The AB bilayer is the most stable bilayer and high-quality samples were produced and
studied in many experiments [107, 57]. The third type of bilayer graphene structure is
the twisted bilayer. In this case, one of the graphene sheets is rotated with respect to the
other layer by an angle θ [27]. Samples with this structure are produced using some
special technological processes and are stable like the Bernal structure. These three
types of bilayer structures have rather different electronic properties. In the following
two subsections, we briefly introduce the AA and AB-stacked bilayers. Then we will give
an almost comprehensive discussion of twisted bilayer graphene.

1.2.1 AA-stacked bilayer graphene

The main objective in this section is to derive the electronic spectrum of AA-stacked
bilayer graphene. Fig. 1.3 shows the crystal structure of this system. The AA-stacked
bilayer is composed of two graphene layers; 1 and 2. In the upper layer, each carbon
atom is positioned above the corresponding atom of the lower layer.

Since the hexagonal structure of each graphene layer consists of two triangular sub-
lattices, A and B, there are four carbon atoms in each unit cell of this bilayer system,
which we call A1, A2, B1, and B2. A tight-binding Hamiltonian, based on the pz orbitals
of each atom, is used to model the system. By including both in-plane and interplane
tunneling, the Hamiltonian is expressed as [87]:

Ĥ =− t
∑︂

〈ij〉σ

a†
iασb†

jασ + t0

∑︂

iσ

�

a†
i1σai2σ + b†

i1σbi2σ

�

− t ′
∑︂

〈〈ij〉〉ασ

�

a†
iασajασ + b†

iασbjασ

�

+ tg

∑︂

〈ij〉σ

�

a†
i1σbj2σ + a†

i2σbj1σ

�

+H.c. (1.19)
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Figure 1.3
Crystal structure of the AA-stacked bilayer graphene. The circles demonstrate carbon atoms
in the A (red) and B (green) sublattices in the bottom (1) and top (2) layers. The unit cell is
composed of four atoms and illustrated by yellow and orang foursquares. Hopping integrals
t and t ′ match the in-plane nearest and next-nearest-neighbor hopping, t0 and t g match the
interplane nearest and next-nearest-neighbor hopping.

Here, the first term is the in-plane nearest-neighbor hopping of a graphene sheet [see
Eq. (1.3)], the second term represents the nearest-neighbor inter-plane hopping with
amplitude t0, the third and the fourth terms relates to the in-plane and interplane next-
nearest-neighbor hopping with amplitudes t ′ and tg , respectively. We use the symbol
〈〈· · · 〉〉 to show the summation over the next-nearest-neighbor sites. Using ab initio
calculations and tight-binding fit to experiments, it is possible to calculate the hopping
integral values. A well-established value for t is t = 2.5− 3 eV [72, 20, 13, 30]. The
interplane nearest-neighbor hopping integral is t0 = 0.3−0.4 eV [72, 20, 13, 30]. About
t ′, an ab initio calculations performed by S. Reich et al. [88] indicate 0.02t < t ′ < 0.2t
depend on in-plane nearest-neighbor hopping. Furthermore, Deacon et al. [24] using an
experimental method, verified this small value. They found t ′ ≈ 0.1 eV. The interplane
next-nearest-neighbor integral tg is signicantly smaller than the others. Based on ab
initio calculations in Ref. [13], tg ≈ 0.03 eV.

At first, we ignore next-nearest-neighbor hoppings and simply considering the first
two terms in Hamiltonian (1.19) (the last two terms will be added to the model at
the end of this section). Each unit cell of the AA bilayer has four atoms, therefore
the electronic spectrum consists of four bands ϵs

0k, where s = 1,2, 3,4. We can obtain
the eigenenergies ϵs

0k by a similar method that we used for the single-layer graphene.
We need to transform Hamiltonian (1.19) into k−space, and define a four-component



spinor as follows:

Ψkσ = (ak1σ, ak2σ, bk1σ, bk2σ, )T . (1.20)

By ignoring next-nearest-neighbor hopping, Hamiltonian (1.19) can be expressed as

H =
∑︂

kσ

Ψ†
kσĤkΨkσ

where Ĥk is a 4× 4 matrix:

Ĥk =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

0 t0 −t f (k) 0

t0 0 0 −t f (k)

−t f ∗(k) 0 0 t0

0 −t f ∗(k) t0 0

⎞

⎟

⎟

⎟

⎟

⎟

⎠

(1.21)

The spectrum of this Hamiltonian contains four energy bands

ϵ
(1)
0k = −t0 − t| f (k)|, ϵ

(2)
0k = +t0 − t| f (k)|,

ϵ
(3)
0k = −t0 + t| f (k)|, ϵ

(4)
0k = +t0 + t| f (k)|, (1.22)

which are plotted in Fig. 1.4. This spectrum is made of two copies of the single-layer
graphene spectrum. One copy (bands 2 and 4) is shifted to higher energies by the
amount t0 while the other copy (bands 1 and 3) is shifted down by the same value.
In this approximation the spectrum has electron-hole symmetry. Near the Dirac points,
bands 1 and 2 are hole-like, while bands 3 and 4 are electron-like. An electron-hole
transformation exchanges the bands 1 and 4 and also 2 and 3. There is no difference
between the rst Brillouin zone of this system (panel (b) of Fig. 1.4) and that for single-
layer graphene (see Fig. 1.1). For a pure AA-stacked bilayer, bands 2 and 3 go across
the Fermi level near the Dirac points K and K′. This statement leads us to an equation
for the Fermi surface. Using Eq. (1.22) we find | f (k)| = t0/t. Since t0/t ≪ 1, we
can expand the function | f (k)| near the Dirac points and keep only the linear term.
Doing this computation we nd that the Fermi surface consists of two circles with radius
kr = 2t0/(3ta0). As a result, the AA-stacked bilayer graphene is an electrical conductor
even in the case of zero doping.

Fig. 1.4 illustrates the spectrum of the AA-stacked bilayer graphene, linear in the
vicinity of the Dirac points (similar to the case of single-layer graphene). By expanding
Eq. (1.22) in powers of |q|= |K− k|, |K′− k| ≪ |K|, we derive the linear approximation

ϵ
1,2,3,4
0K+q = ∓t0 ∓ħhvF |q|,

where vF is the Fermi velocity for the AA-stacked bilayer, which is the same as for single-
layer graphene.



Figure 1.4
a) Band structure of AA-stacked bilayer graphene without the next-nearest-neighbor hopping.
The spectrum is composed of two copies of the single-layer graphene spectrum, one of them is
shifted to higher energies and the other to lower energies. In this approximation the spectrum
has electron-hole symmetry. b) The system has the same first Brillouin zone as single-layer
graphene. The two red circles show the two branches of the degenerate Fermi surface around
Dirac points.

Adding next-nearest-neighbors hopping terms into the model breaks electron-hole
symmetry. Thus, the Hamiltonian in k-representation becomes

Ĥk =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

−t ′F(k) t0 −t f (k) tg f (k)

t0 −t ′F(k) tg f (k) −t f (k)

−t f ∗(k) tg f ∗(k) −t ′F(k) t0

tg f ∗(k) −t f ∗(k) t0 −t ′F(k)

⎞

⎟

⎟

⎟

⎟

⎟

⎠

(1.23)

where

F(k) = | f (k)|2 − 3= 2cos(
⎷

3ky a0) + 4cos

�⎷
3ky a0

2

�

cos
�

3kx a0

2

�

.

In this case, the electron bands satisfy the equations

ϵ
(1)
k = −t ′F(k)− t0 − (t + tg)| f (k)|, ϵ

(2)
k = −t ′F(k) + t0 − (t − tg)| f (k)|,

ϵ
(3)
k = −t ′F(k)− t0 + (t + tg)| f (k)|, ϵ

(4)
k = −t ′F(k) + t0 + (t − tg)| f (k)|. (1.24)

By expanding around the Dirac point, up to the first order in |q|, we find

ϵ(1,2)
q = 3t ′ ∓ t0 −ħhvF

�

1±
tg

t

�

|q|, ϵ(3,4)
q = 3t ′ ∓ t0 +ħhvF

�

1±
tg

t

�

|q|, (1.25)



The first term of these equations, 3t ′, is the same for all four bands. This means the
in-plane next-nearest-neighbor hopping t ′ only shifts the position of the Fermi level and
can be absorbed into the chemical potential µ. But the interlayer next-nearest-neighbor
hopping tg has a different effect: it remarkably breaks electron-hole symmetry and leads
to unequal renormalized Fermi velocities for electrons and holes. This asymmetric band
structure is shown in the left panel of Fig. 1.5.

Figure 1.5
a) Band structure of AA-stacked bilayer graphene with next-nearest-neighbor hopping. The
electron-hole symmetry is broken due to the interlayer next-nearest-neighbor hopping. b)
The density of states of the AA-stacked bilayer graphene. The red solid curve corresponds to
t g = 0 and t ′ = 0, while the blue dashed curve is calculated for t g = 0.03 eV and t ′ = 0.1 eV .
For both cases t = 2.57 eV , t0 = 0.36 eV . The black dotted curve shows the density of states
of single-layer graphene (t ′ = 0) which is shown for comparison.

The following expression can be used to calculate the density of states of the AA-
stacked bilayer graphene

ρ(ϵ) =
∑︂

s

∫︂

VBZ

d2k
VBZ

δ
�

ϵ − ϵ(s)k

�

the integration should be taken over the first Brillouin zone VBZ = 8π2/3
⎷

3a2
0, and

δ(ϵ − ϵk) is the Dirac delta-function. The results are shown in the right panel of Fig.
(1.5). This calculation was done with and without the next-nearest-neighbor hopping
terms and demonstrates that the system has a non-zero density of states near the Fermi-
level (the system is undoped in this calculation). The function ρ(ϵ) is flat near ϵ = 0,
or in the other hand the DOS is almost constant in the energy range |ϵ|< t0. The figure
shows four van Hove singularities, inherited from the single-layer graphene spectrum.
Adding the next-nearest-neighbor hopping terms to the system violates the electron-hole
symmetry of the DOS (blue dotted curve of Fig. 1.5(b)). This deviation is very fragile,
particularly in an energy range smaller than van Hove singularities.



1.2.2 AB-stacked bilayer graphene

To construct an AB, or Bernal stacked bilayer (see Fig. 1.6) we can start from the AA-
stacked bilayer and then shift one of the layers by the vector δ3 shown in Fig. 1.1. This
displacement locates the sublattice A of the shifted layer at the top of sublattice B of
the fixed layer. Two sites from two layers which are opposite to each other are called
dimer sites whereas the sites of one layer which are opposite to the hexagonal center of
of the other layer are called non-dimer sites. The special form and also the position of

3

2 1

4

t3

t4

t

t0

t
′

Figure 1.6
Crystal structure of the AB or Bernal stacked bilayer graphene. The only difference with the
AA-stacked bilayer is that case the top layer was shifted by the vector δ3. Two carbon atoms
connected with green vertical lines make a dimer site with hopping integral t0. The non-
dimer sites are located against the central points of the hexagons in the opposite layer. The
hopping from a non-dimer site to nearest non-dimer sites in the opposite layer is shown by t3
(black dotted lines) while t4 shows the hopping from a dimer site to nearest non-dimer sites
of the opposite layer (red dotted lines).

p-orbitals of carbon atoms entails that the strongest interlayer hopping amplitude t0 is
between dimer sites. The simplest description of the AB bilayer is a model that includes
only these tunneling amplitudes. Using this simple approximation and the notation of
Eq. (1.21), we can write the Hamiltonian in k-space as follows:

Ĥ
AB
k =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

0 0 −t f (k) 0

0 0 t0 −t f (k)

−t f ∗(k) t0 0 0

0 −t f ∗(k) 0 0

⎞

⎟

⎟

⎟

⎟

⎟

⎠

(1.26)

For the Bernal bilayer, the parameters of the Hamiltonian are estimated as [62, 55]

2.9 eV≤ t ≤ 3.16 eV, 0.3 eV≤ t0 ≤ 0.4 eV.



The matrix of Eq. (1.26) is easy to diagonalize. The corresponding eigenvalues satisfy
the following equation

ϵ4 − 2ϵ2
�

t2| f (k)|2 +
1
2

t2
0

�

+ t4| f (k)|4 = 0 (1.27)

which can be solved to nd the following four bands

�

ϵ
(1,4)
k

�2
= t2| f (k)|2 +

1
2

t2
0 +

⌜

⎷

t2
0 t2| f (k)|2 +

1
4

t4
0,

�

ϵ
(2,3)
k

�2
= t2| f (k)|2 +

1
2

t2
0 −

⌜

⎷

t2
0 t2| f (k)|2 +

1
4

t4
0. (1.28)

These bands are plotted in Fig. 1.7. Near the Dirac points K (or K′), where

K Γ M K

−3

−2

−1

0

1

2

3

εs 0
k
(e
V

)
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ε3
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Figure 1.7
Single-particle band structure of AB-stacked bilayer graphene. The Hamiltonian in this cal-
culation includes only the nearest-neighbor hopping integrals. The spectra of both AA and
AB bilayers look like each other for large energies. But near the Dirac points they have quite
different structures. For the AA-stacked graphene (see Fig. 1.4), the Fermi surface are two
degenerate circles while in this case we see two Fermi points where two parabolic bands touch
each other (the inset zooms on the area around the Dirac point).

| f (k)| ≪
t0

2t



we can expand the equation (1.28) and derive the following approximate formulas for
the energy bands

ϵ
(1,4)
K+q ≈ ±
�

t0 +
t2

t0
| f (k)|2
�

≈ ±
�

t0 +
ħh2v2

F

t0
|q|2
�

,

ϵ
(2,3)
K+q ≈ ±

t2

t0
| f (k)|2 ≈ ±

ħh2v2
F

t0
|q|2, (1.29)

where we used Eq. (1.13) for vF . Unlike both the monolayer and AA-stacked graphene,
the band structure of this system has a parabolic dispersion near the Dirac points. The
bands s = 2,3 touch each other at K and K ′ points while the other bands (s = 1,4) are
separated by an energy gap.

Including the hopping terms from non-dimer sites of one layer to non-dimer sites of
the other layer will modify the dispersion relation in Eq. (1.29). These hopping terms
are shown by the black dotted line and labeled by t3 in Fig. 1.7. The corresponding
Hamiltonian matrix is

Ĥ
AB
k = −

⎛

⎜

⎜

⎜

⎜

⎜

⎝

0 0 −t f (k) t3 f ∗(k)

0 0 t0 −t f (k)

−t f ∗(k) t0 0 0

t3 f (k) −t f ∗(k) 0 0

⎞

⎟

⎟

⎟

⎟

⎟

⎠

(1.30)

The spectrum of this matrix can be obtained by an analytical method [64], but here
we show the results of a numerical solution [90]. Fig. 1.8 shows the band structure
close to one of the Dirac points. The computation was done for non-zero t3, whose
value was obtained from experiment [50] and DFT calculations [20]:

t3 = 0.3 eV.

As the figure shows, adding t3 to the tight-binding Hamiltonian replaces the parabolic
dispersion near the K and K′ points by a structure including four Dirac cones. The apexes
of these cones lie at the Fermi energy. The central apex coincides with a corner of the
Brillouin zone (K, or K′) and the others are shifted by a small quantity, pL , from the
corner . The figure also demonstrates six saddle points (three for ϵ > 0 and another
three for ϵ < 0) at the energies ϵ = ±ϵL [64, 65]. This low-energy ne structure is called
trigonal warping [64].

pl =
3a0 t0 t3

2ħh2v2
F

≈ 0.007a−1
0 , ϵL = t0

�

3a0 t3

4ħhvF

�2

≈ 1 meV. (1.31)

Both ϵL and pL are quite small and probably become invisible in experimental measure-
ments.



Figure 1.8
Trigonal warping. The interlayer hopping terms between non-dimer sites violate the parabolic
dispersion at the Dirac point and reproduce four Dirac cones with linear dispersion. These
Dirac cones are clear in the left panel. The right panel shows a top view of the same picture,
with equal-energy contours. The origin of the coordinate system is set to a Dirac point and
qx ,y are momenta measured from the origin. The central cone is located at the corner of the
Brillouin zone and the others are shifted from there by the amount pL . This figure is taken
from Ref. [90].

To match the experimental data with the theoretically-calculated dispersion, some
additional hopping amplitudes and on-site energies should be added to the Hamiltonian
[50, 61]. As an example, the hopping t4 between dimer and non-dimer sites (red dotted
lines in Fig. 1.6) leads to a small asymmetry between hole and electron states of the
AB-stacked bilayer, which is an experimentally measurable effect.

1.3 Moiré structure

Consider an AA stacked bilayer graphene. Each A site of this system corresponds to
a lattice vector. Any lattice vector is a linear combination of two primitive vectors of
honeycomb lattice (Rmn = ma1 + na2). By defining the primitive lattice vectors of a 2D
graphene system as

a1 =

�⎷
3

2
,
1
2

�

a ,a2 =

�⎷
3

2
,−

1
2

�

a, (1.32)

we can express Rmn in the polar coordinates (see Fig. 1.9)



Figure 1.9
Left) AA stacked double layer graphene. Rmn is an arbitrary lattice vector which is a liniar
combination of hexagonal primitive lattice vectores (a1, a2). Right) decomposition of Rmn to
the x and y components.

Rmn = ma1 + na2 = m

�⎷
3

2
,
1
2

�

a+ n

�⎷
3

2
,−

1
2

�

a =
a
2

�⎷
3(m+ n), (m− n)

�

= a
p

m2 + n2 +mn

�⎷
3

2
(m+ n)

⎷
m2 + n2 +mn

,
1
2

(m− n)
⎷

m2 + n2 +mn

�

= a
p

m2 + n2 +mn (cosθmn, sinθmn) , (1.33)

where a is the lattice constant. Since the honeycomb lattice is symmetric under re-
flection with respect to the x-axis, for a given Rmn = (Rx , R y) there always exists a
Rnm = na1 + ma2 = (Rx ,−R y). Now if we rotate the top and bottom layer by θmn
and −θmn respectively, Rmn (top layer)and Rnm (bottom layer) coincide with the x
axis. Rmn(1,0) is a lattice vector for the moiré structure associated to the twist an-
gle φ = 2θmn. Thus, for any choice of m and n we can find the commensurate angle
and the moiré wavelength:

tanθmn =
m− n

⎷
3(m+ n)

, Rmn = a
p

m2 + n2 +mn. (1.34)

The rotation angle φ betwen two layer is such that

cosφ = cos2θmn =
1
2

m2 + n2 + 4mn
m2 + n2 +mn

.

Noting that m− n and m+ n have the same parity (both of them are even or odd), we
can use an equivalence equation (m− n)/(m+ n) = p/q to find a simple and familiar
relation for moiré structure parameters:

tanθmn =
m− n

⎷
3(m+ n)

=
1
⎷

3

p
q

, (1.35)



and for the moire wavelength:

Rmn = a
p

m2 + n2 +mn= a

⌜

⎷3
4

q2 +
1
4

p2 =
ap
2

⌜

⎷

3
q2

p2
+ 1

=
ap
2

Æ

cot2 θmn + 1=
ap

2sin(φ/2)
(1.36)

The minimum value of p in Eq. (1.36) defines the primitive lattice vector of the moiré
superlattice. By fixing p = 1 and q as an odd integer equal to q = 2k+ 1, we have:

R=
a

2sin(φ/2)
î, tan(

φ

2
) =

1
⎷

3

1
2k+ 1

, (1.37)

where î is the unit vector along the x axis. The moiré lattice of TBG has a triangular
structure, therefore we can obtain the other lattice vectors by doing a sixty degrees
rotation around the z axis. For symmetry considerations we select the two following
vectors as the primitive lattice vectors of this 2D moiré structure:

R(M)1 = R(
1
2

,

⎷
3

2
), R(M)2 = R(

1
2

,−
⎷

3
2
), (1.38)

the reciprocal lattice vectors are:

R∗(M)1 =
2π
R
(1,

1
⎷

3
) =

4π
a

sin(
φ

2
)(1,

1
⎷

3
),

R∗(M)2 =
2π
R
(1,−

1
⎷

3
) =

4π
a

sin(
φ

2
)(1,−

1
⎷

3
). (1.39)

In Eq. (1.32) we define the primitive lattice vectors for a hexagonal lattice. The recip-
rocal lattice vectors associated to this definition are:

a∗1 =
2π

a
⎷

3
(1,
⎷

3), a∗2 =
2π

a
⎷

3
(1,−

⎷
3), (1.40)

after rotation of the two layers, the reciprocal lattice vectors of each of them become:

a∗(T )i = Rz

�

φ

2

�

a∗i , a∗(B)i = Rz

�−φ
2

�

a∗i (1.41)

where Rz(α) is a rotation by an angle α with respect to the z axis. The reciprocal lattice
vectors of a moiré structure could be calculated using reciprocal lattice vectors of two
graphene layers:

a∗(B)1 − a∗(T )1 = Rz(
−φ
2
)a∗1 − Rz(

φ

2
)a∗1 =

4π
a

sin
φ

2
(1,−

1
⎷

3
)

a∗(T )2 − a∗(B)2 = Rz(
φ

2
)a∗2 − Rz(

−φ
2
)a∗2 =

4π
a

sin
φ

2
(1,

1
⎷

3
) (1.42)

Eq. (1.42) shows the same results that we saw in Eq. (1.39) and this is another method
to introduce the moiré structure. All these vectors are shematically shown in Fig. 1.10.
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Figure 1.10
Top) Twisted bilayer graphene: two graphene layers are rotated by 9.43◦ with respect to each
other. The triangular moiré lattice is shown by thick gray lines. AA spots (where the sublattice
A of top layer is located over the sublattice A of bottom layer) are located at the triangular
lattice sites, and AB and BA spots are at the centers of triangles indicated by green and orange
dots. R1 and R2 are the lattice vectors of the moiré structure. Bottom) Brillouin zone folding
in TBG. Two large hexagons (red and blue) represent the first Brillouin zones of graphene
layers, and the small hexagon is the moiré Brillouin zone of TBG. Reciprocal lattice vectors
are also shown in the picture, T and B are used to represent the top and bottom layers. An
electron with the wave vector k = K(T )+ in the Dirac point of top layer (red point) is coupled
with three electrons of the bottom layer with wave vectors, k̃ = K(T )+ , k̃ = K(T )+ + R∗(M)1 and

k̃= K(T )+ +R∗(M)2 (blue points) [see section 1.4.4].



1.4 Continuum model for multilayer systems

Incommensurate multilayer systems are a novel type of nanoscale materials made by
stacking individual atomic layers over each other. In general, these systems don’t have
a common spatial period in their atomic structure and this is the reason why they are
called incommensurate. In some recent experiments, several types of hybrid systems
composed of different kinds of atomic layers were fabricated with acceptable quality.
Twisted bilayer graphene (TBG) is a typical example of incommensurate multilayer sys-
tems [59, 18, 19]. Another well-known example is graphene hexagonal boron nitride
(hBN), where hexagonal lattices with slightly dierent lattice constants are overlapped
[25, 39, 109].

The interlayer interaction between incommensurate atomic layers frequently gives
rise to remarkable physical properties that are absent in the individual atomic layers.
When the adjacent layers have almost identical lattice structure, their slightly dierent
periods interfere together and give rise to a long-period moiré pattern that signicantly
modies the low-energy electronic spectrum. For example, in TBG, when the rotation an-
gle is small enough, the Dirac cones of two single-layer graphenes are strongly coupled,
leading to a remarkable reduction in the renormalized Fermi velocity [27, 28, 29, 9].
Theoretically, for the incommensurate multilayer systems the period of the translational
symmetry is too large and then the moiré unit cell is too large for the usual band struc-
ture techniques like DFT.

When the period of the moiré superlattice is much longer than the atomic scale,
however, it is possible to extract an eective continuum model, dependent on the moiré
wavelength, using an appropriate coarse-graining process. The eective long-range the-
ory was developed for TBG [43, 46, 45] and graphenehBN bilayer system [71, 105]. This
theoretical method could be extended to general incommensurate systems in which the
lattice structures are not close to each other [45].

1.4.1 Incommensurate Atomic Layers

This section presents a theoretical formulation to describe the electronic coupling be-
tween the incommensurate bilayers using the tight-binding approximation [45]. Our
starting point is to define a general bilayer system composed of a pair of two-dimensional
atomic layers with dierent crystal structures. We define the primitive lattice vectors as
a1 and a2 for layer 1 and ã1 and ã2 for layer 2, which are assumed to be parallel with
the (x y) plane of the coordinate system. The reciprocal lattice vectors for layer 1 and
2 are dened by a∗i and ã∗i , respectively, so as to satisfy ai · a∗j = ãi · ã∗j = 2πδi j . The area

of the unit cell is given by S = |a1 × a2| for layer 1, and S̃ = |ã1 × ã2| for layer 2.
A unit cell that we define for each layer may contain dierent sublattices and/or

multiple atomic orbitals. We introduce indices X for layer 1 and X̃ for layer 2, to specify
the sublattice and orbital degrees of freedom. The positions of the lattice sites are given



by

RX = n1a1 + n2a2 +τX (layer 1),

RX̃ = ñ1ã1 + ñ2ã2 +τX̃ (layer 2), (1.43)

where ni and ñi are integers, and τX and τX̃ are used to show the sublattice position
inside the unit cell. Let us dene |RX 〉 = φX (r−RX ) as the atomic orbital of X localized
at RX . The atomic orbital φX may depend on the sublattice. We define −TX̃ X (RX̃ −RX )
as the transfer integral from the site RX to RX̃ . This quantity depends on the relative
position RX̃ − RX and also on the type of atomic orbitals of X and X̃ . The interlayer
Hamiltonian to couple the layer 1 and 2 is then written as

H = −
∑︂

X ,X̃

TX̃ ,X (RX̃ −RX )|RX̃ 〉〈RX |+H.c. (1.44)

Now let us dene the Bloch bases as

|k, X 〉=
1
⎷

N

∑︂

RX

eik·RX |RX 〉 (layer 1),

|k̃, X̃ 〉=
1
p

Ñ

∑︂

RX̃

eik̃·RX̃ |RX̃ 〉 (layer 2), (1.45)

where k and k̃ are the two-dimensional Bloch wave vectors respectively for layer 1 and
2. N = Stot/S (Ñ = Stot/S̃) is the number of unit cell of layer 1 (2) in the total system
area Stot .

The matrix elements of interlayer Hamiltonian, H , between Bloch bases can be
written as [45]

HX̃ ,X (k̃,k) = 〈k̃, X̃ |H |k, X 〉

=
1
p

ÑN

∑︂

RX̃

∑︂

RX

e−ik̃·RX̃ eik·RX 〈RX̃ |H |RX 〉

= −
1
p

ÑN

∑︂

RX̃

∑︂

RX

e−ik̃·RX̃ eik·RX ×
�

TX̃ ,X (RX̃ −RX )
�

= −
1
p

ÑN

∑︂

RX

ei(k−k̃)·RX

∑︂

RX̃

TX̃ ,X (RX̃ −RX )e
−ik̃·(RX̃−RX ). (1.46)

To simplify the second summation in the right-hand side of Eq. (1.46) we need to define
the in-plane Fourier transform of the transfer integral as

t X̃ X (q) =
1
p

S̃S

∫︂

TX̃ X

�

r+ zX̃ X ez

�

e−iq·rd2r, (1.47)



and the inverse Fourier transform is:

TX̃ X

�

r+ zX̃ X ez

�

=
1
p

ÑN

∫︂

t X̃ X (q)e
iq·rd2q. (1.48)

By applying the inverse Fourier transform to equation (1.46), the second summation is
transformed as
∑︂

RX̃

TX̃ ,X (RX̃ −RX )e
−ik̃·(RX̃−RX )

=
1
p

ÑN

∫︂

d2q ei(q−k̃)·(τX̃−RX ) t X̃ X (q)
∑︂

ñ1 ñ2

ei(q−k̃)·(ñ1ã1+ñ2ã2)

=

⌜

⎷ Ñ
N

∑︂

G̃

t X̃ X (k̃+ G̃)eiG̃·
�

τX̃−RX
�

(1.49)

where in the last equation we used
∑︂

ñ1 ñ2

ei(q−k̃)·(ñ1ã1+ñ2ã2) = Ñ
∑︂

G̃

δq−k̃,G̃ (1.50)

where G̃ = m̃1ã∗1 + m̃2ã∗2 is a reciprocal lattice vector of layer 2 and we have a similar
definition, G= m1a∗1 +m2a∗2, for layer 1. Using equations (1.46) and (1.49), we have

HX̃ X (k̃,k) = −
1
N

∑︂

G̃

t X̃ X (k̃+ G̃)eiG̃·τX̃

∑︂

RX

ei(k−k̃−G̃)·RX

= −
∑︂

GG̃

t X̃ X (k+G)e−iG·τX+iG̃·τX̃δk+G,k̃+G̃, (1.51)

where for the summation in RX in the first line, we used the transformation
∑︂

RX

ei(k−k̃−G̃)·RX =
∑︂

n1n2

ei(k−k̃−G̃)·(n1a1+n2a2+τX )

= ei(k−k̃−G̃)·τX

∑︂

n1n2

ei(k−k̃−G̃)·(n1a1+n2a2)

= ei(k−k̃−G̃)·τX N
∑︂

G

δk−k̃−G̃,−G. (1.52)

The matrix element Eq. (1.51) is non-zero only when

k+G= k̃+ G̃. (1.53)

According to Eq. (1.51), a Bloch wave number k in layer 1 has appropriate couplings
with only a limited number of k̃s in layer 2, because t X̃ X (q) quickly decays in large q.



1.4.2 Long-period moiré superlattice

Consider a situation where the lattice structures of the two layers are close to each other.
The interference of the slightly different atomic periods leads to an appearance of long-
period moiré pattern, and we can describe the interlayer interaction by the eective long-
wavelength Hamiltonian. Using the formulation presented in the previous section, it is
possible to derive the eective theory of the general moiré superlattice just by assuming
that the two layers have almost identical lattice structures [45]. We can use a linear
transformation matrix A, to relate the primitive lattice vectors of layer 1 and 2 as

ãi = Aai . (1.54)

For instance, when the system is composed of two identical layers rotationally stacked
with a small angle like in TBG, the transformation matrix is given by a rotation matrix
R. When layer 1 and layer 2 have the same structure but with dierent lattice constants
as in the graphenehBN bilayer, the matrix A is given by MR, which is a multiplication
of the isotropic expansion matrix M , and the rotation matrix R. Correspondingly, the
reciprocal lattice vectors become

ã∗i = (A
†)−1a∗i . (1.55)

to satisfy ai · a∗j = ãi · ã∗j = 2πδi j .When the two layers have similar lattice structures, as
we proved before in section 1.3 the reciprocal lattice vectors of the moiré superlattice is
expressed by small dierence between a∗i and ã∗i as

R∗(M)i = a∗i − ã∗i = [1− (A
†)−1]a∗i . (1.56)

Consider the matrix A is nearly equals to the unit matrix, then R∗(M)1 and R∗(M)2 are very
small vevtors and for any wave vector of layer 2 we can write

k̃≈ k+m1R∗(M)1 +m2R∗(M)2 ,

then, it is simple to determine the interlayer matrix elements for the long wavelength
components using Eq. (1.51) as,

HX̃ X (k+m1R∗(M)1 +m2R∗(M)2 ,k) = t X̃ X (k+m1a∗1 +m2a∗2)

× e−i(m1a∗1+m2a∗2)·τX+i(m1ã∗1+m2ã∗2)·τX̃ , (1.57)

where m1 and m2 are integers. Since t X̃ X (q) decays in large q, the couplings are con-
siderable only for a few small values of m1 and m2.

1.4.3 Twisted Bilayer Graphene

We continue our discussion with twisted bilayer graphene (TBG), the system which is
constructed by stacking a pair of hexagonal lattice with relative rotation angle φ. Let us



recall that the primitive lattice vectors of the two layers are defined by (T and B indices
are used for top and bottom)

a(T )i = Rz

�

φ

2

�

ai , a(B)i = Rz

�−φ
2

�

ai , (1.58)

where Rz(θ ) is the rotation matrix and a1 and a2 are the primitive lattice vectors of the
non rotated hexagonal lattice (Eq. (1.32)). In reciprocal space we have

a∗(T )i = Rz

�

φ

2

�

a∗i , a∗(B)i = Rz

�−φ
2

�

a∗i (1.59)

where a∗1 and a∗2 are the reciprocal lattice vectors of the non rotated system defined
at Eq. (1.40). As an example, the lattice vectors and the reciprocal lattice vectors for
TBG at rotation angle θ = 10◦ are shown in Fig. 1.11. Each graphene layer contains
two sublattices labeled by X = A, B in its own unit cell. In the absence of the lattice
distortion, the positions of sublattice X on layer l are given by:

R(l)X = n1a(l)1 + n2a(l)2 +τ
(l)
X , (1.60)

Here n1 and n2 are integers, and τ(l)X is the relative sublattice position inside the unit
cell, given by

τ(B)A = 0,

τ(B)B =
1
3
(a(B)1 + a(B)2 ),

τ(T )A = dez +τ0,

τ(T )B = dez +τ0 +
1
3
(a(T )1 + a(T )2 ), (1.61)

where dez is the interlayer spacing vector. Here we take the origin at an A site, and τ0
is the relative in-plane translation vector of layer 2 with respect to layer 1 [set to zero
in Fig. 1.11a].



Figure 1.11
(a) Twisted bilayer graphene at rotation angle θ = 10◦. Top and bottom layers are shown by
red and blue colors respectively (b) Brillouin zones of the individual layers in the extended
zone scheme. Two Dirac points for each layer are shown by K+ and K−.

In TBG, when the rotation angle is small, θ ≲ 10◦, the interference between the
structures of two stacked lattice creates a moiré pattern with a period much greater
than the atomic scale as shown in the top panels of Fig. 1.13, and then we can apply
the general argument that we derived in Sect. 1.4.2. The moiré lattice vectors in real
and reciprocal spaces were defined in Eqs. (1.38) and (1.39). Figure 1.12 illustrates
the Brillouin zone reduction for TBG of θ = 10◦ and θ = 9.43◦. The graphene Dirac
points (the band touching points) are located at

K(l)
ξ
= Rz(±

φ

2
)Kξ (1.62)

where

Kξ =
ξ

3
(a∗1 − a∗2) = ξ

4π
3
(0,1), (1.63)

is the Dirac points before rotation and ξ= ±1 is the valley index.
The electronic states around the Dirac points are the most important states to control

the low-energy spectrum, therefore the states around the zone corners are all that is re-
quired to describe this spectrum. Since the k-space distance between K+ and K− in each
layer is much grater than the moiré reciprocal vector R∗(M)i , the interlayer couplingsH
can not lead to the hybridization of these two groups and it is possible to treat these
distant valleys as independent subsystems. Then we can dene two separate superlattice
mini-Brillouin zone near K(T&B)

+ and K(T&B)
− (see Fig. 1.12(a)). The zone tiling pattern



near K(T&B)
+ and that near K(T&B)

− are not generally consistent with each other, and this
corresponds to the fact that there is no full commensurability between the moiré pat-
tern and the atomic period of single layer graphene, i.e., the system does not have an
exact translational symmetry as a whole. However, at some special rotation angles, a
complete matching takes place between the atomic structures of the two layers and the
whole structure becomes rigorously periodic. We have discussed the essential condition
that leads to such a special commensurate situation previously in Sect. 1.3., where we
demonstrate that, to have a commensurate moiré lattice, the exact superlattice period
and the rotation angle θ should satisfy Eq. (1.37). Figure 1.12(b) shows the superlat-
tice Brillouin zone for the commensurate TBG of (m, n) = (3,4) with θ ≃ 9.43◦. Having
a well-defined translation symmetry with a finite period, we can define the common su-
perlattice Brillouin zone for the entire system, and this is consistent with the tiling of the
local zone near both K(T&B)

+ and K(T&B)
− argued in Fig. 1.12(a). In a rigorous argument
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Figure 1.12
Brillouin zone reduction in (a) the incommensurate TBG with φ = 10◦ and (b) commen-
surate TBG with φ = 9.43◦ [(m, n) = (3,4)]. The red and blue solid hexagons are the rst
Brillouin zones of the top and bottom layers rotated by φ/2 and −φ/2 respectively. Black
dashed hexagon is the rst Brillouin zone of the nontotated graphene layer. The small hexagons
represent the folded superlattice Brillouin zones. Dirac points and primitive lattice vectors
associated with each layer are shown in the figure.

the superlattice period LS , and the period of the moiré structure, LM , are not equal in
general and the LS is |m− n| times greater than LM . The superlattice period LS is only
dened at commensurate angles, while LM is a continuous function of the rotation angle
θ and always dened regardless of the commensurability. For small values of the rotation
angle, the moiré pattern period LM , is not too different of the superlattice period LS ,



and it is posible to show that the low-energy electronic properties are only influenced
by moiré structure [68]. As a result, the effective continuum model described in the
next section, eliminates the original lattice and leaves only the moiré superperiod.

1.4.4 Effective continuum model

In the following, we are going to derive the eective low-energy Hamiltonian for the
small angle TBG system. Several methods were used to develop the effective theory of
TBG, and the results are basically equivalent [68, 29, 27]. Here we derive the eective
Hamiltonian using our general argument in Sect. (1.4.2) [45]. Our model is based on
the single orbit tight-binding appriximation for pz orbital of carbon atoms. We consider
the transfer integral between any two orbitals is written in terms of the SlaterKoster
form as [97],

−T (r) = Vppπ

�

1−
�r · ez

r

�2�

+ Vppσ

�r · ez

r

�2
,

Vppπ = V 0
ppπe−(r−a0)/r0 , Vppσ = V 0

ppσe−(r−d0)/r0 . (1.64)

Here ez is the unit vector perpendicular to the graphene plane, a0 = a/
⎷

3≃ 0.142 nm
is the distance between neighboring A and B sites on graphene and two graphene layers
are separated by a distance d0 = 0.335 nm. The parameter V0ppπ ≃ −2.7 eV is the
intralayer transfer integral between nearest-neighbor atoms and V0ppσ ≃ 0.48 eV is the
transfer integral between atoms located at neighboring layers of graphite. r0 is the decay
length of the transfer integral, estimated to be 0.184a, which lowers the next-nearest
interlayer coupling to 0.1V 0

ppπ [102, 101]. Defining the transfer integral T (r) between
the atomic sites, one can compute the in-plane Fourier transform t(q) and specify the
interlayer Hamiltonian. The interlayer matrix element is given by Eq. (1.57).

As an example, when we start from k = K+ (K-point) of layer 1, the matrix H
express the coupling of this state to k̃ = K+ + m1R∗(M)1 + m2R∗(M)2 in layer 2 with the
amplitude t(K+ + m1a∗1 + m2a∗2). Figure 1.10, right panel, illustrates three important
scattering process with

(m1, m2) = (0,0), (m1, m2) = (1,0), (m1, m2) = (0,1),

where the red point shows the electron at K+ of layer 1 and three blue points show the
wave numbers of coupled electrons on layer 2,

k̃1 = K+, k̃2 = K+ +R∗(M)1 , k̃3 = K+ +R∗(M)2 .

Since T (R) exponentially decays in R≳ r0, the Fourier transform t(q) decays in q ≳ 1/r0
so only a few sets of (m1, m2) satisfying |K+ +m1a∗1 +m2a∗2| ≲ 1/r0 have an important
role in interlayer coupling. Shifting the initial vector k from the K point modifies the



matrix elements, but we neglect such a dependence, assuming k is close to the Dirac
point. As a result, the interlayer Hamiltonian near the K+ valley is expressed as

H =

⎛

⎝

HÃA HÃB

HB̃A HB̃B

⎞

⎠=

⎛

⎝

tÃA(K+) tÃB(K+)

t B̃A(K+) t B̃B(K+)

⎞

⎠

+

⎛

⎝

tÃA(K+ + a∗1) tÃB(K+ + a∗1)e
− 2π

3

t B̃A(K+ + a∗1)e
2π
3 t B̃B(K+ + a∗1)

⎞

⎠

+

⎛

⎝

tÃA(K+ + a∗2) tÃB(K+ + a∗2)e
− 2π

3

t B̃A(K+ + a∗2)e
2π
3 t B̃B(K+ + a∗2)

⎞

⎠ , (1.65)

the coupling amplitudes are given by t(K)≈ 110 meV, where K = |K|= 4π/(3a).

Figure 1.13
Atomic structures (top) and band structures (bottom) of TBGs with (a) φ = 9.43◦, (b) 3.89◦,
(c) 2.65◦, and (d) 1.47◦, calculated by the tight-binding model (solid black lines) and the
eective continuum model (dashed red lines). The Dirac point energy is set to zero. This
figure is taken from Ref. [68].

The total Hamiltonian is written in the basis of {A, B, Ã, B̃} as

H(ξ)e f f =

⎛

⎝

H1 H †

H H2

⎞

⎠ (1.66)



where H1 and H2 are the intralayer Hamiltonian of layer 1 and 2, respectively, dened
by the massless Dirac Hamiltonian [2]

Hl(k)≈ −ħhv
�

Rz(±φ/2)
�

k−K(l)
ξ

��

· (ξσx ,σy), (1.67)

with Pauli matrices σx and σy , and the graphenes band velocity v.
We can use the effective continuum model to obtain the band structure of TBG at any

small twist angle regardless of the commensurability of the exact lattice structure. By
increasing the rotation angle the moiré period becomes in the range of the atomic scale
and the long-range eective theory is not applicable anymore. But still, we can obtain the
quasi band structure using the original expression of the interlayer matrix, Eq. (1.51),
and the lowest-order approximation that neglects higher-order coupling processes [45].
Figure 1.13 shows the band structure of TBG at four different rotation angle, calculated
using the effective continuum model.

1.5 BCS theory of superconductivity

In 1956 Cooper showed that near the Fermi level any arbitrarily small attractive inter-
action can bond two electrons together and form a stable state called a Cooper pair.
Fröhlich and, independently, Bardeen suggested this attractive force can be mediated
of phonons. These two observations is the basis of the BCS theory of superconductivity.
Here we want to study this theory using mean-field approximation.

1.5.1 Cooper pair

The Schrödinger equation for two electrons that interact with each other via a potential
V (r1 − r2) is:

�

−
ħh2∇2

r1

2m
−
ħh2∇2

r2

2m
+ V (r1 − r2)

�

Ψ(r1, r2) = EΨ(r1, r2).

We change the variables to the relative displacement and center of mass position. There-
fore:

�

−
ħh2∇2

R

2m∗
−
ħh2∇2

r

2µ
+ V (r)

�

Ψ(r,R) = EΨ(r,R).

Where m∗ = 2m and µ = m/2. Since the potential is independent of R, we expect a
wave function as, Ψ(r,R) =ψ(r)eiK·R. Therefore the equation becomes:

�

−
ħh2∇2

r

2µ
+ V (r)

�

ψ(r) = Ẽψ(r),

where we defined Ẽ = E − ħh
2K2

2m∗ . The system should have the minimum value of energy,
therefore the momentum of the center of mass should be zero. In other words, the two



electrons should have opposite momenta. Taking the Fourier transform
�

ψ(k) =
∫︁

d3r ψ(r)e−ik·r
�

of the above equation gives:

ħh2k2

2µ
ψ(k) +

∫︂

d3r V (r)ψ(r)e−ik·r = Eψ(k)

∫︂

d3q
(2π)3

V (q)

∫︂

d3r ψ(r)e−i(k−q)·r = (E −
ħh2k2

m
)ψ(k)

∫︂

d3k′

(2π)3
V (k− k′)ψ(k′) = (E − 2εk)ψ(k). (1.68)

In the last line, we used the definition of free electron energy
�

εk =
ħh2k2

2m

�

and changed
variables to q = k− k′. The energy of the bound state of two electrons is smaller than
the energy of two electrons in a free electron gas. A modified wave-function is defined
as follows:

∆(k) = (E − 2εk)ψ(k),

and substitution in equation (1.68) gives:

∆(k) = −
∫︂

d3k′

(2π)3
V (k− k′)
(2εk − E)

∆(k′).

Suppose the electron-phonon interaction provides an attractive potential V (k − k′) =
−V0 for electrons in the energy range of (εk′ − εF ,εk − εF < ħhωD) and zero potential
outside of this range. The density of states can be approximated by its value at the Fermi
energy. Thus, for ∆(k) =∆ independent of the direction, we have:

∆= V0ρ(εF )∆

∫︂ εF+ħhωD

εF

dε
2ε− E

or, if ∆ ̸= 0,
2

V0ρ(εF )
= ln
�

2εF − E + 2ħhωD

2εF − E

�

.

Using the approximation 2εF − E + 2ħhωD ≃ 2ħhωD we obtain:

Eb ≡ 2εF − E = 2ħhωDe−
2

V0ρ(εF ) .

This shows for any small value of the attractive potential, the bound state energy is
lower than that of the free electron gas and so it is stable. This bound state is called a
Cooper pair.



1.5.2 BCS wave-function

The effective many-body Hamiltonian that describes superconductivity is:

H =
∑︂

kσ

ξkc†
kσckσ +

1
N

∑︂

kk′
Vkk′ c

†
k↑c

†
−k↓c−k′↓ck′↑

Here c†
kσ and ckσ are electron creation and annihilation operators, respectively, and

ξk = εk − µ. The second term describes the creation and annihilation of Cooper pairs.
We use mean-field theory to simplify the second term of Hamiltonian:

c†
k↑c

†
−k↓c−k′↓ck′↑ ≈ 〈c

†
k↑c

†
−k↓〉c−k′↓ck′↑ + c†

k↑c
†
−k↓〈c−k′↓ck′↑〉 − 〈c

†
k↑c

†
−k↓〉〈c−k′↓ck′↑〉.

The gap function is defined by ∆k = −
1
N

∑︁

k′ Vkk′〈c−k′↓ck′↑〉 and the Hamiltonian be-
comes:

H =
∑︂

kσ

ξkc†
kσckσ −
∑︂

k

�

∆kc†
k↑c

†
−k↓ +∆

∗
kc−k↓ck↑

�

+
∑︂

k

∆k〈c
†
k↑c

†
−k↓〉.

In order to bring this Hamiltonian into the desired form, we introduce the Nambu spinor

ck =

⎛

⎝

ck↑

c†
−k↓

⎞

⎠ (1.69)

which allows us to express HM F
BCS in a form similar to the usual free fermion problem:

H =
∑︂

k

c†
khkck +
∑︂

k

�

ξk +∆k〈c
†
k↑c

†
−k↓〉
�

, (1.70)

with the 2× 2-matrix

hk =

⎛

⎝

ξk −∆k

−∆∗k −ξk

⎞

⎠ . (1.71)

The eigenvalues of hk are determined by (E − ξk)(E + ξk)− |∆k|2 = 0, which yields

Ek± = ±Ek (1.72)

with

Ek =
Ç

ξ2
k + |∆k|2 > 0. (1.73)

hk is diagonalized by the unitary transformation Uk. The columns of Uk are the eigen-
vectors u(i)k of hk. Interestingly there is some nontrivial structure in the matrix hk that is



worth exploring as it can be very helpful for more complex systems such as multi-band
superconductors or inhomogeneous systems. It holds with γ= iσy that

γh∗kγ
−1 = −hk (1.74)

Suppose one eigenvector of hk is u(1)k = (u∗k,−v∗k)
T corresponding to the eigenvalue+Ek,

i.e. hku(1)k = +Eku(1)k . We can now construct the other vector

u(2)k = −γu(1)∗k = (vk, uk)
T (1.75)

which obeys

γu(2)∗k = −γ2u(1)k = u(1)k (1.76)

u(2)k is also an eigenvector but with eigenvalue−Ek. To show that this is the case, we take

the complex conjugate of the second eigenvalue equation h∗ku(2)∗k = −Eku(2)∗k and write

it as γh∗kγ
−1γu(2)∗k = −γEku(2)∗k , which yields −hkγu

(2)∗
k = −γEku(2)∗k , and leads to the

rst eigenvalue equation hku(1)k = Eku(1)k , proving our assertion. Thus, the eigenvalues of
the mean eld Hamiltonian occur in pairs of opposite signs and with eigenvalues related
by the unimodular transformation γ. The unitary transformation that diagonalizes the
above 2× 2 matrix is

Uk =

⎛

⎝

u∗k vk

−v∗k uk

⎞

⎠ (1.77)

and it follows that U−1
k hkUk = diag(Ek,−Ek). It is straightforward to determine uk and

vk from the eigenvalue equations;

vk =
∆k

Ek + ξk
uk. (1.78)

Unitarity, i.e., the normalization of the eigenvectors, implies |uk|2 + |vk|2 = 1, and it
follows that

|vk|2 =
1

1+
|︁

|︁

|︁

uk
vk

|︁

|︁

|︁

2 =
1

1+
|︁

|︁

|︁

Ek+ξk
∆k

|︁

|︁

|︁

2 . (1.79)

By using Eq. (1.73), this leads to:

|vk|2 =
1
2

�

1−
ξk

Ek

�

,

|uk|2 =1− v2
k =

1
2

�

1+
ξk

Ek

�

. (1.80)



as well as ukv∗k =
∆k
2Ek

.
The unitary transformation transforms the Nambu spinor ck according to ak = U−1

k ck

with ak =
�

ak↑, a†
−k↓

�T
and it follows that

∑︂

k

c†
khkck =
∑︂

k

c†
kUk

⎛

⎝

Ek 0

0 −Ek

⎞

⎠U−1
k ck

=
∑︂

k

a†
k

⎛

⎝

Ek 0

0 −Ek

⎞

⎠ ak

=
∑︂

k

Ek

�

a†
k↑ak↑ − a−k↓a

†
−k↓

�

=
∑︂

k

Ek

�

a†
k↑ak↑ + a†

−k↓a−k↓ − 1
�

=
∑︂

kσ

Eka†
kσakσ −
∑︂

k

Ek (1.81)

The mean eld Hamiltonian is then expressed as:

H =
∑︂

k,σ

Eka†
kσakσ +
∑︂

k

�

ξk +∆k〈c
†
k↑c

†
−k↓〉 −
Ç

ξ2
k + |∆k|2
�

. (1.82)

The second term on the right-hand side of the equation (1.82) is the ground state energy.
Now it is clear why we called ∆k the gap function: The minimum energy we need to
excite quasi-particles, which are described by the operators a†

kσ and are usually called
Bogoliubons, is more than |∆k|. At the Fermi level, where ξk = 0, the gap size is equal
to |∆k|.

A Bogoliubon is a quasi-particle that made of a superposition of an electron and a
hole, so the creation of a Bogoliubon amounts to creating an electron in a state above the
Fermi level and a hole of opposite momentum and spin below the Fermi level. Therefore,
the vacuum of Bogoliubons is the BCS ground state wave-function:

akσ |ΨBCS〉= 0 for all k,σ.

Now we want to express this ground state in terms of the original electron operators.
The following equation is our starting point

ak↑|ΨBCS〉= 0 → ukck↑|ΨBCS〉= vkc†
−k↓|ΨBCS〉. (1.83)

Where we used ak = U (−1)
k ck, which explicitly is

ak↑ = ukck↑ − vkc†
−k↓, a†

−k↓ = v∗kck↑ + u∗kc†
−k↓ (1.84)



and is sometimes called the Bogoliobov transformation.
We suppose an arbitrary combination of Cooper pairs as the BCS wave-function:

|ΨBCS〉=N
∏︂

q

eαqc†
q↑c

†
−q↓ |0〉

where N is a normalization constant and αk is a function that is determined in the
following. When ck↑ acts on the above wave-function, it commutes with all terms inside
the product, except the one for which q = k. In the following, for simplicity we define
θk = αkc†

k↑c
†
−k↓ and calculate how the ck↑ acts on the eθk |0〉,

ck↑e
αkc†

k↑c
†
−k↓ |0〉= ck↑e

θk |0〉=
∞
∑︂

n=1

ck↑θ
n
k

n!
|0〉 .

Using the relation, [A, BC] = {A, B}C − B{A, C} we have the commutation relation
�

ck↑,θk

�

= αk{ck↑, c†
k↑}c

†
−k↓ = αkc†

−k↓.

Hence, since ck↑|0〉= 0, it follows that:

ck↑θk |0〉= αkc†
−k↓ |0〉 ,

ck↑θ
2
k |0〉=
��

ck↑θk,θk

�

+ θkck↑θk

�

|0〉

= θk

��

ck↑,θk

�

+ ck↑θk

�

|0〉= 2θkαkc†
−k↓ |0〉 ,

(1.85)

and, in general,

ck↑θ
n
k |0〉= nθ n−1

k αkc†
−k↓ |0〉 . (1.86)

Therefore:

ck↑e
αkc†

k↑c
†
−k↓ |0〉= αk

∞
∑︂

n=1

θ n−1
k

(n− 1)!
c†
−k↓ |0〉 .

Now, since
�

θk, c†
−k↓

�

= αk

�

c†
k↑c

†
−k↓, c†

−k↓

�

= 0 we obtain:

ck↑

�

eαkc†
k↑c

†
−k↓ |0〉
�

= αkc†
−k↓

∞
∑︂

n′=0

θ n′
k

n′!
|0〉= αkc†

−k↓

�

eαkc†
k↑c

†
−k↓ |0〉
�

.

Substituting in equation (1.83) gives:

ukck↑|ΨBCS〉= ukαkc†
−k↓|ΨBCS〉= vkc†

−k↓|ΨBCS〉,

therefore, αk =
vk
uk

.
Hence, the BCS wave-function is:

|ΨBCS〉=N
∏︂

k

e
vk
uk

c†
k↑c

†
−k↓ |0〉=N
∏︂

k

�

1+
vk

uk
c†
k↑c

†
−k↓

�

|0〉 .



Using the Pauli’s principle we know,
�

c†
k↑c

†
−k↓

�n
= 0 for n> 1. After normalization, BCS

wave-function is given by:

|ΨBCS〉=
∏︂

k

�

uk + vkc†
k↑c

†
−k↓

�

|0〉

1.5.3 The gap equation

Now we want to determine the gap function which was defined by the equation, ∆k =
− 1

N

∑︁

k′ Vkk′〈c−k′↓ck′↑〉. Using the Bogoliobov transformation (Eq. 1.84):

∆k = −
1
N

∑︂

k′
Vkk′

¬�

u∗k′a−k′↓ − vk′a
†
k′↑

��

u∗k′ak′↑ + vk′a
†
−k′↓

�¶

,

∆k = −
1
N

∑︂

k′
Vkk′u

∗
k′ vk′

�

〈a−k′↓a
†
−k′↓〉 − 〈a

†
k′↑ak′↑〉
�

.

The Bogoliubons are fermions and follow the Fermi-Dirac distribution function. There-
fore:

〈a−k′↓a
†
−k′↓〉 − 〈a

†
k′↑ak′↑〉= 1−

1
eβEk′ + 1

−
1

eβEk′ + 1
= tanh
�

Ek′

2kB T

�

.

Using equations (1.78) and (1.80), we have:

u∗k′ vk′ = |uk′ |2
vk′

uk′
=

∆k′

2
q

ξ2
k′ + |∆k′ |2

,

and, for the gap function,

∆k = −
1
N

∑︂

k′

Vkk′∆k′

2Ek′
tanh
�

Ek′

2kB T

�

.

Now we can find the values of the attractive potential and also the temperature that
led to the gap function and therefore, the BCS ground state wave function. We need to
define a form for the potential so we suppose for electrons near the Fermi level, inside a
shell of thickness ħhωD the potential has a constant value (Vkk′ = −V0) and outside this
shell it is zero. Since the potential is k independent, we expect that the gap function
does not depend on k. Because of its spherical symmetry this type of gap function is
called an s-wave gap. So, we have:

1=
V0

N

∑︂

k<kD

1
2Ek

tanh
�

Ek

2kB T

�

.

Using the density of states we replace the summation with an integral:

1= V0

∫︂ ħhωD

−ħhωD

ρ(ε)dε

2
⎷
ε2 +∆2

tanh

�⎷
ε2 +∆2

2kB T

�

,



the density of states doesn’t change very much in the integral domain, so we use its
value at Fermi level as an approximation and we have:

1= V0ρ(εF )

∫︂ ħhωD

0

dε
⎷
ε2 +∆2

tanh

�⎷
ε2 +∆2

2kB T

�

. (1.87)

Using the above equation we can calculate the gap function for an arbitrary temperature.
For example, at T = 0 we have tanh(x →∞)→ 1 and therefore:

1= V0ρ(εF )

∫︂ ħhωD

0

dε
q

ε2 +∆2
0

,

where ∆0 ≡∆(T = 0). After solving the integral:

1
V0ρ(εF )

= sinh−1
�ħhωD

∆0

�

= ln
�

2ħhωD

∆0

�

,

in the last step we used sinh−1(x) = ln(x +
⎷

x2 + 1) and since∆0 is much smaller than
ħhωD we suppose

⎷
x2 + 1≃ x . So, the gap function is:

∆0 = 2ħhωDe−
1

V0ρ(εF ) , (1.88)

this equation shows for any arbitrary small value of attractive potential, the system has
a finite gap and the Fermi liquid is unstable towards the formation of the BCS supercon-
ducting state. Now we want to determine the critical temperature in which a nonzero
gap appears for the first time. For this end we put∆→ 0 at equation (1.87) and obtain:

Tc =
2eγE

π

ħhωD

kB
e−

1
V0ρ(εF ) (1.89)

where γE ≃ 0.577 is the Euler constant and we used ħhωD >> kB Tc . We can combine
two equations (1.88), (1.89) to find the universal ratio between the zero-temperature
gap and the critical temperature,

∆0

kB Tc
≃ 1.76.

This result which is satisfied in many conventional superconductors, is one of the suc-
cesses of BCS theory.



Chapter 2

Methodology

The study of the metal-insulator transition (or Mott transition) [70] and the discovery of
high-temperature superconductors [6] have given rise to much research on strongly cor-
related electron systems. The nature of electron-electron interactions is often complex
and it is not always easy to build microscopic models capable of realistically describing
these interactions. However, there are many situations where these microscopic mod-
els, such as the Hubbard or t-J model, can be justied. Most of the time it is sufficient
to study the model to determine the properties of the system. The analytical solution of
the Hamiltonian of these models is limited only to very simple systems. Therefore, we
are always turning to numerical methods to solve the Hamiltonian. Among these nu-
merical methods, we can mention the Monte Carlo method, the continuous-time Monte
Carlo method, and quantum cluster methods, where the approximations are based on
embedding small systems in an infinite lattice. This chapter is devoted to describing the
quantum cluster methods used in this document to approximately solve the Hubbard
model. However, to introduce these approximate methods, we will first discuss direct
methods. Direct numerical methods are mainly based on two bases: exact diagonaliza-
tion (ED) [17, 14, 44, 53, 54] and Monte Carlo simulations [16, 15, 69, 86, 85, 104]. As
the dimension of the Hilbert space increases exponentially with the size of the system,
the systems that could be studied with exact diagonalization (ED) are limited to a small
number of sites, usually less than twenty. This constraint causes finite-size effects that
are more detrimental when considering low energy or long wavelength uctuations. Un-
like the exact diagonalization method, Monte Carlo simulations allow larger systems to
be processed, but at the cost of statistical error. The calculation of the various quantities
must be done by statistical sampling using the Metropolis algorithm. In the Monte-
Carlo method, obtaining the spectral weight as a function of frequency must be done by
analytical continuation [96, 22]. Quantum cluster methods are similar to direct numer-
ical methods, which consider quantum clusters with a finite number of sites. Despite
the restriction of quantum cluster methods to short-range correlation effects, symmetry
breaking can appear at the cluster level. Quantum cluster methods are: The varia-
tional cluster approximation (VCA) [84, 73, 81], cluster dynamical mean-field theory
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(CDMFT) [33, 32, 48, 11] and the dynamical impurity approximation (DIA, or CDIA
for its cluster extension). Before describing these methods, we will discuss cluster per-
turbation theory (CPT) [36, 92, 111, 112] and the exact diagonalization on which it is
most often based.

2.1 Cluster perturbation theory

Cluster perturbation theory (CPT) is a numerical technique for computing the approx-
imate Green function of the Hubbard model. It is exact within the limits of weak and
strong coupling and provides an approximation for the spectral function of all wave
vectors. It directly links theory and experience by making predictions about the spectral
weight observable in ARPES. It is also a prerequisite for VCA and CDMFT. This theory
begins with a subdivision of the original lattice into several identical clusters as shown
in Fig 2.1, where E1 and E2 are the basis vectors of the super-lattice.

Figure 2.1
Clusters of four and six sites are represented respectively in a square (left) and hexagonal
(right) lattice. E1 and E2 are the basis vectors of the superlattice defining by the clusters. H ′r̃
is the Hamiltonian of a cluster at position r̃

The Hamiltonian H of the system is then written in the form:

H = H ′ + V (2.1)

In this equation, H ′ is the total Hamiltonian of clusters, and is dened by:

H ′ =
∑︂

r̃

H ′r̃ (2.2)



where H ′r̃ is the Hamiltonian of a cluster at position r̃. The second term, V of equation
(2.1) represents the inter-cluster term of the Hamiltonian. The basic idea of CPT consists
of choosing small enough clusters to be able to diagonalize exactly their Hamiltonian
and thus obtain the exact Green function for it. The inter-cluster term, V must be treated
by perturbation theory. According to the theory of strong coupling perturbations [76,
77, 8, 7, 95], the Green function of the lattice G(ω) is expressed as a function of the
exact Green function of the cluster G′(ω) and the inter cluster term of the Hamiltonian.
In matrix form, we can write:

G−1(ω) = G′−1(ω)−V (2.3)

G′(ω) is a block diagonal matrix, i.e. it does not include matrix elements between
different clusters:

G′r̃,r̃′(ω)∝ δr̃,r̃′ (2.4)

Translational invariance of the superlattice makes it possible to write the matrix ele-
ments of V and G as a function of a wave vector q̃ of the Brillouin zone of the superlattice
Γ . For example, for G, we can write:

Gr̃,r̃′(ω) =
∑︂

q̃

Gr̃,r̃′(q̃,ω)eiq̃·(r̃−r̃′) (2.5)

In this representation, equation (2.3) gives the CPT Green function of the system:

G−1
CPT(q̃,ω) = G′−1(ω)−V(q̃) (2.6)

The matrices in equation (2.6) are L × L matrices where L is the number of sites in the
cluster times the number of bands, in particular spin.

2.1.1 Periodic CPT Green function

The Green function in Eq. (2.6) can be used to calculate average values of one-body
operatores. However, a periodic Green function is necessary to evaluate the spectral
weight. In what follows, we will show how the periodic CPT Green function could be
obtained. The Green function G(q̃,ω) of Eq. (2.6) is written in a mixed representation,
i.e., it contains indices in direct space of the clusters and the vector q̃ ∈ Γ . It is preferable
to work in the representation of wave vectors. An important point to note is that cluster
perturbation theory breaks the translational symmetry of the original lattice. However,
at the super-lattice level, this symmetry is obviously preserved. Therefore, the Green
function (2.3), must depend on two different wave vectors (k and k′) of the Brillouin
zone. The Fourier transform of the Green function is written as,

G(k,k′,ω) =
L

Nr

∑︂

R,R′

∑︂

r̃,r̃′
GR,R′(ω)e

−ik·(r̃+R)eik′·(r̃′+R′) (2.7)



where R and R′ are the positions of the sites in the cluster, L is the number of sites in
the cluster (or super-unit-cell) and Nr is the number of sites in the super-lattice. Using
equation (2.5), in (2.7) we have:

G(k,k′,ω) =
L

N2
r

∑︂

R,R′

∑︂

r̃,r̃′

∑︂

q̃

GR,R′(q̃,ω)eiq̃·(r̃−r̃′)e−ik·(r̃+R)eik′·(r̃′+R′) (2.8)

The summation over the cluster sites can be done using:

L2

N2
r

∑︂

r̃,r̃′
eir̃·(q̃−k)eir̃′·(q̃−k′) =∆Γ (k− q̃)∆Γ (k

′ − q̃) (2.9)

where ∆Γ (k) is the Laue function:

∆Γ (k) =
∑︂

K∈Γ ∗
δk+K (2.10)

Using this equation, we rewrite the equation (2.8) in the form:

G(k,k′,ω) =
1
L

∑︂

R,R′

∑︂

q̃

GR,R′(q̃,ω)e−ik·Reik′·R′∆Γ (k− q̃)∆Γ (k
′ − q̃) (2.11)

We decompose the wave vectors k and k′ in a unique way by writing (see Fig. 2.2):

k= K+ k̃ and k′ = K′ + k̃
′

(2.12)

where K, K′ belong both to the reciprocal super-lattice and to BZγ, and k̃, k̃
′

belong to
BZΓ . Taking into account the translational invariance of the vector q̃ by an element of
the reciprocal superlattice, such as k− k̃, we have:

G(k̃, k̃
′
,ω) = G(k,k′,ω) in the same way V(k) = V(k̃) (2.13)

From equations (2.11), (2.12) and (2.13), we have:

G(k,k′,ω) =
1
L

∑︂

R,R′

∑︂

k̃

GR,R′(k̃,ω)e−ik·Reik′·R′∆Γ (k̃− k̃
′
) (2.14)

The decomposition of the vectors of equation (2.12) results in equality:

∆Γ (k̃− k̃
′
) =

L
∑︂

s=1

δk−k′+qs
(2.15)

Thus the expression (2.14) becomes:

G(k,k′,ω) =
1
L

∑︂

R,R′

L
∑︂

s=1

δ(k− k′ + qs)GR,R′(k,ω)e−ik·Reik′·R′ (2.16)



Figure 2.2
Left panel: Tiling of the square lattice with identical ten-site clusters (L = 10). The vectors
e1,2 define a super-lattice of clusters. Right panel: the corresponding Brillouin zones. The
reduced Brillouin zone (tilted black square) is associated with the super-lattice and L copies
of it can be fitted within the original Brillouin zone (large square).

The vector qs belongs both to the reciprocal lattice Γ ∗ and to the Brillouin zone of the
original lattice. In practice, we only retain the diagonal elements of Eq. (2.16). We
can show that if qs ̸= 0 the spectral weight includes both negative and positive values,
however the sum of their contribution is zero. Using Eq. (2.13), we get the periodic
Green function:

Gper(k,ω) =
1
L

∑︂

R,R′
GR,R′(k,ω)e−ik·(R−R′) (2.17)

In practice, we will be more interested in the spectral weight A(ω,k), deduced from
Green’s function of Eq. (2.17). It is expressed as follows:

A(ω,k) = −2 lim
η→0

Im
�

Gper(k,ω+ iη)
�

(2.18)

where η is a positive infinitesimal parameter.
One of the successes of the CPT is the agreement with the ARPES observations in the

cuprates. Indeed, the spectral function obtained with CPT at the Fermi level describes
in large parts the results obtained with ARPES.

Cluster perturbation theory is not applicable when we are interested in systems with
spontaneous symmetry breaking. Dealing with these systems requires a variational prin-
ciple which is absent from CPT. In the following subsections, we will focus on other nu-
merical methods related to CPT that include this variational principle. However, before
discussing these methods, we will show how G′(ω) is obtained numerically by exact
diagonalization.



2.2 Exact diagonalization

Although the quantum cluster methods are not dependent on a specic solver, in this
section we will discuss the exact diagonalization solver we used. In this document, we
are interested in superconductivity at zero temperature, which justifies our choice fo-
cused on exact diagonalization. It is a powerful tool for calculating the ground state |Ω〉
and the Green function of the cluster. These quantities should be calculated iteratively
using the Lanczos algorithm [4] or the band Lanczos algorithm [37]. The basic idea of
exact diagonalization is to represent the Hubbard Hamiltonian in a small-dimensional
subspace and solve it. This Hamiltonian in second quantization is:

H = −
∑︂

i j,σ

t i jc
†
iσc jσ + U
∑︂

i

ni↑ni↓ (2.19)

2.2.1 State coding

The first step in the exact diagonalization is to define a scheme that makes it possible to
encode the quantum states. The occupancy number for an orbital µ is represented by
nµ = 0 or nµ = 1. In terms of creation operators, any quantum state can be written in
the form:

(c†
1↑)

n1↑(c†
2↑)

n2↑ · · · (c†
L↑)

nL↑(c†
1↓)

n1↓(c†
2↓)

n2↓ · · · (c†
L↓)

nL↓ |0〉 (2.20)

where |0〉 is the vacuum state. The occupation numbers make a set of 0’s and 1’s that
can be regarded as the binary representation of an integer. Thus the different integer
numbers can be used to store the different quantum states of the system. A system with
L orbital has 4L states and we need 4L integer numbers to store them. However, due to
conservation laws, not all of these states are necessary. Commutation relations

[N↑, H] = [N↓, H] = 0 (2.21)

indicate the conservation of the number of spin up (N↑) and spin down (N↓) electrons.
Therefore, the exact diagonalization can be restricted to sectors of the Hilbert space of
dimension d where N↑ and N↓ are xed. The dimension of the space in this case is given
by:

d = d(N↑)d(N↓) (2.22)

where the dimension d(Nσ) is given by:

d(Nσ) =
L!

Nσ! (L − Nσ)!
. (2.23)

For instance, in a system with L sites at half-filling, in a sector with zero total spin, the
number of spin-up and spin-down electrons are equal:

Nσ = N−σ =
L
2

(2.24)



and equation 2.23 becomes:

d =
�

L!
((L/2)!)2

�2

. (2.25)

By applying the Stirling approximation, we show that d ≈ 4L and consequently, the
Hilbert space of the system increases exponentially with the number of sites, this is the
reason why this method is constrained to small clusters.

2.2.2 Construction and diagonalization of the Hamiltonian

The second step is the construction and diagonalization of the Hubbard Hamiltonian of
equation (2.19). We write it as:

H = H0↑ ⊗ 1+ 1⊗H0↓ +H1 (2.26)

where H0↑ and H0↓ are respectively the operators of the kinetic energy of the up and
down spin electrons, 1 the identity matrix and H1 the Coulomb interaction. H0↑ and H0↓
represent the first term of the Hamiltonian (2.19). Likewise, H1 represents the second
term. To calculate the matrix elements of the Hamiltonian H, namely, H0σ and H1, we
proceed as follows: The H1 matrix is diagonal in the basis of the occupancy number.
There are also diagonal elements, coming from the chemical potential.
The H0σ matrix is a sparse matrix. The calculation of its matrix elements requires some
attention because of the nature of the sign. After having established a coding scheme
for the quantum basis states and having obtained the matrix elements of H, we must
proceed to its diagonalization using the Lanczos algorithm which we will describe in
what follows.

2.2.3 Lanczos algorithm: ground state

In general, the Lanczos method is used to determine the extreme (largest and smallest)
eigenvalues of a matrix which is too large to be completely diagonalized. The basic idea
of the method is to project the Hamiltonian (2.26) onto a Krylov space [49, 3]. The
Krylov subspace K is generated by the action of H, H2, · · · , Hq (for q iterations) on a
vector |φ0〉:

K = span
�

|φ0〉, H|φ0〉, H2|φ0〉, · · · , Hq|φ0〉
�

(2.27)

The vectors generated in Eq. (2.27) are not mutually orthogonal. However, a sequence
of orthogonal vectors can be obtained by the following recurrence relation:

|φn+1〉= H|φn〉 − an|φn〉 − b2
n|φn−1〉 (2.28)

where the coefficients an and bn are given by (n≥ 0):

an =
〈φn|H|φn〉
〈φn|φn〉

and b2
n =

〈φn|φn〉
〈φn−1|φn−1〉

, (2.29)



with the initial conditions b0 = 0 and |φ−1〉= 0. In the base of normalized states:

|n〉=
|φn〉
p

〈φn|φn〉
, (2.30)

the Hamiltonian H, obtained by projection, in matrix form, is [23]:

H =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

a0 b1 0 0 · · · 0

b1 a1 b2 0 · · · 0

0 b2 a2 b3 · · · 0
...

...
...

...
. . .

...

0 0 0 0 · · · aq

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

(2.31)

The energy E0 of the ground state |Ω〉 of the Hamiltonian (2.31) is, to a precision de-
termined by the number of iterations q, the lowest eigenvalue of H.

2.2.4 Lanczos algorithm for the cluster’s Green function.

We saw previously how we get the ground state |Ω〉 by the Lanczos method. However,
we also need the Green function G′µν(ω) at zero temperature, where we assume that
ω is a complex frequency. It breaks down into a part G′µν,e(ω) for the electrons and a
component G′

µν,h(ω) for the holes:

G′µν(ω) = G′µν,e(ω) + G′µν,h(ω) (2.32)

where, for electrons:

G′µν,e(ω) = 〈Ω|cµ
1

ω−H + E0
c†
ν|Ω〉 (2.33)

and for the holes:

G′µν,h(ω) = 〈Ω|c
†
ν

1
ω+H − E0

cµ|Ω〉 (2.34)

The Lanczos algorithm allows to numerically evaluate the equation (2.32). To calculate
the electron part of the Green function, G′µν,e(z) we do as follow. We try to estimate the

action of (z −H)−1 on a state |φν〉= c†
ν|Ω〉 where z =ω+ E0. Using the Taylor series:

(z −H)−1|φν〉=
�

1
z
+

1
z2

H +
1
z3

H2 + · · ·
�

|φν〉 (2.35)

We see that the Krylov space constructed on |φν〉 offers a good representation of:

1
z −H

|φν〉 (2.36)



From equations (2.27) and (2.31), and when µ= ν, the expression

G′νν(z) = 〈φν|
1

z −H
|φν〉 (2.37)

leads to the representation in continuous fraction [23]:

G′νν(z) =
〈φν|φν〉

z − a0 −
b2

1

z−a1−
b2
2

z−a2−
b2
3

...

(2.38)

The hole part of the Green function can be calculated in a similar method. In practice,
we calculate the continued fraction (2.38) starting with the bottom floor. In the case
where µ ̸= ν we proceed as follows. We dene

G′+µν(z) = 〈Ω|(cµ + cν)
1

z −H
(cµ + cν)

†|Ω〉 (2.39)

which, using the symmetry G′µν(z) = G′νµ(z), leads to:

G′µν(z) =
1
2

�

G′+µν(z)− G′νν(z)− G′µµ(z)
�

(2.40)

where the G′µµ(z) are calculated the same way as equation (2.38).

2.2.5 Band Lanczos algorithm for the cluster Green function.

An alternative method for calculating the cluster’s Green function is the band Lanczos
algorithm. It is a generalization of the Lanczos algorithm where the Krylov subspace is
generated by more than one state. For a system of L states, this subspace,K ′, is written
in the form:

K ′ = span {|φ1〉 · · · |φL〉, H|φ1〉 · · ·H|φL〉, · · ·Hq|φ1〉 · · ·Hq|φL〉} (2.41)

Where the number of iterations q is controled by the convergence of the ground state
of the Hamiltonian.
As in the previous Lanczos method, the structure of the matrix (2.31) remains valid, but
with 2L diagonals around the first diagonal. Thus, the Krylov subspace, K ′, provides
a Lehmann representation of the cluster’s Green function as follows. By inserting the
completeness relation in Krylov space:

∑︂

m

|φm〉〈φm|= 1 (2.42)



in expression (2.32), we get:

G′νµ(ω) =
∑︂

m

〈Ω|cµ|φm〉
1

ω− Em + E0
〈φm|c†

ν|Ω〉

+
∑︂

n

〈Ω|c†
ν|φn〉

1
ω+ En − E0

〈φn|cµ|Ω〉 (2.43)

where |φm〉 and |φn〉 are eigenstates of the Hamiltonian corresponding respectively to
the eigenvalues Em and En. The sum m and n relates respectively to a system of N + 1
and N − 1 electrons. In the following, we will adopt the following notation:

Q(e)µm = 〈Ω|cµ|φm〉 Q(h)µn = 〈Ω|c
†
µ|φn〉 (2.44)

which are respectively matrices of 2LN (e) and 2LN (h) where N (e) is the number of states
|φm〉 and N (h) the number of states |φn〉. In the same way, we dene:

ω(e)m = Em − E0 ω(h)n = −En + E0 (2.45)

Using these notations, the expression (2.43) becomes:

G′νµ(ω) =
∑︂

m

Q(e)µmQ(e)∗νm

ω−ω(e)m

+
∑︂

n

Q(h)µnQ(h)∗νn

ω−ω(h)m

(2.46)

We can vertically join the matrices Q(e) and Q(h) in a single matrix of dimension 2L×N
where N = N (e)+N (h) and denote by ωr the union of the sets {ω(e)n } and {ω(h)n }. Thus,
we can simplify the writing of Green function of equation (2.46):

G′νµ(ω) =
∑︂

r

QµrQ
∗
νr

ω−ωr
(2.47)

This last equation constitutes Lehmann’s representation of the cluster’s Green function.
The band Lanczos method is more memory demanding, because 2L+1 vectors must be
stored against three vectors, for the simple Lanczos method. In practice, the number
of states in the Krylov subspace K ′, at convergence, is a few hundred, depending on
the size of the system. Nevertheless, it remains the fastest, because all the pairs (µ,ν)
are evaluated at the same time. In addition, as Expression (2.47) shows, the band
Lanczos algorithm gives a Lehmann representation of the cluster’s Green function. It is
the algorithm that we have used in this document.

2.3 Potthoff’s functional approach

In Section 2.1, we saw that cluster perturbation theory allows us to calculate the approx-
imate Green function of the lattice using the exact Green function of the cluster and the



inter-cluster hopping matrix. Numerically, we evaluate the cluster’s Green function by
the exact diagonalization described in section 2.2. The spectral function A(k,ω) of the
lattice, that is an experimentally observable and corresponding to the imaginary part
of the Green function of the lattice, is thus deduced. However, CPT alone is unable to
describe systems where symmetry is broken, as it only deals with a finite subset of the
original system. However, a spontaneous breaking of symmetry can only occur in an
infinite system, that is to say in the thermodynamic limit.

In this section, we will summarize the self-energy functional approach (SFA) intro-
duced in 2003 by Michael Potthoff [78, 84]. Essentially, we will see that, combined with
other numerical methods, the functional self-energy approach makes it possible to deal
very successfully with systems with broken symmetries.

More generally, numerical methods that deal with strongly correlated electron sys-
tems are generally based on Green functions via the formalism of Luttinger and Ward
[60] and Baym and Kadanoff [5]. The grand potential Ω of the system is expressed
as a functional of the Green function G(k,ω). We have an exact variational approach
in principle, but unfortunately, the functional Ω[G(k,ω)] is not explicitly known. It is
given, by denition, by [81]:

Ω[G] = Φ[G] + Tr ln(−G)− Tr{(G−1
0 −G−1)G} (2.48)

where for an operator A, TrA = T
∑︁

ω,α Aαα(iω) and the Aαα are the diagonal matrix
elements. T is the temperature and the sum is over Matsubara frequencies iω and de-
grees of freedom indices α. The Luttinger Ward functional Φ[G] must be obtained from
an infinite sum of irreducible two-particle diagrams, as shown in Figure 2.3. For this
reason, we are always led to resort to approximations to numerically compute the func-
tional Ω[G(k,ω)]. Potthoff distinguishes three types of approximation:
(i) the type I approximation: we have a variational principle, but we apply an approxi-
mation to the Euler equation, that is to say to:

δΩ[G(k,ω)]
δG

= 0 (2.49)

(ii) the type II approximation: we apply an approximation to Ω[G], for example by
truncating the series of Figure 2.3, while keeping Euler’s equation (2.49);
(iii) the type III approximation: here we truncate the space of Green functions, G (or
self-energy functions Σ), i.e. the variational space is truncated. However, we compute
the functional Ω[G] exactly and we also apply Euler’s equation, δΩ[G]/δG, exactly. In
this document, we will adopt the type III approximation, or the approach of the Potthoff
functional. We will try to express the functional Ω[G] as a function of the self-energy
Σ, but restricted to the space of the physical self-energies of a cluster.

The functional Φ[G] has several properties [81]. However, the most important prop-
erty for us is the derivative of the Luttinger-Ward functional Φ[G] with respect to G
corresponds exactly to the self-energy Σ[G]:

Σ= Σ[G] =
δΦ[G]
δG

(2.50)



Figure 2.3
The classic denition of the Luttinger Ward functional. The lines represent the Green function
and the dotted lines represent the Coulomb interaction (U) [82].

We can easily deduce this property from the irreducible diagrams of Φ[G] where the
derivative with respect to G gives us the self-energy. When G corresponds to the correct
Green function of the system, the functional Ω[G] becomes stationary at this point, that
is to say:

δΩ[G]
δG

= 0 (2.51)

which corresponds to the Dyson equation:

G−1 = G−1
0 −Σ (2.52)

We assume that the functional Σ[G] of equation (2.50) is invertible, so we can write:

G= G[Σ] (2.53)

However, this assumption can be wrong during a phase transition. Thus we can build
a new functional, F[Σ], dependent on self-energy, which is the Legendre transform of
the Luttinger-Ward functional:

F[Σ] = Φ[G[Σ]]− Tr(ΣG[Σ]) (2.54)

Like the functional Φ[G], F[Σ] is not known explicitly. Using equation (2.50), we can
show that:

G[Σ] = −
δF[Σ]
δΣ

(2.55)

We now dene the Potthoff functional Ωt[Σ] which is a functional of the self-energy:

Ωt[Σ] = F[Σ] + Tr ln
�

−(G−1
0 −Σ)

−1
�

(2.56)

The index t, indicates the dependence of Ω on t, coming from the free Green function
G0:

G−1
0 = iω− t (2.57)



When the self-energy corresponds to the correct self-energy of the system, we obtain:

δΩt[Σ]
δΣ

= Σ−G−1 −G−1
0t = 0 (2.58)

Consequently for this value of self-energy, Ωt[Σ] is stationary. However, the stationary
solution is not accessible for all self-energies, but in a restricted domain of Σ(t′,U), as
shown in Figure 2.4 we can find it. The quantity t′ is the hopping matrix of a reference
system. The reference system has the same U interactions as the original system but,
their hopping matrices are different, that is, t ̸= t′. In this document, the reference sys-
tem is a set of clusters. Similar to equation (2.56), we can write the Potthoff functional
for the cluster as:

Ωt′[Σ] = F[Σ] + Tr ln
�

−(G′−1
0 −Σ)−1
�

(2.59)

with the Green function, G′−1
0 , given by:

G′−1
0 = iω− t′ (2.60)

The Luttinger Ward functional, Φ[G], is a universal quantity, that is to say that it does
not change for two systems which differ only by their hopping matrix. As a consequence,
its Legendre transform, F[Σ] is also universal. Thus, the two equations of the Potthoff
functional Ωt[Σ] and Ωt′[Σ], respectively, for the original system and the cluster are
identical in the expressions. By combining equations (2.56) and (2.59), we obtain the
Potthoff functional used in numerical calculations [82]:

Ωt[Σ] = Ωt′[Σ] + Tr ln{−[G−1
0 −Σ(t

′)]−1} − Tr ln(−G′) (2.61)

2.4 Variational cluster approximation

The variational cluster approximation (VCA) can be seen as an extension of cluster per-
turbation theory, where certain parameters of the Hamiltonian of the cluster are de-
termined according to the variational principle of the self-energy functional, described
previously. The purpose of VCA is to deal with systems susceptible to spontaneous sym-
metry breaking. Indeed, the cluster perturbation theory is not able to deal with these
systems: CPT is not accompanied by a variational principle making it possible to fix the
value of the Weiss field. In principle, we must adopt the VCA method to have a varia-
tional principle, to determine the values of the Weiss fields. In what follows, we look at
the notion of Weiss field.



t space

Σ = Σ(t)

Ω = Ωt[Σ]

Σ space

δΩt[Σ(t′)] = 0

Ω

Figure 2.4
Schematic illustration of the self-energy functional approximation. Ω is a functional of Σ(t)
where t is the hopping term of the Hamiltonian and the Hubbard interaction (U) is fixed.
When Σ corresponds to the correct self-energy of the system, Ω becomes stationary (red
dots). However, it is not accessible in the overall Σ-space, but in a restricted domain where
Σ depends on t of the reference system (cluster for example). The latter has the same U
interaction as the original system. Ω can be evaluated exactly for the reference system and
lead to an approximated self-energy and a large potential to the real system [81].

2.4.1 Weiss fields

To study the possibility of symmetry breaking of a system with quantum cluster methods,
we add operators capable of breaking this symmetry to the cluster Hamiltonian. These
operators are called Weiss fields (In practice, we often call "Weiss fields" the amplitude
of these operators). For example, the antiferromagnetic Hamiltonian in the case of the
honeycomb lattice is of the form:

HAf = hAF

¨

∑︂

i∈A

(ni↑ − ni↓)−
∑︂

i∈B

(ni↑ − ni↓)

«

. (2.62)

where hAF is called the antiferromagnetic Weiss field. Figure 2.5 shows the Potthoff
functional as a function of the Weiss field hAF , for a six-site hexagonal cluster and a



ten-site cluster at U = 6 and half-filled. The black dots indicate the value of the optimal
Weiss field where the Potthoff functional has a minimum. We see that as the cluster

Figure 2.5
The Potthoff functional as a function of the hAF , the antiferromagnetic Weiss field of the half-
filled honeycomb lattice. In red, for a hexagonal cluster of six sites and in blue, a cluster of
ten sites (two hexagons), U/t = 6. We can clearly see that the optimal Weiss field, indicated
by the black point, decreases when the system size increases.

size increases, the optimal Weiss field decreases. Indeed, in quantum cluster methods,
the Weiss field only makes it possible to break a spontaneous symmetry which can only
appear in an infinite cluster. Therefore, the more the cluster size increases, the easier
it becomes to break the symmetry, and the more the value of the optimal Weiss field
decreases. In principle, one should expect a zero optimal Weiss field within the infinite
size limit. It is important to note that the Weiss field of quantum cluster methods is
different from the Weiss field of ordinary mean field theory. Indeed, in quantum cluster
methods, the Weiss field and the order parameter are different, unlike ordinary mean
field theory, where they are proportional.

The study of superconductivity, on the other hand, is done by adding, to the Hamil-
tonian of the cluster, anomalous Weiss fields that are likely to create or destroy Cooper
pairs. In the case of the honeycomb lattice, the anomalous operators, of singlet or triplet



Figure 2.6
The Potthoff functional Ω as a function of the superconducting Weiss fields of the half-filled
honeycomb lattice. The Weiss field ∆i for i = s, d, p or f and U = 6t. A six-site hexagonal
cluster was used. Triplet-type superconductivity exists at half-filling, because Ω has a mini-
mum, indicated by black dots, at a non-zero optimal Weiss field, unlike singlet types. Note:
this neglects other orders (like AF), which would exist at this value of U .

type, are dened in the form:

∆singlet =
∑︂

r

(∆1S1,r +∆2S2,r +∆3S3,r)

∆t r iplet =
∑︂

r

(∆1T1,r +∆2T2,r +∆3T3,r) (2.63)

where Sir and Tir are the singlet and triplet pairing operators:

Si,r = cr,↑cr+ei ,↓ − cr,↓cr+ei ,↑,

Ti,r = cr,↑cr+ei ,↓ + cr,↓cr+ei ,↑,

The superconducting Weiss fields are the coefficients ∆i which, according to their deni-
tions, can lead to a singlet symmetry like s, d and d+ id or a triplet like p, f and p+ ip.
Figure 2.6 describes the Potthoff functional Ω as a function of the Weiss field ∆i (for
example, i = s corresponds to the s symmetry) of the half-filled honeycomb lattice. The
solutions with singlet symmetries that were obtained using VCA, correspond to a zero
Weiss field and thus identify with the normal solution.

Figure 2.7 shows the results of another calculation that has been done for the hon-
eycomb lattice, out of half-filling, at U = 4t and µ = 3.2t. It shows Ω has a minimum



Figure 2.7
Potthoff functional as a function of the superconducting, singlet Weiss fields of the honeycomb
lattice. A six-site hexagonal cluster was used with U = 4t and the chemical potential, µ =
3.2t. The functional Ω shows a minimum at half-filling, unlike in figure 2.6.

at a non-zero optimal Weiss field for two singlet-type superconductivity (d-wave and
s-wave). Singlet superconductivity, in this system, can exist only when the system is
doped, unlike triplet superconductivity [31]. Physically, the minimum of the Potthoff
functional Ω is a signature of possibility of emergence of the order defined by the Weiss
field. However, the different values of the Weiss field must be determined iteratively
in the variational cluster approximation using the variational principle of self-energy
functional. In what follows, we are interested in the variational cluster approximation.

2.4.2 The VCA procedure

Based on the self-energy functional, the reference system of the VCA, is a set of clusters
repeated in an identical manner on the original network. In VCA, the self-energy of
the system is approximated by the self-energy of the cluster. The value of the latter
must be determined by adding Weiss fields to the Hamiltonian of the cluster. We x the
parameters of these Weiss fields by calculating the Potthoff functional of equation (2.48).
Unlike ordinary mean-field methods, VCA correctly accounts for the effects of short-
range correlations. The advantage of VCA, compared to cluster perturbation theory,
is its ability to describe long-range orders when a suitable Weiss field for symmetry
breaking is added to the cluster Hamiltonian. From a microscopic point of view, the
coexistence of several phases can be studied using one or more Weiss fields for each of
the possible symmetries.

The procedure in the variational cluster approximation is as follows:
(i) we add to the Hamiltonian of the cluster, a Weiss field adapted to the symmetry we
want to break. This choice must be guided by the possibilities of breaking symmetries
of the system to be studied.



(ii) for each value of the Weiss field the exact Green function of the cluster must be
computed using the Lanczos or band Lanczos algorithm. Then we optimize the Potthoff
functional in the space of variational parameters.
(iii) In the last step of VCA we calculate the properties of the system such as the order
parameters at this optimal point.

The variational cluster approximation is limited to a small number of variational
parameters. In the next section, we will describe the cluster dynamical mean-field the-
ory, which takes into account the effect of the lattice environment on the cluster using
auxiliary bath orbitals.

2.5 Cluster dynamical mean field theory

Cluster dynamical mean field theory (CDMFT) [47] is an extension of dynamic mean
field theory. The basic idea is to model the effects of the environment on the cluster by a
set of coupled auxiliary degrees of freedom. These degrees of freedom form an effective
environment in which the cluster is immersed, and are therefore called bath orbitals.
Figure 2.8 shows the example of a four-site cluster with its six bath orbitals, within a
honeycomb lattice. The black circles represent the sites and the small red squares the
bath orbitals. The black lines represent the tµν hopping terms between the µ and ν
sites of the cluster, and the dotted lines represent the θµα hopping terms between the
cluster sites and the bath orbitals. In CDMFT, the cluster plays the role of the impurity
in Anderson’s model [1]. Thus the Hamiltonian of the cluster-environment system is of
the form:

H ′ =
∑︂

µν

tµνc†
µcν + U
∑︂

R

nR↑nR↓ +
∑︂

µα

θµα(c
†
µaα +H.c) +
∑︂

α

ϵαa†
αaα (2.64)

In this expression, the operator c†
µ creates an electron in the µ = (R,σ) orbital of the

cluster while, cµ destroys it. Likewise, a†
α creates and aα destroys an electron in the α

bath orbital. The ϵα are the energies of these bath orbitals. By tracing over these bath
orbitals, the Green’s function, G′, of the Hamiltonian (2.64) takes the form:

G′−1(ω) =ω− t′ − Γ (ω)−Σ(ω) (2.65)

where the hybridization matrix Γ describes the effect of bath orbitals on the electron’s
Green function. Its matrix elements Γµν, are defined by the energies of the bath orbitals
and the θµα hybridization terms:

Γµν(ω) =
∑︂

α

θµαθ
∗
να

ω− ϵα
(2.66)

The energies of the bath orbitals, as well as the hybridization terms must be determined
by the self-consistency condition:

Ḡ(ω) = G′(ω) (2.67)



Figure 2.8
Left: Illustration of a honeycomb lattice cluster with its eight bath orbitals. The dark circles
are the sites of the cluster, and the red squares are the bath orbitals. tµν is the hopping
amplitude between the µ and ν sites of the cluster, and θµα is the hopping amplitude between
the µ site of the cluster and the α bath orbital. The energy of the α bath orbital is denoted
by ϵα. This cluster must be accompanied by its inverted image to form a tessellation of the
lattice as shown in the colored area of the figure on the right.

where Ḡ is the average of the Green function over the superlattice i.e. the Fourier trans-
form giving the local Green function:

Ḡ(ω) =
∑︂

k̃

G(k̃,ω) (2.68)

and where G(k̃,ω) is dened by the Dyson equation:

G−1(k̃,ω) = G−1
0 (k̃,ω)−Σ(ω) (2.69)

In this expression, the self-energy of the system Σ is replaced by the self-energy of the
cluster. In principle, if Γ represents the cluster environment well, equation (2.68) satis-
fies the equality:

Ḡ(ω) = G′(ω) (2.70)

However, the self-consistency condition (2.67) cannot be satisfied with a finite number
of bath parameters. Therefore, we apply the minimization condition by calculating the
distance function:

d =
∑︂

iωn

W (iωn)
|︁

|︁

|︁G′−1(iωn)− Ḡ−1(iωn)
|︁

|︁

|︁

2
(2.71)

where the sum is to be done over the Matsubara frequenciesωn, and the weights W (iωn)
are used to give importance to the low frequencies. At this point, changing the values of
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Figure 2.9
The CDMFT algorithm which describes the different steps of the method.

the bath parameters does not correspond to a new solution of the Hamiltonian (2.64).
However, the hybridization function is often recalculated.

Figure 2.9 shows the CDMFT algorithm, which includes the following steps:
(i) We start with guess values of the bath parameters which define the hybridization
function (2.66);
(ii) We calculate the Green function (2.65) of the cluster;
(iii) the projection Ḡ is calculated;
(iv) We minimize the distance function of expression (2.71) and update the bath pa-
rameters
(v) Finally, if the bath parameters converge, we exit the loop otherwise we return to
step (ii).
Cluster dynamical mean field theory is particularly useful in the study of phase tran-
sitions, for example the Mott transition. It can be used in the determination of the
superconducting order parameter, if pairing terms are defined on the bath or between
the cluster sites and those of the bath.



2.6 Limitations of quantum cluster methods.

The power of quantum cluster methods lies in their ability to include short-range spatial
correlations, but also dynamic correlations. However, like most numeric methods, they
have limitations:
(i) They do not take into account long-range correlations, which may be due to two-body
uctuations. Consequently, they are not sensitive to the destabilization of orders due to
collective stimulus. In particular they do not contain the physics of the Mermin-Wagner
theorem.
(ii) The orders detectable by these methods are predicted a priori as in the case of mean
field theory. Here the bath parameters and the Weiss fields must allow the breaking of
the desired symmetries that can emerge in the system to be studied.
(iii) The orders studied with quantum cluster methods must have a short periodicity,
that is, only commensurable orders are taken into account.
(iv) All excitations due to two bodies are confined to the cluster and therefore suffer
from size effects.





Chapter 3

Superconductivity in twisted
bilayer graphene

In this chapter, we will examine the superconducting phase in twisted bilayer graphene.
To study this issue, we first use the symmetries in the honeycomb lattice to extract the
available order parameters of this structure then using the CDMFT method, we will
investigate the electron pairing in the superconducting phase corresponds to which one
of the defined order parameters. The material of this chapter is published in SciPost
Phys. 11, 017 (2021) [75]

3.1 Pairing symmetries in a hexagonal lattice

We are going to study the point group symmetry of the hexagonal lattice and use it to
define appropriate superconducting (SC) order parameters. This study could be done
in real or reciprocal space. In reference [10], all the pairing operators associated to
the different irreducible representations of D6h are classified in terms of low degree
polynomials of momentum in reciprocal space. A different approach is adopted here,
involving a real-space description of pairing operators defined on adjacent sites. Due to
the on-site repulsion between electrons, U , on-site (singlet) pairing is almost impossible.
The relevant pairing operators dened on the links between adjacent sites are

singlet: Si,r = cr,↑cr+ei ,↓ − cr,↓cr+ei ,↑,

triplet: Ti,r = cr,↑cr+ei ,↓ + cr,↓cr+ei ,↑. (3.1)

Where e1,2,3 are the 3 nearest neighbor vectors on the graphene lattice. These directions,
give rise to a set of six pairing operators per site and we can combine them into operators
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having a well-defined symmetry:

∆̂singlet =
∑︂

r

(∆1S1,r +∆2S2,r +∆3S3,r),

∆̂triplet =
∑︂

r

(∆1T1,r +∆2T2,r +∆3T3,r), (3.2)

where the relative amplitudes (∆1,∆2,∆3) determine the symmetry of each operator.
In this case the irreducible representations (irreps) of D6h, which is equivalent to C6v for
a purely two-dimensional system, are used to classify the pairing operators. Here I am
going to ilustrate how we can use the symmetries in such a system to define appropriate
order parameters for it.

After realizing all the symmetris of a system, it is easy to find the relevant symmetry
group and the associated character table. For a 2D hexagonal structure (graphene lat-
tice), C6v is the relevant symmetry group and its character table is shown in Table 3.1.
The first row of this table lists the symmetry operations in the system (more precisely,
the conjugacy classes): E is the identity operator, Cn is a 2π/n rotation operator around
the vertical axis crossing from the hexagonal center andσd,v are the reflection operators
illustrated in the drawing next to Table 3.1.

C6v E C2 2C3 2C6 3σd 3σv

A1 1 1 1 1 1 1

A2 1 1 1 1 -1 -1

B1 1 -1 1 -1 -1 1

B2 1 -1 1 -1 1 -1

E1 2 -2 -1 1 0 0

E2 2 2 -1 -1 0 0

Table 3.1
Character Table for the C6v Point Group. The first line of the table shows the symmetry
operators of the hexagonal lattice. E is the identity element, Cn is an inplane rotation by 2π/n
around the hexagonal center and σd,v is the reflection operator. On the right: schematic view
of the hexagonal cell of the graphene lattice. Black and red dashed lines show the reflection
planes.

The first coulumn of the table shows the different irreducible representations of
C6v . This symmetry group has four 1D (A1,2 and B1,2) and two 2D (E1,2) irreducible
representations. The other columns show the character of each operator in different
representations.

In a hexagonal lattice each site has 3 nearest neighbors and we want to define the
pairing operators between two electrons located on nearest neighbor sites. According
to Eq. 3.1 we can define six pairing operators for each site (three singlets and three
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Figure 3.1
Shematic representation of pairing operators. Pairing operators along e j are called S j and T j
for singlet and triplet pairings.

triplets). A shematic representation of these operators is shown in Fig. 3.1. The second
step is to know how these pairing operators change under the symmetry operations of
Table 3.1. Let us illustrate this using a simple example. Consider the triplet pairing
operator along the e1 direction that we call T1 in Fig. 3.1.

T1 = cB1,↑cA1,↓ + cB1,↓cA1,↑ (3.3)

Let the system rotate by an angle 2π/6 around the hexagonal center. This rotation maps
B1 and A1 in Fig. 3.1 to A1 and B2, respectively, and therefore T1 changes like

T1
C6−→ cA1,↑cB2,↓ + cA1,↓cB2,↑ = −

�cB2,↑cA1,↓ + cB2,↓cA1,↑

�

= −T2, (3.4)

where we used the anticommutation relations between anihilation operators. Thus T1
goes to −T2 after applying C6. Table 3.2 shows how the symmetry operators of the sys-
tem, listed in tabel 3.1, change the singlet and triplet pairing operators that we defined
in Eq. 3.1 (E is the identity element of the symmetry group and does not change any
pairing operator).

C2 C3 C6 σd σv

S1→ S1 S1→ S3 S1→ S2 S1→ S1 S1→ S2

S2→ S2 S2→ S1 S2→ S3 S2→ S3 S2→ S1

S3→ S3 S3→ S2 S3→ S1 S3→ S2 S3→ S3

C2 C3 C6 σd σv

T1→−T1 T1→ T3 T1→−T2 T1→ T1 T1→−T2

T2→−T2 T2→ T1 T2→−T3 T2→ T3 T2→−T1

T3→−T3 T3→ T2 T3→−T1 T3→ T2 T3→−T3

Table 3.2
Left and right tabels show how the singlet and triplet pairing operators change under group
elements of C6v symmetry group in a hexagonal lattice. All the pairing operators are invariant
under identity element (E).



Now we are going to define approprite order parameters for the superconducting
phase on the hexagonal lattice. We have to find linear combinations (Eq. 3.1) of pairing
operators (Si and Ti) which satisfy the symmetry properties of the C6v character table.
We define the symmetric s-wave singlet order parameter as

∆̂s =
∑︂

r

(S1,r + S2,r + S3,r).

Using Table 3.2 we see that ∆̂s is invariant under all symmetry operations. Thus ∆̂s is an
acceptable order parameter associated to the A1 representation (in this representation
all charachters are equal to 1). The second example is about the two chiral combinations

Irrep Symbol Operators

A1 s ∆̂s =
∑︁

r
(S1,r + S2,r + S3,r)

B2 f ∆̂ f =
∑︁

r
(T1,r + T2,r + T3,r)

E2 d ∆̂d,1 =
∑︁

r
(S1,r − S2,r)

∆̂d,2 =
∑︁

r
(S1,r − S3,r)

E1 p ∆̂p,1 =
∑︁

r
(T1,r − T2,r)

∆̂p,2 =
∑︁

r
(T1,r − T3,r)

Chiral representations

E2 d + id ∆̂d+id =
∑︁

r
(S1,r + e2πi/3S2,r + e4πi/3S3,r)

d − id ∆̂d−id =
∑︁

r
(S1,r + e−2πi/3S2,r + e−4πi/3S3,r)

E1 p+ ip ∆̂p+ip =
∑︁

r
(T1,r + e2πi/3T2,r + e4πi/3T3,r)

p− ip ∆̂p−ip =
∑︁

r
(T1,r + e−2πi/3T2,r + e−4πi/3T3,r)

Table 3.3
Symetricaly well-defined pairing operators associated with the irreducible representations
(Irrep) of the C6v symmetry group. S j and T j are singlet and triplet pairing along e j (see Fig.
3.1). The last four lines are chiral representations, which are complex combinations of the
real operators dened under E1 and E2.



of triplet pairing operators that we call p+ ip and p− ip, defined as

∆̂p+ip =
∑︂

r

(T1,r +ωT2,r + ω̄T3,r),

∆̂p−ip =
∑︂

r

(T1,r + ω̄T2,r +ωT3,r), (3.5)

where ω = e2πi/3 and ω̄ = e−2πi/3. Using Table 3.2, it is easy to find how the C6v
symmetry group elements acts on these triplet chiral order parameters. One important
point is that the two reflection operators (σv and σv) exchange ∆̂p+ip and ∆̂p−ip and
therefore we have to use a 2D representation to express the transformation. In the
fowlloing, I use the abbreviation ∆̂p+ip ≡ ∆̂+ and ∆̂p−ip ≡ ∆̂− to simplify:

E

⎛

⎝

∆̂+

∆̂−

⎞

⎠=

⎛

⎝

1 0

0 1

⎞

⎠

⎛

⎝

∆̂+

∆̂−

⎞

⎠ , C2

⎛

⎝

∆̂+

∆̂−

⎞

⎠=

⎛

⎝

−1 0

0 −1

⎞

⎠

⎛

⎝

∆̂+

∆̂−

⎞

⎠ ,

C3

⎛

⎝

∆̂+

∆̂−

⎞

⎠=

⎛

⎝

ω 0

0 ω̄

⎞

⎠

⎛

⎝

∆̂+

∆̂−

⎞

⎠ , C6

⎛

⎝

∆̂+

∆̂−

⎞

⎠=

⎛

⎝

−ω̄ 0

0 −ω

⎞

⎠

⎛

⎝

∆̂+

∆̂−

⎞

⎠ ,

σd

⎛

⎝

∆̂+

∆̂−

⎞

⎠=

⎛

⎝

0 1

1 0

⎞

⎠

⎛

⎝

∆̂+

∆̂−

⎞

⎠ , σv

⎛

⎝

∆̂+

∆̂−

⎞

⎠=

⎛

⎝

0 −ω

−ω̄ 0

⎞

⎠

⎛

⎝

∆̂+

∆̂−

⎞

⎠ . (3.6)

The traces of the 2× 2 matrices of Eq. 3.6 are equal to the characters of the E1 repre-
sentation of C6v and this means ∆̂p+ip and ∆̂p−ip are two well-defined order parameters
associated to E1. All the order parameters that we can define for the hexagonal struc-
ture using the pairing operators, were defined in equation 3.2, are listed in Table 3.3
[31] and are shematicly shown in Fig. 3.2.

Note that the irreps A2 and B1 do not exist in this six-dimensional space of pairing
operators. Representations E1 and E2 are two dimensional, and we illustrate only one
of their components on Fig. 3.2. Two-dimensional irreducible representations make it
posible to define complex combinations of pairing operators, d±id and p±ip, expressed
in the last four rows of Table 3.3 and are called chiral representations.

3.2 Superconductivity in twisted bilayer graphene

We studied the different kinds of bilayer graphene in chapter 1, where we used tight-
binding and continum models to describe the band structure of these systems. For TBG
at some particular rotation angles (called “magic") we saw a remarkable property in
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Figure 3.2
Real space representation of singlet and triplet pairing operators listed in Table 3.3. Blue
and red circles indicate positive and negative sign of the pairing operators. The color is used
for the phase factor, yellow, green and brown indicate the phase is equal to zero, 2π/3 and
−2π/3 respectively.

the band structure: the energy bands around the charge neutrality point become flat
and are separated from other bands by an energy gap. The flat bands imply that the
kinetic energy of electrons in these bands is small and therefore the system is a strongly
correlated. Strong correlations between electrons lead to some amazing behaviours like
superconductivity or Mott insulators. The correlated electrons are in the flat bands and
since these flat bands are separeted from other energy bands, it is possible to define an
effective model to describe the system around the charge neutrality point. In the follow-
ing I will describe the effective model proposed by Kang and Vafek [40], itself based on
the microscopic analysis of Moon and Koshino [67]. We then simply add a Hubbard U ,
local to each of the four Wannier states per unit cell, and apply cluster methods (CDMFT
and VCA) to this interacting model in order to probe specic superconducting states and
other correlated phases.

3.2.1 Effective model for magic angle TBG

The effective model introduced by Kang and Vafek is a low-energy, tight-binding model
based on a few symmetry-adapted, maximally localized Wannier states to describe the
four narrow bands of twisted bilayer graphene. This model is built for a TBG system
when the twist angle is commensurate and close to one of the magic values.

For a commensurate twist angle the system has a periodic moiré pattern with a



triangular superlattice; see, e.g., Ref. [66]. For such a structure the size of a super unit
cell relates to the twist angle. When the twist angle is small, the super unit cell is very
big and contains a large number of carbon atoms. Consequently, the first Brillouin zone
of the moiré structure (MBZ) is much smaller than the graphene Brillouin zone.

Due to the significant interlayer tunneling, the low-energy band structure of twisted
bilayer graphene is remarkably different from that in two isolated monolayers. For a
twist angle close to the magic values, the bandwidth becomes very narrow (but nonzero),
the Fermi velocity vanishes at the Dirac points , and the quadratic band touching points
can be seen at the corners of the MBZ [19]. To produce the above-mentioned four band
effective model we have to find the spatial structure of the Wannier orbitals and also
determine where is the best place to locate them in the moiré structure. The space group
and time-reversal symmetries are used to answer these questions.

While the triangular moiré lattice sites have the highest local charge density at quar-
ter filling [19], it is impossible to recover the fundamental features of the narrow-band
structure unless the Wannier states (WSs) are located at the dual honeycomb lattice sites
[110, 80]. We will prove this statement using symmetry considerations. Furthermore,
we can compare the band structure obtained from the effective model with the result of
a microscopic tight-binding model proposed by Moon and Koshino that contains a large
number of atoms in the unit cell [67]. This comparison is a good criterion to confirm
the validity of the effective model. The initial ansatz for localized WSs in Hilbert space
is constructed based on the Bloch states at the MBZ center [63]. These initial ansatz is
then used in the iterative procedure of Marzari and Vanderbilt [63] to construct max-
imally localized and symmetry adapted WSs [91]. Afterward the constructed WSs are
used to develop and compare the low-energy tight-binding models.

Several theories have been proposed to study the insulating and superconducting
phases [108, 89, 38, 79]. The closest to the four band model that we used in this work
(I will call it the Vafek model) are defined in Refs. [110, 80]. However, there are im-
portant differences. In the model of Ref. [80], the valley symmetry and its spontaneous
breaking play an important role. According to their assertion, the valley symmetry,
together with the product of C2 and time reversal, is an obstruction to building a four
bands tight-binding model [80]. In the Vafek model, they use only the three-fold rotation
around the axis across the AA stacked carbon atoms (C3), the two-fold rotation which
exchanges top and bottom layers (C ′2), and time-reversal symmetry [see Fig. 3.3(a)].
These considerations lead to the same group representations of the Bloch states at the
high-symmetry MBZ points as assumed in Ref. [110]. This reference did not explicitly
construct the WSs, but the WS symmetry was deduced in an insightful manner and is
in agreement with the Vafek model. The three-peak structure of the WSs were found
explicitly in Vafek model [see Fig. 3.4(c)] and was also recognized in Ref. [80] and
dubbed the fidget spinner.

The point group symmetry operations (C3 and C ′2) form the D3 group. This symmetry
group results in nontrivial representations of Bloch states at high symmetry points of the
MBZ, especially at Γ (k= 0) and K (k= [(4π)/(3L2

1)]L1).



Kang and Vafek calculated the band structure of the system based on the microscopic
model of Ref. [67], which is a tight-binding model including both intralayer and inter-
layer carbon-carbon tunneling amplitudes. Their tight-binding Hamiltonian is written
as

H = −
∑︂

ri ,r j

t(ri − r j)c
†
ri

cr j
with

t(d) = −Vppπ

�

1−
�

d · ez

d

�2�

− Vppσ

�

d · ez

d

�2

,

Vppπ = V 0
ppπ exp
�

−
d − a0

δ

�

,

Vppσ = V 0
ppσ exp
�

−
d − d0

δ

�

, (3.7)

where cri
and c†

ri
are the annihilation and creation operators of the electron at the carbon

site ri . Hopping amplitudes in π and σ bonds are set to V 0
ppπ = −2.7 eV, V 0

ppσ = 0.48 eV.
a0 = 0.142 nm is the distance between two carbon atoms on a layer that are nearest to
each other and d0 = 0.335 nm is the interlayer distance. δ = 0.319 a0 is the decay length
for the hopping. hopping between orbitals that are apart by d > 4a0 is exponentially
small and neglected in the model. These detailed parameters are all taken from Ref.[67]
and listed here for completeness. Γ , K, and K′ are three high-symmetry points of the
MBZ. Time-reversal transforms K and K′ into each other but leaves Γ invariant.

Figure 3.3(c) illustrates that this model has four narrow bands with very small band-
widths around the charge neutrality point where the zero of energy is defined. The twist
angle is important to determine whether there is an energy gap separating these narrow
bands from the other bands of the spectrum. When m − n = ±1 mod 3 [66] at the K
point, two bands make a Dirac cone, but a tiny gap (< 0.01 meV ) separates the two re-
maining bands. As a result these four Bloch states at the edge points of the MBZ form a
two-dimensional representation (E) and two one-dimensional representations (A1 and
A2) of the group D3 [110].

The Bloch states are doubly degenerate at the center of the MBZ (Γ ) and the (nar-
row) bandwidth is defined as the energy difference between these two pairs. These
doublets are the two-dimensional representations (E) of the group D3 [110]. Two com-
ponents of each doublet are chosen to be the eigenstates of C3 with the eigenvalues
equal to ε or ε∗ (ε is a phase factor equal to ε = exp(i2π/3)). So the Bloch states at
the Γ point are labeled ΨΓ ,E±,ε±1 . Here, E± is used to specify the doublet with higher
and lower energy, and ε±1 refers to the components of each doublet which has different
eigenvalues (ε and ε∗) under C3. While the two components of each doublet are the
eigenstates of C3, they transform into each other under C ′2 and the TRS. It is important
to note that there is no simple transformation which relates the two doublets at differ-
ent energy, i.e., ΨΓ ,E± . This fact can be seen in Figs. 3.4(a) and 3.4(b) where |ΨΓ ,E± |

2 is
plotted.



Figure 3.3
(a) The superlattice of twisted bilayer graphene. Blue and red colors refer to the bottom and
top graphene layers. For the commensurate twisted angle we have a triangular super-lattice.
The plot shows the super-lattice when m = 2 and n = 1. (b) Position of the local Wannier
states. Black dots are the sites of the triangular super-lattice. Red and blue dots are two
nonequivalent Wyckoff sites, where the local Wannier states are centered. In our effective
model, w1 and w2 are placed at one Wyckoff position, and w3 and w4 are placed at the other
position. Note that the Wyckoff sites form an emergent honeycomb lattice. (c) Red dots: Four
narrow bands obtained from the microscopic tight-binding model given in Ref. [67] with a
twist angle equal to 1.30◦. Blue dots: The interpolated band structure by the effective model.
This gure is taken from[40]

.

The next step is to apply the projection method to construct the localized WSs [63].
To do this, four narrow bands should be separated from all others by a gap. To satisfy
this condition the twist angle is selected to be θ = 1.30◦ (m = 25 and n = 26 in moiré
equation), which guarantees that the four narrow bands are separated by a gap on both
sides. The twist angle, θ = 1.30◦, is a bit different from the magic angle but it is sensible
to suppose the hopping parameters of the low-energy Hamiltonian to be almost the same
for both of them. The confirmation of this assumption is the existence of the quadratic
band touching at K, which can be taken as a definition of the magic angle.

Symmetry of the Wannier states

Both the shape and the position of the Wannier states are important in constructing the
effective model. In a simple approach, it is possible to place the centers of all four states
on the triangular moiré superlattice sites. So the WSs will be transformed as

g|wi,R〉=
∑︂

j

|w j,gR〉U ji(g) (3.8)

where i, j = 1, · · · , 4 are the indices of the WSs, R is the lattice vector associated to the
triangular superlattice site, and g is the symmetry operation.

For the Bloch stateΨi,k which is a linear superposition of the WSs, the transformation



Figure 3.4
(a),(b) The square of the magnitude of the Bloch states |ΨΓ ,E+,ε|2 and |ΨΓ ,E−,ε|2 (c) The local-
ization of the WSs based on the projection method. The four panels show |w1|2 at different
layers and sublattices (layer and sublattice are labeled over the figure). This gure is taken
from Ref. [40].

equation under the same symmetry operation is

g|Ψi,k〉= g
∑︂

R

eik·R|wi,R〉=
∑︂

R

eik·R|w j,gR〉U ji(g)

=
∑︂

R

ei gk·gR|w j,gR〉U ji(g) = |Ψ j,gk〉U ji(g). (3.9)

It is interesting to discuss how the Bloch states transform at the high symmetry points
of the MBZ, i.e., Γ and K. Eq. (3.9) expresses that the Bloch states should transform as
U(g); this means the Bloch states at Γ and K should transform in the same way. But it
is in conflict with the symmetry consideration of Bloch states.

As we pointed out previously, the four Bloch states transform as two doublets at Γ
and one doublet and two singlets at K. This contradiction confirms that the symmetry of
the Bloch states can not be reproduced by putting all the WSs at triangular superlattice
sites. A thoughtful suggestion to solve this conflict is to divide the four WSs into two
groups and to place them at the centers of the equilateral triangle which make the
superlattice unit cells (Wyckoff positions) [see Fig. 3.3(b)]. These centeral points of
triangles form the dual honeycomb lattice [110, 80]. Thus, there should be two WSs at
each site of this honeycomb lattice. Note that each super-unit-cell of the system contains
two honeycomb lattice sites, and as a result w1 and w2 should be placed at one site and
w3 and w4 at another site.

To demonstrate that this arrangement satisfies the symmetry consideration of the
Wannier states, we start by modifying Eq. (3.8) for the dual honeycomb lattice [91],

g|wi,R〉=
∑︂

j

|w j,gR+R′(g,i)〉U ji(g) (3.10)



where R and R′ are still the triangular super-lattice translation vectors, and the latter
depends only on g and the WS index i. Equation (3.9) now takes the form [91]

g|Ψi,k〉= |Ψ j,gk〉e−i gk·R′U ji(g). (3.11)

Note that the modified transformation creates an extra phase factor e−i gk·R′ and differ-
entiates between Γ and K. For g = C3 and k = Γ , the transformation matrix U must
be diagonal; in other words, all the WSs should be eigenstates of C3 because of lattice
symmetries. The Wannier orbitals w1,4 and w2,3 are choosen to have the eigenvalues ε
and ε∗, respectively. About the second symmetry operation, since C ′2 interchanges the
two nonequivalent Wyckoff positions, we can set C ′2w1 = w3 and C ′2w2 = w4; see Fig.
3.3(b). Finally, time reversal does not change the position of the WSs, but it conjugates
the eigenvalue of C3. Therefore, T w1 = w2 and T w3 = w4. These transformation
rules, together with translation symmetry, should be considered in making any low-
energy model.

Symmetry considerations helped us to determine the location of the Wannier or-
bitals. The next step is to calculate these orbitals and also the hopping amplitudes
between them. The projection method is used for this. In this method it is crucial to
choose the appropriate initial trial states as input. Figs 3.4(a) and 3.4(b) show that the
magnitudes of the Bloch states at the high symmetry Γ point have a smooth structure
in real space when separated according to layers and sublattice. This observation is an
important guide to find a good initial ansatz for w1.

Figure 3.4(c) shows the result of the projection method for |w1|2 on different layers
and sublattices. A precise look at w1 reveals it to be closely localized and centered
around the dual honeycomb lattice sites; it also displays three distinct peaks toward
the triangular lattice sites. This shape of the Wannier orbitals is consistent with the
results of Ref. [18], where the authors found the local density of states using density-
functional theory (DFT) and proved it peaks around the triangular lattice sites. Note
that all the WSs obtained in this way are related by the above-mentioned symmetry:
w2 = w∗1, w3 = C ′2w1, and w4 = w∗3.

After determination of the WSs and hopping values between them in different neigh-
bourhood, which is done in Ref. [40], it is easy to make a tight binding model and
compute the band structure. The special structure of WSs demonstrated in Fig. 3.4(c)
shows that the overlap between them are cosiderable in large neighbourhood, which
leads to a sizable hopping amplitude between orbitals even for third neighbors and thus
we cannot neglect them even in a minimal model.

The most general tight-binding Hamiltonian of the system is,

H =
∑︂

R,r

4
∑︂

i, j=1

t i j,r f †
i,R f j,R+r, (3.12)

where both R and r are the triangular super-lattice vectors. The hopping amplitude t
are indexed by two WS indices i and j, and the lattice vector r.



Figure 3.5
Comparison of the narrow-band structure constructed by the microscopic model expressed in
Ref. [67] (red solid line) and the tight-binding model based on the Wannier orbitals (blue
dots) with the range of hopping (a) Lc = 2L, (b) Lc = 4L, (c) Lc = 6L, and (d) Lc = 8L (L is
the moiré wavelengh). This gure is taken from Ref. [40].

Figure 3.5 illustrates the comparison of the narrow bands obtained using two dif-
ferent methods. The red solid curves are computed from the microscopic model of Ref.
[67] and the blue dots show the result of the tight-binding model based on the localized
WSs. The tight-binding computation is done at different hopping ranges Lc . For small
Lc , most features of the band structure can be reproduced by the tight-binding model
(it is in agrement with the microscopic model result), but the peaks and troughs are a
bit different around Γ . By increasing the hopping range the two results become closer
to each other.

3.2.2 Pairing symmetries in twisted bilayer graphene

The lattice structure proposed for the effective model for magic-angle TBG is a hexago-
nal lattice. Each site of this lattice, which in principle is a AB point of the moiré struc-
ture, contains two Wannier orbitals and therefore this model is based on four Wannier
orbitals per unit cell, with maximal symmetry on an effective honeycomb lattice and is
appropriate for a twist angle θ = 1.30◦.
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Figure 3.6
Schematic representation of the Wannier functions w1 = w∗2 (orange) and w3 = w∗4 (green)
on which our model Hamiltonian is built. The charge is maximal at the AA superposition
points (blue circles) forming a triangular lattice. The Wannier functions are centered on
the triangular plaquettes that form a graphene-like lattice (black dots), whose unit cell is
shaded in red. The underlying moiré pattern illustrated corresponds to (m, n) = (9,8), but
the functions used in this work correspond to (m, n) = (26,25). The basis vectors E1,2 of the
moiré lattice are shown (they are also basis vectors of the graphene-like lattice of Wannier
functions), as well as the elementary nearest-neighbor vectors a1,2,3.

It is customary to derive effective models for TBG directly from continuum models.
In that framework a valley symmetry emerges and the model is endowed with a frag-
ile topology. It can be shown that in a model with nontrivial topology, time-reversal
symmetry (TRS) cannot be represented simply by a set of localized Wannier states: its
action is not strictly local [80]. However, as shown in [106], the error committed by
using a localized Wannier basis is exponentially small. Since we are going to truncate
the hopping matrix to a few terms and introduce strong interactions that would likely
destroy any existing topology, this issue should not be of concern here.

Fig. 3.6 offers a schematic view of the orbitals w1 and w3. Orbitals w2 = w∗1 and
w4 = w∗3 are not shown. Ref. [40] computes a large number of hopping integrals, of
which we will only retain the largest, as listed in Table 3.4. The notation used is that of
Ref. [40].

Remarkably, the most important hopping terms are between w1 and w4 (and be-
tween w2 and w3), i.e., between graphene sublattices. It therefore makes sense phys-
ically to picture the system as made of two layers and to assign w1 and w4 to the first
layer, whereas w2 and w3 are assigned to the second layer. The rather small t13[0,0]



symbol value (meV)

• t13[0,0] =ωt13[1,−1] =ω∗ t13[1,0] −0.011

• t14[0,0] = t14[1,0] = t14[1,−1] 0.0177+ 0.291i

• t14[2,−1] = t14[0,1] = t14[0,−1] −0.1141− 0.3479i

• t14[−1,0] = t14[−1,1] = t14[1,−2]

= t14[1,1] = t14[2,−2] = t14[2,0] 0.0464− 0.0831i

Table 3.4
Hopping amplitudes used in this work. They are the most important amplitudes computed
in Ref. [40]. Here ω = e2πi/3 and the vector [a, b] following the symbol represents the bond
vectors in the (E1,E2) basis shown on Fig. 3.6. Note that t23 = t∗14 and t24 = t∗13. On the right:
schematic view of the hopping terms t14 within a given layer (the unit cell is the blue shaded
area). Lines 2, 3, and 4 of the table correspond to the red, blue and green links, respectively.
Dashed and full lines are for t14 and t23, respectively.

hopping (and its equivalents) is the only term that couples the two layers. The concept
of layer is useful when visualizing the model in space and when arranging local clusters
of sites in CDMFT, since it is preferable to have the more important hopping terms within
a cluster; it is merely a book-keeping device. Fig. 3.7 illustrates a 3D representation of
Wannier orbitals, where blue and red zigzag lines show the interlayer hopping terms
and the yellow rhombuses are used to show the singlet pairing operators in two layers.

To this tight-binding model we will add a local interaction term U . This is a rather
approximate description of the interactions in this system, but has the merit of sim-
plicity and tractability in the context of dynamical mean field theory. A more refined
description of the interactions would not only contain extended interactions (see, e.g.,
[26, 108]) but would include terms not of the density-density form [41]. The values of
U in our calculations range from 0.5 meV to 5 meV. Fig. 3d of Ref. [18] leads us to expect
a wide range of values of U depending on twist angle, and a rather large U ∼ 20 meV at
an angle of 1.30◦. However, Ref. [35] predicts a value U ∼ 5 meV for this angle and the
range of U values predicted in Fig. 9 of Ref. [103] is largely compatible with the range
we have selected.

The model is invariant under a rotation C3 by 2π/3 about the AA site, and under aπ-
rotation C ′2 about an axis in the plane of the bilayer (see Fig. 3.7). These transformations
generate the point group D3 and affect the Wannier orbitals as follows [40]:

C3 : w1(r)→ωw1(C3r) C3 : w4(r)→ωw4(C3r)

C3 : w2(r)→ ω̄w2(C3r) C3 : w3(r)→ ω̄w3(C3r)

C ′2 : w1(r)→ w3(C
′
2r) C ′2 : w2(r)→ w4(C

′
2r) (3.13)

where ω = e2πi/3 and ω̄ = e−2πi/3. In other words, the orbitals w1 and w3 transform
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Figure 3.7
3D representation of Wannier orbitals. Blue and red zigzag lines show the interlayer hopping
terms and the yellow rhombuses are used to show the singlet pairing operators in two layers.
C3 and C ′2 illustrate two rotational symmetry operators of the system.

between themselves, and so do w2 and w4. The model also has time-reversal symmetry
(TRS), under which w1↔ w2 and w3↔ w4.

Possible superconducting pairings are either singlet or triplet (there is no spin orbit
coupling). Let us therefore concentrate on pairing states involving nearest neighbors on
a given layer, i.e., between orbitals w1 and w4 (or w2 and w3). Because of the strong
local repulsion in our model, we ignore on-site pairing. Let us then recall the pairing
operators that we can define in each layer (see Eq. 3.1)

Si,r = cr,↑cr+ai ,↓ − cr,↓cr+ai ,↑ (singlet)

Ti,r = cr,↑cr+ai ,↓ + cr,↓cr+ai ,↑ (triplet) (3.14)

where cr,σ annihilates an electron at graphene site r of the first layer (in orbital w1 or
w4 depending on the sublattice). The elementary vectors ai are defined on Fig. 3.6, but
apply to the layer in the current context. Likewise, we define operators S′i,r and T ′i,r on
the second layer, in terms of orbitals w2 and w3. Under the transformations C3 and C ′2,
the six singlet pairing operators transform amongst themselves,

C3[S1, S2, S3] = [S3, S1, S2], C ′2[S1, S2, S3] = [S
′
2, S′1, S′3],

C3[S
′
1, S′2, S′3] = [S

′
3, S′1, S′2], C ′2[S

′
1, S′2, S′3] = [S2, S1, S3], (3.15)

likewise for the triplet pairing operatores we have,

C3[T1, T2, T3] = [T3, T1, T2], C ′2[T1, T2, T3] = [−T ′2,−T ′1,−T ′3],

C3[T
′
1, T ′2, T ′3] = [T

′
3, T ′1, T ′2], C ′2[T

′
1, T ′2, T ′3] = [−T2,−T1,−T3]. (3.16)



It customary to combine these pairing operatores to make symmetry adapted order pa-
rameters for the two layers. As we prove in section 3.1 these operators, for the first
layer, could be written as

Singlet operators Triplet operators

s =
∑︂

r

�

S1,r + S2,r + S3,r

�

f =
∑︂

r

�

T1,r + T2,r + T3,r

�

(3.17a)

d1 =
∑︂

r

�

S1,r − S2,r

�

p1 =
∑︂

r

�

T1,r − T2,r

�

(3.17b)

d2 =
∑︂

r

�

S1,r − S3,r

�

p2 =
∑︂

r

�

T1,r − T3,r

�

(3.17c)

d + id =
∑︂

r

�

S1,r +ωS2,r + ω̄S3,r

�

p+ ip =
∑︂

r

�

T1,r +ωT2,r + ω̄T3,r

�

(3.17d)

d − id =
∑︂

r

�

S1,r + ω̄S2,r +ωS3,r

�

p− ip =
∑︂

r

�

T1,r + ω̄T2,r +ωT3,r

�

(3.17e)

and similar combinations (specified with prime symbols) for the second layer. These
operators may be organized into irreducible representations of D3, as listed on Table 3.5.

D3 E 2C3(z) 3C ′2 singlet pairing triplet pairing

A1 1 1 1 s+ s′ f + f ′

A2 1 1 -1 s− s′ f − f ′

E 2 -1 0 [d − id , d ′ + id ′] [p− ip , p′ + ip′]

[d1 + d ′1 , d2 + d ′2] [p1 + p′1 , p2 + p′2]

Table 3.5
Irreducible representations (irreps) of D3 associated with the six pairing operators defined on
nearest-neighbor sites, as defined in Eqs (3.17). (Un)primed operators belong to the second
(first) layer.

The following simple example can help us to understand how the pairing operators
of Table 3.5 were defined. The operations C3 and C ′2 act as follows on the combinations
d − id and d ′ + id ′:

C3

⎛

⎝

d − id

d ′ + id ′

⎞

⎠ −→

⎛

⎝

ω̄ 0

0 ω

⎞

⎠

⏞ ⏟⏟ ⏞

t race=−1

⎛

⎝

d − id

d ′ + id ′

⎞

⎠ , ω+ ω̄= −1,

C ′2

⎛

⎝

d − id

d ′ + id ′

⎞

⎠ −→

⎛

⎝

0 ω̄

ω 0

⎞

⎠

⏞ ⏟⏟ ⏞

t race=0

⎛

⎝

d − id

d ′ + id ′

⎞

⎠ , (3.18)



the traces of these transformation matrices are equal to the characters of C3 and C ′2 of
the E representation of the D3 character table. This means [d− id , d ′+ id ′] belongs to
the E representation of the character table.

A similar analysis could be carried out with longer-range pairing, with the same
classication: This would simply add harmonics to the basic pairing functions.

This organization into representations of D3 is contingent on the importance of the
inter-layer hopping t13, which is an order of magnitude smaller than the intra-layer
hopping. If t13 were zero, the two layers would be independent, the symmetry would
be upgraded to C6v and the classification of pairing states would be the same as in
Ref. [31], with representations A1 (s), A2 ( f ), E1 (p± ip) and E2 (d ± id).

3.2.3 CDMFT for twisted bilayer graphene

In order to probe the possible existence of superconductivity in this model, we use cluster
dynamical mean-field theory (CDMFT) [47, 56, 93]with an exact diagonalization solver
at zero temperature (or ED-CDMFT). We have described this method in section 2.5. The
main idea is to divide the original lattice into small clusters and to add to each cluster an
effective medium representing the remainder of the lattice. In other words the infinite
lattice is tiled into identical, repeated units; this defines a superlattice, and an associated
reduced Brillouin zone, smaller than the original Brillouin zone. In the present study
the unit cell of the superlattice (or supercell) is made of four clusters of four sites each:
Two clusters tile each of the two layers (Fig. 3.8c). The cluster-bath system for the
current problem is illustrated on Fig. 3.8. The supercell contains four 4-site clusters;
one layer is illustrated on Panel (c). Note that the only hopping term included in the
impurity model is t14[0,0] and its equivalents, represented by red lines on Fig. 3.4. The
other hopping terms have an effect through the self-consistent CDMFT procedure.

Each cluster contains four sites and six bath orbitals and the various bath parameters
are illustrated on panels (a) and (b) of Fig. 3.8. The four black, numbered circles are
the cluster sites per se. The six red squares are the bath orbitals. Even though their
positions have no meaning, they are, on this diagram, assigned a virtual position that
makes them look as if they were physical sites on neighboring clusters. They are then
given nearest-neighbor hybridizations θ1,2 and second-neighbor hybridizations η1,2. In
order to probe superconductivity, we add pairing amplitudes within the bath itself, as
shown on Fig. 3.8b: Two pairing amplitudes d1,2 between consecutive bath orbitals,
and two others p1,2 between second neighbor bath orbitals. Each cluster is coupled to a
bath of uncorrelated, auxiliary orbitals, and is governed by an Anderson impurity model
(AIM):

Himp = HC +
∑︂

i,r

θi,r(c
†
i ar +H.c.) +
∑︂

r

εr(a
†
r ar) +Hpairing. (3.19)

The pairing amplitudes must be understood in the restricted Nambu formalism, in which
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Figure 3.8
Schematic representation of the impurity model. Each cluster is made of four lattice sites
(numbered black dots) and six bath orbitals (red squares). The normal-state bath parameters
are shown on Panel (a): Two different bath energies ϵ1,2, four different hybridizations θ1,2
and η1,2. The anomalous bath parameters are shown on Panel (b). As shown, they are
optimized for studying the p + ip state: Two complex-valued triplet pairings d1,2 between
nearestneighbor bath orbitals, and two other complex-valued triplet pairings p1,2 between
second-neighbor bath orbitals, all modulated by powers of the complex amplitudeω= e2πi/3

as one goes around (ω̄=ω2 =ω−1). The unit cell of the impurity model contains four copies
of this cluster: Two on the bottom level (w1,3), two on the top level (w2,4). On each level,
they are arranged as shown on Panel (c) (the 4-site cluster on the right is the inversion of the
one on the left, and the bath parameters are the same on the two clusters, except for the sign
of the triplet pairings, which are inverted).

a particle-hole transformation is applied to the spin-down orbitals, giving the pair-
ing operators the looks of hopping amplitudes. Specifically, in terms of the multiplet
(C↑, C†

↓ , A↑, A†
↓), where Cσ = (c1,σ, c2,σ, c3,σ, c4,σ) and Aσ = (a1,σ, · · · , a6,σ)(σ =↑,↓), the

noninteracting part of the impurity Hamiltonian takes the form

H0
imp =
�

C†
↑ C↓ A†

↑ A↓

�

⎛

⎝

T Θ

Θ† E

⎞

⎠

⎛

⎜

⎜

⎜

⎜

⎜

⎝

C↑

C†
↓

A↑

A†
↓

⎞

⎟

⎟

⎟

⎟

⎟

⎠

(3.20)

where

T=

⎛

⎝

tc 0

0 −tc

⎞

⎠ Θ =

⎛

⎝

θ 0

0 −θ ∗

⎞

⎠ E=

⎛

⎝

ε ∆†

∆ −ε

⎞

⎠ (3.21)

Here tc is the hopping matrix restricted to the cluster, θ is a 4×4 matrix containing the
parameters θ1,2 and η1,2, ε is a diagonal matrix containing the bath energies ϵ1,2 and
∆ is a 6× 6 matrix containing the parameters d1,2 and p1,2.



In total, the AIM contains 10 bath parameters, some real, some complex. The im-
purity Hamiltonian does not contain pairing operators on the cluster sites themselves.
However, the operators defined in Eqs (3.1) may develop a nonzero expectation value
on the impurity through the self-consistent bath.

The hybridization pattern shown in the figure is appropriate for triplet pairing (it
is directional, as indicated by the arrows) in a p + ip state (because of the phases ω
and ω2 = ω̄ appearing in the bath pairing amplitudes as one circles around). This may
be readily adapted to probing a p − ip state (by replacing ω↔ ω̄) or a f state (by
replacing ω, ω̄→ 1). Likewise, singlet states are probed by introducing singlet pairing
between bath sites. In principle, we could leave all pairings free, at the price of tripling
the number of bath parameters, but CDMFT convergence has proven problematic when
this was tested. It is easier, and no less general, to separately probe the p ± ip and f
states (and likewise for the singlet states).

One could also treat the bath parameters of all four clusters of the supercell as inde-
pendent. In practice, this is not necessary as they are related. The two clusters belong-
ing to the same layer have identical bath parameters by symmetry, except for the triplet
pairings which must change sign between the two clusters because the second cluster
is obtained from the first by a spatial inversion. According to Table 3.5, we expect the
complex-valued bath parameters of the second layer to be the complex conjugates of
those of the first layer. These constraints effectively reduce the total number of varia-
tional parameters to the equivalent of 13 real parameters.

Minimizing the distance function (2.71) is done by the Nelder-Mead or the conjugate-
gradient method as implemented in SciPy. These methods do not guarantee a global
minimum, but only a local one. Because of this, jumps in the bath parameters might
occur as a function of an external (control) parameter like the chemical potential µ,
and we would expect that this manifests itself as a hysteresis when cycling over µ. We
have observed no such hysteresis in the present study. This being said, the CDMFT al-
gorithm summarized above contains an iteration over impurity models that defines a
very complex nonlinear system that rather complicates this simple expectation. Failure
to converge often manifests itself by oscillations between two or more sets of bath pa-
rameters and experience shows that increasing the parameter set does not necessarily
alleviate this problem.

3.3 Results and discussion

We have probed the different states listed in Table 3.5 using the above CDMFT setup.
In order to reach a solution from scratch, we have used the following staged approach:
(i) Owing to the small value of t13, a one-layer model was first studied. (ii) An ex-
ternal field of each of types (3.17) was then applied to the cluster in order to induce a
nonzero average pairing forcefully. This external field was then reduced to zero in a few
steps, each time starting from the previous solution. (iii) Once a nontrivial solution was
found in this way at zero external field, the second-layer was added (with a complex
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Figure 3.9
p + ip order parameter found by CDMFT, as a function of electron density n, for U = 2 meV
and several variants of the CDMFT procedure explained in the text. Only the electron-doped
results (n> 1) are shown for clarity.

conjugated bath system, e.g., p− ip instead of p+ ip). (iv) the solution found was then
scanned as a function of chemical potential within the two-layer model. The most deli-
cate step is to find a first solution; scanning over parameters of the model (such as the
chemical potential or the interaction) is easier since the solution at a given set of model
parameters provides an initial trial solution for the next parameter set. Computing time
varies depending on convergence rate, but is typically of the order of 10 minutes per
parameter set once the scan is in motion, with code highly optimized for speed; memory
needs are relatively modest at 3-4 gigabytes.1

We found a nonzero solution for p ± ip pairing extending over a wide range of
doping. Fig. 3.9 shows the average p+ ip order parameter on a cluster of the first layer,
as a function of electron density on the cluster, for a local repulsion U = 2 meV. The
order parameter is the ground-state expectation value of operator (3.17d) restricted to
the cluster within the impurity model. Several variants of the CDMFT procedure are
illustrated, which we must now explain. The distance function (2.71) depend on a set
of weights W (iωn) and a fictitious temperature β−1. The values of β (in meV−1) are
indicated in the legend of Fig. 3.9. The grid of Matsubara frequencies then stops at some
cutoff value taken to be ωc = 2 meV in this work. The curve labeled β = 50 (green
dots) is obtained by setting all weights to the same value. The other curves (with a Σ
label) are obtained by setting the weights proportional to the self-energy |Σ(iωn)| (the
norm of the matrix). This is justified if one considers DMFT from the point of view

1Adding just a few orbitals to the impurity problem would dramatically increase the resources needed:
Going from 6 to 9 bath orbitals, for a total of 13 orbitals in the impurity model, would increase the Hilbert
space dimension 50-fold, with a corresponding increase in memory usage and an even sharper increase in
computing time.
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Figure 3.10
p + ip order parameter found by CDMFT, as a function of electron density n, for several
values of Hubbard U (in meV). The order parameter is the ground state average of the oper-
ator (3.17d), restricted to the cluster. The density n is the ground-state average occupation
of the cluster. One of the clusters of the first layer was used for these averages. Clusters on
the second layer would show the opposite chirality (p− ip).

of the Potthoff functional [84, 94]. In particular, it gives more importance to very low
frequencies in an insulating state, as the self-energy then grows as ω→ 0. We expect
the superconducting order parameter to be minimum, if not zero, at quarter (n= 0.5) or
three-quarter (n = 1.5) filling, as observed in experiments. Indeed, this commensurate
filling leads to an insulating state at the magic angle 1.08◦[18] and superconductivity
occurs on either side of this filling value. We see that this is not exactly the case in the
data sets of Fig. 3.9, although using a higher β and, to a lesser extent, a self-energy
modulated set of weights, greatly helps. We will stick to the value β = 150 and use a
self-energy modulated set of weights in what follows.

Figure 3.10 shows the p + ip order parameter as a function of electron density for
the full range of solutions obtained, and five values of the one-site repulsion U (in meV).
We note that the system is almost (but not exactly) particle-hole symmetric. Supercon-
ductivity is strongly suppressed near half-filling (CDMFT ceases to converge to a super-
conducting solution when |n − 1| ≲ 0.2). Superconductivity is partially suppressed at
quarter- and three-quarter filling (n = 0.5,1.5) and this suppression increases with U .
Despite a strong suppression of superconductivity at n= 0.5 and n= 1.5, a Mott state is
not fully obtained there for the range of U studied. This is likely caused by our neglect
of extended interactions. Note the gap in the solutions in the vicinity of n = 0.3 and
n = 1.7; the solutions exist for all values of chemical potential µ around these values,
but a discontinuity leads to the forbidden regions when plotted as a function of density.

We also found a weaker singlet solution with d + id symmetry, as illustrated on
Fig. 3.11a for U = 2 meV and U = 5 meV. The singlet solution has a smaller order



Figure 3.11
Left panel: d + id order parameter found by CDMFT (filled circles), as a function of electron
density n, compared with the p + ip order parameter (open circles), for U = 2 meV and
U = 5 meV. The d + id order parameter is the ground state average of the operator (3.17b),
restricted to the cluster. Again, clusters on the second layer would show the opposite chirality
(d − id). Right panel: For U = 2 and as a function of chemical potential µ, the same chiral
order parameters as in the left panel, as well as the value of the Potthoff functional Ω for each
solution. The p+ ip solution (dashed curve) has a lower energy than the d+ id solution (full
curve). A multiple of µ was added to Ω to rectify the curves and improve clarity.

parameter than the triplet solution, especially in the vicinity of n = 0.5 and n = 1.5,
where it is strongly suppressed and suffers from a discontinuity (we only show the hole-
doped case for clarity). A possible way to discriminate between the triplet and singlet
solutions is to compare the energies of each. An optimal way to estimate the energy
in CDMFT is to borrow the expression of the Potthoff self-energy functional from the
variational cluster approximation [81, 84], as explained in Ref. [94]. The expression of
the Potthoff functional is

Ω= E0 + Tr ln[−(G−1
0 −Σ)

−1]− Tr ln(−Gc) (3.22)

where E0 is the ground state energy per site of the impurity model (including the chem-
ical potential contribution), and the functional trace Tr represents an integral over fre-
quencies and wave vector. It is an approximation to the grand potential Ω= E −µN of
the system at zero temperature, given that the CDMFT is not far from the solution to Pot-
thoff’s variational principle [81]. Figure 3.11b shows the Potthoff functional of the two
solutions (p + ip and d + id) at the same time as the corresponding order parameters,
as a function of chemical potential µ. The grand potential of the triplet is consistently
lower than that of the singlet, except for an isolated point near a discontinuity. We have
also compared directly the ground state energies E0 of the corresponding two impurity
models, and the same conclusion holds: the singlet d + id solution has a higher energy,
a smaller order parameter, and is thus subdominant.

We were not able to resolve the different representations of D3, as listed on Table 3.5.
In other words, the energy difference between the A1, A2 and E representations is likely
too small to have an effect on the CDMFT convergence procedure. This is due to the



small value of the inter-layer hopping t13. It is however important to assign opposite
chiralities to the two layers.

The effective model used was based on the parameters of Ref. [40], appropriate for
a twist angle θ = 1.30◦. Would our conclusions change for different, small twist angles,
such as the ones found in Ref. [19] (θ = 1.05◦, 1.16◦)? Maybe. But a similar CDMFT of
the nearest-neighbor Hubbard model on the graphene lattice has shown triplet pairing
to be dominant [31]; so did a RPA study of bi-layer silicene [113], which is likewise
based on the graphene lattice.

Let us compare our conclusions with some other works having found superconduc-
tivity in effective models for twisted bilyaer graphene. Ref. [34] finds triplet super-
conductivity as a Kohn-Luttinger instability, but is essentially a weak-coupling analysis,
contrary to ours. Ref. [99] finds triplet superconductivity near n = 0.5, but with f
symmetry, using a numerical renormalization group approach expected to be valid from
weak to moderate coupling. Our strong-coupling calculations could not stabilize f -wave
superconductivity. Kennes et al. [42] find d + id superconductivity near n = 1 using a
renormalization-group approach followed by an mean-field analysis. Zhang et al. [114]
arrive at the same conclusion, using constrained path Monte Carlo, and so do Chen et
al [21]. These three works do not contradict ours, since our prediction concerns mostly
regions around n= 0.5 and n= 1.5, not n= 1.

A possible improvement to the present study would be to include extended interac-
tions, for example derived from an on-site Coulomb interaction at the AA sites [26, 108].
We expect that including such interactions would hinder pairing at quarter filling. This
would require adding inter-orbital interactions U1,2 (U3,4) between orbitals w1 and
w2 (w3 and w4). Unfortunately, since orbitals w1 and w2 belong to different clusters
in our CDMFT setup, this cannot be implemented as is. The effect could be studied
within a different quantum cluster approach, such as the variational cluster approxi-
mation [84, 83, 31], which in practice allows larger clusters. Alternately, inter-cluster
interaction terms could be treated at the mean field level, as done, for instance, in
Refs. [98, 31]. Interactions that do not have a density-density form (and thus not diag-
onal in the Wannier basis) would, naturally, complicate matters.

A legitimate question is whether other broken symmetries could compete with su-
perconductivity in the phase diagram. We expect charge order to be a serious contender
at commensurate filling (in particular n= 0.5 and n= 1.5), provided extended interac-
tions are taken into account. It is possible that the superconducting order that we found
would disappear precisely at these fillings, either because of the extended interactions or
out of competition with charge order. Likewise, antiferromagnetism is likely to appear
at half-filling (n = 1), where superconductivity is suppressed, because of a suppression
of the density of states related to Mott physics. We will discuss these subjects in the next
chapter.





Chapter 4

Charge order and
antiferromagnetism

4.1 Introduction

In this chapter, we use a modified version of the Vafek model that we introduced in the
previous chapter. We will adopt this model and supplement it with local and extended
interactions up to third neighbors. We will study the normal (i.e., non superconducting)
states of this model at quarter- and half-lling. We use the variational cluster approxi-
mation (VCA) on a 12-site cluster, augmented by a mean-eld treatment of inter-cluster
interactions. We will show that such interactions naturally lead to a pure Mott insulator
at quarter-lling, without charge order, and to a pure Mott insulator at half-lling, with-
out antiferromagnetism. This is the main conclusion of this chapter. Since the model
studied is nearly particle-hole symmetric, the conclusions reached at quarter lling also
apply at three-quarter lling. The material of this chapter is submitted for publication
and appears on the arXiv:2112.00181v2 [74].

4.2 Low-energy model with extended interactions

A complete description of the low-energy model was given in section 3.2.1, where we
discussed the symmetry of the four Wannier orbitals and also their position on the moiré
lattice. Fig. 3.6 illustrates the shape and location of these orbitals. We retained the most
important hopping terms between Wannier orbitals and assumed an onsite Hubbard
interaction only in our effective model. We now proceed to describe a simple model for
interactions, derived from a local Coulomb interaction [26, 108].

Hint = u
∑︂

R∈AA

n2
R (4.1)

81



where the sum is carried over AA sites and nR is the total charge located at that site, to
which 12 Wannier orbitals (6 per layer) contribute. Specifically, we could write

nR =
1
3

3
∑︂

i=1

�

n(1)R+ai
+ n(1)R−ai

+ n(2)R+ai
+ n(2)R−ai

�

(4.2)

where n(ℓ)r is the electron number associated with the Wannier orbital centered at the
(honeycomb) lattice site r on layer ℓ. The vectors ±ai , indicated on Fig. 3.6, go from
each AA site to the six neighboring honeycomb lattice sites. The factor of 1

3 above comes
from the fact that each Wannier orbital has three lobes, i.e., is split across three AA sites.

Expressed in terms of the Wannier electron densities nℓr , the interaction takes the
form

Hint =
1
2

∑︂

r,r′,ℓ,ℓ′
V ℓ,ℓ

′

r,r′ nℓrnℓ
′

r′ (4.3)

where the factor of 1
2 avoids double counting when performing independent sums over

sites and orbitals. The Hubbard on-site, intra-orbital interaction U is equal to V ℓ,ℓr,r , since

V ℓ,ℓr,r nℓr↑n
ℓ
r↓ =

1
2

V ℓ,ℓr,r (n
ℓ
r↑ + nℓr↓)(n

ℓ
r↑ + nℓr↓)−

1
2

V ℓ,ℓr,r nℓr (n2
rσ = nrσ) (4.4)

Including on-site interactions in this form entails a compensation term U/2 to the chem-
ical potential.

Careful counting from Eqs (4.1,4.2) shows that

U =
2
3

u (on-site)

V (1,2)
rr ≡ V0 =

2
3

u= U (same site, diff. layer)

V (ℓ,ℓ
′)

rr′ ≡ V1 =
4
9

u=
2
3

U (1st neighbors)

V (ℓ,ℓ
′)

rr′ ≡ V2 =
2
9

u=
1
3

U (2nd neighbors)

V (ℓ,ℓ
′)

rr′ ≡ V3 =
2
9

u=
1
3

U (3rd neighbors)

(4.5)

There are no interactions beyond third neighbors coming from a single AA site. We will
study this model by assuming the above relations between extended interactions V0,1,2,3
and the on-site interaction U .

4.2.1 The strong-coupling limit

Given the large number of extended interactions in the model, it is instructive to look at
the strong-coupling limit (neglecting all hopping terms) to detect possible charge order
instabilities stemming solely from the interactions.



The reader will forgive us if we use a slightly different notation, writing the interac-
tion Hamiltonian as

Hint =
1
2

∑︂

R,R′,a,b

V a,b
R,R′n

a
Rnb

R′ (4.6)

where now R, R′ denote Bravais lattice sites and a, b orbital indices from 1 to 4. In
essence, for each R, the site index r takes two values (the two sublattices A and B), as
does the layer index ℓ, leading to four possible value of the orbital index a. This shift in
notation allows us to express the interaction in Fourier space:

Hint =
1
2

∑︂

q

Ṽ ab
q ña†

q ñb
q (4.7)

where

V ab
RR′ =

1
L

∑︂

q

Ṽ ab
q eiq·(R−R′) ña

q =
1
⎷

L

∑︂

R

e−iq·Rna
R (4.8)

Interactions up to third neighbor are then encoded in the following q-dependent matrix:

[Ṽ ab
q ] =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

U + V2βq V1γq + V3γ
∗
2q V0 + V2βq V1γq + V3γ

∗
2q

V1γ
∗
q + V3γ2q U + V2βq V1γq + V3γ

∗
2q V0 + V2βq

V0 + V2βq V1γ
∗
q + V3γ2q U + V2βq V1γq + V3γ

∗
2q

V1γ
∗
q + V3γ2q V0 + V2βq V1γ

∗
q + V3γ2q U + V2βq

⎞

⎟

⎟

⎟

⎟

⎟

⎠

(4.9)

with

βq = 2 (cosq · b1 + cosq · b2 + cosq · b3) and γq = eiq·a1 + eiq·a2 + eiq·a3 (4.10)

where the vectors bi are the second-neighbor vectors on the honeycomb lattice (hence
first neighbors on the Bravais lattice):

b1 = 2a1 + a2 b2 = a1 + 2a2 b3 = a2 − a1 (4.11)

The order of orbitals adopted in this matrix notation is (w1, w4, w2, w3): the first two
orbitals belong to the “first layer”, the last two to the “second layer”.

The local density na
Rσ can only take the values 0 or 1, but the Fourier transforms

ña
q are potentially macroscopic variables. In particular,

∑︁

a ña
0 is the total number of

particles. If a charge density wave were in place at wave vector q, a certain combination
(over a) of ña

q would also take a macroscopic, i.e., classical, value. Hence, for the sake
of detecting charge order in the strong-coupling limit, we can treat the variables ña

q as
classical.

The matrix (4.9) can be diagonalized by a unitary matrix:

Ṽ ab
q =

4
∑︂

r=1

Uar
q λ

(r)
q U br∗

q (4.12)



and thus the interaction energy can take the form

Hint =
1
2

∑︂

q

4
∑︂

r=1

λ(r)q |m
(r)
q |

2
�

m(r)q = Uar∗
q ña

q

�

(4.13)

with the eigenvalues

λ(1)q = U + V0 + 2V2βq + 2|V1γq + V3γ
∗
2q| (4.14)

λ(2)q = U + V0 + 2V2βq − 2|V1γq + V3γ
∗
2q| (4.15)

λ(3)q = λ(4)q = U − V0 (4.16)

The uniform solution ña
0 = (1,1, 1,1) corresponds to λ(1)0 , which is the largest possi-

ble eigenvalue, and is favored by the (neglected) kinetic energy. Charge order instabili-
ties in the strong-coupling limit occur for negative eigenvalues, since they can be lower
the interaction energy. When substituting the values (4.5), one finds that the maximum
eigenvalue is λ(1)0 = 12U and the minimum eigenvalue is zero, the latter at the Dirac
points q = K and q = K′ for λ(1)q , and at all wavevectors for λ(2,3,4)

q . This means that
the system has no instabilities in the strong-coupling limit, only indifferent states (zero
eigenvalue), especially at wavevectors K and K′. When probing such instabilities with
a cluster method, we should therefore make sure that these two wavevectors belong to
the reciprocal cluster. The 12-site (hexagonal) cluster used in this work statisfies this
requirement.

4.3 Computational procedure

The VCA approximation as summarized in section 2.4 only applies to systems with on-
site interactions, since the Hamiltonians H and H ′ must differ by one-body terms only,
i.e., they must have the same interaction part. This is not true if extended interactions
are present, as they are partially truncated when the lattice is tiled into clusters. To treat
the extended Hubbard model, one must apply further approximations. For instance, we
can apply a Hartree (or mean-field) decomposition on the extended interactions that
straddle different clusters, while interactions (local or extended) within each cluster
are treated exactly. This is called the dynamical Hartree approximation (DHA) and has
been used in Refs [98, 31] in order to assess the effect of extended interactions on
strongly-correlated superconductivity. We will explain this approach in this section.

Let us consider a Hamiltonian of the form

H = H0(t) +
1
2

∑︂

i, j

Vi jnin j (4.17)

where i, j are compound indices for lattice site and orbital, niσ is the number of electrons
of spin σ on site/orbital i, and ni = ni↑ + ni↓ (the index i is a composite of honeycomb



site r and layer ℓ indices as used in Sect. 4.2, or of Bravais lattice site R and orbital index
a used in Sect. 4.2.1). The factor 1

2 in the last term comes from the independent sums
on i and j rather than a sum over pairs (i, j). In the dynamical Hartree approximation,
the extended interactions in the model Hamiltonian (4.17) are replaced by

1
2

∑︂

i, j

V c
i jnin j +

1
2

∑︂

i, j

V ic
i j (n̄in j + ni n̄ j − n̄i n̄ j) (4.18)

where V c
i j denotes the extended interaction between orbitals belonging to the same clus-

ter, whereas V ic
i j denotes those interactions between orbitals of different clusters. Here

n̄i is a mean-field, presumably the average of ni , but not necessarily, as we will see be-
low. Both the first term (V̂

c
) and the second term (V̂

ic
), which is a one-body operator,

are part of the lattice Hamiltonian H and of the VCA reference Hamiltonian H ′.
Let us express the index i as a cluster index c and a site-within-cluster index α. Then

Eq. 4.19 can be expressed as

1
2

∑︂

c

∑︂

α,β

Ṽ c
αβnc,αnc,β +

1
2

∑︂

c,c′,α,β

Ṽ ic
αβ(n̄αnc,β + nc,αn̄β − n̄αn̄β) (4.19)

where we have assumed that the mean fields n̄i are the same on all clusters, i.e., that they
have minimally the periodicity of the superlattice, hence n̄i = n̄α. We have consequently
replaced the large, N ×N and block diagonal matrix V c

i j by a small, Nc ×Nc matrix Ṽ c
αβ ,

and we have likewise “folded” the large N × N matrix V ic
i j into the Nc × Nc matrix Ṽ ic

αβ .
In order to make this last point clearer, let us consider the simple example of a one-

dimensional lattice with nearest-neighbor interaction v, tiled with 3-site clusters. The
interaction Hamiltonian

Hint = v
N
∑︂

i=0

nini+1 (4.20)

would lead to the following 3× 3 interaction matrices:

Ṽ c = v

⎛

⎜

⎜

⎝

0 1 0

1 0 1

0 1 0

⎞

⎟

⎟

⎠

Ṽ ic = v

⎛

⎜

⎜

⎝

0 0 1

0 0 0

1 0 0

⎞

⎟

⎟

⎠

(4.21)

In practice, the symmetric matrix Ṽ ic
αβ is diagonalized and the mean-field inter-

cluster interaction is expressed in terms of eigenoperators mµ:

V̂
ic
=
∑︂

µ

Dµ

�

m̄µmµ −
1
2

m̄2
µ

�

(4.22)



For instance, in the above simple one-dimensional problem, these eigenoperators mµ
and their corresponding eigenvalues Dµ are

D1 = −v m1 = (n1 − n3)/
⎷

2 (4.23)

D2 = 0 m2 = n2 (4.24)

D3 = v m3 = (n1 + n3)/
⎷

2 (4.25)

The mean fields n̄i are determined either by applying (i) self-consistency or (ii)
a variational method. In the case of ordinary mean-field theory, in which the mean-
field Hamiltonian is entirely free of interactions, these two approaches are identical. In
the present case, where the mean-field Hamiltonian also contains interactions treated
exactly within a cluster, self-consistency does not necessarily yield the same solution
as energy minimization. In the first case, the assignation n̄i ← 〈ni〉 would be used to
iteratively improve on the value of n̄i until convergence. In the second case, one could
treat n̄i like any other Weiss field in the VCA approach, except that n̄i is not defined only
on the cluster, but on the whole lattice. We will follow the latter approach below.

Figure 4.1
12-site cluster used in this work. The extended interactions V0 to V3 are shown. Different
Wannier orbitals are shown as spheres of different colors. Orbitals w1 and w4 are located,
say, on the bottom layer, whereas orbitals w2 and w3 are located on the top layer.

4.4 The normal state at quarter filling

In this work we use a 12-site cluster containing 3 unit cells of the low-energy model.
It is made of two superimposed hexagonal clusters, as illustrated on Fig. 4.1. On that
figure the various extended interactions V0 to V3 are indicated. The three wavevectors
of the reciprocal cluster are Γ = 0, K and K′. The 12× 12 matrix of inter-cluster inter-
actions is given in Table 4.1 and the eigenoperators mµ used in the dynamical Hartree
approximation are illustrated in the lower part of the same table.



Ṽ ic =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0 V3 2V2 V1 2V2 V3 0 V3 2V2 V1 2V2 V3

V3 0 V3 2V2 V1 2V2 V3 0 V3 2V2 V1 2V2

2V2 V3 0 V3 2V2 V1 2V2 V3 0 V3 2V2 V1

V1 2V2 V3 0 V3 2V2 V1 2V2 V3 0 V3 2V2

2V2 V1 2V2 V3 0 V3 2V2 V1 2V2 V3 0 V3

V3 2V2 V1 2V2 V3 0 V3 2V2 V1 2V2 V3 0

0 V3 2V2 V1 2V2 V3 0 V3 2V2 V1 2V2 V3

V3 0 V3 2V2 V1 2V2 V3 0 V3 2V2 V1 2V2

2V2 V3 0 V3 2V2 V1 2V2 V3 0 V3 2V2 V1

V1 2V2 V3 0 V3 2V2 V1 2V2 V3 0 V3 2V2

2V2 V1 2V2 V3 0 V3 2V2 V1 2V2 V3 0 V3

0 2V2 V1 2V2 V3 0 V3 2V2 V1 2V2 V3 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟
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⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟
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⎟
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⎟
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⎟

⎟

⎠

m0

D0 = 2(V1 + 4V2 + 2V3) =
16

3
U

m1

D1 = 2(V1 − 2V2 − V3) = −
2

3
U

m2

D2 = 2(V1 − 2V2 − V3) = −
2

3
U

m3

D3 = −2(V1 + 2V2 − V3) = −2U

m4

D4 = −2(V1 + 2V2 − V3) = −2U

m5

D5 = −2(V1 − 4V2 + 2V3) = 0

m6

D6 = 0

m7

D7 = 0

m8

D8 = 0

m9

D9 = 0

m10

D10 = 0

m11

D11 = 0

Table 4.1
Inter-cluster coupling matrix for the 12-site cluster used in this work. The numbering of
sites is illustrated on Fig. 4.1. Bottom: eigenvalues Dµ and corresponding eigenvectors (or
eigenoperators) mµ of this matrix. The eigenoperators are shown graphically as a function
of site on the 12-site cluster: blue means 1 and red −1. The eigenvalues are also shown as a
function of the on-site repulsion U when the constraints (4.5) are applied.
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Figure 4.2
Electronic density vs chemical potential µ for different interaction strengths at quarter filling.
The presence of a plateau (in red) is the signature of an insulating state, and the width of
the plateau is the magnitude of the gap. The insulator-to-metal transition occurs between
U = 1.5 and U = 2.
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Figure 4.3
Left panel : The Potthoff functional Ω as a function of the charge-density-wave Weiss field
m̄1 at quarter-filling. Right panel: the same, for the charge-density-wave Weiss field m̄3. See
Table 4.1 for an illustration of the density-waves m1 and m3. The symmetric state (no charge
density wave) m̄1,3 = 0 is stable.



We begin by investigating the normal state at quarter filling, for several values of
the interaction U , all the extended interactions following from U according to Eq. (4.5).
We will start by applying VCA to detect the insulating state, assuming that no charge
order is present. To do this, we treat the cluster chemical potential, µc , as the sole
variational parameter in the VCA procedure. We do not take into account inter-cluster
interactions, i.e., the Hartree approximation described in Sect. 4.3. Indeed, all the sites
of the 12-site cluster are equivalent in the absence of charge order, meaning that the
relevant (normalized) eigenvector of the inter-cluster interaction matrix V ic is

m0 =
1

2
⎷

3

12
∑︂

i=1

ni (4.26)

Therefore, adding the corresponding mean-field m̄0m0 to the lattice Hamiltonian would
simply shift the chemical potential by −m̄0, and leave the variational space used in VCA
unchanged. This would therefore not help us in determining whether there is a gap or
not.

The signature of the Mott gap will be a plateau in the relation between µ and the
density n. This is shown in Fig. 4.2 for a few values of the interaction U . Using the
cluster chemical potential µc as a variational parameter makes the plateau very sharp,
whereas not using VCA, i.e., simple cluster perturbation theory (CPT) would make the
plateau softer, thereby making the transition to the metallic state more difficult to detect.
In the case shown, the metal-insulator transition clear occurs between U = 1.5meV and
U = 2meV. This Mott transition is essentially caused by extended interactions.

The question then arises as to the nature of the insulating state at quarter filling: is
there a charge density wave or not? As shown in Sect. 4.2.1, the charge fluctuations
are expected to be large, because a full array of charge configurations do not affect the
energy in the strong-coupling limit when the extended interactions follow Eq. (4.5). We
do expect, on intuitive grounds, that the kinetic energy terms would be unfavorable to
charge order. Nevertheless, in order to probe the possible existence of charge order, we
will apply Hartree inter-cluster mean-field theory, as described in Sect. 4.3. In order to
put all the chances on our side, we will probe one of the eigenoperators with the lowest
(negative) eigenvalues in Table 4.1, namely one of those with D = −2U:

m3 =
1

2
⎷

2

�

n1 + n2 − n4 − n5 + n7 + n8 − n10 − n11

�

(4.27)

We must then optimize the Potthoff functional as a function of the mean field m̄3, in
addition to using µc as a variational parameter. On the right panel of Fig. 4.3 we show
the Potthoff functional Ω as a function of m̄3 for a value µc that actually optimize Ω at
a value of µ associated with quarter filling, for a few values of the interaction U . This
is to illustrate the absence of nontrivial solution for m̄3, i.e., the value of the mean-field
parameter m̄3 that minimizes the energy is indeed zero. This shows that, within this
inter-cluster mean-field approximation and for these values of U , there is no charge
order this type (m3 or, equivalently, m4) at quarter-filling.



We perform the same computation for the m1 eigenoperator:

m1 =
1

2
⎷

2

�

n1 − n2 + n4 − n5 + n7 − n8 + n10 − n11

�

(4.28)

and find similar results, as shown on the left panel of Fig. 4.3. Therefore, for the values
of U probed, the quarter-filled state appears to be a pure, uniform Mott insulator, driven
by extended interactions.

4.5 The normal state at half filling and antiferromagnetism

The insulating state at half-filling is revealed the same way as at quarter-filling, by ap-
plying the VCA with µc as a variational parameter. The results are shown in Fig. 4.4,
where it appears that the Mott transition occurs between U = 0.1meV and U = 0.25meV.

We will not probe charge order at half-filling, as an antiferromagnetic state is more
likely to occur. The Weiss field used to probe antiferromagnetism is

M̂ = M
12
∑︂

i=1

(−1)i(ni↑ − ni↓) (4.29)

Fig. 4.5 shows the Potthoff functional as a function of M for different values of the ex-
tended interactions compared to the on-site repulsion U = 3meV. These different values
are characterized by the ratio a = 3V1/2U , which is unity when the extended inter-
actions obey the constraints (4.5). Lower values of a correspond to weaker extended
interactions (compared to U). From that figure we see that, even at a relatively strong
U (the Mott transition occurs at a much lower value of U), antiferromagnetism is not
present at half-filling for the nominal values of the extended interactions defined in
(4.5). Upon lowering these interactions, antiferromagnetism appears. Hence the half-
filled state should be a true Mott insulator, not an antiferromagnetic insulator.

This is relatively easy to understand in the strong-coupling limit, when (4.5) holds.
The low-energy manifold at half-filling in the absence of hopping terms is degenerate
non only because of spin, but also because of charge motion: if there is exactly one
electron on each site, hopping an electron to the neighboring site does not change the
interaction energy, and thus the usual strong-coupling perturbation theory argument
leading to an effective Heisenberg model at half-filling and large U does not hold any-
more.
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Electronic density vs chemical potential µ for different interaction strengths at half filling,
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Figure 4.5
Potthoff functional vs the antiferromagnetic Weiss field M ′ for several values of a = 3V1/2U
and U = 3, at half-filling. The case a = 1 corresponds to the contraints (4.5), and smaller
values of a just weaken the extended interactions compared to the on-site interaction. The
value ofΩ at M ′ = 0 is subtracted for clarity. Antiferromagnetism appears only below a = 0.7,
i.e., not for the extended interactions constrained by (4.5).





Conclusion

In this thesis, the superconducting phase, as well as the Mott insulating phase of a
twisted bilayer graphene system are investigated. In examining the Mott insulating
phase, we have also considered the possibility of the presence of broken symmetry
phases such as charge density waves or antiferromagnetism. The computational meth-
ods we have used in these studies are known as quantum cluster methods. We described
the basic concepts of these methods in Chapter 2.

The interaction between the layers of twisted bilayer graphene, at a special twist
angle called the magic angle, causes the formation of four narrow bands, called the flat
bands. The Fermi velocity of electrons in these bands is very low and therefore the elec-
trons are highly correlated. When the Fermi energy is within the range of these bands,
the system exhibits significant properties that originate from the strong correlation of
electrons located in these flat bands.

At some certain twist angles, these flat bands are separated from the other bands
by an energy gap, and we can obtain an effective model for describing the system. The
effective model that we use in this thesis, which I have named the Vafek model, Has been
introduced by Jian Kang and Oskar Vafek in Ref. [40]. We were able to add intra-orbital
and inter-orbital interactions to this model and use it to describe the superconducting
phase of the system as well as the insulating-metal phase transition, which is actually
the result of these extended interactions.

By stacking the two layers of graphene on top of each other and rotating them by
a magic angle, a periodic pattern is observed, called the moiré lattice. In the case of
this system, the latter is a triangular lattice whose lattice parameter depends on the
rotation angle. At small twist angle, it is much larger than the lattice parameter of the
original graphene lattice. The Vafek model is based on four Wannier orbitals located
at the center of the moiré lattice triangles (two orbitals in the center of each triangle).
Thus these orbitals form a honeycomb lattice. Since there must be two Wannier orbitals
at each site of this honeycomb lattice, we have considered it as a two-layer lattice so that
the two orbitals that must be on the same site are in different layers. We define intra-
and inter-orbital electron-electron interactions for the model. This effective model is
appropriate for a twist angle θ = 1.30◦, but we expect that the shape of orbitals and the
hopping amplitude between them does not change dramatically at θ = 1.08◦, where
the system becomes a superconductor.
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To study the superconducting phase, we divide this honeycomb lattice into smaller
clusters and use cluster dynamical mean field theory (CDMFT). In this calculation, we
have done the clustering so that each cluster consists of four lattice sites and is sur-
rounded by six auxiliary orbitals, which we call bath orbitals.

Assuming that the electrons at neighboring sites can form Cooper pairs, we have
defined the appropriate order parameters for the superconducting phase of the system,
given the symmetries that exist in a honeycomb lattice. We used CDMFT calculations
to obtain these order parameters. These calculations confirmed the occurence of su-
perconductivity in this system and we were able to identify the symmetry of the order
parameter: p±ip. If correct, this would be the first known system with such a symmetry.

The range of electron densities at which the system is in the superconducting phase
is well consistent with experimental measurements. The effective model we have used
to describe this system has approximate electron-hole symmetry, and therefore the su-
perconducting phase is observed in both electron-doped and hole-doped densities. In
experimental measurements, the superconducting phase is confirmed only for a range of
hole-doped densities at 1.08◦. In addition to superconducting behavior, the system can
exhibit insulating behavior in situations where the flat bands are quarter-filled or three-
quarter-filled. There is no energy gap between the flat bands to justify the presence
of these insulating phases. These insulating phases are therefore strongly correlated
phases that occur due to interactions. In the last chapter of this thesis, we have studied
these correlated insulator phases.

To investigate the insulating phases, in addition to intra-orbital interactions, we have
included inter-orbital interactions. These are defined in two types, inter-layer and intra-
layer so that each electron can interact with electrons in the opposite layer, on the same
hexagonal site. Intralayer interactions are also defined in such a way that each electron
in a particular site can interact with electrons in the first, second, and third-neighbor
sites of the honeycomb lattice.

In order to be able to study the effect of these long-range interactions, the clustering
should be done in a way that each cluster contains these extended interactions. We
have also taken into account the inter-cluster terms using a mean field approximation.
The smallest cluster that can be considered with these features is a hexagonal cluster
with two Wannier orbitals at each site at the top and bottom layers. In other words,
each cluster contains 12 Wannier orbitals. The relatively large size of the clusters in this
clustering model prevents us from using the CDMFT method. Therefore, we have used
the variational cluster approximation to solve this problem.

The results obtained by this approximation confirm the existence of the Mott insu-
lating phase at certain values of the carrier density. More precisely, the system exhibits
insulating behavior at half-filling, quarter-filling, and three-quarter-filling densities (due
to electron-hole symmetry, we will see a similar behavior for electron- and hole-doped
systems).

After proving the existence of these insulating phases, another issue that we have
investigated is the presence or absence of charge density waves in this system. To answer



this question, we first examine the system analytically in the strong-coupling limit and
obtain the possible instabilities of charge order. These instabilities are created solely by
interactions and should be suppressed by the kinetic energy of the system. Using the
VCA method, we compute and plot the Potthoff self-energy functional as a function of
defined order parameters. The results of the calculations show the Potthoff functional
has no non trivial minimum. This means that, there is no charge order phase for this
model with the defined interactions.

These calculations were performed at quarter-filling. At half-filling, the antiferro-
magnetic phase is more likely to occur, so we define an order parameter corresponding
to this phase for the system, and again, similar to the quarter-filling state, use the VCA
method to check for the presence or absence of this phase. The results show that there is
no antiferromagnetic order in the system for the values of the extended interactions. But
by reducing the intensity of the extended interactions relative to the local interaction,
an antiferromagnetic order is observed.
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