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Sommaire

Dans cette thèse, nous présentons deux expériences originales que nous avons conçues
et construites depuis le début. La première consiste à mesurer la rotation de Fara-
day quantique dans un gaz bidimensionnel d’électrons (2DEG) à des fréquences
micro-ondes et la seconde à sonder la longueur d’écran électrostatique dans les supra-
conducteurs.

L’expérience sur la rotation de Faraday nous a permis de réaliser une mesure
quantitative de la rotation de Faraday micro-ondes sur le 2DEG AlGaAs/GaAs. Nous
avons effectué des mesures avec plusieurs 2DEGs de différentes mobilités. Les
mesures effectuées sur un échantillon à faible mobilité (µ ≃ 1×106 cm2 V−1 s−1)
révèlent la quantification de l’angle de Faraday dans le régime de Hall quantique.
L’angle de Faraday observé est quantifié en unités d’une constante de structure fine
effective, α∗ > α. Cette augmentation est due au fait que nous effectuons nos mesures
en présence d’un guide d’ondes et non en espace libre. Cependant, avec des 2DEGs de
plus grande mobilité qui peuvent accueillir des états de Hall quantique fractionnels,
aucun plateau n’est observé. Cette expérience présente également l’avantage de
sonder les systèmes de Hall quantique par une approche non invasive.

La deuxième expérience permet de sonder directement la longueur de l’écran
électrostatique. Elle est basée sur l’idée que la capacité d’un condensateur est sensible
au changement de la longueur d’écran électrostatique. Avec la configuration de mesure,
nous pouvons mesurer des changements de capacités aussi petits que 0,3 ppm à notre
fréquence de mesure de 400 Hz. Cela correspond à une sensibilité de mesure de 1
partie de 104 dans la longueur d’écran. En utilisant ce dispositif, nous avons réalisé
des expériences pour mesurer le changement de longueur de blindage électrostatique
associé à la transition supraconductrice dans le Ti et le Nb et nous avons observé un
signal minuscule et reproductible pour lequel nous n’avons pas encore d’explication.
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Summary

In this thesis, we present two original experiments that we have designed and built
from the beginning. The first one is to measure quantum Faraday rotation in two
dimensional electron gas (2DEG) at microwave frequencies and the second one to
probe electrostatic screening length in superconductors.

The experiment on the Faraday rotation allowed us to perform a quantitative
measurement of microwave Faraday rotation on AlGaAs/GaAs 2DEG. We carried out
measurements with several 2DEGs of different mobilities. The measurements carried
out on a low mobility sample (µ ≃ 1×106 cm2 V−1 s−1) reveals the quantization of
Faraday angle in the quantum Hall regime. The observed Faraday angle is quantized
in units of an effective fine structure constant, α∗ > α. This enhancement is due
to the fact that we do our measurements in the presence of a waveguide and not
in free space. However, with 2DEGs of higher mobility which can host fractional
quantum Hall states there are no observed plateaus. This experiment also provides
the advantage of probing the quantum Hall systems in a non-invasive approach.

The second experiment can directly probe the electrostatic screening length. It
is based on the idea that the capacitance of a capacitor is sensitive to change in
electrostatic screening length. With the measurement setup, we can measure change
in capacitances as small as 0.3 ppm at our measurement frequency of 400 Hz. This
corresponds to a measurement sensitivity of 1 part in 104 in screening length. Using
this setup, we have performed experiments to measure the change in electrostatic
screening length associated with superconducting transition in Ti and Nb and we
observe a reproducible, tiny signal for which we have no explanation yet.
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two dimensional electron gas
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Chapter 1

Introduction

The phenomenon of Faraday rotation was discovered by Michael Faraday in 1845 [1].

When an electromagnetic wave passes through certain materials in the presence of

an applied magnetic field, the polarization of that component of the wave which is

propagating along the direction of the applied magnetic field will get rotated. This is

known as Faraday rotation, which is a magnetic field induced circular birefringence.

The phenomenon of Faraday rotation can be observed in a wide range of systems

ranging from interstellar gases to low dimensional electron systems [2–9]. In a

semiconducting two dimensional electron gas (2DEG), the Faraday rotation was first

observed by Volkov et.al. in 1986 [10,11].

In 1980, Von Klitzing observed the quantization of Hall resistance in a 2DEG

for certain values of magnetic field at liquid He temperatures [12], leading to the

discovery of quantum Hall effect. The quantized values are found to be an integer

times h/e2. Moreover, the value of these integers is measured to an accuracy of 1 part

in 109 and is found to be independent of the sample on which the measurements are

carried out. This is the integer quantum Hall effect (IQHE). Two years later, Tsui

et.al. discovered on a much cleaner 2DEG the fractional quantum Hall effect (FQHE)

[13], where the quantized Hall resistance takes fractional values in units of h/e2.

In a 2DEG both quantum Hall effect and Faraday rotation have a common origin:

the Lorentz force acting on the moving charged particles in the presence of a magnetic

field. This leads to the question: can we observe quantized Faraday rotation? Theo-

retically, it has been shown that in vacuum the Faraday rotation by a 2DEG in the
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quantum Hall regime get quantized in units of fine structure constant [10]. In the

experiment made by Volkov et.al. [11] in the microwave regime, they report signatures

of quantization. However, they were not able to do a quantitative measurement. This

brings us to the main motive behind our work.

We designed an experimental setup using a circular waveguide, with which

we measured the Faraday angle generated by a 2DEG in the microwave regime.

We also developed a theoretical model for Faraday rotation by a 2DEG within a

waveguide to take into account the confinement of the electromagnetic field which

renormalizes the fine structure constant. Several measurements has been carried out

with samples of different mobilities. Later on, the setup is further modified so that we

are able to perform D.C transport measurements simultaneously while doing Faraday

measurements.



Chapter 2

Hall effect

In this chapter, we will have a brief discussion on the underlying physics of classical

and quantum Hall effect.

2.1 Classical Hall effect

Classical Hall effect was discovered by Edwin Hall in 1879 [14]. He observed a voltage

drop in a direction transverse to the flow of current in a thin metallic foil placed inside

a magnetic field, B⃗. It is a simple consequence of Lorentz force acting on moving

charged particles.

Consider a 2-D plane (XY) as shown in FIG. 2.1 in which electrons are restricted

to move. A magnetic field, B is applied along the ẑ direction and current, I along the

x̂ direction. As a result of Lorentz force, the moving electrons will experience a torque.

This results in accumulation of charges at the boundaries and sets up an electric field,

E⃗H in the transverse direction. A steady state condition will be quickly established

and we have:

eE⃗H = ev⃗× B⃗ (2.1)

where e is the electronic charge, E⃗H is the transverse electric field or Hall field, v⃗ is

the drift velocity of electrons and B⃗ is the applied magnetic field. The above equation

can also be written as:
eVH

w
= evB (2.2)

4
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Figure 2.1: Classical Hall effect. 2D - conducting plane with an applied current I
along x̂ and magnetic field, B along ẑ.

where VH is the voltage drop across the 2D plane i.e the Hall voltage and w is the

width of the 2D plane.

Recall that in terms of drift velocity, v and electron density per unit volume, N,

the total current, I flowing through a 3D-sample can be written as:

I = NevA (2.3)

where A is the cross section area of the 3D sample through which the current flows.

In a 2D system like ours, the above equation can be written with no loss of generality

as:

I = neevw (2.4)

where ne being the electron density per unit area and w, the cross sectional length

which is equivalent to the width of the 2D plane. Rearranging for v and substituting
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into 2.2 gives the Hall voltage VH as a function B to be:

VH = IB
nee

(2.5)

From latter relation, the transverse resistance (RH , Hall resistance) is found to be:

RH = VH

I
= B/nee (2.6)

As we can see RH depends only on B, ne and the sign of charge carriers. Hence, the

measure of RH is used as a method to characterize devices/ materials. The latter

equation can be rewritten in terms of 2D current density, J and Hall electric field, EH

to show that:

RH = VH

I
= wEH

wJ
= EH

J
= ρ yx (2.7)

This is really interesting to note that RH is independent of the sample geometry and

a measure of it give us the exact value of transverse resistivity, ρ yx.

Further, the longitudinal resistance Rxx can be found by:

Rxx = Vxx/I (2.8)

where Vxx is the voltage drop (corresponding to Ex) along the longitudinal direction.

Also, note that Rxx is independent of the strength of the applied B.

Now, we will discuss the form of conductivity tensor, σ̂ of a 2D-conducting plane

in the presence of a magnetic field. The equation of motion of an electron using Drude

model is:

m
dv⃗
dt

= −eE⃗ − ev⃗ × B⃗ − mv⃗
τ

(2.9)

where E⃗ is the applied electric field, τ is the scattering time and m is the effective

mass of the electron. At equilibrium, the above equation becomes:

v⃗ + eτ
m

v⃗ × B⃗ = − eτ
m

E⃗ (2.10)

Now, using Ohm’s law, J⃗ = σ̂E⃗ and 2.3, 2.10 can be written as:

J⃗ = nee2τ

m
1

1 + (ωcτ)2

(︄
1 −ωcτ

ωcτ 1

)︄
E⃗ (2.11)
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where J⃗ is the current density and ωc = eB
m is the cyclotron frequency. Therefore, the

conductivity tensor, σ̂ in the presence of B is given by:

σ̂ =
(︄
σxx σxy

σyx σyy

)︄
= σ0

1 + (ωcτ)2

(︄
1 −ωcτ

ωcτ 1

)︄
(2.12)

where σ0 = ne e2τ
m is the D.C Drude conductivity. The resistivity tensor, ρ̂ can be

obtained by inverting 2.12. Under an alternative electric field at finite frequency, ω

the 2.12 becomes:

σ̂ = σ0

(1 − jωτ)2 + (ωcτ)2

(︄
1− jωτ −ωcτ

ωcτ 1− jωτ

)︄
(2.13)

Note that at finite frequency, the σxx and σyx has non-zero imaginary terms.

In conclusion, we have seen that in classical Hall effect, due to Lorentz force acting

on moving charge carriers, a voltage drop is observed in a direction perpendicular to

the flow of current. Consequently, we can define a non-zero transverse conductivity or

resistivity for the material in which the Hall effect is observed.

2.2 Quantum Hall effect

Unlike classical Hall effect, we have two different quantum Hall effects i) Integer

Quantum Hall Effect (IQHE) ii) Fractional Quantum Hall effect (FQHE). Both were

first discovered experimentally. IQHE in 1980 by Von Klitzing et al. [12] and FQHE

in 1982 by Tsui et.al. [13]. In this section, we will have a look at the IQHE.

In order to observe QHE, we need low temperatures and strong magnetic field. In

this regime, as shown in FIG. 2.2, Von Klitzing et.al. found that the Hall resistivity

ρxy of a 2DEG shows plateaus for certain range of magnetic field. The value of ρxy on

these plateaus is quantized and is given by:

ρxy = 1
i

h
e2 (2.14)
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Figure 2.2: Integer quantum Hall effect. UH is the measured Hall voltage and UPP is
the measured longitudinal voltage. Here the magnetic field is kept constant and the
carrier density is varied with applied gate voltage, Vg.

i is found to be an integer with an accuracy of one part in 109. At the same time, the

longitudinal resistivity, ρxx is found to show a minimum when ρxy is on a plateau and

a peak when ρxy jumps from one plateau to the next. This is the IQHE. In order to

understand what’s going on, let’s discuss the physics of Landau levels in a 2D system.

In the absence of magnetic field and interactions, the free electron states can be

represented using plane wave functions and the corresponding spectrum constitutes a

continuum of states which are non-degenerate. The Density of States (DOS) of such a

system is as shown in FIG. 2.3 a). Now, in the presence of a perpendicular magnetic

field, instead of a continuum, energy states of an electron are discrete, equally spaced

and highly degenerate. These energy states are known as Landau levels. In the

ideal case scenario of zero disorder, the DOS is a series of highly degenerate δ -

functions which are equally spaced in energy, as shown in FIG. 2.3 b). On solving

the Schrodinger equation S.E for an e− in a magnetic field, we can obtain the Eigen

values (En) corresponding to these states which are labeled by n (Landau level index),

where n can take values 0, 1, 2...

En = (n+ 1
2

) (ħωc) (2.15)
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where ωc = eB
m∗ is the cyclotron frequency of an electron of charge e and effective

 B ≠ 0E E

DOS DOS

E E

DOS DOS

B = 0 ωcτ  ≈ 1 ωcτ >>1

Figure 2.3: DOS of Landau levels. a) DOS in the absence of B. b) DOS of Landau levels
in the absence of impurities. c) DOS of Landau levels in the presence of impurities
at lower values of B such that ωcτ ≈ 1 . d) DOS of Landau levels in the presence of
impurities at higher values of B such that ωcτ ≫ 1.

mass m∗ in a magnetic field of strength B. Accordingly, the spacing between two

Landau levels is given by ħωc. In reality, there is always disorder. This causes the

broadening of DOS peaks as shown in FIG. 2.3 c). The width of broadening of a

Landau level is roughly given by Γ ∼ ħ
τ
. FIG. 2.3 c) and d) shows the evolution of

Landau levels when Γ ≈ ħωc (ωcτ ≈ 1) and Γ ≪ ħωc (ωcτ ≫ 1) respectively. Thus,

in the presence of disorder, a sufficient magnetic field need to be applied to have well

separated Landau levels. Another interesting remark about Landau Levels is that

they are highly degenerate. The degeneracy of each Landau levels depend on the

value of B and is given by:

nB = eB
h

(2.16)

Here, we haven’t taken into account the effect of spin, where the spin degree of

freedom increases the degeneracy by a factor 2. At sufficiently low temperature

(kBT ≪ ħωc) and strong magnetic field (Γ ≪ ħωc), the filling of Landau levels takes

place sequentially starting from lower Landau levels all the way up to Fermi energy

(see Fig. 2.3 d) for example).

We will now define the filling fraction, ν which is a measure of Landau level filling
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for a given value of B and electron density, ne, i.e:

ν = ne

nB
= neh

eB
(2.17)

Accordingly, when ν is an integer an exact number of Landau levels are filled, for

example: ν = 2 means the lower spin branch and the upper spin branch of the

lowest Landau level (n = 0) are exactly filled and when ν is a fraction, for example:

ν= 7
3 = 2+ 1

3 , the lowest Landau level (n = 0) and 1/3 of the lower spin branch of the

second Landau level (n = 1) is filled.

We can rewrite 2.17 to give the value of B at which ν Landau levels are exactly filled

and is given by:

Bν = 1
ν

neh
e

(2.18)

Plugging the value of Bν in 2.7 we obtain,

ρxy = 1
ν

h
e2 (2.19)

This is exactly what Von Klitzing et al. has observed for ρxy in his experiment.

For the ρxx, when ν Landau levels are exactly filled, the Fermi energy lies in the

gap between two Landau levels where the DOS is zero (see FIG 2.3 where two Landau

levels are exactly filled). Consequently, the σxx which is proportional to the DOS will

be zero and thereby according to the tensor relation ρxx will also be zero. This is

the hallmark of IQHE. Now, from the relation for Bν, exact filling of Landau levels

happens only for certain unique value of B. But we have seen that experimentally

the observed plateaus extends over certain range of B. So, what’s going on? This

has to do with the broadening of DOS of Landau levels due to the disorder present

in the system. The broadened Landau levels consist of two types of states: localized

states and extended states. The localized states can’t contribute to conduction as they

are localized to certain regions of the system. These states arise as a result of e’s

being trapped in tight circular orbits by the impurities present in the system [15].

On the other hand, the extended states extend over the sample and can contribute

to conduction. As a result, when a Landau level cross EF , there is a transition from

localized state to extended state and back. In reality, we deal with samples of finite

dimensions. This causes the Landau levels to form extended states in the bulk of the
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E

EF

+w/2-w/2

ν=1 ν=2 ν=3

Figure 2.4: Edge states. Landau levels bending upwards and crossing EF near the
edge of a 2DEG sample of width w creating 1-D conducting channels along the edges.

sample and to bend upwards near the edge of the sample as shown in FIG 2.4. Near

the edge of the sample, while crossing EF each Landau levels form a 1-D conducting

channel. Note that the channels along the two opposite sides of the sample have

opposite k vectors. These channels are in principle dissipation-less as the electrons

doesn’t have any available states to back scatter into. The only available states are

across the sample and scattering over such large lengths is not possible, therefore

ρxx = 0 and hence σxx = 0. Further, the conductance of each 1D conducting channel

is given by the quantum of conductance, e2

h (neglecting spin) [16,17]. So, if we have ν

Landau levels crossing EF which are completely filled for certain value of B, the total

Hall conductance/Hall conductivity measured will be ν e2

h and therefore the value of

Hall resistivity will be 1
ν

h
e2 .

In short, the hallmark of quantum Hall effect is:

σ̂ =
(︄

0 −νe2

h
νe2

h 0

)︄
= ρ̂−1 (2.20)

Note that, to represent the different IQHE states from here onwards we will be using

i instead of ν and will keep ν for the FQHE states.

In this section we have described the IQHE. In the discussions above, we have

treated the electrons as free electrons without taking into account the interaction

between them. This is the key difference in understanding IQHE and FQHE. To have
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a complete understanding of FQHE, we need to take into account the electron-electron

interaction [18]. We won’t be discussing FQHE in the course of the thesis, for a good

review on FQHE and some notable experimental and theoretical reports see [18–26].



Chapter 3

Faraday rotation

Faraday rotation (aka Faraday effect) was first discovered by Michael Faraday in

1845 [1]. Faraday rotation is the phenomenon wherein the polarization of an electro-

magnetic wave gets rotated on passing through certain medium in the presence of

an externally applied magnetic field. It was also the first experimental evidence

showing a relationship between light and magnetism. Therefore, Faraday rotation is

an example of magneto-optic effects.

To have a better picture of the story, let’s recall the class of materials called

birefringent materials. Inside these materials, a ray of light will get decomposed into

an ordinary ray, which obeys the normal laws of refraction and an extra-ordinary

ray, which propagates in a direction that is velocity dependent within the material.

This is known as birefringence. Faraday rotation is a special case of birefringence,

where the material shows circular birefringence in the presence of magnetic field. In

circular birefringence, we have left and right circularly polarized lights traveling at

different velocities instead of an ordinary and an extra-ordinary ray. Hence, when a

linearly polarized light passes through these materials showing circular birefringence,

the polarization of the transmitted light gets rotated by an angle which depends

on the relative phase shift between left and right circularly polarized lights. In

addition to Faraday effect there are other magneto-optic effects for example Kerr

effect, Cotton-Mouton effect, Circular and linear dichroism, Zeeman effect etc.

13



14

3.1 Review on Faraday rotation

Now, we will try to have a microscopic picture on how the presence of a magnetic field

causes circular birefringence in certain materials resulting in Faraday effect.

Assume a non-magnetic, transparent dielectric media characterized by a given

permittivity, ϵ = ϵ(ω) and relative permeability, µr = µ/µ0 where µ is the permeability

of the medium and µ0 is the permeability of vacuum. As the medium is non-magnetic,

we can take µr = 1. The frequency dependence of ϵ comes from the fact that a medium

can be dispersive (speed depends on the wavelength).

In a non-conducting medium, every electron is bound to a specific molecule. Also,

each electron - molecule system can be considered as a simple harmonic oscillator for

sufficiently small displacements from equilibrium. Thus, the binding force, Fb acting

on each electron by the respective molecule can be written as:

Fb = −mω2x (3.1)

where m is the mass of electron, ω is the natural oscillation frequency and x is the

amplitude of displacement along the x̂ direction. In the presence of an electric field, E
the total force, Ftot acting on each electron can be rewritten as:

F tot = −eE − mω2x (3.2)

Now, consider the medium is shined with a linearly polarized electro-magnetic wave

with polarization defined along x̂ direction and propagating along the ẑ direction.

Note that a linearly polarized electro-magnetic wave can be considered as a linear

combination of a left circularly polarized wave (L.C.P) and a right circularly polarized

wave (R.C.P). The L.C.P and R.C.P will induce a circular motion on the electrons

with opposite sense of left and right respectively. Therefore, we have the F tot in the

presence of L.C.P, F tot
L and R.C.P, F tot

R as:

F tot
L,R = −eEL,R − mω2xL,R (3.3)

where EL,R is the local amplitude of the L.C.P and R.C.P electric fields respectively.
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Now, in the presence of a magnetic field, B along +ẑ direction we have the Lorentz

force in addition. Thus, the above equation 3.3 can be rewritten as:

F tot
L,R = −eEL,R − mω2xL,R ± evL,RB (3.4)

where vL,R = vL =−vR = v is the velocity of the center of mass of each electron. Note

that the cyclotron motion for B along +ẑ adds up in sense with the circular motion by

L.C.P propagating along +ẑ direction and subtracts in sense with the circular motion

by R.C.P propagating along +ẑ direction. This is indicated by the ± sign in front of

the Lorentz term.

The latter equation demonstrates the fact that the response of the medium to

L.C.P and R.C.P is different and therefore the permittivities are different. This

difference in permittivity will cause a phase shift between the L.C.P and R.C.P while

propagating in the medium resulting in Faraday rotation. This is a very hand waiving

way to look at Faraday rotation but it does give a good microscopic picture. We will

conclude this section by noting that, in the discussion above we have seen that the

cause of Faraday rotation is the non-isotropic nature of permittivity in the presence of

a magnetic field. The same idea could be extended to permeability to see how Faraday

rotation arise in magnetic materials such as ferrites where the internal magnetic field

plays the role of magnetic field needed to observe Faraday rotation. Also, in general

the Faraday rotation angle, θF by a given material in the presence of a magnetic field,

B is given by:

θF = V dB (3.5)

where V is the Verdet constant: a material property which defines how strong the

Faraday rotation is in a given material and d is the dimension of the material along

the direction of the applied magnetic field. Now, we will see how Faraday rotation

arise in a 2DEG.
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3.2 Faraday rotation in a 2DEG

In this section, we will look at Faraday rotation by a 2DEG. We will begin by deriving

an expression for Faraday rotation by a 2DEG in free space.

To start with, let’s recall some of the basics of the theory of electrodynamics.

• For a transverse electromagnetic or plane wave propagating along the ẑ direction

in vacuum, the electric field,
−→
E and the magnetic field, H⃗ of the wave are related

to each other by:

H⃗ = 1
Z0

ẑ × E⃗ (3.6)

where Z0 is the impedance of vacuum/free space.

• An infinite sheet placed at z = 0 with a surface current Js⃗ = J0 x̂ can be con-

sidered as source of plane wave propagating away from the sheet in both ±
direction. The radiated electric field for z > 0 (E⃗r1) and z < 0 (E⃗r2) regions as a

function of z can be written as:

E⃗r1 (z) = −Z0

2
J0 e jk0z x̂ (3.7)

E⃗r2 (z) = −Z0

2
J0 e− jk0z x̂ (3.8)

where k0 is the propagation vector and the exponential term represents the

delay measured from z = 0.

Now, consider the following scenario in free space: we have a source of plane wave

at z = − z
2 and a detection port at z = + z

2 . In this case, for a plane wave propagating

along ẑ, the electric field, E⃗t at the detection port (transmitted electric field) can be

written in terms of electric field at the source (incident electric field), E⃗ i as:

E⃗t = K2E⃗ i (3.9)

where K2 = e jk0z accounts for the delay between the source and detection port. In

addition, consider an infinite 2DEG along the XY plane at z = 0 in the presence of a

static magnetic field B along ẑ. Recall that, in the presence of B the conductivity of a
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2DEG takes the form of 2D tensor with non-zero off diagonal elements. In this case,

by virtue of linearity of Maxwell’s equation, the total local electric field seen by the

2DEG, E⃗loc is:

E⃗loc = K1 E⃗ i − Z0

2
J⃗ (3.10)

where J⃗ is the surface current generated on the 2DEG and K1 accounts for the delay

between source and the 2DEG. In the latter equation the first term on the right

hand side represents the incident electric field from the source and the second terms

represents the field generated by the 2DEG acting on itself. Therefore, according to

Ohm’s law we have:

J⃗ = σ̂ E⃗loc (3.11)

where σ̂ is the 2D conductivity tensor of the 2DEG given by 2.13. Accordingly, the

transmitted electric field E t can be re-written as:

E⃗t = K2 E⃗ i − K3
Z0

2
J⃗ (3.12)

where K3 accounts for the delay between the 2DEG and the detection port. Now, the

latter equation can be rewritten as:

E⃗t = K2 E⃗ i − K1K3 E⃗ i + K3 E⃗loc (3.13)

= (K2 − K1K3) E⃗ i + K1K3 (1 + Z0

2
σ̂)−1 E⃗ i (3.14)

A quick note : K{1,2,3} and Z0 can also be seen as numbers giving the contribution of

E i and J to E⃗t and E⃗ i. In vacuum K2 = K1K3, therefore we have:

E⃗t = K2 (1 + Z0

2
σ̂)−1 E⃗ i (3.15)

Thus, we have for E⃗ i = Ex
i x̂:

Ex
t = K2

∆
(1 + Z0

2
σxx) Ex

i (3.16)

E y
t = K2

∆
(
Z0

2
σyx) Ex

i (3.17)

where ∆ = (1 + Z0
2 σxx)2 + ( Z0

2 σyx)2. Now, the Faraday rotation angle, θF is given
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by:

tan(θF ) = E y
t

Ex
t

(3.18)

Accordingly, we have the Faraday rotation by a 2DEG in vacuum given by:

tan(θF ) = Z0σyx

2 + Z0σxx
(3.19)

From the latter expression 3.19, it is easy to see how classical Hall effect leads

to classical Faraday rotation in a 2DEG. In the absence of B, there is no Hall effect

which implies σyx = 0. Hence, there is no Faraday rotation. On the contrary in

the presence of B, the Hall effect leads to a non-zero finite value for σyx resulting in

Faraday rotation. FIG 3.1 shows the typical magnetic field dependance of the classical

Faraday rotation angle by a 2DEG in free space. Now, the questions follows: what

0 1 2 3 4 5 6
B (T)

0
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3

4

5

ta
n(

F)

Figure 3.1: Classical Faraday by a 2DEG as function of B.

happens in the quantum Hall regime? Can QHE leads to quantized Faraday rotation?

The hall mark of QHE is given by 2.20. Substituting these values for σyx and σxx in

3.19 we obtain:

tan(θF ) = Z0

2
ν e2

h
= ν α (3.20)
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where α is the fine structure constant. Thus in the quantum Hall regime we have

the quantization of Faraday angle for certain values of B in units of α. Signatures of

Faraday angle quantization by a 2DEG in the microwave regime was first reported by

Volkov et.al.. Even though they observe signs of quantization they were not able to do

a quantitative measurement of the Faraday angle. This is the main motive for our

experiment: to do a quantitative measurement of quantized Faraday rotation by a

2DEG.

In our experiment, we use a circular waveguide to shine micro-waves on the 2DEG.

A circular waveguide supports only transverse electric (TE) and transverse magnetic

(TM) wave propagations. TE (TM) waves propagating along ẑ are characterized by

Ez = 0 and Hz ̸= 0 (Hz = 0 and Ez ̸= 0). The different modes of a TE or TM waves are

characterized by a cut-off frequency and wave impedance. In a circular waveguide,

the cut-off frequency for a TE mode is given by:

fcnm = p′
nm

2πa⎷µϵ (3.21)

where p′
nm is the mth root of J′

n: the derivative of Bessel function of first kind (Jn),

and a is the inner radius of the waveguide. For a TM mode, the cut-off frequency is

given by:

fcnm = pnm

2πa⎷µϵ (3.22)

where pnm is the mth root of Jn. In our case we have a radius of 11.9125 mm. Using

3.22 the cut off frequency of the first two modes propagating inside our waveguide

can be calculated, and is found to be TE11 with a fc around 7.37 GHz and TM01 with

a fc of about 9.5 GHz. Taking into account the design of excitation port antenna, the

only possible mode among the two is TE11 and hence the dominant mode in our case.

Since we do our experiments in the presence of a waveguide and not in free space,

the expression for Faraday angle by a 2DEG is modified to [27]:

tan(θF ) = γ Z σyx

K + Z σxx
(3.23)

where γ is a mode coupling factor, K is an effective transmission coefficient and Z is

the impedance of the waveguide mode undergoing polarization rotation. In this case,
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in the quantum Hall regime, the unit of quantization of Faraday angle is no more α

and is given by an effective fine structure constant, α*. From 3.23 and 2.20 it follows:

tan(θF ) = ν
γ Z
K

e2

h
(3.24)

A more detailed discussion regarding Faraday rotation in the presence of electromag-

netic confinement, a derivation of the expression 3.23 and how to extract γ and Z/K
to find the α* will be done in chapter 5.

In conclusion, we have seen that in a 2DEG classical Faraday rotation follows

from classical Hall effect and in the quantum Hall regime, the quantization of σyx

lead to the quantization of Faraday angle. Also, in the presence of electromagnetic

confinement, the Faraday rotation angle by a 2DEG is different from that of free space

value.



Chapter 4

Experimental setup and analysis
techniques

In this chapter we will discuss the design of the waveguide and the sample holder, a

complete description of the experimental setup, details of the 2DEG samples used and

an important data treatment we do while analyzing the measurement data.

4.1 Waveguide

The microwave Faraday measurements is realized with the help of a circular waveg-

uide. A picture of the waveguide used for measurements is shown in FIG. 4.1 a). As

shown in the picture, from left to right the waveguide consists of three different parts

i) Circular waveguide adapter with excitation ports ii) Circular waveguide sections

I and II and iii) Orthomode transducer with parallel and perpendicular port. The

circular waveguide adapter consist of an excitation port used to excite microwave

modes inside the waveguide, the circular waveguide section is for the propagation of

these modes and the orthomode transducer which has two ports aligned perpendicular

to each other for collecting the transmitted signal. The two ports of the orthomode

transducer are called parallel and perpendicular port. As the name goes, the parallel

port is aligned parallel to the excitation port and the perpendicular port is aligned

perpendicular to it. The waveguide section is made long enough so that the center

21
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of the magnetic field is where the circular waveguide adapter meets the waveguide

section. The whole waveguide setup is either made of cooper or brass. The wave guide

section near the center of the field is made of brass (circular waveguide adapter with

excitation port and section I of circular waveguide) to reduce the effect of Eddy cur-

rents while ramping the magnetic field. The waveguide inner diameter is 23.825 mm.

From this, we can calculate the frequency at which the first mode (which is a TE

mode indexed TE11) starts to propagate and is found to be around 7.37 GHz. The

transmission of the waveguide alone for the parallel and perpendicular port is shown

in FIG 4.2 a). As expected from the calculated cutoff frequency of the TE11 mode, we

Circular waveguide sec�on I Circular waveguide sec�on II

Figure 4.1: Waveguide and sample holder. a) Waveguide setup used for Faraday
experiments, b) Sample holder with the circular aperture at it’s center, c) Sample
holder with a sample on top.

starts to have the transmission inside the waveguide around 7.37 GHz. The TE11

mode is excited by the antenna inside the excitation port and is close to a linearly

polarized mode with the direction of polarization aligned with respect to the antenna.

Accordingly, in the transmission we can see that all of the signal which is excited

inside the waveguide mainly goes through the parallel port with almost no signal

arriving at the perpendicular port. For the Faraday measurements, this is exactly

what we needed. Here, the parallel port measurements gives a measure of the direct
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transmission and hence the σxx of the 2DEG, while the perpendicular port receives

signal only when there is a rotation and thus a measure of σxy of the 2DEG. Therefore,

by measuring the transmission of the two ports, one can obtain the Faraday angle. At

frequencies above 12 GHz, due to the presence of higher excitation modes and the lim-

itations caused by the working bandwidth of the different ports inside the waveguide,

we observe almost the same proportion of signal arriving at the two ports along with

strong oscillations. In the measurement of Faraday angle this could add an overall

background and strong frequency dependence. Thus, we limit our measurement range

to a bandwidth of 8-12 GHz where we have the dominant mode inside the waveguide

as TE11 mode.

4.2 Sample holder

The sample for the measurements is inserted into the waveguide setup with the help

of a sample holder having a small aperture (iris) at it’s center. A schematic of the

sample holder is shown in FIG. 4.1 b). It is usually made of copper and is inserted

where the circular waveguide adapter meets the waveguide section. In this way, the

center of the magnetic field coincides with the center of the aperture/sample holder.

In order to maintain the circular symmetry inside the waveguide, the aperture is

also made circular. The standard ones have a diameter of 9 mm. The two projected

sides with no cuts (see FIG. 4.1 b)) on either side of the sample holder are used to

add a thermometer (RX-102B-CB) and for bringing extra thermalization using silver

braids attached to the mixing chamber (base plate) of the dilution refrigerator. The

several cuts on the sample holder outside the waveguide diameter are there to reduce

the effect of eddy currents. As shown in FIG. 4.1 c), the sample is placed on top of

the aperture using vacuum grease (APEZON). In the case of a 2DEG, the sample is

placed in such way that the top of the 2DEG faces the waveguide section. The vacuum

grease act as an adhesive and provides better thermalization for the sample. The

transmission of the parallel and perpendicular ports in the presence of an aperture

with no sample on top is shown in FIG. 4.2 b). From FIG. 4.2 b), we can see that due

to the presence of aperture, there is almost a 20 dB of attenuation in signal in the

transmission of both ports. This 20 dB attenuation comes from the reflection caused

by the aperture inside the waveguide. An illustration of the same is shown in FIG. A.1

https://www.lakeshore.com/products/categories/specification/temperature-products/cryogenic-temperature-sensors/ultra-low-temperature-rox
https://apiezon.com/products/vacuum-greases/apiezon-n-grease/
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(see Appendix A.1) with the help of Ansys HFSS simulations. However, we still have

a decent amplitude of signal arriving at the two ports and the most important thing is

that the difference in the transmission between the parallel and perpendicular port is

same as the waveguide alone case, this shows that the presence of the aperture didn’t

bring a significant mixing of signals between the two ports which is important for the

measurement of Faraday angle.
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Figure 4.2: Transmission with and without aperture. Transmission of parallel (∥)
and perpendicular (⊥) port versus frequency for the cases a) waveguide alone, b)
waveguide and aperture.

4.3 Experimental setup

Having discussed the waveguide and the sample holder, we will now describe the

complete experimental setup used for microwave Faraday measurements. We will

start by listing the main components:

• Waveguide : Manufacturer - CernexWave

– Circular waveguide sections: CSSC90067-01 (silver plated copper) and

CSSC90067 (silver plated brass)

https://cernexwave.com/waveguide-products/
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– Circular waveguide adapter: CWKC90091103SF (silver plated brass) with

SMA-F port for the excitation port, CWK90081203SF (silver plated copper)

Rectangular waveguide with SMA-F ports for the orthomode transducer

ports.

– Orthomode transducer: COT09110335 (silver plated copper)

• Amplifier: LNF-LNC1_12A s/n 445, Caltech Cryo4-12 SN514D.

• Filter: K&L MICROWAVE - S/N 1 13ED20-10100/U3800-0/0

• Cryogenic relay : RADIALL - R577833003 - 0 - 40 GHz

• Vector Network Analyzer: KEYSIGHT - PNA-X Network Analyzer - N5244B -

10 MHz - 43.5 GHz or RHODE&SCHWARZ - ZNB40 - Vector Network Analyzer

- 100 kHz - 40 GHz.

• Calibration kits : ECal module (N4692-60001) available with KEYSIGHT -

PNAX or ZN-Z229 Calibration Kit available with RHODE&SCHWARZ - ZNB40

FIG. 4.3 shows the complete schematic of our Faraday experimental setup. The

whole waveguide setup along with the sample holder is attached to the mixing cham-

ber of a dilution refrigerator (see FIG. A.4 in Appendix A.2). The excitation port on

the waveguide can be accessed for measurements from the top of the fridge at room

temperature (RT) through a series of beryllium copper (RT plate → 4 K plate) and

stainless steel (4 K plate → mixing chamber) high frequency RF cables (excitation

line) while the parallel and perpendicular ports can be accessed through a series of

superconducting (mixing chamber → 4 K plate) and beryllium copper (4 K plate →
RT plate) high frequency RF cables (measurement line). A cryogenic 4-port relay

(RADIALL) is employed at the mixing chamber to switch between parallel and per-

pendicular port measurements. Among the 4-ports available on the relay, two of them

are individually connected to the parallel and perpendicular port, one is connected

to the measurement line and the last one to a 50 Ω standard. Thanks to the relay

when one port is connected to the measurement line, the other is connected to the

50 Ω to avoid any reflections.The output from the relay is filtered using a filter (K&L

MICROWAVE) placed at the mixing chamber and later amplified with a low noise

cryogenic amplifier (LNF-LNC1_12A or Caltech Cryo4-12 SN514D) at the 4 K plate.

https://lownoisefactory.com/
https://www.caltechmicrowave2.org/amplifiers
https://www.klmicrowave.com/
https://www.radiall.com/products/rf-microwave-switches.html
https://www.keysight.com/us/en/product/N5244B/pna-x-microwave-network-analyzer-900-hz-10-mhz-43-5-ghz.html
https://scdn.rohde-schwarz.com/ur/pws/dl_downloads/dl_common_library/dl_brochures_and_datasheets/pdf_1/ZNB40_bro_en_5214-5384-12_v1100.pdf
https://www.keysight.com/us/en/product/N4692A/electronic-calibration-module-ecal-10mhz-40ghz-2-92mm-2-port.html
https://scdn.rohde-schwarz.com/ur/pws/dl_downloads/dl_common_library/dl_brochures_and_datasheets/pdf_1/Zx-Z2xx_dat-sw_en_5215-6061-22_v0600.pdf


26

There are several cryogenic attenuators employed at different stages of the dilution

fridge in the excitation and measurement lines to reduce the effect of thermal noise

and to account for impedance mismatch inside the cables. The level of attenuation in

the excitation and measurement line are as follows:

• Excitation line: 20 dB at 4 K plate, 6 dB at Still plate, 10 dB at 100 mK plate

and 3 dB at mixing chamber (value can be adjusted depending on S/N ratio)

• Measurement line: 1 dB at mixing chamber and 3 dB at 4 K

From the top of the fridge both measurement and excitation lines are connected

to the VNA using high frequency semi rigid cables (TIMES MW SN 0827V). These

lines outside the fridge are calibrated using either the E-cal module available with

the Keysight - PNAX VNA or using a through calibration standard available with

Rhode&Schwarz VNA. For the PNAX the calibration used is Enhanced one way 2-port

calibration and for Rhode&Schwarz it is 2-port one way Trans calibration.

Later on, the setup is modified so that it is possible to carry out D.C transport

(7-77 Hz) and Faraday measurements simultaneously on the 2DEG. We added D.C

lines to the sample holder with the help of flexible PCBs (Premo-Flex 1.0 Jmpr Molex

FFC/FPC Jumper cables - 15039-0733) and resistive twisted pair cables.To do D.C

measurements the sample is annealed using RTA to diffuse indium blobs. Later these

indium blobs is accessed using gold wires (40585 Gold wire, 0.025 mm (0.001 in) dia,

annealed, 99.95% (metals basis)) soldered on to the flexible PCBs (see FIG. A.2 in

Appendix A.2). The DC transport measurements has been carried out with a standard

lock-in.

https://www.timesmicrowave.com/DataSheets/SilverlineProducts/SilverLine-VNA%2018,26.5&40GHz-R.pdf
https://www.mouser.ca/datasheet/2/276/0150390733_CABLE-1624392.pdf
https://www.mouser.ca/datasheet/2/276/0150390733_CABLE-1624392.pdf
https://www.alfa.com/en/catalog/040585/


27

Wave guide

     Mixing Chamber

3K Plate

Still plate

~ 100 mK plate

7-14 GHz

     Dilution fridge

     Calibration plane

-20 dB

-6 dB

-10 dB

-3 dB

-3 dB

50 Ω
-1 dB

 
35 dB

Excitation line Measurement line

VNA 

Port 1

Port 3

Port 4

Figure 4.3: Schematic of the experimental setup for Faraday measurements.

4.4 Data Analysis

In this section, let us discuss one of the important treatment we do to the data and

the reason why we do so. The Faraday angle is obtained from the ratio of amplitude

of perpendicular to parallel port signal, i.e:

tan(θF ) = | S41 |
| S31 |

(4.1)
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where | S41 | and | S31 | are the respective S - parameter amplitudes of the perpen-

dicular and parallel port transmission. There are always slight asymmetries in any

experiment setup. In our case, a slight misalignment in the respective position of

perpendicular and parallel port could result in a mixing of signal between the two

ports. This can be taken care of by numerically anti-symmetrizing and symmetrizing

in the parallel and perpendicular port data respectively as follows,

Santisym.
41 = 1

2
{ Re[S41 (+B) − S41 (−B)] + j Im[S41 (+B) − S41 (−B)] }

Ssym.
31 = 1

2
{ Re[S31 (+B) + S31 (−B)] + j Im[S31 (+B) + S31 (−B)] } (4.2)

where Santisym.
41 and Ssym.

31 are the anti-symmetrized and symmetrized S - parameters

respectively. Note that the S - parameters are complex numbers with a well defined

amplitude and phase. The reason why we could do so has to do with the properties

of σxx and σyx under reversal of magnetic field. The parallel port signal which

is a measure of σxx of the 2DEG is an even function of magnetic field, while the

perpendicular port which is a measure of σyx is odd with respect to B. Therefore, the

symmetrization and anti-symmetrization leads to pure parallel and perpendicular port

signal respectively. The amplitude of the S-parameters used to obtain the Faraday

angle is always the one after the numerical treatment mentioned here.

4.5 Sample

The samples used for Faraday measurements are high mobility AlGaAs/GaAs 2DEGs

grown using molecular beam epitaxy [18,28]. The measurements were carried out

mainly with 4 different 2DEGs: VA0141, VA0269, VA0274 grown by Michael P. Lilly

and John L. Reno from Sandia National Laboratories and P7.24.19.1 grown by L. N.

Pfeiffer and K. W. West from Princeton University. The following tables illustrates

the D.C mobility and density of all four samples: Also, the growth sheet of all four

samples is attached in Appendix A.4). For some samples, to have a better mobility we

need to cool down with an LED being shined on the sample. The value of the current

applied on the LED and the temperature down to which the LED should be turned

ON is crucial for the formation of a high mobility 2DEG. These are special type of
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µ (cm2/V.s) ne (cm−2)

VA0141 1 × 106 2.08 × 1011

VA0269 2 × 106 1.37 × 10−19

VA0274 1.6 × 106 1.4 × 10−19

P7.24.19.1 30 × 106 1.02 × 1011

Table 4.1: 2DEG characteristics. Carrier density and mobilities of different 2DEGS
used for measurements.

LEDs which are tested all the way down to 4 K. The typical value of current used is

45 µA and the temperature at which the LED has to be turned OFF is ∼ 6 K. Also, it

is important to note that if the LED remain turned on below 4 K the 2DEG may not be

formed and one may need to warm up to at least 120 K to reset the 2DEG. The LED

is either inserted on the space between the sample holder and circular waveguide

section I or placed on one of the projected sides of the sample holder along with the

thermometer.



Chapter 5

Quantized Microwave Faraday
rotation

In this chapter, we will discuss in detail the main experiment: the quantitative

measurements of quantized microwave Faraday rotation and it’s results. Also, we will

describe a theoretical model that we developed for Faraday rotation by a 2DEG in the

presence of electromagnetic confinement and then using this model, we will see how

electromagnetic confinement can lead to change in the Faraday rotation angle and

the unit of quantization beyond its free space value.

This chapter is presented by an article, titled: Quantitative measurements of

giant and quantized microwave Faraday rotation [27]. The contribution of each

authors to this article is as follows. I designed the experimental setup and carried

out measurements with the help of Edouard Pinsolle and Christian Lupien; The

measurement data were analyzed by me with Christian Lupien and Talia J. Martz-

Oberlander; The sample for the experiment was provided by Michael P.Lilly and

John L. Reno; The theoretical model was developed by Bertrand Reulet and Thomas

Szkopek; Guillaume Gervais, Thomas Szkopek and Bertrand Reulet supervised the

project as research supervisors. All the authors participated in the discussion and

interpretation of the results. The figures for the article was provided by me and Talia

J. Martz-Oberlander. The article was written by Guillaume Gervais, Thomas Szkopek,

Bertrand Reulet and me.

The manuscript of the article published in Physical Review B follows.
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We report quantitative microwave Faraday rotation measurements conducted with a high-mobility two-
dimensional electron gas (2DEG) in a GaAs/AlGaAs semiconductor heterostructure. In a magnetic field, the
Hall effect and the Faraday effect arise from the action of Lorentz force on electrons in the 2DEG. As with the
Hall effect, a classical Faraday effect is observed at low magnetic field along with a quantized Faraday effect
at high magnetic field. The high electron mobility of the 2DEG enables a giant single-pass Faraday rotation of
θmax

F � 45◦ (�0.8 rad) to be achieved at a modest magnetic field of B � 100 mT. In the quantum regime, we
find that the Faraday rotation θF is quantized in units of α∗ = 2.80(4)α, where α � 1/137 is the fine-structure
constant. The enhancement in rotation quantum α∗ > α is attributed to electromagnetic confinement within a
waveguide structure.

DOI: 10.1103/PhysRevB.102.085302

I. INTRODUCTION

Faraday rotation is the phenomenon whereby the polar-
ization state of linearly polarized light is rotated by matter
under the influence of a magnetic field applied along the
direction of propagation [1]. Faraday rotation manifests itself
in a wide range of physical settings, from the passage of
radio frequency waves through interstellar gas [2] to x-ray
transmission through iron films [3]. Beyond electromagnetic
waves alone, the acoustic analog of Faraday rotation has been
used as a probe of the superfluid properties of 3He-B [4],
wherein spin-orbit locking couples acoustic response with
magnetic field. In a semiconducting two-dimensional electron
gas (2DEG), preliminary evidence of a quantized Faraday
effect in the microwave regime reminiscent of the quantum
Hall effect was observed by Volkov and coworkers in 1986
[5,6]. More recently, Faraday rotation has also been used in
the terahertz domain as a probe of the topological properties of
low-dimensional electron systems [7–12]. Here, we report on
quantitative microwave measurements of Faraday rotation in
a high-mobility 2DEG. A giant Faraday rotation of �0.8 rad
is observed, exceeding the previous record of giant Faraday
rotation by eightfold [8]. In the quantum limit, the rotation
angle is observed to be quantized at multiple filling factors of
the integer quantum Hall effect in units of an effective fine-
structure constant α∗ whose scale is set by the fine-structure
constant α � 1/137.

The Faraday and Hall effects in a 2DEG have a common
origin with the cyclotron motion of charge carriers arising

*Author to whom correspondence should be addressed:
gervais@physics.mcgill.ca; thomas.szkopek@mcgill.ca;
Bertrand.Reulet@USherbrooke.ca

from the action of Lorentz force in the presence of an applied
magnetic field B. As depicted in Fig. 1(a), the Hall effect is the
generation of an electric field �EH transverse to the direction
of current flow I and magnetic field B. The Hall effect is
usually quantified by the transverse Hall resistivity ρxy =
VH/I = B/ne, where n is the electron sheet density and e is
the electric charge. In the classical regime, the Hall effect can
be described with a Hall angle θH = ρxy/ρxx, where ρxx is the
longitudinal resistivity of the 2DEG. Similarly, the Faraday
effect depicted in Fig. 1(b) also arises from the action of
Lorentz force upon charge, ultimately resulting in the rotation
of polarization of a linearly polarized electromagnetic wave.
The Faraday rotation θF is the angle of linear polarization
rotation. In many materials, Faraday rotation is weak and
well described by a linear relation θF = V dB, where V is
the Verdet constant and d is the thickness of the medium. As
we will show in this work, the high-mobility 2DEG enables
exceptionally large Faraday rotation.

Consider first a 2DEG in a strong magnetic field, which
can give rise to the quantum Hall effect (QHE) wherein ρxy

is quantized in units of h/e2, the resistance quantum [13]. In
the high-magnetic-field limit of the integer [13] (or fractional
[14]) quantum Hall regime, the longitudinal conductivity is
σxx = 0, and the transverse conductivity is given by σyx =
ie2/h, where i is the integer filling factor (ν in the fractional
regime). The relation between 2DEG current density �J (ω)
and electric field �E (ω) is thus determined by the conductivity
tensor,

�J (ω) = σ̂ �E (ω) =
(

0 −ie2/h
+ie2/h 0

)
�E (ω), (1)

where the frequency ω � ωc, with ωc = eB/m∗ being the
cyclotron frequency.

2469-9950/2020/102(8)/085302(6) 085302-1 ©2020 American Physical Society



VISHNUNARAYANAN SURESH et al. PHYSICAL REVIEW B 102, 085302 (2020)

+

+
+

+
+

--
- -

-

+
+

+

+
+

-
---
-

(a) (b)
B

x
y

z

VH +
–

I

ExEH

H
B

F

x

y
z

EH Ei

Et
Et Ei

d

(c)

B
port 1

port 3

orthomode
transducer

port 4signal
generator

circular
waveguide

2DEG

iris

FIG. 1. Classical Hall and Faraday effects and experimental
setup. A schematic representation of the classical (a) Hall and
(b) Faraday effects is shown, along with the definition of the
Hall angle θH and the Faraday rotation angle θF . (c) Experimental
setup to measure microwave Faraday rotation. A linearly polarized
electromagnetic wave is injected into a circular hollow waveguide
(port 1) that supports two orthogonally polarized TE11 modes. The
transmitted field is measured using an orthomode transducer in a
direction parallel (port 3) and perpendicular (port 4) to the incoming
electromagnetic wave.

Volkov and Mikhailov [5] were the first to consider the
ideal scenario of a 2DEG in the QHE regime in vacuum,
probed by a normally incident electromagnetic plane wave
of frequency ω � ωc. In this limit, the transmitted electro-
magnetic field �Et (ω) has contributions from both the incident
field �Ei and the forward scattered field that is generated by
the quantized transverse current density in the 2DEG. The
Faraday rotation angle is predicted by simple Fresnel analysis
to become quantized [5],

tan(θF ) = i
Z0

2

e2

h
= iα, (2)

where Z0 is the impedance of free space and the fine-structure
constant α = Z0e2/2h here sets the natural scale for Fara-
day rotation [5,15]. The microwave frequency range (300
MHz � f � 300 GHz) is particularly suitable for experi-
ments attempting to realize this idealized scenario because
the “low-frequency” limit ω � ωc can easily be achieved.
Early experimental works consisted solely of measurements
of cross-polarized transmitted microwave power in arbitrary
units. Although they have shown inchoate quantization of
transverse microwave transmission through 2DEGs [6,16],
to date there have been no quantitative measurements of
microwave Faraday rotation in the QHE regime.

Interestingly, Faraday rotation is a 2D bulk probe of the
quantum Hall state. In the QHE at integer filling factors
i, charge transport experiments probe one-dimensional edge
currents, and it is important to recall that the 2D bulk
transverse conductivity σxy is quantized in the quantum Hall
regime [17]. As will be shown below, Faraday rotation of

electromagnetic waves explicitly probes the quantization of
bulk conductivity. Understanding the microwave Faraday ro-
tation of the integer quantum Hall regime is an important
step towards understanding Faraday rotation in the more
complex fractional quantum Hall (FQH) regime [14] hosted
in ultrahigh-mobility 2DEGs. The FQH states of a 2DEG are
governed by incompressible Laughlin-like liquids and perhaps
host even more exotic quantum states such as the Moore-Read
Pfaffian [18], for example.

II. EXPERIMENTAL SETUP

The experimental apparatus is illustrated schematically in
Fig. 1(c), consisting of a circular hollow waveguide assem-
bly designed for polarization-sensitive microwave scattering
measurements at cryogenic temperatures with a magnetic
field oriented along the waveguide axis. The silver-plated
hollow waveguide with a diameter of 23.825 mm supports two
orthogonally polarized TE11 modes. A high-mobility 2DEG
hosted in an AlGaAs/GaAs heterostructure grown by molec-
ular beam epitaxy on a � = 0.55 mm thick GaAs substrate
with square dimensions 10×10 mm2 was inserted within
the waveguide using a copper plate with a 9-mm-diameter
aperture functioning as a waveguide iris. The AlGaAs/GaAs
semiconductor sample is a modulation-doped quantum well
with a well thickness of d = 30 nm grown at the Center
for Integrated Nanotechnologies at Sandia National Labora-
tories (wafer VA0141). Two δ-doped layers with a density of
2×1012 cm−2 are located symmetrically about the well at a
setback distance of 55 nm. The midpoint of the quantum well
is located 100 nm underneath the surface of the � = 0.55 mm
thick semiconductor.

The mobility of the 2DEG was determined to be μ � 1 ×
106 cm2 V−1 s−1 by way of quasi-DC transport measurements
at T � 20 mK on a piece cut from the same wafer (during
a separate cooldown). The electronic density n of the 2DEG
was determined from the Landau level sequence observed
in the Faraday rotation (see below) and was found to be
2.08(5)×1011 cm−2. A coaxial-to-circular waveguide adapter
(port 1) was used to excite the 2DEG with a linearly polarized
TE11 mode. The perpendicular (port 4) and parallel (port 3)
polarized TE11 mode fields were collected with an orthomode
transducer, which consists of orthogonally polarized electric
dipoles coupled to coaxial transmission lines. The entire as-
sembly was thermally anchored to the cold plate of a dilution
refrigerator with a base temperature of ∼7 mK. All tempera-
tures quoted in this work correspond to the temperature of the
mixing chamber of the dilution refrigerator. While the inci-
dent microwave illumination and/or imperfect thermalization
will raise the temperature of the 2DEG electronic bath above
that of the mixing chamber, our temperature dependence study
of the Faraday rotation angle suggests the electrons are cooled
down to at least ∼200 mK. Finally, a ±6 T magnetic field
was applied along the waveguide axis using a superconducting
solenoid with the positive (+) direction aligned with the
direction of propagation of the incident microwave.

The incident microwaves at 11.2 GHz were generated by a
vector network analyzer (VNA) that was also used to measure
the transmitted microwaves, thus enabling measurement of
the scattering parameters (see Fig. 2). High-frequency coaxial
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FIG. 2. Scattering parameters and Faraday rotation measure-
ments at 11.2 GHz. (a) Perpendicular port scattering parameter S41

and (b) parallel port scattering parameter S31 versus magnetic field B.
The solid (dashed) line denotes the positive (negative) magnetic field
polarity. (c) Magnetic field dependence of the Faraday angle θF (red
circles) at the base temperature of the dilution refrigerator (∼7 mK).
The blue line is a fit of the Faraday rotation versus magnetic field
with a classical Drude conductivity model (see text). The inset shows
a zoom of the same data at low magnetic field.

assemblies were used to couple the VNA to the hollow waveg-
uide assembly in the dilution refrigerator. A low-temperature
switch was used to transmit the microwaves from ports 3 and
4 of the hollow waveguide to the VNA using the same coaxial
assembly, thereby limiting differences in transmission to the
hollow waveguide apparatus. A cryogenic preamplifier was
also used at the ∼3 K stage of the dilution refrigerator together
with filters and attenuators to minimize microwave-induced
Joule heating of the 2DEG and suppress spurious reflections
within the coaxial assembly.

III. FARADAY ROTATION MEASUREMENTS

The measured scattering parameter amplitudes |S41| and
|S31| are shown in Figs. 2(a) and 2(b) for perpendicular and
parallel polarized transmissions, respectively, versus applied
magnetic field B. The difference in the scattering parameter
amplitudes of ∼0.1 dB for positive and negative magnetic
fields arises from a slight misalignment in the excitation and
detection ports. This corresponds to a systematic error of
approximately ∼1% in the field amplitude. The perpendicular
polarization transmission amplitude |S41(B)| plotted versus B
in Fig. 2(a) reveals a staircase corresponding to quantization
of perpendicularly polarized transmission related to Landau
level formation in the 2DEG.

The magnetic-field-dependent Faraday rotation θF (B) is
determined from the scattering parameter amplitudes via
tan[θF (B)] = |S41(B)/S31(B)|. The Faraday rotation θF (B) is
shown in Fig. 2(c), and a maximum Faraday rotation θmax

F �
45◦ (�0.8 rad) is observed at a modest applied magnetic field
of B � 100 mT. This peak in θF demarcates the low-magnetic-
field regime where θF increases with B and the high-field
regime where θF decreases with increasing B.

IV. ELECTROMAGNETIC CONFINEMENT

A quantitative model for the observed Faraday rotation can
be arrived at by combining a simple theory for microwave
transmission in a system with electromagnetic confinement,
along with a Drude conductivity model for the 2DEG. It can
be shown (see below) that Faraday rotation in a waveguide
loaded with a 2DEG is generally given by

tan(θF ) = γ Zσyx

K + Zσxx
, (3)

where Z is an effective wave impedance, K is an effective
transmission coefficient, and γ is a mode coupling param-
eter. In the idealized free-space scenario, Z = Z0, K = 2,
and γ = 1. A similar relation was developed and applied to
experiments for a simple hollow waveguide geometry without
an iris [19,20]. Notably, Eq. (3) is general, applying even
in the presence of an iris where the near-field distribution
defies a simple analytical solution [21,22]. Electromagnetic
confinement will generally cause Z , K , and γ to deviate from
their free-space values.

We derive Eq. (3) in the presence of electromagnetic
confinement beginning with a linear response ansatz for the
transmitted (forward scattered) electric field �Et , incident elec-
tric field �Ei, local electric field �Eloc at the 2DEG, and current
density �J in the 2DEG,

�Eloc = K̂1 �Ei − Ẑ1 �J, (4)

�Et = K̂2 �Ei − Ẑ2 �J, (5)

where K̂1 and Ẑ1 are linear operators giving the contribu-
tions to local electric field from the input field and current,
respectively, and K̂2 and Ẑ2 are linear operators giving the
contributions to transmitted field from the incident field and
current, respectively. The 2DEG current density �J = σ̂ �Eloc,
where σ̂ is the 2DEG conductivity tensor. The transmitted
field can be expressed in two useful forms,

�Et = [
K̂2 − Ẑ2Ẑ−1

1 K̂1
] �Ei + Ẑ2Ẑ−1

1
�Eloc

= [K̂2 − Ẑ2σ̂ (1+ Ẑ1σ̂ )−1K̂1] �Ei. (6)

In the limit that the 2DEG is a perfect electric conductor
with unbounded conductivity |σ̂ | → ∞, the local electric field
�Eloc → 0, resulting in total reflection and null transmission
�Et → 0. The operator identity follows,

0 = K̂2 − Ẑ2Ẑ−1
1 K̂1, (7)

and hence, for arbitrary σ̂ the incident and transmitted fields
are related by

�Ei = K̂−1
1 (1+ Ẑ1σ̂ )Ẑ1Ẑ−1

2
�Et . (8)
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In a waveguide, the incident and transmitted far fields are
linear combinations of waveguide modes, and we restrict
our attention to the scenario of two orthogonally polarized
degenerate waveguide modes with all other modes cut off
(evanescent). Without loss of generality, the transmitted field
is chosen to define the x-polarized mode,

�Et = at �φx(x, y), (9)

and the incident field is taken as a linear combination of the
x-polarized and y-polarized modes,

�Ei = aix �φx(x, y) + aiy �φy(x, y), (10)

with at , aix, and aiy being the complex scalar amplitudes of
transmitted and incident fields and �φx(x, y) and �φy(x, y) being
the x- and y-polarized mode field distributions in the x, y plane
transverse to the propagation axis z. Adopting bra-ket notation
for simplicity,

〈u|Â|v〉 =
∫

�φ∗
u (x, y) · Â �φv (x, y)dxdy, (11)

where u, v ∈ {x, y}. The Faraday rotation tangent defined in
terms of mode amplitudes is

tan(θF ) = aiy

aix
= 〈y|K̂−1

1 (1+ Ẑ1σ̂ )Ẑ1Ẑ−1
2 |x〉

〈x|K̂−1
1 (1+ Ẑ1σ̂ )Ẑ1Ẑ−1

2 |x〉 , (12)

where aix and aiy are determined by combining Eqs. (8)–(10)
and taking inner products. In a system with axial symmetry
about the z axis, there is no cross-coupling between orthog-
onally polarized modes in the absence of a 2DEG, and it
follows that:

〈y|K̂−1
1 Ẑ1Ẑ−1

2 |x〉 = 0. (13)

The conductivity tensor σ̂ of a 2DEG in a normally oriented
static magnetic field has the structure

σ̂ = σxx(�x�x + �y�y) + σyx(�y�x − �x�y), (14)

where dyadic vector notation is used. Assembling all of the
above, the Faraday rotation is given by

tan(θF ) = 〈y|K̂−1
1 Ẑ1σ̂ Ẑ1Ẑ−1

2 |x〉
〈x|K̂−1

2 + K̂−1
1 Ẑ1σ̂ Ẑ1Ẑ−1

2 |x〉

= γ Zσyx

K + Zσxx
, (15)

where there are three scalar parameters that emerge,

Z = 〈x|K̂−1
1 Ẑ1 · (�x�x + �y�y) · Ẑ1Ẑ−1

2 |x〉, (16)

γ = 〈y|K̂−1
1 Ẑ1 · (�y�x − �x�y) · Ẑ1Ẑ−1

2 |x〉
〈x|K̂−1

1 Ẑ1 · (�x�x + �y�y) · Ẑ1Ẑ−1
2 |x〉 , (17)

K = 〈x|K̂−1
2 |x〉, (18)

whose values depend upon the detailed electric field distribu-
tions within the iris-loaded waveguide.

V. DRUDE ANALYSIS

We further approximate the 2DEG conductivity with a
simple, classical Drude conductivity tensor,

σ̂ D = σ0
1

(1 − iωτ )2 + (ωcτ )2

(
1 − iωτ −ωcτ

ωcτ 1 − iωτ

)
, (19)

with σ0 = ne2τ/m∗ = neμ being the Drude conductivity and
ωc being the cyclotron frequency related to the charge carrier
scattering time τ by ωcτ = μB. The charge carrier scattering
time deduced from mobility is τ = m∗μ/e � 38 ps, with
m∗ = 0.067me being the effective mass in GaAs, and ωτ �
2.7 for our experiment at f = 11.2 GHz. The solid blue line
in Fig. 2(c) shows a best fit of θF versus B to the modulus
of Eq. (3) with the Drude conductivity model (19). Two
independent fit parameters associated solely with electromag-
netic confinement were used, taking the values γ = 0.49 and
Z/K = 1192  for the optimized fit, with Z/K assumed to be
real for simplicity.

Notably, our simple model accurately captures the essential
features of Faraday rotation θF versus B. In the low-magnetic-
field regime, μB � 1, the rotation θF ≈ γ σyx/σxx ∝ B, as
observed in Fig. 2(c) for B � 100 mT. In the high-magnetic-
field regime μB � 1, the rotation θF ≈ γ (Z/K )σyx ∝ 1/B, as
is coarsely observed in Fig. 2(c) for B � 100 mT. As shown
below, analysis beyond a classical Drude model is required to
describe Faraday rotation in the high-field regime.

VI. QUANTIZED ROTATION

The measured Faraday rotation angle tangent tan(θF ) is
plotted versus 1/B (solid red line) in Fig. 3(a). Six plateaus are
clearly observed in tan(θF ) versus 1/B, with the lowest three
plateaus evenly spaced along both axes, and a further three
evenly space plateaus are observed with twice the step height.
We confirm the origin of these Faraday rotation plateaus with
the emergence of Landau levels by plotting a fan diagram
of the assigned Landau level index i for each plateau versus
the reciprocal field 1/B of the midpoint of each plateau in
Fig. 3(b). The observed integer filling factor sequence i = 2,
3, 4, 6, 8 follows the Landau level filling factor relation
i = nh/eB with an electron density n = 2.08(5)×1011 cm−2,
consistent with quasi-DC transport studies performed on sam-
ples of the same semiconductor wafer hosting the 2DEG.
Here, the expected spin degeneracy lifting of the Landau
levels occurs in between integer filling i = 4 and 6 at a
magnetic field value B ∼ 1.8 T, again consistent with previous
quasi-DC charge transport studies of 2DEGs hosted in sim-
ilar heterostructures with comparable electron mobility and
density.

The Faraday rotation was also measured during a separate
cooldown in a slightly different experimental configuration
employing two coaxial assemblies. These measurements are
shown in the inset of Fig. 3(a) with the temperature of the
dilution refrigerator at ∼10 mK (red line), where quantization
is visible, and at 3.2 K (blue line), where quantization is
almost absent. In the quantum Hall regime, at temperatures
kBT approaching the Landau level energy gap �, thermal
excitation of electrons across � gradually smears out con-
ductivity quantization until it is ultimately absent. In our
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FIG. 3. Quantized Faraday rotation. (a) Faraday angle plotted
as tan(θF ) versus 1/B (solid red line) at the base temperature of
the dilution refrigerator. The expected position of each observed
Faraday plateau is shown by horizontal markers with the quantization
condition tan(θF ) = iα∗. The rotation quantum α for a 2DEG in
vacuum is illustrated for reference. The inset shows a comparison of
Faraday angle measurements at ∼10 mK (red line) and 3.2 K (blue
line) temperature of the dilution refrigerator. (b) Landau level index i
versus plateau midpoint 1/B (markers), with a linear fit (dashed line)
from which the 2DEG electron sheet density n is inferred.

measurements, the plateaus of Faraday rotation θF cannot be
resolved at 3.2 K, consistent with orbital quantization of the
2DEG by a strong magnetic field.

Finally, we turn our attention to the observed value of
quantized Faraday rotation. In the ideal free-space scenario,
the quantization condition is tan(θF ) = iα, with α being the
fine-structure constant. The experimentally measured Faraday
rotation of Fig. 3(a) exhibits a quantization tan(θF ) = iα∗.
From a linear fit of the midpoints of each plateau in tan(θF )
versus 1/B, the experimentally observed rotation quantum
is α∗ = 0.0204(3) = 2.80(4)α. This is not surprising as the
quantum of rotation in an ideal free-space scenario is α,
and electromagnetic confinement is expected to modify wave
impedance and field distribution such that the rotation quan-
tum in general differs from its free-space value, α∗ �= α.
Applying our simple model, Eq. (3), for Faraday rotation
to the QHE regime with σxx = 0 and σyx = ie2/h, rotation

quantization takes a modified form,

tan(θF ) = i
γ Z

K

e2

h
= iα∗, (20)

where γ , Z , and K are electromagnetic confinement parame-
ters specific to the experimental geometry and frequency. The
simple model estimate for the confinement-enhanced rotation
quantum using γ = 0.49 and Z/K = 1192  as determined
from the Drude model fit displayed in Fig. 2(c) is α∗ = 3.10α,
agreeing with the measured value α∗ = 2.80(4)α within 10%.

VII. CONCLUSIONS

We have measured the quantization of Faraday rotation
in the quantum Hall regime in a high-mobility 2DEG. Mi-
crowave Faraday rotation plateaus are robust and well formed,
allowing Landau level indexing and the observation of a
spin-splitting structure. Measurement of microwave Faraday
rotation is thus a contactless method that may prove useful
in probing low-dimensional electronic phenomena such as the
quantum spin Hall effect [23], the quantum anomalous Hall
effect [24], and the fractional quantum Hall effect [14]. Fur-
thermore, as a consequence of the high mobilities achievable
in the GaAs/AlGaAs 2DEG system, giant Faraday rotation
reaching ∼0.8 rad can be obtained at modest applied magnetic
fields of ∼100 mT. In the future, it is foreseeable that the
Faraday effect arising from cyclotron motion of high-mobility
charge carriers in semiconductor materials and heterostruc-
tures could be used to isolate and circulate microwave signals,
in lieu of conventional bulk ferrites that rely on off-resonant
Larmor precession to impart Faraday rotation.
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Chapter 6

Additional results

In this chapter we will discuss many more results which were not shown in the article.

6.1 Squeezing plate

Thinking of ways to improve the thermalization of the sample, we thought of adding a

metallic plate called the squeezing plate on top of the sample (see FIG. A.3 in Appendix

A.2). In this way, the sample is sandwiched between the squeezing plate and the

sample holder (aperture). There by improving the contact of the sample surface with

the aperture by pressing against it. The tension applied by the squeezing plate can

be tuned by an adjustable force. The obtained results for the perpendicular port

transmission, parallel port transmission and Faraday angle for the sample VA0269

are shown in FIG. 6.1. The results were slightly different from the case without the

squeezing plate. Among the differences, the most prominent one is the increase in the

maximum of tangent of Faraday angle by a factor ∼ 5. We also tried using different

material for the sample holder and squeezing plate. The standard ones are made of

Copper, we replaced them with brass and the results were identical to that of copper

(see FIG.6.2). Since having a squeezing plate doesn’t improve the thermalization (the

steps are not sharper with the squeezing plate) and at the same time it modifies the

electromagnetic environment leading to a change in the Faraday angle measured, we

discontinued the use of squeezing plate for later experiments.

37
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Figure 6.1: Effect of squeezing plate on Faraday rotation. a) Perpendicular port
transmission, b) Parallel port transmission and c) tangent of Faraday angle versus
B at 11.2 GHz for the two cases with and without squeezing plate for the sample
VA0269.

Measurements were also carried out with the VA0141 sample. In this case, we

measured only the perpendicular port transmission, see FIG. A.5 in Appendix A.3.

Up to a factor in the transmission and some changes due to the modification of the

electromagnetic environment and a different cool down, the results obtained here are

similar to the one without squeezing plate.
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Figure 6.2: Effect of using different materials. a) Perpendicular port transmission, b)
Parallel port transmission and c) tangent of Faraday angle versus B at 11.2 GHz for
the two cases brass and copper squeezing plate for the sample VA0269.

6.2 Iris

To facilitate the measurements of Faraday angle with smaller samples, we need to

reduce the size of the aperture. In that case, we should know how does the size of the

aperture affects the measurements. To investigate this, we carried out perpendicular

port measurements on the VA0141 sample with several apertures of diameter 9 mm,

6 mm and 4 mm within a waveguide of inner diameter 23.825 mm. The obtained

results are shown in FIG. 6.3. First, it is clearly evident that we have a lower signal:

much less power goes through the aperture when the diameter is reduced. As a result,

the S/N ratio is lower for measurements carried out with smaller apertures. Also at

high field, we can see that the signal decays exponentially with decrease in aperture

diameter. Consequently, the plateaus are poorly resolved with smaller apertures.
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Figure 6.3: Iris diameter and perpendicular port transmission. Perpendicular port
transmission versus B for different aperture diameters at 11.2 GHz.

Second, the resonance peak observed in the perpendicular port transmission is getting

sharper and it’s position is getting shifted to lower B values with smaller apertures.

These are due to the fact that the electromagnetic environment seen by the 2DEG

also changes with the size of the aperture, leading to an overall change in the shape

of the curve and a shift in the resonance peak. This could also mean a different value

for the Z/K parameter, which in turn change the re-normalization constant for the

quantum of angle, the fine structure constant, α. Thus we conclude that with smaller

apertures there is an evident change in the electromagnetic environment seen by the

2DEG and one may not be able to clearly observe the plateaus due to the lower S/N

ratio.
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6.3 Role of edge state

We have seen that in the last chapter, by measuring the Faraday angle we are directly

probing the bulk of the 2DEG. However, the QHE and the resulting quantization

are often described in terms of edge states. For the measurements discussed in the

last chapter, we used a sample of dimension 10 mm x 10 mm placed on an aperture

of diameter 9 mm. Thus the area of the 2DEG exposed to the incident microwave

signals doesn’t include the edge of the 2DEG, but the edge of the 2DEG lies within

a length compared to the characteristic wavelength ∼ 2.6 cm of the measurement

frequency, 11.2 GHz. To investigate this further, we carried out measurements with

an aperture of diameter 6 mm on the VA0141 samples of dimensions 10 mm x 10 mm

and 7 mm x 7 mm. The obtained results shown in FIG. 6.4 are almost identical. The

small differences can be accounted due to the fact that the density and mobility of the

sample is sensitive to each cool down. From the results, we conclude that the edge of

the sample not necessarily need to be closer to the aperture.
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Figure 6.4: Faraday rotation with different sample dimensions. Perpendicular port
transmission versus B for two samples of dimension 10 mm x 10 mm and 7 mm x 7 mm
with an aperture of diameter 6 mm.
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6.4 Frequency dependence

In the previous chapter, we discussed the results on the measurement of Faraday angle

for the sample VA0141 only at a single frequency, 11.2 GHz. As mentioned before, our

measurements consist of a sweep in frequency for every value of magnetic field. In

this section, we are going to take a quick look at the frequency dependence of Faraday

angle and it’s origin. The frequency spectrum of the parallel and perpendicular port

for chosen values of magnetic field is shown in FIG. 6.5 a) and b). The measurement

bandwidth is limited by the waveguide and other microwave components. Usually we

choose a bandwidth in the range 8-15 GHz. Another reason for the smaller bandwidth

is that we want to stay in the range of frequencies where there is only a single mode

propagating inside the waveguide. At higher frequencies, the presence of more than

one mode could have an effect on the overall spectrum we measure.
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Figure 6.5: Transmission versus frequency. a) Perpendicular and b) Parallel port for
selected values of B.
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Figure 6.6: Frequency dependence of tangent of Faraday angle. Tangent of Faraday
angle versus a) B and b) 1/B for selected frequencies.

In FIG.6.6 a) and b) the Faraday angle is plotted for several frequencies as a

function of B and 1/B respectively. The frequency dependence we see in the absolute

value of Faraday angle can be accounted to several factors. The two most important

ones are due to the frequency dependance of the different microwave components and

the reflections inside the waveguide arising from the presence of sample holder with an

aperture and impedance mismatch at the measurement ports. Other possible effects

could be the frequency dependence of the semiconductor host and 2DEG conductivity.

However, we could neglect these effects which arise from the frequency dependance of

the 2DEG due to our small measurement bandwidth. All these contributions adds up

to what we see in FIG. 6.6. The most important observation among these results which

validates our measurements is that even though there is a frequency dependence

in the absolute value of the Faraday angle, the positions of the quantized plateaus

remain unchanged. This indicates that the sample characteristic, for example the
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electron carrier density which defines the position of plateaus in the B scale is affected

neither by the frequency nor by our measurement technique.

6.5 Phase

The advantage of measuring S-parameter with the VNA is that we have access to

both the amplitude and the phase of the signal. Until now, we focused only on the

amplitude part of the signal. In this section, we will look at the phase of the tangent

of Faraday angle. FIG 6.7 shows the phase of tangent of Faraday angle versus ±B.

Under reversal of magnetic field, the σyx of the 2DEG undergoes a change in sign

and thus the sign of Faraday angle. This change in sign appears as a 180 deg phase

shift in the phase data relative to the sign of B. This is what we observe in the results

obtained (see FIG 6.7). We will deal more with phase data in the next chapter where

we try to extract σxx and σyx from the measured scattering parameters.
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Figure 6.7: Phase of tangent of Faraday angle.
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6.6 High mobility samples
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Figure 6.8: Fractional Faraday rotation. a) Perpendicular port transmission at
11.2 GHz, b) Parallel port transmission at 11.2 GHz, c) tangent of Faraday angle
versus B and d) tangent of Faraday angle versus 1/B for the two samples VA0269 and
VA0274.

Having observed the quantization of Faraday angle corresponding to IQHE,

we moved onto samples which can host FQHE states i.e, with samples having

higher mobilities compared to VA014. We started by measuring VA0269 of mo-

bility 2 × 106 cm2/Vs and VA0274 of mobility 1.6 × 106 cm2/Vs from Sandia National

Laboratories. FIG. 6.8 a) and b) shows the perpendicular and parallel port trans-

mission respectively at 11.2 GHz. There are slight differences in the transmissions

of both ports with respect to the sign of B, as in the case of VA0141. The obtained

Faraday angle versus B and 1/B is plotted in FIG. 6.8 c) and d) respectively. The

Faraday angle obtained is after numerically symmetrizing the parallel port data
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and anti-symmetrizing the perpendicular port data with respect to B. Similar to

VA0141, here also we obtain the classical Faraday curve along with quantized Faraday

rotation in the high field regime for the two samples VA0269 and VA0274. However,

in the present case the plateaus obtained are comparatively smaller in size. For both

samples, in addition to the IQHE plateaus, we were expecting to see the plateaus

corresponding to the ν = 5/3 and ν = 7/3 FQHE states. However, in the obtained

results, we have only a slight hint of ν = 5/3 FQHE state and the corresponding

plateau is not well resolved (see FIG. 6.9 for the result observed in VA0269).

i = 2

ν = 5/3

i = 3

Figure 6.9: Hints of fractional Faraday. ν = 5/3 observed in the Faraday measure-
ments of VA0269.

To investigate this further, we carried out measurements in another sample of

much higher mobility. The sample is a AlGaAs/GaAs 2DEG, P7.24.19.1 with a mobility

of ∼ 30 × 106 cm2/Vs. The obtained results for this sample are shown in FIG. 6.10

a) and b). Clearly no quantization is observed. We only have the classical Faraday

rotation curve even at higher magnetic fields. There were previous experimental

reports, where they observed that the width of the quantum Hall plateaus reduces

with increase in the frequency at which they probe the quantum Hall system [4,29–31].

Also, above a certain cutoff frequency, f0 the plateaus completely disappear. The value

of f0 is related to the broadening of the Landau levels caused by impurities. In a
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Figure 6.10: Faraday angle and transport measurements in a high mobility 2DEG.
Tangent of Faraday angle versus a) B and b) 1/B at 11.2 GHz for the P7.24.19.1 sample
c) D.C transport data on the P7.24.19.1 sample taken during the same cool down with
our modified setup.

sample, where the broadening is assumed to be mostly due to scattering by short-range

ionized impurities, the value of f0 can be approximated as [31,32]:

f0 ≈ 1
4π

√︄
2ωc

πτ
(6.1)

where ωc is the cyclotron frequency and τ is the scattering time. Note that f0 ∝ ωc,

thus for plateaus with lower filling fractions (at higher magnetic fields) the f0 will

be higher. To verify that, what we observed is not due to a bad sample, we modified

our setup so that it is possible to carry out D.C transport measurements at the same

time as Faraday rotation measurements. As mentioned in section 4.2, this has been

achieved with the help of flexible PCBs which can be glued on to the sample holder
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and then the D.C contacts are made from it to the sample using gold wires. The results

of D.C transport measurements are shown in FIG 6.10 c). In the results obtained for
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Figure 6.11: Effect of frequency on the width of the plateaus.
Faraday angle versus 1/B for the VA0141 and Pfeiffer sample at 11.2 GHz.

Rxx and Rxy, we could observe the quantum Hall characteristics. This leads us to the

conclusion that the effect observed is clearly due to the frequency. Using equation 6.1,

the cutoff frequency for the VA0141 and Pfeiffer sample is calculated and is found

to be in agreement with what we observed. For the VA0141 sample with a mobility

of 1 × 106 cm2/Vs, the cutoff frequency at 0.5 T is around 11.8 GHz. Therefore, all

plateaus above 0.5 T should be visible for frequencies below f0 and from FIG 6.11 we

can see that for a measurement carried out at 11.2 GHz, the plateaus starts to be

visible only above 0.5 T. For the P7.24.19.1 sample with a mobility of 30 × 106 cm2/Vs,

the cutoff frequency even for a plateau at 6 T is around 7.46 GHz. As our measurement

frequencies lies in the range 8-12 GHz which is above the f0 calculated for the highest

magnetic field, as expected we don’t observe any plateaus with the P7.24.19.1 sample

(see FIG 6.11).

In conclusion, the obtained results shows that in order to observe FQHE states

we need to do our measurements at lower frequencies below f0 which requires the

need for a new waveguide with a larger diameter. Remember the cutoff frequency for
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the modes inside the waveguide is inversely proportional to waveguide diameter. The

problem with such a setup is that the waveguide starts to be too big to fit into standard

magnet bore, pointing to the need for a complete redesign of the experimental setup.



Chapter 7

Attempt to extract σxx and σyx

In this chapter we will attempt to extract the σxx and σyx of the VA0141 2DEG as a

function of B at the measurement frequency of 11.2 GHz using the perpendicular and

parallel port measurements data. This is interesting because at finite frequencies,

σxx and σyx of the 2DEG has a non-zero imaginary part (see 2.13) which starts to be

important when the frequency is of the order such that ωτ≥ 1 for a given value of τ.

For the VA0141 2DEG the value of ωτ is 2.7 at 11.2 GHz. Also, in our measurements,

since we have access to both the amplitude and phase of the signal, in principle it

should be possible to extract the real and imaginary part of σxx and σyx individually

and to look at it’s evolution as a function of B. We will begin by introducing the

method.

7.1 The method

Let’s start by introducing the different terms:

• t⊥: The ideal case transmission of the perpendicular port.

• t∥: The ideal case transmission of the parallel port.

• S41 : The actual transmission of the perpendicular port that we measure using

the VNA.
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• S31 : The actual transmission of the parallel port that we measure using the

VNA.

• δ : The difference in delay between the two measurement ports.

• G : A complex number that accounts for the overall gain in the measurement

ports. Here, we assume G to be independent of the two measurement ports.

This assumption is valid since we use a single R.F line to do measurements of

the two ports with the help of a cryogenic relay.

Now, we can write:

S31 =Gt∥

S41 =Gt⊥e jδ
(7.1)

Also, from chapter 5, we have the definition of tangent of Faraday angle for a 2DEG

in a circular waveguide with an aperture, i.e:

tanθF = γZσyx

K +Zσxx
= S41

S31
(7.2)

Note that the S41 and S31 used here are the ones after the symmetrization-anti-

symmetrization procedure described in section 4.4. In this way, we don’t have to

include an additional term which needs to be determined to account for the misalign-

ment between the two measurement ports.

In order to extract σxx and σyx from S41 and S31, we need to first determine the

unknowns. Along with the definition of tangent of Faraday angle in terms of S41 and

S31, using 7.1 and 7.2, we can write:

tanθF = S41

S31
= Gt⊥

Gt∥
e jδ

= γZσyx

K + Zσxx
e jδ

= γZ/K σyx

1 + Z/K σxx

(7.3)

The σxx of the 2DEG is maximum at very low field. Therefore, Z/K σxx ≫ 1 and we
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can write:
S41

S31
≃ γZ/K σyx

Z/K σxx
e jδ (7.4)

Using the Drude formalism to express the conductivity we get:

S41

S31
≃ γµB

1− jωτ
e jδ (7.5)

where µ is the mobility of the 2DEG given by eτ
m . Accordingly, we determine the value

of δ using:

arg
S41

S31
= arg

e jδ

1− jωτ
(7.6)

Now, let’s recall the relations for the local, E⃗loc and transmitted, E⃗t electric field

in terms of incident electric field, E⃗ i and surface current density, J⃗ from chapter 5 for

the Faraday rotation by a 2DEG in the presence of electromagnetic confinement:

E⃗loc = K̂1 E⃗ i − Ẑ1 J⃗ (7.7)

E⃗t = K̂2 E⃗ i − Ẑ2 J⃗ (7.8)

where K̂1 and Ẑ1 are linear operators giving the contribution E⃗ i and J⃗ on the E⃗loc

respectively and K̂2 and Ẑ2 are linear operators giving the contribution E⃗ i and J⃗ on

the E⃗t respectively. Note that these relations are the generalized versions of 3.10 and

3.12 used to derive the Faraday rotation of a 2DEG in vacuum in chapter 3.2. We also

have from chapter 5:

E i⃗ = K̂−1
1 (1 + Ẑ1σ̂) Ẑ1Ẑ−1

2 E t⃗ (7.9)

E i⃗ = aixφx⃗(x, y) + ai yφy⃗ (x, y) (7.10)

E t⃗ = atxφx⃗(x, y) (7.11)

Using the same notations and definitions as in chapter 5, the incident field amplitude

can be written in terms of transmitted field amplitude as:

aix = < x| E i⃗ |x > = < x| K̂−1
1 (1 + Ẑ1σ̂)Ẑ1Ẑ−1

2 E t⃗ |x >
= (K + Zσxx) atx (7.12)
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ai y = < y| E i⃗ |x > = < y| K̂−1
1 (1 + Ẑ1σ̂)Ẑ1Ẑ−1

2 E t⃗ |x >
= (γZσyx) atx (7.13)

Similarly, for E t⃗ = atyφy⃗ (x, y) we have:

aix = (−γZσyx) aty

ai y = (K + Zσyy) aty (7.14)

Therefore, from 7.12, 7.13 and 7.14 the relation between incident and transmitted

fields can be written in general as:(︄
aix

ai y

)︄
=

(︄
K + Zσxx −γZσyx

γZσyx K + Zσyy

)︄ (︄
atx

aty

)︄
(7.15)

The above relation 7.16 can be inverted to express transmitted field in terms of

incident field: (︄
atx

aty

)︄
= 1
∆

(︄
K + Zσxx γZσyx

−γZσyx K + Zσyy

)︄ (︄
aix

ai y

)︄
(7.16)

where,

∆ = (K + Zσxx)2 + (γZσyx)2 (7.17)

and σxx = σyy. Now, if we restrict ourselves to the sub-space of forward propagating

modes, the transmission matrix T for the passage through the 2DEG can be defined

as: (︄
atx

aty

)︄
= T

(︄
aix

ai y

)︄
(7.18)

Now, in the ideal case transmission of the two ports, the T matrix is related to t⊥ and

t∥ by:

T = 1
∆

(︄
K + Zσxx γZσyx

−γZσyx K + Zσxx

)︄
=

(︄
t∥ t⊥

−t⊥ t∥

)︄
(7.19)

The above relation can be inverted to give:(︄
K + Zσxx −γZσyx

γZσyx K + Zσxx

)︄
= 1

(t∥)2 + (t⊥)2

(︄
t∥ −t⊥
t⊥ t∥

)︄
(7.20)
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Therefore, we can define:

X = t∥
t2
∥+ t2

⊥
= GS31

S2
31 +S2

41e− j2δ
= K +Zσxx (7.21)

Similarly,

Y = t⊥
t2
∥+ t2

⊥
= GS41e− jδ

S2
31 +S2

41e− j2δ
= γZσyx (7.22)

In the regime of very high magnetic field and temperature, σxx →σDrude
xx → 0. There-

fore, from 7.21 we have:

S31

S2
31 +S2

41e− j2δ
(B = 6T)≃ K

G
(7.23)

Having determined K
G , from 7.21 and 7.22 we can write:

S31

S2
31 +S2

41e− j2δ
− K

G
= Z

G
σxx (7.24)

S41e− jδ

S2
31 +S2

41e− j2δ
= γZ

G
σyx (7.25)

where the γ in 7.25 can be determined in the same way as in chapter 5. Note that
Z
G = | Z

G | e j∆ is a complex number. However, knowing γ, δ and using S41 and S31 taken

at 5K together with the assumption that σyx is purely real at very high magnetic field

and temperature, the value of ∆ is found by taking the argument of left hand side of

Eq. 7.25 at B = 6 T. Therefore, we have:(︄
S31

S2
31 +S2

41e− j2δ
− K

G

)︄
e− j∆ = |Z

G
|σxx (7.26)

S41e− jδ

S2
31 +S2

41e− j2δ
e− j∆ = γ|Z

G
|σxy (7.27)

Using 7.26 and 7.27, we can determine the real and imaginary part of σxx and σyx up

to a real constant | Z
G |. Remark: The method mentioned above for determining K

G is

used for the low field regime, where K
G ≪ Z

Gσxx. In the high field regime, as σxx → 0,

the term K
G is no more negligible compared to Z

Gσxx and therefore we need a better

estimation of it’s value. Thus, for the high field regime, K
G is determined as follows.
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The equation 7.21 can be rewritten as:

S31

S2
31 +S2

41e− j2δ
= K

G
+ Z

G
σxx (7.28)

Now, using the data taken at high temperature (5 K) and magnetic field (above 1 T),

the left hand side of the latter equation is fitted as a function of magnetic field onto a

function of the form (same as right hand side) : K
G + Z

Gσxx with K
G and Z

G as the complex

fitting parameters. Here, σxx is taken as σDrude
xx . To make the fitting easier, 7.28 can

be multiplied on both sides by e− j∆. Then, the fitting parameter Z
G will become a real

number.

7.2 Results

At finite frequencies, the σxx and σyx of a 2DEG is no longer a real quantity and it

has a non-zero imaginary part. Using the analysis above, we extracted individually

the real and imaginary part of σxx and σyx as a function of magnetic field up to a

real constant | Z
G |. The analysis has been carried out using the data taken at ∼ 10 mK

(labeled as mK) and 5 K for the VA0141 sample. The obtained results at 11.2GHz

for the high field (above 1 T) and low field (below 300 mT) regimes are shown in FIG

7.1 and 7.2 respectively. The reason why we choose two regimes of magnetic field is

because with regard to magnetic field the classical Drude theory is expected to work

better in the low field regime and hence a comparison could be made.

7.2.1 σyx

The extracted real, imaginary and absolute value of σyx versus 1/B for the high field

regime is shown in FIG 7.1 b), d) and f) respectively. In the high field regime, the

real part of σyx shows quantized Hall steps which are equally spaced in 1/B, while

the imaginary part shows oscillations which are periodic in 1/B. The oscillations

show two periodicities, ∼ 0.2 T−1 and ∼ 0.1 T−1. The shorter one corresponds to

filling fractions, i = 3 and 5 due to spin splitting at high magnetic field. The vertical

dotted lines shows the center position of the quantized Hall plateaus. Further, in
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the oscillations observed for the imaginary part of σyx, the position of the center of

the quantized Hall plateaus corresponds to a region half way between a minima and

maxima. Thus, there is a ∼ π/2 phase difference between these oscillations and the

normal quantum oscillations observed with σxx in the quantum Hall regime (see

FIG. 7.1 e) for example). The obtained results are in good qualitative agreement

with previously reported works on σyx [29,31,33]. Now, with the data taken at 5 K,

the quantization of the Hall plateaus in the real part disappears along with the

oscillations observed in the imaginary part of σyx. This is due to the fact the Landau

levels are smeared off due to thermal broadening at these temperature scales, i.e

kBT ∼ ħωc.

For the low field data, the extracted value of σxx is compared with classical Drude

theory. To do a better comparison with classical Drude theory, let’s define:

σN
yx(B)= |Z/G|σyx(B)

|Z/G|σyx(B = Bmax)
(7.29)

where Bmax = 100 mT and is plotted in FIG. 7.2 along with Drude theory for tem-

peratures 10 mK and 5 K. In the low field regime (see FIG. 7.2 b), d) and f)), the

obtained real and imaginary part of σN
yx hardly agrees with the Drude theory, while

the absolute value agrees better with a shift in the position of the cyclotron resonance

peak. For this reason, we will disregard the real and imaginary part and will take

a better look at the absolute value of σN
yx. Note that for 11.2 GHz, the cyclotron

resonance peak given by: ω=ωc is expected at B = 26 mT (shown with vertical dotted

lines). In a 2DEG, with a macroscopic lateral dimension, w at microwave frequencies

the cyclotron resonance can be shifted due to depolarization or plasma effects [34,35].

The new resonance condition is as follows:

ω2 = ω2
c + ω2

p (7.30)

where ω2
p is the 2D plasma frequency and is given by:

ωp ∼
√︄

n e2 π

w m∗ ϵe f f ϵ0
(7.31)

where n is the electron density, m∗ is the effective mass and ϵe f f is the effective

dielectric constant of the surrounding media (here GaAs). For the VA0141 sample of
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lateral width, w = 1 cm the calculated value of ωp ∼ 7.54 GHz. As ωp is of the order ω

the shift in the position of the peak could be due to the presence of magneto plasmon.

In conclusion, for a better understanding of σN
yx in the low field regime, we require a

theory which takes into account the effect of magneto-plasmon on the conductivity of

the 2DEG and a better extraction technique.

7.2.2 σxx

In the quantum Hall regime, the σxx of the 2DEG shows quantum oscillations which

are periodic in 1/B. This kind of oscillations can be clearly seen in the extracted real

and imaginary part of σxx (see FIG. 7.1 a) and c)). The absolute value of the σxx is

also shown FIG. 7.1 e). Remember from the discussions in chapter 2.2, the Hall mark

of quantum Hall effect is that when σyx is on a quantized plateau, the σxx shows a

minimum. In agreement to this, the positions of the minimum on the absolute value

of σxx coincides with the center position of the each plateau. However, for the real and

imaginary part, the center position of each plateau coincide with a maximum rather

than a minimum. This is unexpected in comparison to previous works [33, 36, 37].

At 5 K, as expected due to thermal broadening of Landau levels the amplitude of

oscillations in the real, imaginary and absolute value of σxx are heavily suppressed.

Now, for the low field data comparison here also we define:

σN
xx(B)= |Z/G|σxx(B)

|Z/G|σxx(B = 0)
(7.32)

For the low field (see FIG. 7.2 c),d) and f)), unlike σN
yx the real and imaginary part of

σN
xx almost follow the Drude formalism, while the absolute value agrees with a shift

in the position of the peak as in the case of σN
yx. We attribute the same reason as in

the case of σN
yx for this shift in the position of the peak. In conclusion, our results

may not agree quantitatively with what people have already observed, within the

limitations of our technique, it does give a good qualitative picture of real, imaginary

and absolute values of σyx and σxx for a 2DEG in the classical/quantum Hall regime.

To conclude, in this chapter we discussed a method to extract the complex σxx

and σyx of a 2DEG as a function of magnetic field from the measured scattering
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parameters S41 and S31. Using this method, we extracted the real and imaginary

part of σxx and σyx at 11.2 GHz for the low field and high field regime. The obtained

results does agree qualitatively with previously reported works for the high field

regime and with Drude model for the low field regime. Our attempt was successful

within the limitations of our technique and the results suggests an improvement in

the extraction technique and a better theoretical model for the low-field regime.
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Figure 7.1: High field σyx and σxx. a) Real part of | Z
G |σxx, b) Imaginary part of | Z

G |σxx,
c) Real part of | Z

G |σyx, d) Imaginary part of | Z
G |σyx, e) Absolute value of | Z

G |σxx and
f) Absolute value of | Z

G |σyx versus 1/B at ∼ 10 mK (labeled as mK and 5 K). Vertical
dotted lines indicates the position of different Hall plateaus with filling fraction ν = 2,
3, 4, 6, 8, 10 from left to right.
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Figure 7.2: Low field field σN
yx and σN

xx. a) Real part of σN
xx, b) Imaginary part of σN

xx,
c) Real part of σN

yx, d) Imaginary part of σN
yx, e) Absolute value of σN

xx and f) Absolute
value of σN

yx versus B at ∼ 10 mK (labeled as mK and 5 K) along with classical Drude
theory. Vertical dotted line indicates the position of cyclotron resonance.



Chapter 8

Conclusion

In this part of the thesis, we presented measurements of microwave Faraday rotation

conducted on a high mobility AlGaAs/GaAs 2DEGs in the quantum Hall regime. The

primary goal of this research was to develop an experimental setup and further carry

out a quantitative measurement of quantized microwave Faraday rotation and the

associated quantum of angle on a 2DEG.

We have carried out measurements on several 2DEG samples provided by Sandia

National Laboratories and L. N. Pfeiffer and K. W. West from Princeton. The mea-

surements carried out on the VA0141 sample shows robust and well formed quantized

Faraday plateaus. As we do our measurements in a waveguide and not in free space,

we developed a theoretical model for the Faraday rotation by a 2DEG which takes

into account the electromagnetic confinement. Using this model, we predicted the

expected value for the renormalized quantum of angle and it is found to be in good

agreement with what we measured experimentally. With this model, we can also

account for the frequency dependance on the absolute value of the Faraday angle

with a single frequency dependant fitting parameter Z/K . An interesting remark

about the observed Faraday plateaus is that even though the absolute value does

depend on frequency their position in B is not affected. Further, we have carried out

measurements with high mobility samples which can host FQHE states. Interestingly,

in the obtained results we had only the classical Faraday curve with no quantization.

This is found to be consistent with previous measurements at finite frequencies. How-

ever, this observation clearly poses a question: could the value of ωτ be a criterion
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for the observation of quantum Hall effect? We also carried out quasi D. C transport

measurements to verify that it is purely an effect of frequency and the obtained results

on Rxx and Rxy does show quantum hall characteristics.

Finally, we attempted to extract the σxx and σyx of the 2DEG as a function of B,

at the measurement frequency of 11.2 GHz using the Faraday measurement data.

Using the analysis technique we developed, we extracted the real and imaginary part

of σxx and σyx. In the obtained results for the σxx, we observed oscillations which are

periodic in 1/B corresponding to quantum oscillations in both real and imaginary part,

while for the σyx, the real part shows quantized Hall steps and the imaginary part

shows oscillations which are periodic in 1/B. In the low field regime our results agrees

only qualitatively with classical Drude formalism in terms of real and imaginary part

and the discrepancy in the absolute value can be seen mainly as a shift attributed to

magneto-plasmons.



Part II

Electrostatic field screening in a
superconductor
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Chapter 9

Introduction

In a semiconductor, due to it’s relatively low electron density, it is easy to modulate

the electronic properties with the help of an externally applied electrostatic field.

On the contrary, in a metal, it is very difficult to do so as external electric fields

are screened very efficiently. The characteristic length over which the electrostatic

fields are screened completely is of the order of few Å in metals and is known as the

Thomas-Fermi screening length, λTF [38]. This puts semiconductors at the heart of

electronics through the most common field effect transistors. However, one of the

primary challenges faced by the today’s semiconducting industry is the dissipation due

to the poor conductivity of semiconductors. A primary solution to this problem could

be the use of superconductors. This brings us to the question, what about screening

in superconductors? In a superconductor, a time varying electric field is screened

within the same length scale as a static or time varying magnetic field, the London

penetration length [39]. But what about electrostatic fields?

This is a very old question. It has been studied since the discovery of super-

conductivity. For a detailed historical review see [40, 41]. This problem was first

addressed by the London brothers in 1935. In their first version of electrodynamic

theory of superconductivity, they suggested that an electrostatic field could penetrate

in a superconductor over the same length scale as a static magnetic field [39,42]. Con-

sequently, it corresponds to a penetration (screening) length of the order of thousands

of Å. One year later, by measuring the capacitance of a superconducting capacitor,

H. London concluded that the electrostatic penetration length is not affected by the
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superconducting transition and thus disregarding their idea [43]. Later work by

Anderson [44] states that the thermodynamic properties of a superconductor is not

affected by the presence of an electrostatic field and that the condensate does not

affect the penetration of electrostatic field. In the following years, there were several

theoretical studies on the effect of electrostatic field on superconductivity [45–55], i.e

on the superconducting transition temperature, Tc or on the superconducting gap, ∆.

These theoretical works also seem to point out that the electrostatic penetration length

in a superconductor is of the order of λTF and in addition these calculations report

that the penetration length could depend on the value of the electrostatic field applied.

Other theoretical predictions include screening length of the order of superconducting

coherence length, ξ [56,57]. According to their studies, as cooper pairs are separated

by length scales of the order of ξ, one would expect the disturbances to screen over

such length scales. A more recent calculation by O. Simard et.al. [58] shows that in

a superconductor, the electronic compressibility, ∂n
∂µ

- a quantity that represents how

easily the electron density can be modulated with an applied electrostatic field, is

given by:

∂n
∂µ

= N(0)
∫︂ EF

∆
dE

∆2 tanh
(︂
β

2 E
)︂

E2
⎷

(E2 −∆2)
+ 2N(0)

∫︂ EF

∆
dE

E⎷
(E2 −∆2)

[︃
∆2

E2 −1
]︃
∂ f (E)
∂E

(9.1)

where N(0) is the density of states at T = 0, ∆ is the superconducting gap, EF is the

Fermi energy, β= 1/kB T and f (E) is the Fermi-Dirac distribution function. Note that

in the absence of a superconducting gap, i.e ∆= 0, the R.H.S of 9.1 reduces to normal

state density of states at Fermi energy which is the same as ∂n
∂µ

for kBT ≪ EF [38].

According to 9.1, they predict a continuous change in screening length of the order of(︂
∆

EF

)︂2
when a material becomes superconducting.

Despite the numerous theoretical studies, there are only few experimental works

regarding electrostatic screening length in superconductors. All these experiments

in contrast to the theoretical works reports a higher electrostatic screening length in

superconductors which are inconsistent with each other. These experiments include

both conventional and high Tc superconductors. In conventional superconductors,

the experiment by Tao et.al. [59] reports a penetration length of ∼ 12 Å for Pb in

the superconducting state. Note that in the normal state the λTF of Pb is 0.51 Å.

Also recently, Giazotto et.al. report a change in screening length of the order of
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hundreds of nanometers [60–62] in Ti and Al in the superconducting state. The

experiments has been carried out, by measuring the suppression of the critical current

as a function of the applied gate voltage on a superconducting FET structure. Later,

it has been shown that, the possible mechanism for such a large effect is due to

leakage current of high energy electrons from the gates [63,64]. Regarding high Tc

superconductors, an interesting experiment is the one by W.G Jenks et.al. [65] where

they used capacitors with plates made of YBCO thin films to measure the change

in screening length and reports a change in penetration length of the order 100Å

associated with superconducting transition.

Further, the theoretical calculations by O. Simard points out that the changes we

are looking for might be a really small variation in screening length. For example

in Ti the value of
(︂
∆

EF

)︂2 ∼ 10−12, such a change is almost impossible to measure

experimentally. Nevertheless, his calculations along with the recent experimental

reports demands the need for more measurements with an experimental setup that

can probe the screening length directly with a very high accuracy.

We have designed an experiment that is a direct probe of the screening length.

We use a capacitance bridge consisting of two on-chip parallel plate capacitors, having

one of the plate of a capacitor made of a superconducting material. With this setup,

we can measure relative changes in capacitance as small as ∼ 0.1 ppm (ideally). This

allowed us to look at the relative change in screening length as the material becomes

superconducting with high accuracy through the measured change in capacitance.



Chapter 10

Capacitance and screening

In this chapter, we will explain how the capacitance of a capacitor can be used to

measure the electrostatic screening length in a given material.

10.1 Parallel plate capacitor and screening

Consider a parallel plate capacitor as shown in FIG. 10.1. The plates of the capacitor

are of area A, made of material of which the screening length has to be measured and

the dielectric between the two plates is of thickness, d with a dielectric constant, ϵr.

The capacitance, C of such a capacitor neglecting screening can be written as [66],

C = ϵ0ϵr
A
d

(10.1)

where ϵ0 is the vacuum permittivity. In the ideal case scenario, the charges on the

plates of the capacitor reside on the surface of the two plates. In this case, the distance

between the two charged plates is the same as the thickness of the dielectric, d. In

reality, due to screening the electric field penetrate into the plates to a certain length

known as the Thomas Fermi screening length, λTF (see FIG. 10.1). Usually in metals

λTF is of the order of 1-2 Å. Therefore, in cases where d starts to be of the order of λTF ,

we need to take into account the length scale λTF while calculating the capacitance.

Now, we will calculate the effective capacitance, Ce f f of a parallel plate capacitor

including screening. We will begin by recalling the expression for λTF . Consider a
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Figure 10.1: Parallel plate capacitor and screening. Schematic of a parallel plate
capacitor including screening, where λTF1 and λTF2 are the respective Thomas-Fermi
screening length on the two metallic plates.

free electron gas with an electron density, ne and a density of positive charges, ρ0.

Thus, the total charge density, ρ of the free electron gas can be written as:

ρ = ρ0 − ne (10.2)

In the absence of electric field and inhomogeneities throughout the free electron gas,

the ρ = 0. Therefore, we have:

ρ0 = n(µ0)e (10.3)

where µ0 ≡ µ0(T) is the chemical potential in the absence of electric field at a given

temperature T. Now, in the presence of an external electric field, E = −∇V , the local

chemical potential, µ(r) is given by:

µ(r) = µ0(T) + eV (r) (10.4)
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The local electron density, n(r) is determined by the local chemical potential, µ(r) and

therefore we can write :

n(r) ≡ n(µ(r))

≃ n(µ0) + eV (r)
∂n
∂µ

(10.5)

Therefore, using 10.2 and 10.3 we have:

ρ(r) = −e2 V (r)
∂n
∂µ

(10.6)

Now, using Poisson equation, we can write:

∇2V − e2

ϵ0

∂n
∂µ

V = 0 (10.7)

where:
e2

ϵ0

∂n
∂µ

≡ 1/λ2
TF (10.8)

In a capacitor, the effect of λTF is equivalent to increasing the distance between the

two plates and thus leading to a decrease in the value of capacitance. This decrease

in capacitance can be seen as a small capacitor, δC added in series to the original

capacitor. Accordingly, we have:

1
Ce f f

= 1
C

+ 1
δC

(10.9)

where the δC can be written in terms of λTF as:

δC = ∂q
∂V

= (AλTF ) e2 ∂n
∂eV

= (ϵ0AλTF )
e2

ϵ0

∂n
∂µ

= ϵ0A
1

λTF
(10.10)

Note that (AλTF ) is the volume over which the electric field penetrates into the

material and thus the volume over which the n need to be considered. Therefore, in

general the equivalent capacitance of a capacitor in the presence of screening can be
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written as:
1

Ce f f
= 1
ϵ0A

[︃
d
ϵr

+λTF1 +λTF2

]︃
(10.11)

where λTF1 and λTF2 are the respective screening lengths for the two materials of the

plates of the capacitor. Also, we have taken the permittivity of these two materials

to be the same as vacuum. Now, it is clearly evident (from 10.11) how the change in

screening length will be reflected on the capacitance of a capacitor.

10.2 Measuring screening length

In order to measure the change in screening length when a material becomes super-

conducting, we need to measure the change in capacitance over a range of temperature

near the superconducting transition temperature, Tc or magnetic field near the criti-

cal field, Bc. In these range of temperature or magnetic field, there are other factors

which contribute to the change in capacitance. The most important one among them

is the temperature or magnetic field dependance of the permittivity. Consequently,

the measurements of screening will be affected as it adds up to the total change in

capacitance. This can be removed by carrying out measurements with the help of a

capacitance bridge. In our case, the capacitance bridge consist of two similar on-chip

capacitors: a sample capacitor and a reference capacitor. Among them, the sample

capacitor has at least one of the plate made of a superconducting material and the

reference capacitor has plates made of non-superconducting material. The bridge

measurements allow us to measure the difference in capacitance between these two

capacitors as a function of temperature or magnetic field. Accordingly, we are left

with only the change in capacitance due to change in screening length and subtract

out any common contributions.



Chapter 11

Device fabrication and experimental
setup

In this chapter, we will see how these capacitors are made and then turned into a de-

vice for capacitance bridge measurements. Further, we will explain the experimental

setup and it’s importance.

11.1 Device fabrication

As discussed in the previous chapter, the capacitance bridge is established with the

help of two parallel plate capacitors. In our case, the two capacitors are : Ti or Nb

- Si02 - ++Si (top plate - dielectric - bottom plate) for the sample one and Au or Ti -

Si02 - ++Si (top plate - dielectric - bottom plate) for the reference, where ++Si stands

for heavily doped Si. Note that only the top plate of the sample capacitor is made of a

superconducting material and it is either Ti or Nb. For the case where Nb is the top

plate of the sample capacitor, Ti is used as the top plate of the reference capacitor. A

schematic layout of the device is shown in FIG. 11.1. The capacitors are fabricated

using standard UV photolithography technique on industrially grown wafers. Both

capacitors are made on the same wafer. The wafer used to make the capacitors is

a ++Si (heavily doped) substrate with a 380 nm of thermally grown high quality

Si02 on top. The advantage of using such a wafer is that, the ++Si substrate act as
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one of the plate for the capacitors and the high quality oxide layer provides a clean

dielectric with a reduced possibility for pinholes. The SiO2 layer is then etched to

required thickness using 50 % buffered oxide etch - 50 % water solution. After etching,

using standard U.V lithography techniques the top plate (dimension 1 mm x 1 mm)

is imprinted into the wafer. Later on, with e-beam evaporation the top layer metal

is deposited (Ti / Nb / Au). The thickness of the different layers of the capacitor is

shown in FIG. 11.1. In addition, on the same wafer a small nano-wire of the respective

superconducting material is made to determine the critical temperature, Tc of the

superconducting material. The sample and the reference capacitors are fabricated

in two different steps. Before making contacts, the capacitors are measured at room

temperature using the probe station. Afterwards, the device is first glued on to a thin

layer of kapton sheet which is then glued onto a sample holder which has 4 SMA ports

connected to 4 individual micro-strips inside (see FIG. 11.1 c)). The adhesive used

here is GE varnish. The reason for using the kapton sheet is because the conductive

bottom layer of the wafer (++Si substrate) otherwise short circuits the capacitors to the

ground plane of the sample holder. Contacts are made carefully from the micro-strips

to the different plates of the capacitors using Al wedge micro bonding. The bottom

++Si layer is accessed by carefully scratching away the SiO2 layer using a diamond

tip. The device is then cooled down for measurements with the help of a He3 / He4

dilution refrigerator for the Ti sample and for the Nb sample, we use a home made

variable temperature system installed on the 4 K stage of a He3 cryostat (see FIG.

A.6 in Appendix A.5). Note that for the rest of the discussion, we will label the device

in terms of the top plates of the sample and reference capacitor i.e Ti / Nb - Au / Ti.

11.1.1 Device characterization

Before cooling down, the wire and the capacitors are measured at room temperature

with the help of a lock-in. Schematics of the measurement setup are shown in FIG.

11.2. For the discussions in this section, we will focus on the Ti - Au device. The same

applies to Nb - Ti. At room temperature, the capacitance of the two capacitors in the

device is found to be: 642 pF for the Ti - SiO2 - ++Si (Ti || Si) capacitor and 650 pF

for the Au - SiO2 - ++Si (Au || Si) capacitor. As expected, the capacitors are almost

equal in terms of capacitance. The slight difference in the value can be accounted
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Figure 11.1: Sample layouts and device. a) Cross sectional layout of the capacitor along
with the thickness of different layers b) Top view layout of the device c) The device:
two on-chip capacitors and a nano-wire fabricated on a ++Si substrate in a sample
holder with 4 R.F ports. The substrate is first glued onto a layer of kapton sheet and
then to the sample holder. d) Top plate layout of the capacitor with dimensions e)
Cross sectional layout of the two on-chip capacitors.

to the asymmetries arise during fabrication. For example, the non-uniformity of

the dielectric layer, slight difference in the dimensions of the plates are among the

important. In the last chapter, we discussed about adding a layer of kapton sheet

beneath the surface of the wafer to prevent capacitors from short circuiting. A short

side of doing so is that we add a parasitic capacitance to the ground plane of the

sample holder as shown in FIG. 11.2. The presence of such a parasitic capacitance can

affect the sensitivity of the measurements. Knowing the individual capacitance of the

two device capacitors and then measuring the two in series allows us to choose the

proper thickness required for the kapton sheet to have minimum parasitic capacitance.

Note that it is important to suppress any contributions from parasitics, drifts, etc in

carrying out a sensitive measurement. Now, the device is all set to cool down.
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++Si

ALock-in

Lock-in V

1MΩ

Cs/Cr
Ti/Au/Nb
wire

Ti/Nb/Au Ti/Nb/Au

a)

c)

b)

Lock-in A

Figure 11.2: Measurement schematics at room temperature. a) Schematics for re-
sistance measurement b) Schematics for capacitance measurement c) Schematics
showing the effect of parasitic capacitance to ground while measuring Cs and Cr in
series.

11.2 Experimental setup: Capacitance bridge

In this section, we will explain the capacitance bridge circuit and will see what exactly

we can measure using this setup?

Our capacitance bridge setup consists of an audio transformer, a ratio transformer,

the device itself consisting of sample and reference capacitors, a tunable gain current

to voltage amplifier with an in-built tunable 2nd order low pass filter and a lock-in

which serves both as a source and as a voltmeter. Except for the capacitors all other

components of the bridge are outside the cryostat at room temperature. A schematic

of the bridge setup is shown in FIG. 11.3.

Now, we will have a closer look at the different components:

• Lock-in source: used as a source for voltage excitation, Vin. In our case, the

typical value of Vin is 100 mV at a frequency around 400 Hz.
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• Audio transformer: enable us to isolate the rest of the circuit from the source

and also provides +Vs and −Vs, which are it’s two outputs.

• Ratio transformer: allows us to tune the voltage drop across the two capacitors

with the help of a dial setting. For a dial setting n, the voltage drop across the

capacitor on the upper branch will be (1−n) Vs and across the one on the lower

branch will be −n Vs (see FIG. 11.3). A picture of the ratio transformer is shown

in FIG A.7 in Appendix A.5.

• Device with capacitors: the sample and the reference capacitor with total

impedances Zs and Zr respectively. Each of the capacitors is modeled as a

resistor (Rs/r) and a capacitor (Cs/r) in series (see FIG. 11.3). Here, Rs/r corre-

sponds to the resistance of the plates of the capacitor.

• Current to voltage amplifier - SP 983C : converts the total current at it’s input

to an equivalent voltage, Veq as the output. In other words, Veq ≡ GI, where G
is the trans-conductance of the amplifier and I is the total input current. The

value of G chosen for our measurements is 108 V /A and thus having a noise

floor of 13 f A/
⎷

Hz.

• Low pass filter: used to filter out any high frequency noise signals. The band-

width can be tuned and for our measurements the bandwidth chosen is 1 kHz.

• Lock-in voltmeter: for measuring the output voltage, Veq from the amplifier.

Looking at the circuit shown in FIG 11.3, the measured output voltage on the lock-in,

V=Veq can be written as:

Veq =
VsZ′

p

ZA

(︃
(1−n)Zr

ZsZ′
p + ZsZr + ZrZ′

p
− nZs

ZrZ′
p + ZsZr + Z′

pZs

)︃
(11.1)

where n is the value of the dial setting in the ratio transformer, Zp ∼ 2.6 MΩ at

400Hz is the parasitic impedance of the long thermo-coax cable inside the dilution

fridge, ZA ∼ 99.66 Ω is the input impedance of the amplifier, |Zs| ∼ |Zr| ∼ 743.7 kΩ

at 400 Hz are the impedance of the sample and reference capacitors respectively

and Z′
p is the equivalent parallel capacitance between Zp and ZA. In the ideal case

scenario which is almost our case: ZA ≪ Zs, Zr, and Zp, the equation (11.1) can be

https://www.baspi.ch/low-noise-high-stab-itov-conv
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}
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Figure 11.3: Capacitance bridge. Schematic layout of the capacitance bridge setup.

rewritten as:

Veq = (1−n)V s
Zs

− nV s
Zr

(11.2)

When the bridge is perfectly balanced (zero point), we have Veq = 0 and thus:

(1−n)Zr = nZs ⇒ n(Zs +Zr) = Zr (11.3)

11.2.1 Extracting δC
C

Now, let Zs → Z′
s = Zs + δZs such that δZs << Zs, Zr. Accordingly, we have:

Veq + δVeq = (1−n)V s
Zs + δZs

− nV s
Zr

= (1−n)V s

Zs

(︂
1 + δZs

Zs

)︂ − nV s
Zr

(11.4)
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Note that we are looking for δZs
Zs

of the order of 10 ppm or below. Therefore, we can

write:

Veq + δVeq = (1−n)V s
Zs

(︃
1 + δZs

Zs

)︃−1
− nV s

Zr
(11.5)

≈ (1−n)V s
Zs

(︃
1 − δZs

Zs

)︃
− nV s

Zr
(11.6)

= (1−n)V s
Zs

− nV s
Zr

− (1−n)V s
Zs

δZs

Zs
(11.7)

Thus, we have:

δVeq = − (1−n)V s
Zs

δZs

Zs
(11.8)

We can write Z′
s as follows:

Z′
s = 1

jω(Cs + δCs)
= 1

jωCs

(︂
1 + δCs

Cs

)︂ ≈ 1
jωCs

(︃
1 − δCs

Cs

)︃
(11.9)

⇒ δZs = −Zs
δCs

Cs
(11.10)

Therefore, from 11.8 and 11.10 we have,

δVeq = (1−n)V s
Zs

δCs

Cs
(11.11)

The latter relation allows us to calculate the resulting change in δC
C due to δVeq. If we

interchange Zs and Zr in the bridge circuit shown in FIG. 11.3, the latter equation

modifies to:

δVeq = −nV s
Zs

δC
C

(11.12)

11.2.2 The real part

From the lock-in measurements, we obtain both the real and imaginary part of Veq.

The imaginary part gives us a measure of change in capacitance as we have seen in
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the last section, what about the real part? By analyzing the bridge circuit, we have:

Re(Veq) = (1−n)

⎛⎝ Rs

R2
s + 1

(ωCs)2

⎞⎠ − n

(︄
Rr

R2
r + 1

(ωCr)2

)︄
(11.13)

⇒ Re(Veq) ≈ (1−n) Rs (ωCs)2 − (n) Rr (ωCr)2 (11.14)

Remember, from room temperature measurements we have: Cs ≈ Cr = C ⇒ n ≈ (1−
n) = 0.5. Therefore:

⇒ Re(Veq) ≈ 0.5 (Rs − Rr) (ωC)2 (11.15)

Thus, the real part of the measurement gives us the difference in resistance of the

two capacitor plates.

Therefore, by doing capacitance bridge measurements we have access to both

δR = Rs − Rr (real part) and δC
C (imaginary part). Before we conclude this section,

let us discuss a few other important facts related to the bridge setup. On balancing the

bridge, there is an important factor associated with the use of low pass filter, which

we need to be careful, especially when the cutoff frequency of the filter is close to the

measurement frequency. Note that our measurement frequency is around 400 Hz and

the cutoff frequency of the low pass filter is 1 kHz. Consequently, there is a phase

shift in the signal that is measured. We compensate for that by manually readjusting

the phase in the lock-in. This is done by using the auto-phase option in the lock-in

and then adding a +90 deg phase shift to the resulting phase. Otherwise, if the phase

is not set properly, the change in the real part of the signal can affect the imaginary

part and vice versa. Now, the question is: how can we be sure about the value of

phase that is set manually? This can be checked by doing bridge measurements near

Tc. Consider the case of Ti - Au device. When Ti becomes superconducting, there is

a jump in the resistance associated with superconducting transition in the real part

the signal but not in the imaginary part where we expect a continuous change in

capacitance. So, if the value of phase is not set properly, this jump on the real part will

be seen on the imaginary part as well. Another important factor is the accuracy of the

bridge measurements. Note that it’s the ratio transformer, the amplifier noise and the

time constant of the lock-in that all together determines the overall accuracy of the

setup (assuming the effect of other noise sources and parasitics are made negligible).

In our case the ratio transformer itself can account for changes up to 0.1 ppm but with
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the amplifier noise we are slightly limited up in scale. To have an order of magnitude,

for a time constant of 3 s (typical value used for measurements) with a 24 dB roll

off, we can measure change in capacitance of the order of ∼ 0.3 ppm at 400 Hz on

a capacitance of ∼ 650 pF. This value can be easily found from the setup itself by

changing the dial setting n and noting down the smallest δn for which there is a

change in the measured Veq. Note that with a bigger time constant we can have better

accuracy. For our measurements a time constant of 3 s is sufficient enough.

11.3 Simulations
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Figure 11.4: Simulation results for the first scenario.

Before we discuss measurements and its results carried out on real devices, we

will simulate the bridge circuit to have a better understanding of the working of the

setup. The simulations are based on 11.2 and are carried out for different scenarios.

The different scenarios are considered to happen in the temperature range: {1 K →
0 K}. To balance the bridge, we will look for a value of n that sets the imaginary

part of 11.2 to zero using Brent’s method [67]. The bridge is balanced with respect to

1 K. Further, we will look at the evolution of real and imaginary part depending on
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the different scenarios. Also, the frequency chosen is 400 Hz same as measurement

frequency.

For the first scenario, consider the following: Cs decreases linearly with tempera-

ture by about 0.1 aF i.e, { 535.5 pF → 535.5 pF - 0.2 aF}, Cr remains constant with a

value of 532.4 pF, Rs having a normal state resistance of 3 Ω has a superconducting

transition ∼ 550 mK and Rr remains constant with a normal state resistance of 2 Ω.

Note that the impedance of Cs and Cr at 400 Hz are much greater than Rs and Rr

and therefore while balancing the bridge will be more sensitive to the difference in Cs

and Cr, especially for very small changes. The simulated results are shown in FIG

11.4 a) and b). In the obtained results, before and after Tc, the real part shows the

difference in resistance between Rs and Rr and at Tc it shows a jump in the value

of resistance corresponding to superconducting transition. At the same time, the

imaginary part shows a linear change in capacitance by 0.2 aF. The obtained results

are in good agreement with what we expected and this is good. Also, note that the

imaginary part is not polluted by the jump near Tc on the real part implying there

is no phase rotation. This brings us to the second scenario where there is a phase

rotation.
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Figure 11.5: Simulation results for the phase rotation.
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In this scenario, we will keep the same value as before for Cs, Cr, Rs and Rr in the

considered temperature range. We model phase rotation by adding a constant phase

to both real and imaginary part. Note that in real time measurements, any phase

rotation will be compensated with the lock-in but this scenario will illustrate how an

improper phase set manually during the balancing can pollute real and imaginary

part signals. The obtained results for the real and imaginary part are shown in FIG.

11.5 a) and b). The results are for the three different values of phase considered: 0 deg,

2 deg and 10 deg. In the imaginary part, we can see that with increase in the value of

phase there appears a jump at Tc that increases in amplitude showing the leakage of

real part signal into the imaginary part. Also, in the real part, a slope that increases

with the phase is observed before and after the jump at Tc showing the leakage of

imaginary part signal into the real part. A much larger phase can add a slope to the

jump at Tc as well in the real part.
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Figure 11.6: Simulation results with a resistance added common to both branches.

Next, we will consider the scenario where we add a common resistance which has

a temperature dependence on both branch of the bridge and see how could it affect the

balancing of the bridge. In real time, this could be the cable resistance, the resistance

of the ++Si or any kind of contributions which are common to both branches. Here,

for the modeling we will consider an additional linear temperature dependence on
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Rs and Rr for certain temperatures and everything else remains the same as in first

scenario. We will consider two cases, where there is a linear increase in resistance of

the order 6 Ω and 100 Ω respectively for temperature below 300 mK down to 0 mK.

The obtained results are shown in FIG.11.6 a) and b). In this scenario, even though

the changes are common to both branches, the real part of the bridge does not remain

fully balanced below 300 mK especially when the resistance increase is much greater

than few Ω. In other words, when the resistance increase is of the order of initial

resistance (at 1 K) of Rs and Rr the bridge remain balanced. But with resistance

increase starting to be much greater than the initial resistance of Rs and Rr, the real

part signal starts to get unbalanced and thus the resistance increase will be reflected

on the measurements of real part. Also, in this scenario the imaginary part remain

balanced and is not polluted by any changes in real part.
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Figure 11.7: Simulation results for the effect of inductance.

Another interesting scenario is the effect of inductance of the long cables used for

measurements. This can be modeled by adding a series inductance to both branch of

the bridge. Typical value of inductance for SMA and BNC cables is around ∼ 100 nH/ft.

Taking into account the overall length of the cables inside and outside the fridge,

let’s consider a total inductance of 500 nH in series to both branches of the bridge.

The obtained results are shown in FIG. 11.7 a) and b). As we can see, both real and
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imaginary parts are not affected by the series inductance we added. This is expected

as the impedance of a 500 nH inductor at 400 Hz is negligible compared to |Zs| and

|Zr|.
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Figure 11.8: Simulation results for the case with parallel leakage resistance.

Finally, we will consider the scenario where we have a leakage resistance in

parallel to each capacitors. We will consider two values of leakage resistance: i) 1 MΩ

and ii) 22 MΩ (typical value found in our capacitors). The obtained results are shown

in FIG. 11.8 a) and b). The effect of leakage resistance on the imaginary part is similar

to that of phase rotation, causing the jump on the real part to appear on the imaginary

part as well. For the case, where the leakage resistance is 22 MΩ, the jump on the

imaginary part is much smaller than the sensitivity of our measurement setup and

thus it won’t be reflected in our measurements. In the real part, for the 1 MΩ case,

the height of the resistance jump is affected while for the 22 MΩ case the real part

signal is not affected. Note that here the δR plots are forced to zero at 1 K for a better

comparison as the value of δR is not the same for the two cases.

In conclusion, we have demonstrated the working of the bridge with the help of

simulation results and how the bridge behaves under certain criterions. Keeping this

in mind, we will now move on to measurement results and discussions.



Chapter 12

Measurements and results

In this chapter, we will discuss the different set of measurements carried out on the

device and their results.

12.1 Measurements with lock-in

Before we get into the capacitance bridge measurements, we will have a look at the

individual capacitance (Cs: Ti || ++Si and Cr: Au || ++Si) measurement results carried

out for temperatures below 800 mK with a lock-in. The obtained results are shown

in FIG. 12.1. The measurements has been carried out by performing up and down

sweeps in temperature between 100 mK and 800 mK. In the results obtained, the

change in capacitance observed with temperature is due to the noise and drifts in the

setup, as confirmed by the up and down sweep in temperature measurements. These

results demonstrates the need for a measurement setup with better accuracy where

we can measure |δC
C | ≲ 10−3 and this can be achieved with the help of a capacitance

bridge.
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Figure 12.1: Capacitance measurement. a) Capacitance versus temperature of Cs and
b) Capacitance versus temperature of Cr, carried out with a lock-in below 800mK.

12.2 Capacitance bridge measurements

For the capacitance bridge measurements, the devices are cooled down to temperatures

near Tc of the respective superconducting material. During cool down, a measurement

of the resistance of the nano-wire as a function of temperature is carried out to

determine the Tc. The measurement results for the Ti and Nb nano-wire are shown

in FIG 12.2. Note that Tc is pointed out with a vertical dotted line. The Tc of our Ti

samples is found to be ∼ 550 mK and for the Nb samples it is ∼ 7.5 K. At the end of the

cool down, the bridge is balanced to zero point at a temperature below Tc. Afterwards,

the bridge measurements are made as a function of temperature starting from the

zero point temperature until well above Tc. Also, bridge measurements are made

as a function of magnetic field. Here the bridge is balanced to zero point at B = 0

and at a temperature below Tc. Then a sweep in magnetic field is made for different

temperatures until well above Tc. The measurements are done for both in-plane and

perpendicular field orientations with respect to the plane of the sample.

We will begin our discussion with the Ti - Au device. The obtained results for the
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δR and δC are shown in FIG. 12.3. Here the imaginary part results are shown in δC
to have a better understanding in terms of capacitance rather than a relative change,
δC
C . The value of C used to express the measured imaginary part which is δC

C in δC is

the one from lock-in measurements at 800 mK. For the rest of the discussion, we will

be using δC
C . Also, note that in the plots, the highest data point in temperature/field of

δR and δC
(︁
δC
C

)︁
are always forced to zero (unless specified). This is done so that we

can remove the effect of drifts and have a better comparison between the different

sets of measurements.
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Figure 12.2: Resistance wire measurement. a) R vs T of Ti nano-wire near
Tc ∼ 550 mK b) R vs T of Nb nano-wire near Tc ∼ 7.5 K.

12.2.1 Discussions

First, we will have a look at what is happening at Tc. The δR measurement shows a

jump at Tc (see FIG.12.3 a)). The height of the jump is of the order of ∼ 3 Ω. This is

of the same order as the sheet resistance calculated from the residual resistance of

Ti-wire (see FIG. 12.2), ∼ 3.6 Ω. Since, the capacitor plate has a square geometry with

the same thickness as Ti-wire, the expected residual resistance of the Ti plate is of the
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Figure 12.3: Bridge measurements for Ti. a) δR versus T and b) δC versus T for the
cases with and without magnetic field.

order of sheet resistance and this is what we have. Thus, we can attribute this jump

to the superconducting transition of the Ti plate of the capacitor. Simultaneously,

on the δC measurements, we observe a continuous change in capacitance at Tc (see

FIG. 12.3 b)). Note that there is no jump observed in the measurements of δC and

this demonstrates the fact that the imaginary part is not polluted by the jump in the

real part and what we observe on the imaginary part is purely due to a change in

capacitance which may be related to the superconducting transition. For temperatures

below Tc, both δR and δC measurements exhibits a strong temperature dependence.

In this regime (between 0.11 K and 0.53 K), the δR shows a resistance change of ∼
8 Ω and the δC shows a change in capacitance of 0.5 aF. The obtained result for the

δR is quite surprising because a resistance change by 8 Ω is not expected for Ti or Au

within these temperature scale. To verify, we also carried out resistance measurement

on a Au nano-wire (see FIG.12.4) and no such change is observed.

We tried to investigate this further by carrying out measurements in the presence

of a magnetic field. The idea is to repeat the same set of measurements in the presence

of a magnetic field greater than critical field, Bc and then by making a subtraction

between the two data sets (with and without field) for both δR and δC
C , we will be left
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Figure 12.4: Resistance measurement Au wire. Resistance vs Temperature below
800 mK.

with only changes arising from superconducting transition (ideal case). We will define

the following terms ∆R and ∆C
C for a given value of B > Bc, to express the subtracted

quantities of δR and δC
C respectively as follows,

∆R = δR (B) − δR (B = 0) (12.1)
∆C
C

= δC
C

(B) − δC
C

(B = 0) (12.2)

This subtraction can be done also for the ∆C
C measurement because the dielectric,

Si02 is non-magnetic and thus the magnetic field only affects superconductivity

[39]. We started this set of measurements with an out of plane (⊥ to the plane of

sample) configuration. The measurement results for this configuration with an applied

magnetic field greater than Bc are shown in FIG. 12.3. From FIG. 12.3 a) we can see

that the jump in the resistance on the real part corresponding to superconducting

transition is disappeared as expected. Also, a temperature dependence similar to (not

quantitatively) the case where there is no magnetic field is observed for both δR and

δC (see FIG. 12.3 b). This shows that the temperature dependence observed in the

real and imaginary part for the case B = 0 is not entirely due to superconductivity.
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Now, the subtraction is made to see what arises solely from the superconducting
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Figure 12.5: Bridge measurements for Ti. a) ∆ R and b ) ∆C
C versus T.

transition and the obtained results for ∆R and ∆C
C are shown in FIG. 12.5. From FIG.

12.5 a) and b), we can see that for temperatures above Tc, the subtraction made both

results independent of temperature. This is expected in the normal state as there

is no magnetic field dependence. For temperatures below Tc, starting from Tc down

to ∼ 220 mK, the ∆R is almost independent of temperature while the subtracted ∆C
C

decreases by ∼ 2 ppm. Below 220 mK, both curves exhibits an unexpected change

where the ∆R shows a decrease in resistance of ∼ 3 Ω while the ∆C
C changes slope and

increases abruptly.

In addition, a set of measurements with an in-plane magnetic field (∥ to the

plane of the sample) is also carried out. The obtained results with an applied field

greater than the corresponding Bc are identical to the latter case where the field is

out of plane as shown in FIG. 12.6 (for a complete temperature dependance of the

real and imaginary part as a function of both in plane and out of plane magnetic

field, see Appendix A.6). This confirms the fact that Si02 is non-magnetic as the

measured δC
C doesn’t depend on the direction of applied magnetic field. In hope of

better understanding this unexpected temperature dependence below ∼ 220 mK,

we carried out bridge measurements on a Au-Au device. Here, the sample and the
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Figure 12.6: Bridge measurements for Ti. a) δR versus T and b) δC
C versus T in the

presence of in-plane (B∥) and out of plane (B⊥) magnetic field above critical field.

reference capacitors are the same, Au||++Si. Thus, we expect the bridge to remain

balanced (ideally measure zero) when the temperature is varied. The measurement

results are shown in FIG.12.7 a) and b) for up and down sweep in temperature. We

observe the ideal behavior for δR over the whole temperature scale with some drifts.

However, for δC
C the ideal behavior is observed only when the temperature is above

200 mK. Below 200 mK, ∆C
C starts to change. The observed effect doesn’t change when

the two branches of the bridge are interchanged or with time even though there are

drifts. These results could indicate that the change in δC
C observed on the Ti-Au device

below 220 mK, comes from the device itself. However, these results couldn’t explain

the resistance change observed on the δR measurements.

Further, we did measurements on a Nb-Ti device. Here, Ti||++Si act as the

reference capacitor as the Tc of Ti is much lower than Nb. This is motivated by

the following reason, later Andre-Marie Tremblay [68] pointed out that the relevant

energy scale one need to consider is the energy scale over which the Cooper pairs are

formed and is ħΩD . Therefore, δλs
λTF

associated with superconducting transition is of

the order
(︂
∆

ħωD

)︂2
instead of

(︂
∆

EF

)︂2
where ħωD is the Debye energy and δλs is change is

in λTF associated to superconducting transition.
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Figure 12.7: Bridge measurement for Au. a) δR and b) δC
C versus T where Cs and Cr

are same, Au || ++Si.

The obtained results for the Nb-Ti device are shown in FIG. 12.8. The δR measure-

ment shows a jump in the resistance as expected corresponding to the superconducting

transition of Nb at a temperature which is same as the Tc of the Nb-wire. The δC
C

measurements shows a monotonous decrease in capacitance with temperature over

the whole temperature scale. To complete the discussion and to have a comparison,

we will express these measured change in capacitance in terms of δλS
λTF

and com-

pare with the theoretical values predicted by the calculations of O. Simard and A.M.

Tremblay [58,68].
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Figure 12.8: Bridge measurements for Nb. a) δR and b ) ∆C
C versus T where the

superconducting plate is Nb.

12.3 Extracting δλ

In this section, we will derive an expression for δλs in terms of measured δC
C . Also we

will complete the discussion of measurement results by comparing our results with

the theoretical predictions on δλs.

We will begin by modeling the sample and reference capacitors with impedance

Zs and Zr respectively as follows:

Zs/r = Rs/r − j
1

ωCs/r
(12.3)

where the resistor accounts for the finite resistance of the plates of the capacitor.

Rs/r Cs/r

Figure 12.9: Capacitor model
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Now, for a dial setting equals n in the ratio transformer, the equivalent current, I for

the measured output voltage, Veq (see section 11.2 for more details) by the lock-in can

be written as:
Veq

G
= I =

[︃
(1−n)

1
Zs

−n
1
Zr

]︃
Vs (12.4)

From our experiments we have seen that, Rs/r is of the order 1 - 2 Ω, while ωCs/r is of

the order 106 Ω for f = 400 Hz. This means that R2
s/r ≪ 1/(ωCs/r)2.

Therefore we can write, for the imaginary part:

Im
(︃

I
Vs

)︃
= (1−n) ωCs − n ωCr (12.5)

As the two capacitances are almost identical, to account for the very small difference

we take n = 1
2+α where α ≪ 1. Thus we have:

Im
(︃

I
Vs

)︃
= (

1
2

− α)ωCs − (
1
2

+ α)ωCr (12.6)

= 1
2
ω(Cs − Cr) − αω(Cs + Cr) (12.7)

Let’s say we fully balanced the bridge at a given temperature (To), and magnetic field

(Bo), then:

0 = 1
2
ω(Co

s −Co
r ) − αω(Co

s +Co
r ) (12.8)

⇒ α = 1
2

Co
s −Co

r

Co
s +Co

r
(12.9)

Also, at any later temperature (T) and magnetic field (B), we have:

δC = 1
2

(δCs − δCr) − α(δCs +δCr) (12.10)

where δCs = Cs −Co
s and δCr = Cr −Co

r . Using 12.10 and the definition of a

parallel plate capacitor in the presence of screening 10.11, we can write after some
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mathematical manipulations:

δC ≈ δλs (α− 1
2

) (
ϵrCo

s

d + λsϵr
)

+ δϵr

{︂
α

[︃
λsCo

s

(d + λsϵr)
+ λrCo

r

(d + λrϵr)

]︃
− 1

2

[︃
λsCo

s

(d + λsϵr)
− λrCo

r

(d + λrϵr)

]︃}︂
(12.11)

With the approximation: ϵrλ ≪ d. We have,

δC ≈ δλs (α − 1
2

) (
ϵrCo

s

d
) + δϵr

d

[︃
α(λsCo

s + λrCo
r ) − 1

2
(λsCo

s − λrCo
r )

]︃
(12.12)

Also,

δC ≈ δλs (α− 1
2

) (
ϵrCo

s

d
) + δϵr

d

[︃
(α − 1

2
)(λsCo

s ) + (α + 1
2

)(λrCo
r )

]︃
(12.13)

Using the definition of α 12.9 we have:

α− 1
2

= −Co
r

Co
s + Co

r
(12.14)

and α + 1
2

= Co
s

Co
s + Co

r
(12.15)

Using latter equations in (12.13), we have:

δC ≈ Co
s Co

r

Co
s + Co

r

1
d

[δϵr(λr − λs) − ϵrδλs] (12.16)

where d is the distance between the two plates of Cs/r, λr and λs are the respective

λTF associated with Cs and Cr, ϵr is the dielectric constant, δϵr is the change in

dielectric and δλs is the change in λTF with temperature or magnetic field. Therefore,

in the measurements of δC
C the observed effect is mainly due to δϵr and δλs. Note

that, from the measurements carried out with lock-in for the individual capacitors,

the individual capacitance changes by less than 1 part in 104. These measurements

are a good measure of δϵr with temperature. Accordingly, the term δϵr should also

change by less than 10−4, this makes the first term much smaller than the second
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term on the right hand side of 12.16 and thus can be neglected. Therefore, we can

write the δC
C in terms of δλs as:

δC
C

≈ − 1
d
ϵrδλs (12.17)

Using 12.17 we can calculate the sensitivity of our measurements in δλs
λTF

. In section

11.2 we have seen that the accuracy of measured δC
C at 400 Hz is 0.3 ppm and therefore

the sensitivity in δλs
λTF

is ∼ 2 part in 104.

Now, from the theoretical predictions shown in Table 12.1, for Ti we expect a

change of 5.33 ppm in λs associated with superconducting transition and this is much

below our sensitivity. Therefore, our measurements cannot be fully associated to

change in screening length. However, for the Nb the predicted change falls within

the sensitivity of our measurements and therefore what we measured could have

contributions related to change in screening length arising from superconductivity. To

have a complete understanding we need more measurements or with superconductors

such as Pb, Hg so that expected change in screening length are much bigger and

correspondingly we have a bigger signal. Also, note that the theoretical calculations

assume a uniform penetration of electric field in the material i.e q = 0 (wave vector

associated with the decay in the amplitude of electric field), but this is not true as we

have seen from the calculations the amplitude of electric field decays much faster than

the relevant length scale in a superconductor i.e the coherence length, ξ. Therefore,

we need a better theoretical model for a complete understanding of this phenomenon.
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Figure 12.10: Extracted change in screening length for Ti and Nb.

∆ (K) TF (104 K) ΘD (K)
(︂

∆
kBTF

)︂2 (︂
∆

kBΘD

)︂2

Ti 0.97 10.53 420 8.48 × 10−11 5.33 × 10−6

Nb 13.23 6.18 276 4.58 × 10−8 2.33 × 10−3

Hg 7.23 8.29 72 7.61 × 10−9 1.01 × 10−2

Pb 12.7 11 105 1.33 × 10−8 1.46 × 10−2

Table 12.1: Comparison table. Superconducting gap (∆), Fermi temperature (TF),

Debye temperature (ΘD),
(︂

∆
kBTF

)︂2
and

(︂
∆

kBΘD

)︂2
for Ti, Nb, Hg and Pb.



Chapter 13

Conclusion

In conclusion, we have designed an experimental setup based on a capacitance bridge.

Using this setup, we can measure small change in capacitance as low as 0.3ppm with

almost no effect from parasitics. We applied this setup to measure change in screening

length associated with the superconducting transition of Ti and Nb. We observe a

signal which is reproducible but for the moment the origin of which can’t be explained.

However, from our measurements we could conclude that the change in screening

length in Ti and Nb is less than 1 part in 10−3.

In future, this setup will be used to probe more exotic states in particular there has

been a recent theoretical prediction by Andre Marie Tremblay [69] that the pseudogap

phase in high-Tc superconductors has a big influence on the electronic compressibility.
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Appendix A

Supplementary materials

A.1 HFSS Simulation results

Figure A.1: HFSS simulation for aperture.
Simulation results showing reflections inside the waveguide due to the aperture. The

aperture is situated at the origin. The excitation port is on the left and the
transmitted signal will be collected on the right by the detection port.
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A.2 Pictures - Faraday experiment

Figure A.2: 2DEG with D.C contacts on the sample holder.
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Figure A.3: Sample holder with squeezing plate.
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Figure A.4: Faraday setup in the dilution refrigerator.
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A.3 Results - Faraday experiment
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Figure A.5: Effect of squeezing plate on the VA0141 sample. a) Perpendicular port
transmission versus B and b) Perpendicular port transmission versus 1/B at 11.2GHz
for with and without squeezing plate for the sample VA0141.

A.4 Growth sheets
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A.5 Pictures - screening experiment

Figure A.6: Home made variable temperature system. Installed on the 4 K stage of a
He3 cryostat for Nb-Ti device bridge measurements.
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Figure A.7: Ratio transformer.

A.6 Results - Screening

During magnetic field measurements. We have carried out a temperature dependence

of bridge measurements as a function of magnetic field. The measurements has been

carried out for both orientations. The out of plane results are shown in FIG A.8 and

the in-plane results are shown in FIG A.9. The critical field, Bc is different for both

orientations. The real part measurements shows the jump in resistance with the

applied magnetic field and as expected for a superconductor the value of Bc decreases

with increase in temperature. With the capacitance measurements we can clearly

observe a continuous change in capacitance below Bc in the superconducting regime

where the behavior is similar for all temperatures expect for the two which are below

200 mK. Even though the imaginary part behaviors are similar for both orientations

but not for the lowest two temperatures.
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Figure A.8: Bridge measurement with out of plane field. a) δR and b) δC
C versus B

(B⊥) for different temperatures.
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Figure A.9: Bridge measurement with in plane field. a) δR and b) δC
C versus B (B∥) for

different temperatures.
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