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Mémoire présenté au Département de physique en vue de l’obtention du grade de
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Sherbrooke, Québec, Canada, [April 2023]



avril 2023
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Résumé

Ces dernières années, les physiciens ont découvert que la structure électronique

topologique des matériaux peut avoir des conséquences dramatiques sur leurs pro-

priétés. Dans une nouvelle variété de matériaux topologiques appelés semimétaux

de Weyl, les électrons se comportent comme des particules relativistes sans masse.

Ces matériaux sont en quelque sorte l’équivalent tridimensionnel du graphène. De

nombreux effets magnéto-électriques intéressants, qui pourraient éventuellement

s’appliquer aux technologies quantiques, ont été prédits dans les semi-métaux de

Weyl et sont encore étudiés aujourd’hui. Des expériences théoriques et préliminaires

ont démontré qu’il est possible de sonder la nature topologique de ces matériaux

en mesurant la vitesse à laquelle les ondes acoustiques se déplacent à travers le

matériau. Cette technique de recherche permet de sonder le volume de l’échantillon

et d’éviter certaines erreurs associées aux mesures de conductivité électrique. Dans

ce projet, nous explorons expérimentalement comment l’application d’un champ

magnétique modifie la vitesse et l’absorption du son dans le semi-métal de Weyl

NbP. Nous montrerons comment les champs magnétiques appliqués ont un effet

anisotrope sur la vitesse du son et nous comparerons avec les résultats précédents

sur le matériau isostructural TaAs. Contrairement à ce qui a été observé dans le

TaAs, nos mesures ne montrent pas de preuves significatives de l’anomalie chirale.

Les mesures de vitesse du son présentent également des oscillations quantiques

qui nous permettent de caractériser la surface de Fermi du matériau. Nous avons

également effectué des mesures de transport sur le même matériel, le NbP, comme

mesure complémentaire des oscillations quantiques.

MOTS CLÉS: Semimétaux de Weyl, messures ultrasonores, mesures de trans-

port, vitesse du son, anomalie de Chiral



Abstract

In recent years, physicists have discovered that the topological electronic structure

of materials can have dramatic consequences on their properties. In a new variety

of topological materials called Weyl semimetals, electrons behave as massless rela-

tivistic particles. These materials are in some sense a 3-dimensional equivalent to

graphene. Many interesting magneto-electric effects, that could possibly be appli-

cable to quantum technologies, have been predicted in Weyl semimetals and are

still studied today. Theoretical and preliminary experiments have demonstrated

that it is possible to probe the topological nature of these materials by measur-

ing the speed at which acoustic waves travel through the material. This research

technique allows us to probe the volume of the sample and to avoid certain errors

associated with electrical conductivity measurements. In this project, we explore

experimentally how the application of a magnetic field modifies the speed and ab-

sorption of sound in the Weyl semimetal NbP. We will show how applied magnetic

fields have an anisotropic effect on the sound velocity and compare with previous

results on the isostructural material TaAs. In contrast to what was observed in

TaAs, our measurements do not show significant evidence of the chiral anomaly.

The sound velocity measurements also exhibit quantum oscillations that allow us

to characterize the Fermi surface of the material. We have also carried out trans-

port measurements on the same material NbP as a complementary measurement

of quantum oscillations.

KEYWORDS: Weyl semimetals, Ultrasound, Transport, Sound velocity, Chiral

anomaly
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Chapter 1

Introduction

The topic of topological insulators has been a very popular area of research for

the past 10 years. Topological insulators show potential for many applications

such as field-effect transistors, photodetectors, spintronic devices, the switching of

magnetic memory, as well as many other applications [1–4]. Topology refers to the

study of shapes and their arrangement in space [5] and in the case of topological

materials it concerns the “shape” of the wavefunctions of the electronic band struc-

ture. Topological insulators have inverted bulk band structures that topologically

give rise to metallic surface states[6]. These surface states have a Dirac cone-type

dispersion located inside the bulk energy gap [6] with a spin and a momentum

that are perpendicular to each other [6]. These metallic surface states are pro-

tected by the topology of the band structure. Small perturbations of the system

can be expected to modify certain material properties, but the metallic surface

states are robust against small perturbations as they are a consequence of a topo-

logical invariant that cannot be altered without a significant modification of the

electronic structure. To use a playful analogy, the subtly perturbed band struc-

ture of a topological insulator remains a topological insulator, just as a doughnut

continuously deformed into a coffee cup remains topologically equivalent to the

original doughnut. A strong, discontinuous deformation of a doughnut is required

to make a sphere, which is not topologically equivalent to the original doughnut

[7]. Similarly, a strong discontinuous perturbation that requires a closing of the

1
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gap in the bulk of a topological insulator is required to make it into a topologically

trivial insulator and do away with the metallic surface states.

More recently it has been discovered that certain types of materials, known as

Weyl semimetals, also exhibit topologically protected metallic states in the bulk

of the material, as well as novel topologically protected surface states. It is this

class of materials that is explored in this thesis.

1.1 Weyl semimetals

Weyl fermions were first predicted by Hermann Weyl in 1929 when he demon-

strated the existence of massless fermions in the Dirac equation [8]. It is only

recently that Weyl fermions have been discovered in quantum materials [6] where

they exist as low-energy excitations of so-calledWeyl semimetals. In Weyl semimet-

als, the band structure disperses linearly in three-dimensional momentum space

through points called the Weyl nodes [6]. Weyl semimetals have similar band

structures to those of topological insulators. The spin-orbit coupling (SOC) opens

up a gap after there is a band inversion [6]. However, unlike in topological insula-

tors, the conduction band and the valence band cross at the Weyl nodes in Weyl

semimetals[6].

The search for topological invariants in metals requires an evaluation of the Berry

curvature, an analog of the magnetic field defined in reciprocal space [9]. In Weyl

semimetals, the Berry curvature becomes singular at the Weyl nodes. The Weyl

nodes act as monopoles in momentum space with a fixed chirality, acting like

a source of positive chirality or as a sink with a negative chirality of the Berry

curvature [6]. Integrating the Berry curvature over a Fermi surface surrounding

a Weyl node gives a topological invariant known as the Chern number that takes

on values ±1, corresponding to the two possible chiralities [9]. Weyl semimetals

require either the breaking of time-reversal symmetry (TRS) or the breaking of the

lattice inversion symmetry [6]. Like in the surface states of a topological insulator,
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the linear dispersion at the Weyl nodes in the bulk of the material is topologically

protected.

Moreover, Weyl semimetals exhibit their own novel surface states. On 2D surface

planes of the material, the Fermi surface (FS) exhibits an unclosed line that starts

from one Weyl node with a certain chirality, and ends with the second Weyl node

with opposite chirality [6]. This line is called a Fermi arc. The Fermi arc of Weyl

semimetals is fundamentally different from what is typically seen in topological

insulators, regular insulators or metals, all of which have closed Fermi surfaces.

Figure 1.1: A pair of Weyl cones with the Fermi energy equal to 0. The pink
colour represents positive chirality and the green colour represents negative
chirality. A Fermi arc appears at the top and the bottom to connect the pair of

Fermi pockets. [6]

1.2 The chiral anomaly

The chiral anomaly consists of the breaking of classical chiral symmetry in a

quantum theory [10, 11]. The chiral anomaly is associated with the Weyl fermion

quasi-particles, which are massless fermions that carry a definite chirality [12].

In order to measure the chiral anomaly in solid state systems, it is necessary to

create a perturbation that couples differently to the two Weyl fermions that are

of opposite chiralities [12]. This is naturally realized in applying parallel magnetic
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and electric fields to a Weyl semimetal, while the separation of the Weyl cones in

momentum space ensures reduced scattering between them. Weyl semimetals are

ideal candidates for searching for and studying the chiral anomaly since they are

bulk crystals with low energy excitations that satisfy the Weyl equation [12]. The

Weyl equation is used to describe Weyl fermions and can come in two forms: the

right-handed form and the left-handed form. Each form has a different solution

which represent the different possible chiralities. The right-handed form can be

derived as follows:

σµ∂µψ = 0

where

σµ = (σ0 σ1 σ2 σ3) = (I2 σx σy σz)

We can then expand the equation:

I2
1

c

∂ψ

∂t
+ σx

∂ψ

∂x
+ σy

∂ψ

∂y
+ σz

∂ψ

∂z
= 0

where c is the speed of light (for a real massless particle in a vacuum) or the Fermi

velocity of a Weyl fermion in a Weyl semimetal. I2 is the 2× 2 identity matrix for

µ = 0, ψ is the wavefunction and σµ are the Pauli matrices.

Meanwhile, the left-handed form is given by:

σ̄µ∂µψ = 0

where

σ̄µ = (I2 − σx − σy − σz)

With a linear dispersion relation in each of the three momentum space directions

travelling away from the Weyl node, the conduction band and valence band touch

discretely at the Weyl nodes in both situations [12]. Due to the nontrivial topo-

logical character of Weyl semimetals, Weyl fermions with opposing chiralities are

expected to be separated in momentum space. This enables the pumping of elec-

trons between the opposing chirality Weyl cones that are separated in momentum
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space by a parallel magnetic and electric field [12]. This goes against chiral charge

conservation. To put it another way, an analogue of the chiral anomaly results from

the fact that the number of particles with left and right chirality are conserved

separately [12].

The chiral anomaly also serves as a transport signature for Weyl fermions that

are in a Weyl semimetal phase. In particular, there is predicted to be a drop in

resistance when an electric field is applied parallel to the magnetic field in Weyl

semimetals, known as a negative longitudinal magnetoresistance (NLMR).

To depict what is happening, we can consider a cross-section of the Weyl node dis-

persion in reciprocal space along the kz direction with two Weyl nodes of opposite

chirality (χ = +1 and χ = −1) for E=B=0 (Figure 1.2a) [13]. The electrons fill

the states up to the chemical potential (µ) with right-moving electrons (red cir-

cles) and left-moving electrons (blue circles). The Fermi surface will be displaced

along kz when an electric field E = Eẑ is applied to a metal or semimetal. When

looking at a Weyl semimetal with the chemical potential located exactly at the

Weyl node, there will be a Fermi point instead of a Fermi surface [13]. For any

case, the chemical potential will be pushed lower for the right-moving electrons

and higher for the left-moving electrons. This leads to a higher number of left-

moving electrons and a positive current will be induced (Figure 1.2b). To limit

this current, intra-valley scattering (i.e. scattering between left- and right-moving

states around the same Weyl node) can occur [13].
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Figure 1.2: Schematic of the chiral anomaly in Weyl semimetals that leads to
a negative longitudinal magnetoresistance.

When a large magnetic field is applied to the system, the dispersion will be broken

into different Landau levels. Most of these levels will be approximately parabolic.

However each node will retain one linearly dispersing ”chiral Landau level” (green

lines in Figure 1.2c). The slope of the chiral Landau level (Fermi velocity) is

related to the chirality of the node. In other words, the nodes with right-moving

electrons will have a positive chirality and the nodes with left-moving electrons

will have negative chirality.

When an electric field is applied in the same direction as the magnetic field, charge

pumping will occur from one node to another of opposite chirality (Figure 1.2d).

This leads to there being more left-moving electrons than right-moving electrons,

and there will therefore be the generation of a current. This time there will be no

intra-valley scattering process to limit the flow of current. This is because each

node will have only left- or right-moving electrons. There will however be other

inter-valley scattering processes that will limit the current and will lead to a non-

zero resistivity. It is expected that the inter-valley scattering time will be much

larger than the intra-valley scattering time, τinter > τintra. This means that for

large magnetic fields, B ∥ E, that is along the direction of the applied voltage, the
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resistance of the sample can be expected to be much smaller than when there is

no magnetic field. This leads to the negative longitudinal magnetoresistance [14].

This effect does not occur when the magnetic field is perpendicular to the electric

field. This is because whenB ∥ ŷ, for example, kz will no longer be a good quantum

number and the chiral Landau levels will not uniquely have left- or right-moving

electrons along the z-axis.

1.2.1 Classes of Weyl semimetals

Weyl semimetals can be separated into two main groups. The first one is the Type-

I Weyl semimetals which respect the Lorentz symmetry and the second group is the

Type-II Weyl semimetals which do not. In the following sections we will further

discuss the differences between both of these families of materials.

1.2.1.1 Type-I Weyl semimetals

In type-I Weyl semimetals, the Dirac cone has both positive and negative disper-

sion in all directions pointing away from the Weyl nodes. In other words, there

is not a significant tilting of the Dirac cone. If the Fermi level is aligned with

the Weyl node, the Fermi surface becomes a collection of points, where each point

is associated with one Weyl node, and the Fermi surface does not need to cross

bands anywhere else. Slight misalignment of the Fermi level leads to small Fermi

pockets, each of which surrounds one Weyl node. A larger misalignment leads

to more complex surfaces. The type-I Weyl semimetals include the TaAs family

which comprises four different materials: TaAs, TaP, NbAs and NbP [6].

The nontrivial Berry phases of the Weyl semimetals and their linear dispersion in

principle allow for the detection of the chiral anomaly. While the simplest possible

Weyl semimetals could theoretically exhibit just one pair of Weyl nodes, in practice

the band structure is more complicated and existing materials exhibit a large

number of Weyl nodes [15] The type-I Weyl semimetals in the TaAs family have
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two types of Weyl nodes, W1 and W2. These points exist at different momentum

positions and energies [6]. Because semimetals have a low inherent charge-carrier

density, even tiny changes in the Fermi energy (EF ), brought on by doping and

defects, can cause a large shift in the Fermi surface topology [6]. Even in a situation

where we have an ideal crystal, the Fermi energy will not necessarily cross the

Weyl nodes. Therefore it is necessary to have knowledge of EF and the resulting

Fermi surface topology to link a negative magnetoresistance (MR) to the chiral

anomaly[6]. The chiral anomaly has been predicted to be found in TaAs, TaP and

NbP. In these semimetals, electron and hole pockets coexist near the nodal ring

positions in the Fermi surface [6].

The Fermi arcs’ energy dispersion and shape is sensitive to the surface of the

structure. It has been shown that the surfaces that are terminated by cations

(Ta, Nb) and anions (As, P) have very different Fermi surfaces. An -As or -P

terminated surface’s typical Fermi surface is made up of spoon- and bowtie-shaped

patches (Figure 1.3) [6]. The projections of the W2-type Weyl nodes are connected

together by two pieces of Fermi arcs that appear at the top of the spoon-like region.

Both of the arcs demonstrate opposite spin texture. The length of the respective

Fermi arcs and the separation of these W2 Weyl nodes with opposite chirality are

proportional to the strength of the spin orbit coupling (SOC) [6]. The strength

of the SOC is in decreasing order for TaAs, TaP, NbAs and NbP. The p-orbit

dangling bond states of As or P are responsible for the bowtie-like region of the

Fermi surface.

Figure 1.3: Shape of Fermi arcs of type-I semimetals. [6]



Chapter 1: Introduction 9

1.2.1.2 Type-II Weyl semimetals

Figure 1.4: Strong tilting can be seen in the Weyl cone of type-II Weyl
semimetals. [6]

In type-II Weyl semimetals, the Weyl cones show strong tilting. Due to this tilting,

the Weyl point is the contact point between the electron pocket and the hole pocket

located in the Fermi surface (Figure 1.4). Type-I Weyl semimetals are expected to

exhibit the chiral anomaly for all directions [6] but this is not the case for type-II

Weyl semimetals. They only show signs of the chiral anomaly when the magnetic

direction is normal to a momentum plane that shows a point-like Fermi surface by

intersecting the Weyl node [6], otherwise the chiral anomaly disappears. The first

theoretically predicted material of this family of Weyl semimetals was that of the

layered transition-metal dichalcogenide WTe2. Another material in this family is

MoTe2. Both WTe2 and MoTe2 show large transverse magnetoresistance [6].

1.2.2 The TaAs family

As previously mentioned, TaAs, TaP, NbAs and NbP are all from the same family

of Weyl semimetals. They all have similar crystal structures with the same crystal

symmetry. This gives them similar physical properties. However, they are not

completely identical and slight differences make each material unique. All four

crystals have a body-centred-tetragonal structure, with space group I41md(109),

but with different lattice parameters. These parameters can be found in Table

1.1. Each crystal has a similar band structure with slight variations. Here I will

concentrate on the band structure that has been calculated using first-principles
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calculations by Lee et al. [16]. Although the results of these calculations might be

expected to miss certain details of the real materials, they seem to be largely suc-

cessful and moreover, provide a clear comparison between the different materials

in this family.

Figure 1.5: a)The conventional unit cell of TaAs, TaP, NbAs and NbP. The
blue atoms are the Ta/Nb atoms and the yellow atoms are the As/P atoms.[17]

b)The primitive Brillouin zone of the crystals. [16]

TaAs TaP NbAs NbP

a(Å) 3.437 3.318 3.452 3.334

c(Å) 11.656 11.363 11.679 11.376

u/c 0.333 0.334 0.333 0.334

Table 1.1: The experimental lattice parameters of the TaAs family [16]

The band structures of these four Weyl semimetals are characterized by the d

orbitals of the Ta and Nb atoms, and the p orbitals of As and P are similar to

each other when we are near the Fermi energy [16]. When there is no spin-orbit

coupling, the valence bands and the conduction bands cross each other and form

closed rings that are bounded together on the kx = 0 and ky = 0 planes [16].

Away from these mirror planes, no accidental band crossings occur. In adding

spin-orbit coupling the nodal rings disappear. This leads to the valence band and

conduction band being completely gapped along high symmetry lines. The gap
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gets smaller when Ta atoms are replaced by Nb atoms (Figure 1.6) indicating a

weaker spin-orbit coupling in NbAs and NbP than in TaAs and TaP [16]. When

the nodal rings disappear Weyl nodes are left behind.

Near Weyl node 1 Near Weyl node 2

Figure 1.6: LEFT Band inversion around the W1 node along a)kx, b) ky and
c) kz for TaAs, TaP, NbAs and NbP. RIGHT Band inversion around the W2

node along a) kx, b) ky and c) kz. Adapted from [16]

Not only are there differences in the band structure and the density of states of

these crystals, but there are also variations when it comes to the Fermi surfaces.

First let us observe the Fermi surface of TaAs. TaAs has the simplest Fermi surface

out of all of the materials discussed in this section. Its Fermi surface is formed of

both electron and hole pockets. The W1 and W2 points are both below the Fermi

energy and the W2 point is closest to the Fermi energy [16]. Compared to the

Fermi surface of W2, the Fermi surface of W1 exhibits a considerable degree of

anisotropy along kz and has a larger Fermi surface. Each of the SW1 and SW2 both

encircle a Weyl node. The hole pocket however, does not enclose any Weyl nodes

and is therefore topologically trivial. It can be expected to manifest properties of

a regular semimetal. The Fermi surface of TaAs can be seen in Figure 1.7.
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Figure 1.7: a)Top view and b) bird’s eye view of the Fermi surfaces of TaAs.
c)Detailed plots of each individual Fermi surface in TaAs. [16]

The next material we will consider from the Type-I Weyl family is TaP. TaP has

a similar Fermi surface to TaAs, however the energy of the W1 point is below the

Fermi energy and the energy of the W2 point is above the Fermi energy [16]. A hole

pocket encloses TaP’s W2 point. TaP also has much larger Fermi surfaces than

TaAs. The Fermi surfaces also enclose more than one Weyl node. The electron

and hole pockets take the shape of a crescent that is more distributed along the

kz direction. Figure 1.8 shows the Fermi surface of TaP.
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Figure 1.8: a)Top view and b) bird’s eye view of the Fermi surfaces of TaP.
c)Detailed plots of each individual Fermi surface in TaP. [16]

The next material to be discussed is NbAs. The materials containing Nb are more

complex with Fermi surfaces within other surfaces. For NbAs, the energy of the

W1 is below the Fermi energy and the energy of the W2 node is above the Fermi

energy [16]. There are three types of hole-like Fermi surfaces that can be found in

NbAs. The first type traverses the kz = 0 plane and encompasses four W2 nodes.

The second type resembles the crescents seen in TaP elongated in the kx and ky

direction. Figure 1.9 does not show the third type because the Fermi energy passes

via two spin-split valence bands, which obscure the inner surface within the outer

surface. There is also an electron pocket hidden inside the bigger Fermi surface

near the W1 node.
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Figure 1.9: a)Top view and b) bird’s eye view of the Fermi surfaces of NbAs.
c)Detailed plots of each individual Fermi surface in NbAs. [16]

The last material in this Weyl family, and the main subject of this thesis, is NbP.

Like TaP and NbAs, the energy of the W1 node in NbP is located below the Fermi

energy and the energy of the W2 node is located above the Fermi energy [16]. NbP

has four crescent shaped Fermi surfaces in the first Brillouin zone. Each of these

surfaces contains one more surface inside of it. Each of the outer surfaces contains

one pair of W2 nodes. One of the crescent-shaped Fermi surfaces resembles the

shape of a half ring. It becomes thinner as it deviates from the W1 node. This

Fermi surface contains two additional electron-like Fermi surfaces inside, Se1 and

Se2[16]. The Se1 surface contains one W1 node. The Se2 Fermi surface is very

small compared to the other surfaces. The Fermi surface of NbP can be seen in

Figure 1.10.
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Figure 1.10: a)Top view and b) bird’s eye view of the Fermi surfaces of NbP.
c)Detailed plots of each individual Fermi surface in NbP. [16]

1.3 Quantum oscillations

The application of strong magnetic fields to conducting materials can have a num-

ber of interesting effects, but one of the most striking is that of quantum oscil-

lations. In addition to being an exciting macroscopic manifestation of quantum

mechanics, these oscillations provide a sensitive probe of the structure of the Fermi

surface of a material.

1.3.1 Semi-classical treatment

The velocity of electrons is given by the group velocity which is given by:

v(k) =
∂ω

∂k
=

1

ℏ
∂ϵn(k)

∂k
(1.1)

where ϵn(k) is the energy of band n. This can also be written as:

v(k) =
1

ℏ
∇kϵ(k) (1.2)
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In classical mechanics, the rate of change of momentum is given by the force. For

this case, the force is given by the Lorentz force. We therefore have:

∂p

∂t
= ℏ

∂k

∂t
= F = qv ×B (1.3)

where q = −e is the charge of the particle and B is the magnetic field. The cross-

product leads to v and B being perpendicular to ∂k/∂t. By including Equation

1.2 we obtain:
∂k

∂t
= − e

ℏ2
∇kϵ(k)×B (1.4)

Because ∂k/∂t must be perpendicular to ∇kϵ, we have that k is moving in time

to follow a path at constant energy. This means that the electrons follow orbits in

k-space along paths of constant energy. Because ∂k/∂t must also be perpendicular

to B, we will have orbits with constant energy that follow a path perpendicular to

the magnetic field. Therefore, electrons located at the Fermi surface follows orbits

around slices of the Fermi surface perpendicular to the applied magnetic field.

From this, it is possible to show that the time necessary for an electron to complete

such an orbit in k-space, τc, is given by:

τc =
ℏ2

eB2

∂A(ϵ, k∥)

∂ϵ
(1.5)

where k∥ is the position of the orbit in k-space along the direction parallel to the

magnetic field, ϵ is the energy of the band (Figure 1.11), and A(ϵ, k∥) is the area of

the orbit. The energy at the Fermi level will be what is relevant to the measured

quantities.

The cyclotron frequency, ωc, is given by ωc =
2π
τc
. It can also be written as:

ωc =
eB

m∗
CR

(1.6)
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where the cyclotron mass is given by:

m∗
CR =

ℏ2

2π

∂A(ϵ, k∥)

∂ϵ
(1.7)

In simple cases, the cyclotron mass is simply the effective mass, m*, where the

effective mass is constant and isotropic.

Figure 1.11: Schematic of a hypothetical Fermi surface. The different orbits
perpendicular to the field direction are possible at different positions k∥ along

the direction of the magnetic field and different areas A(E, k∥). [18]

1.3.2 Quantum mechanical treatment and Landau levels

When looking at the quantum mechanical treatment, the electrons can be consid-

ered as free electrons, but with an effective mass m∗. Note that this is the case

for simple metallic systems and not for Weyl semimetals. Ignoring the spin of the

electrons, we can include the interaction with a magnetic field in the Hamiltonian

by using Peierl’s substitution:

H =
(p− qA)

2m∗ (1.8)

where A is the vector potential [19, 20]. We can use the Landau gauge and write

A = (0, Bx, 0), giving a magnetic field B = Bẑ. The Schrödinger equation can be
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written as:

Hψ = − ℏ2

2m∗

[︄
∂

∂x2
+

∂

∂z2
+

(︃
∂

∂y
− eB

iℏ
x

)︃2
]︄
ψ = ϵψ (1.9)

From this, the variables can be separated using a solution of the form:

ψ(x, y, z) = ei(kyy+kzz)ϕ(x)

The Schrödinger equation then becomes:

− ℏ2

2m∗

[︄
−k2y − k2z +

∂2

∂x2
− 2eBxky

ℏ
−
(︃
eBx

ℏ

)︃2
]︄
ψ = ϵψ (1.10)

where,

xc = −ℏky
eB

ωc =
eB

m∗

Equation 1.10 can be simplified to:

ℏ2k2z
2m∗ ψ +

[︃
p2x
2m∗ +

1

2
m∗ω2

c (x− xc)
2

]︃
ψ = ϵψ (1.11)

The term seen in the square brackets is simply a one-dimensional harmonic oscil-

lator with energy levels ℏωc(ν + 1/2) with ν = 0, 1, .... The possible energies are

therefore:

ϵkz ,ν =
ℏ2k2z
2m∗ + ℏωc

(︃
ν +

1

2

)︃
(1.12)

The different values of ν correspond to the different Landau levels. We must add

the dispersion along the z direction described by the quantum number kz to the

energy levels.

Each Landau level in the system is now highly degenerate. The level degeneracy

nB depends on the number of values of xc that one can choose. This will depend

on the dimensions of the sample (Lx and Ly), the magnetic field B, and needs to
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be multiplied by a factor of 2 to take into consideration the two possible values of

the spin. This gives:

nB =
2LxLyeB

h
(1.13)

This can be rewritten as:

nB =
Φ

Φ0

(1.14)

where Φ = BLxLy is the magnetic flux through the sample and Φ0 = h/2e is the

flux quantum. The number of electrons in a sample, n, is generally constant, but

as the magnetic field is increased, nB also increases. This is because there are

more and more states available within each level. Therefore, as the magnetic field

increases, the Fermi level will, at certain values of field, drop from one Landau level

to the next as more space becomes available for the electrons in the lower Landau

levels. This switching from one Landau level to another leads to oscillations as a

function of inverse field 1/B in various measurable quantities. Many measurable

quantities will vary sinusoidally with the filling fraction of the Landau levels n/nB.

In other words, a quantity may be maximal when the Fermi level is equal to a

Landau level, and minimal when in between Landau levels. This hypothetical

quantity f would then vary as:

f(B) ∝ cos

(︃
2πn

nB

)︃
= cos

(︃
2πnh

BLxLy2eB

)︃
(1.15)

Which gives oscillations in 1/B with a frequency given by nh
2eBLxLy

. These can

include quantities such as resistivity (the Shubnikov-de Haas effect) and magne-

tization (the de Haas-van Alphen effect). It can also include sound velocity and

many other quantities. They are universally known as quantum oscillations.

In the case of the Shubnikov-de Haas (SdH) effect, the resistivity is related to

the scattering rate. The scattering rate is typically proportional to the density of

states (the number of states available into which the electrons can scatter), and

the density of states depends critically on the filling factor n/nB being high when

the Fermi energy is matched to a Landau level and being lower when in between
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Landau levels. Therefore, oscillations of resistivity occur as a function of 1/B with

a frequency of F which is measured in Tesla.

1.3.3 Information provided by quantum oscillations

There are many different pieces of information that can be extracted from quan-

tum oscillations. However, it is necessary to do a bit of analysis to obtain this

information.

By taking the Fourier transform of quantum oscillations, different peaks will in-

dicate the various quantum oscillation frequencies. These frequencies contain im-

portant information regarding the cross-sectional area of the Fermi surfaces. The

Fourier transform can also be used to obtain information on the phase of the quan-

tum oscillations, ϕ, of the sample. This can be done using a method called the

2D phase-frequency analysis [21]. This method consists of multiplying the Fourier

transform by a phase-factor and plotting the real part of this function using a

contour plot.

K(ϕ, ν) = ReF (ν)eiϕ (1.16)

The various peaks observed in the contour plot give information on the phase

factor of the sample.

Using what is known as the thermal damping factor (RT ), it is possible to extract

the effective mass of the sample. This is done by observing the quantum oscilla-

tions at various temperatures and plotting out the height of the oscillation peak as

a function of the temperature. The height of the peak should follow the following

form [22]:

RT =
αTm∗

H sinh αTm∗

H

(1.17)

where T is the temperature, m∗ is the effective mass, H is the magnetic field of

the peak, α = 2π2kBm0

eℏ ≈ 14.69 T/K, and m0 is the mass of an electron.

By fitting the thermal damping factor to the data, it is possible to extract the

value of the effective mass.
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Using the effective mass, it is possible to find the Dingle temperature, TD of the

sample. This is done using the Dingle damping factor [22]:

RD = exp
−αTDm∗

H
(1.18)

Once the Dingle temperature is obtained, it can be used to estimate the transport

scattering rate, 1/τ of the sample:

ωcτ =
eB

m∗

(︃
ℏ

2πkBTD

)︃
(1.19)

1.3.4 Phase factors

For Shubnikov-de Haas oscillations, that is quantum oscillations of the resistivity,

the oscillating component can be expressed [23] with

∆σxx ∝ cos

[︃
2π

(︃
F

B
− γ − 1

2
+ β

)︃]︃

The first phase factor γ depends on the topology of the Fermi surface. For largely

2-dimensional dispersion, γ = 0. For 3-dimensional systems, γ = ±1/8, the sign

depending on the curvature of the Fermi surface in the direction parallel to the

magnetic field. Therefore maximal and minimal cross-sections of the Fermi surface

are expected to give opposite signs of γ. The additional phase factor β is given by

β =
ΦB

2π

where ΦB is the Berry phase, expressed by

ΦB =

∮︂
Γ

Ω⃗(k⃗)dk⃗

where the line integral is performed around the Γ-orbit (where Γ is the index that

refers to a particular orbit) in k⃗-space and

Ω⃗(k⃗) = i

∫︂
dr⃗u∗

k⃗
(r⃗)∇k⃗uk⃗(r⃗)
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u(r⃗) is the Bloch function and the integral is performed over a unit cell [24].

Therefore, if γ is known, the phase of quantum oscillations allows for the deter-

mination of the Berry phase of a particular Fermi surface pocket. For instance,

in measurements of graphene, the phase of quantum oscillations gave β = 1/2

(ΦB = π), resulting from the presence of Dirac quasi-particles [25].

In measurements of graphite [21] oscillations from multiple Fermi surfaces were

studied with de Haas-van Alphen measurements and varying phase factors were

obtained. This was done with a phase analysis method that consisted of identify-

ing peaks in a contour plot of the ℜ[eiϕf̃(F )] vs. frequency F and phase ϕ. Here

f̃(F ) is the Fourier transform of the measured quantity as a function of 1/B, be it

magnetization, resistivity or sound velocity. The de Haas-van Alphen (magnetiza-

tion) measurements present an additional phase factor µ which is +1 for electrons

and −1 for holes.

In previous sound velocity measurements on TaAs, the phase factor from a trivial

hole pocket and a topological (Weyl) electron pocket were compared and a phase

difference of π was observed [26]. While the value of γ was not necessarily well

understood, the phase difference of π could be attributed to a difference in Berry

phase : ∆β = 1/2 or ∆ΦB = π, suggesting ΦB = 0 for the trivial hole pocket and

ΦB = π for the Weyl pocket.

Several previous works have attempted to extract the Berry phase from quantum

oscillations in NbP using de Haas-van Alphen (dHvA) measurements [27] and

Shubnikov-de Haas (SdH) measurements [28–30]. The results are quite inconsis-

tent. For example, for a frequency of 31 T, several different values of ΦB/2π

are found: 0.54 [27] (topological), 0 [30] (trivial) and 0.3 or 0.13, depending on

the field range used for fitting [29]. These inconsistent results demonstrate how

challenging such an analysis can be.
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1.4 Quantum oscillations and Fermi arcs

In addition to closed Fermi surfaces in the bulk, it is also important to con-

sider how surface Fermi arcs contribute to quantum oscillations. Following the

work of Potter et al. [31], it is possible to do a semiclassical analysis of Weyl

semimetals to demonstrate the behaviour of the Fermi arcs in such materials.

They consider the simplest possible case, that of a single pair of Weyl nodes with

opposite chirality ±1 positioned at k = ±kW and with a magnetic field B along

the y direction. In an infinite system, Landau level (LL) bands that disperse

only along the field direction are generated under applied magnetic field[31]. It is

found that Weyl nodes of opposite chirality are decoupled for kW lB ≫ 1[31] with

lB = 1√
eB

as the magnetic length. As was discussed in Section 1.2 and illustrated

in Figure 1.2, the spectrum of Landau levels includes gapped bands with energies

ϵ±n (ky) ≈ ± νsgn(n)
√︂
2|n|l−2

B + k2y with n=1,2,... and gapless modes (so-called

chiral Landau levels) with energies ϵ±0 (ky) = ±νky where the ± labels the chirality

of the nodes[31].

Next, they consider a Weyl semimetal slab that is infinite in the x̂- and the ẑ-

directions but with a finite thickness L along ŷ (though it is considered to be

thick enough that tunneling between surface states on opposite surfaces can be

neglected). In a semiclassical description, an electron at kz in the Fermi arc of the

top surface follows a path along the arc towards the Weyl node with a negative

chirality[31]. This is determined from:

∂tk = −evk ×B = eνBt̂k (1.20)

The velocity v on the Fermi arc taken to be independent of k. t̂k is the unit

vector tangent to the arc. When the electron approaches the negative bulk Weyl

node, the energy gap to the bulk bands vanishes [31], a semiclassical single-band

description no longer works and the electron is transferred from the surface arc

into the bulk [31]. The gapless bulk chiral Landau level transports the electron

from the Fermi arc on the top surface to the Fermi arc on the bottom surface [31].
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Upon arriving at the bottom of the sample, the electron continues its orbit along

the Fermi arc toward the positive Weyl node, where it then passes through the

upwards moving chiral bulk LL, returning to the top-surface (Figure 1.12). This

allows the electron to complete an orbit, albeit a complicated orbit in a hybrid of

momentum space and real space.

Figure 1.12: The semiclassical orbit of an electron moving along the Fermi
arc from one Weyl node to the other Weyl node of opposite chirality[31]

Potter et al. obtain the following quantum energy levels for these orbits:

ϵn =
πν(n+ γ)

L+ k0l2B
(1.21)

where zero energy corresponds to the Weyl nodes. The magnetic orbits involving

Fermi arcs can be distinguished from conventional bulk quantum oscillations by

the dependence of the slab thickness, L [31].

A possible observation of quantum oscillations originating from surface states of

the Weyl semimetal TaAs was obtained by Nair et al. using transport measure-

ments at very high magnetic fields [32].
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Sound Velocity

2.1 Physical Concepts

The anisotropies present in a crystalline solid make sound propagation more com-

plicated than in a homogeneous medium like a liquid or a gas. Various physi-

cal concepts must first be understood, including the strain, stress and elasticity

tensors, as well as Christoffel’s equation, the crystalline equivalent of the wave

equation. These concepts will be discussed in detail in the following sections.

2.1.1 Strain

When an elastic deformation occurs, a volume element located at R will be shifted

to R′ = R + u(R, t) where u(R, t) is the displacement vector. This deformation

can both be space dependent and time dependent [33]. If u does not depend on

R then we only have a translation and not a deformation. If we look at a second

point close to R and that is denoted as R+dR, this point will shift to R′ +dR′

and we will have dR′ = dR+ du. These vectors can be seen in Figure 2.1.

25
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Figure 2.1: The displacement vectors when a material is under strain.
Adapted from ref. [33].

When we have deformations, u is dependent on the position. We can express dR′

with:

vij =
∂ui
∂Rj

, i.e. dR′
i = dRi +

∑︂
j

vijdRj (2.1)

Here vij = ∂ui

∂Rj
is a component of the deformation tensor [33]. This quantity is

zero for a homogeneous displacement of the material. We have a homogeneous

deformation if vij is not position dependent.

A drawback of the deformation tensor is that it is also non-zero for homogeneous

rotations of the crystal, which do not contribute to its energy [34]. The deformation

tensor can be decomposed into a symmetric part, which gives pure strain, and an

anti-symmetric part which represents rotations.

Elements of the symmetric strain tensor are therefore expressed as

sij =
1

2
(vij + vji) =

1

2

(︃
∂ui
∂Rj

+
∂uj
∂Ri

)︃
(2.2)

The anti-symmetric rotation tensor is conversely given by

Ωij =
1

2
(vij − vji) =

1

2

(︃
∂ui
∂Rj

− ∂uj
∂Ri

)︃
(2.3)

The importance of the strain tensor can be understood by considering how the

length of a vector within the material changes as a deformation is applied. The



Chapter 2: Sound Velocity 27

difference in length between dR′ and dR is given by

dR′ · dR′ − dR · dR =
∑︂
αβ

2ηαβdR
αdRβ

where

ηij =
1

2

(︄
vij + vji +

∑︂
α

vαivαj

)︄
(2.4)

For infinitesimal deformations (that is vij ≪ 1), ηij = sij becomes the strain tensor.

Usually, the small deformations are enough for a description of sound waves and

many of their properties [33]. Hence, in the limit of small deformations, length

changes within the material depend only on the symmetric part of the deformation

tensor, the strain. If sij = 0, the deformation is a pure rotational and does not

change any length elements.

2.1.2 Stress

There is not only a strain tensor that has to be taken into consideration when doing

sound velocity measurements, it is also necessary to look at the stress tensor. When

we have a solid with no deformations at the equilibrium state, the resultant forces

on a volume element will be zero [33]. When there is strain within a material, there

are forces that will be created which will try to return the body to equilibrium.

These internal forces that occur when the solid is deformed are called internal

stresses. When doing a continuum approximation, the molecular forces have a

short range which leads to the following expression for a volume element of a

deformable body:

∫︂
FidV =

∫︂ ∑︂
k

∂τik
∂Rk

dV =

∫︂ ∑︂
k

τikdfk (2.5)

where F dV is the force on a volume element dV , τik is an element of the stress

tensor and dfk is a component of the surface element vector df [33]. These inter-

nal stresses do not consider various homogeneous external forces such as gravity,

external pressure, magnetic volume force, etc.
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2.1.3 Christoffel’s Equation

In condensed matter physics it is important to be able to relate the stiffness tensor

with the sound velocities of solids. The stiffness tensor is used to characterize a

materials behaviour when it is under stress in the elastic regime [35]. The stiffness

tensor is either represented by a 4-tensor in 3D space with 81 components, or by a

symmetric 6× 6 matrix. The 21 components of the matrix elements of the matrix

are the elastic constants [35]. Since sound waves induce elastic deformations, the

stiffness tensor contains information about how the sound waves behave, notably

their velocity [35]. In turn, it is possible to obtain information on the elastic

constants by virtue of sound velocity measurements.

The stiffness tensor C is an important property when analyzing materials. It can

relate strains and stresses through Hooke’s law in the elastic regime:

τij =
∑︂
mn

Cijmnsmn (2.6)

where τ is the stress tensor and s is the strain tensor. The sum in equation 2.6 runs

over the three Cartesian coordinates. When expanding this equation, we obtain:⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

τ1

τ2

τ3

τ4

τ5

τ6

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

C11 C12 C13 C14 C15 C16

C21 C22 C23 C24 C25 C26

C31 C32 C33 C34 C35 C36

C41 C42 C43 C44 C45 C46

C51 C52 C53 C54 C55 C56

C61 C62 C63 C64 C65 C66

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

s1

s2

s3

2s4

2s5

2s6

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(2.7)

Equation 2.7 is written out using the Voigt notation which is defined as:

1 → xx 4 → yz

2 → yy 5 → xz

3 → zz 6 → xy

(2.8)
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The factors of 2 in the strain tensor of equation 2.7 are there to take care of the

double counting and to ensure that equation 2.7 corresponds to equation 2.6 [35].

The stiffness tensor contains not only information about the static deformations,

but also about the elastic waves that are traveling through the material [35]. It is

possible to obtain the dispersion relation of these waves by solving the Christofell

equation: ∑︂
ij

[Mij − ρω2δij]Pj = 0 (2.9)

for a monochromatic plane wave with wave vector q, frequency ω and polarization

P̂ in a material with density ρ. The Christoffel matrix M is defined as:

Mij =
∑︂
mn

qnCimnjqm (2.10)

This equation is a simple eigenvalue problem that can be solved for arbitrary q [35].

The result will give a set of three frequencies and polarization for each value of q.

Given that M is real and symmetric, the eigenvalues will be real and the vectors

{P̂ n} make up an orthogonal basis. The requirement that C be positive ensures

that ω2 is real and positive [35].

2.1.3.1 Elastic Constant for Tetragonal Systems

Since niobium phosphide (NbP) is a tetragonal crystal, we will want to find the

elastic tensor for a tetragonal system. We will first start by reducing the number

of independent elastic constants in the tensor. From equation 2.7 we can see that

the elastic constant tensor C contains 36 independent elastic constants. This can

be further reduced to 21 elastic constants by using the laws of thermodynamics.

Starting from the first law of thermodynamics, we have:

dU = δQ+ δW (2.11)
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where dU is the change of the internal energy of the system, δW is the work done

on the system, and δQ is the heat flow into the system [36]. Here, δ indicates

an infinitesimal change and d indicates a differential. When we have reversible

processes, the second law of thermodynamics gives:

δQ = TdS (2.12)

which gives:

dU = TdS + δW (2.13)

where S is the entropy and T is the temperature.

In adiabatic systems, there is no heat exchange between the system and the sur-

rounding environment. Therefore, δQ = 0 and dS = 0. This gives us dU = δW

and δW is given by

δW =
∑︂
kl

τkldskl (2.14)

Using dU = δW and equation 2.14, we obtain:

dU =
∑︂
kl

τkldskl (2.15)

which leads us to:

τkl =

(︃
∂U

∂skl

)︃
s

(2.16)

By combining equation 2.6 and equation 2.16 we obtain:

CS
klmn =

(︃
∂τkl

∂smn

)︃
S

=

(︃
∂2U

∂skl∂smn

)︃
S

=

(︃
∂2U

∂smn∂skl

)︃
S

= CS
mnkl (2.17)

Equation 2.17 indicates that components in the elastic tensor are given by Cmn =

Cnm. This allows us to rewrite equation 2.7 as:
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⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

τ1

τ2

τ3

τ4

τ5

τ6

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

C11 C12 C13 C14 C15 C16

C12 C22 C23 C24 C25 C26

C13 C23 C33 C34 C35 C36

C14 C24 C34 C44 C45 C46

C15 C25 C35 C45 C55 C56

C16 C26 C36 C46 C56 C66

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

s1

s2

s3

2s4

2s5

2s6

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(2.18)

There are therefore only 21 independent elastic constants in the elastic matrix.

This is the elastic matrix for a triclinic crystal which is the crystal structure with

the lowest symmetry. Tetragonal crystals have a higher symmetry and therefore

have fewer independent elastic constants [36].

For the tetragonal system of niobium phosphide, we have mirror planes or equiv-

alently for the present argument, two-fold rotation axes perpendicular to the x3

axis [36]. This indicates that if the subscript 1 or 2 appears an odd number of

times, the corresponding elastic constant is zero [36]. For example, C16 = C1112

is zero. Applying this to our result in equation 2.18, we get the following for the

elastic constant matrix:

C =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

C11 C12 C13 0 0 0

C12 C11 C13 0 0 0

C13 C13 C33 0 0 0

0 0 0 C44 0 0

0 0 0 0 C44 0

0 0 0 0 0 C66

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(2.19)

The final matrix for the tetragonal system of NbP only has 6 independent elastic

constants.
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2.1.3.2 Resolution of Christoffel’s equation for our system

It is possible to solve Christoffel’s equation for a tetragonal system with sound

waves propagating in the [110] direction. As previously stated, Christoffel’s equa-

tion is given by: ∑︂
ij

[︁
Mij − ρω2δij

]︁
Pj = 0

The frequencies can be found by solving the eigenvalue problem determined by:

det
[︁
Mij − ρω2δij

]︁
= 0

The polarization vectors of the corresponding modes are given by the eigenvectors

of the matrix Mij. For a tetragonal system with sound waves propagating along

the [110] direction we have the following wavevector:

q⃗ =
q√
2
(1, 1, 0)

The Christoffel matrix is therefore given by:

Mij =
∑︂
mn

qnCimnjqj =
q2

2
[Ci11j + Ci22j + Ci21j + Ci12j]

Given the structure of the elasticity tensor this can be written as

M =
q2

2

⎛⎜⎜⎜⎝
C11 + C66 C12 + C66 0

C12 + C66 C11 + C66 0

0 0 2C44

⎞⎟⎟⎟⎠
From this it is possible to find the following eigenvectors: a longitudinal polar-

ization P⃗L ∝ (1, 1, 0); a transverse in-plane polarization P⃗ Tp ∝ (1,−1, 0); and

a transverse out-of-plane polarization P⃗ Tz = (0, 0, 1). From the Christoffel equa-

tion, we can find the frequencies of the three modes as well as their velocities using
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vi = ωi/q. The mode velocities are given by:

vL =

√︄
2C66 + C11 + C12

2ρ

vTp =

√︄
C11 − C12

2ρ

vTz =

√︄
C44

ρ

For the measurements shown in the next chapters, data was collected with the

mode having polarization in the ẑ direction and with a sound velocity given by

vTz =
√︁
C44/ρ
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When candidate Weyl semimetals such as TaAs and NbP were discovered, one

of the first results investigated by researchers was a measurement of the chiral

anomaly, which is expected to create a drop in resistivity when the magnetic field

and electric field are parallel. This is known as the Negative Longitudinal Magne-

toresistance (NLMR). Many high-profile papers were quickly published exhibiting

such an effect in a particular range of magnetic fields [12, 37–39]. It was however

quickly discovered that the measured effect depends highly on the sample, sample

geometry and the way in which the contacts are applied to the sample [40]. It

is understood that the NLMR can be caused by the current jetting effect or a

highly non-uniform distribution of current within the sample [41, 42]. These ex-

perimental limitations call into question the accuracy of the NLMR measurement

and therefore the observation of the chiral anomaly.

Ramshaw et al. have attempted to better prepare samples and contacts to measure

TaAs for example by using a Focused Ion Beam (FIB) to shape the sample and

then deposit contacts in order to achieve samples with high aspect ratios and

avoid point-like contacts [42]. This process has some drawbacks, including the

presence of superconductivity in an amorphous surface layer of Ta created by the

FIB processing.

34
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The primary aim of the sound velocity measurements carried out in this project

was to provide an alternative measure of the magnetoresistance of Weyl semimet-

als which will not be sensitive to current jetting effects. Since the materials in

the TaAs family are piezoelectric, certain kinds of strain induce a dielectric po-

larization. This is the case for the strain waves associated with a measurement of

the C44 mode which induces a polarization along the direction of the sound-wave

propagation, in our case [110] [26]. In the absence of conduction electrons, this

ionic polarization leads to an additional restoring force that increases the elastic

constant and therefore the sound velocity. However, in a conductor, the conduc-

tion electrons can screen the dielectric polarization and reduce this effect, thereby

lowering the sound velocity [43, 44]. Qualitatively speaking, the higher the con-

ductivity, σ, the lower the sound velocity. Hence, sound velocity measurements

can, in principle, provide a measurement of the AC conductivity of a material

at the measurement frequency. Indeed, Laliberté et al. found tentative evidence

of a chiral anomaly in TaAs with sound velocity measurements where a decrease

in sound velocity (indicative of an increase in conductivity) was seen when the

magnetic field was oriented parallel to the sound wave propagation direction (as

compared to measurements with q⃗ ⊥ B⃗) [26]. It is therefore important to try and

reproduce these results in other Weyl semimetals such as NbP.

3.1 Sample Preparation

All measurements were done on NbP samples. Our samples were fabricated by

Haidong Zhou and members of his research group at the University of Tennessee,

Knoxville. The sample used for ultrasound measurements had a house-like shape

with dimensions in the a-, b-, and c-axis: 2.76mm, 2.89mm and 3.11mm respec-

tively. A schematic of the sample dimensions can be seen in Figure 3.1.
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Figure 3.1: Schematic of the NbP ultrasound sample.

Due to the Fermi surfaces of NbP, measurements were taken with the current in

the [110] direction. This was done in order to have an equal contribution from the

various Fermi surfaces and to reduce the number of waveforms (quantum oscilla-

tions) being added together in the frequency vs. magnetic field plots. For example,

if the magnetic field and the wavevector are along the b-axis ([010]), certain Fermi

surfaces will have a smaller cross-section perpendicular to the field than others

(Figure 3.2a and Figure 3.2b). Similarly, if the wavevector is along the b-axis with

the field along the a-axis, we will once again have different contributions from

the Fermi surfaces (Figure 3.2c and d). The waveforms in the final results will be

added together, making these orientations useless for observing certain phenomena

such as the chiral anomaly.

This is why we would want a configuration like the one seen in Figures 3.2e and

3.2f. This gives the same oscillations in every Fermi surface whether the field is

perpendicular or parallel to the direction of the sound-wave propagation. This

means that any measured anisotropies (i.e. changes in sound velocity between

B⃗ ∥ [110] and B⃗ ∥ [11̄0]) could be attributed to the chiral anomaly or other novel

sources of anisotropy in the crystal’s properties. This is the same measurement

set-up that was employed in previous acoustic measurements of the related Weyl

semimetal TaAs [26].

In order to prepare the sample to have this orientation, two corners opposite of

each other were polished in order to have two flat surfaces parallel to each other.

This must be precisely done to ensure that the current properly passes through

the sample. A transducer was then glued using silicon glue on one of the flat
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Figure 3.2: a) Simple schematic of the Fermi surfaces with the magnetic field
parallel to the current. The red ovals are the contributions of the Fermi surface
to the wave forms. b) The plot of the different oscillations when the field is
parallel to the current. c) The Fermi surface contributions when the field is
perpendicular to the current. d) The sound velocity vs the inverse magnetic
field when the field is perpendicular to the current. e) The contributions when
the field is parallel to the current in the (110) direction. f) The corresponding

oscillations for the field and current in the (110) direction.

surfaces allowing the current to propagate in the [110] direction (Figure 3.3). Only

one transverse transducer was glued onto the sample in order to take reflectance

measurements. A thin gold wire was attached to each contact of the transducer

using silver paint. The sample is then glued down to the probe’s sample holder

using silicone glue. Each wire is soldered onto their designated pin on the sample
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holder using indium (it has a lower melting point which allows us to solder the

wires without melting them).

The transducer was oriented so that the polarization of the sound waves was along

the z -axis. As discussed in the previous chapter, this gives access to an acoustic

mode that probes uniquely the C44 element of the elasticity tensor.

Figure 3.3: a)Schematic of the NbP sample prepared for ultrasound measure-
ments. The visible polished flat surface has a transducer glued to it. There is
another polished surface opposite of the visible one. b)Picture of the sample

used for ultrasound measurements.

3.2 Experimental setup

3.2.1 Cryogenic apparatus

Measurements are done using a variable temperature insert (VTI) inside of a 4He

cryostat. This device allows us to take measurements at very low temperatures

(down to roughly 2 K) with the help of liquid helium (LHe). Liquid nitrogen (LN2)

is also employed to fill a reservoir surrounding the liquid helium space which helps

to precool the system and reduce the evaporation rate of the LHe. It is more

effective to employ the cold gas evaporating from liquid helium and utilise its

enthalpy for chilling the experiment for measurements above 5 K than it would be

to use the main 4He bath [45]. Helium flows from the main 4He bath through a
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capillary into the probe space of the VTI which is otherwise isolated by a vacuum

space. Pumping on the VTI space ensures a continual flow of helium into the VTI.

The flow rate, and therefore cooling power and temperature of the experiment can

be controlled with the help of a needle valve. An automated system controls

both the needle valve position (with a stepper motor) and applies an appropriate

amount of heat to control the temperature of a resistive thermometer which is

measured using a resistance bridge and temperature controller [45]. This design

allows for low helium consumption, fast cooling and warm-up times and excellent

temperature stability.

In practice, our sample is loaded into a probe, that includes an automated rota-

tor, thermometer and necessary coaxial cables. This probe is contained within a

hermetically sealed tube in which a small amount of helium gas is injected. The

tube is then inserted into the VTI.

Surrounding the VTI and thermalized to 4.2 K in the main He-bath is a super-

conducting magnet in principle capable of producing magnetic fields up to 16 T

(18 T if one pumps on the cryostat to further lower the magnet’s temperature). In

practice, we have maintained magnetic fields under 15 T in order to avoid possible

quenches of the magnet that can occur when approaching the upper limit.

3.2.2 Ultrasound spectrometer

Figure 3.4: Ultrasound spectrometer schematic.
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There are many components to an ultrasound spectrometer that are necessary for

collecting data as illustrated in the schematic of Figure 3.4. First, an rf synthesizer

is used to produce a continuous sine wave. This establishes the carrier phase and

frequency. The signal is then split into two channels using a power splitter. One of

the channels passes through rf switches that turn the power on and then off with

the aim of generating mostly square pulses typically ∼ 150ns long. The pulses are

then attenuated by 10 dB and amplified by 27 dB, giving a total amplification of

17 dB.

Figure 3.5: Hybrid junction used for ultrasound measurements.

The pulses then make their way through a hybrid junction. The excitation pulses

make their way through port A of the junction, and exit through port B without

affecting port C. The echoes then enter port B and exit through port C towards

the receiver without having an effect of port A. This is a form of “duplexer” or

“transmit-receive circuit”.

Once the pulses pass through the hybrid junction, more attenuation and amplitude

adjustments must be made to obtain an ideal signal amplitude to work with.

The next step is that of phase and quadrature detection. The echoes need to be

mixed with the synthesizer carrier-wave with two different phases. The echoes

pass through the power splitter, and the carrier wave is further split, and one of

the channels is dephased by 90◦. In other words, we are left with a cos (ωt) on one

line (in-phase) and a sin (ωt) on the other line (quadrature). The mixers therefore
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multiply two voltages together. Consequently, if the input signal is given by:

f(t) cos (ωt+ ϕ)

where ω is the carrier frequency, ϕ is the phase with respect to the synthesizer,

and f(t) is the modulation (the shape of the echo), we get the following after the

mixers:

I(t) = f(t) cos (ωt+ ϕ) cos (ωt) and Q(t) = f(t) cos (ωt+ ϕ) sin (ωt) (3.1)

on the two channels I (in-phase) and Q (quadrature). We can see that this result

in a high-frequency signal at 2ω (which is filtered by the subsequent low-pass

filters) and a slowly varying (on the span of µs) envelope f(t) which switches from

one channel to the other, depends on the phase.

There is still some further optimal amplification of these two signals, after the low-

pass filters. Then the signals are fed into the boxcar integrators which integrate

the signal over a window of time. This window of time is usually selected over one

echo. The echo that is chosen must show a nice clear signal and should not overlap

other echos. The integrated signals are then averaged over a certain number of

pulses. They are then sent to the data acquisition card which is read out by the

LabView program.

Since the phase of the signal is given by:

ϕ =
ωx

v

it is easy to determine that:
dϕ

ϕ
=
dω

ω
− dv

v

assuming that x (the length of the sample) does not have large variations. There-

fore, if the phase is fixed, relative changes in frequency will be equal to relative
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changes in velocity. We then have:

dω

ω
=
dv

v
(3.2)

In order to fix the phase, we measure at a series of frequencies (typically 3 to 5

frequencies) and look at the magnitude of the Q (quadrature) channel which will

be proportional to sin (ϕ). If we start at ϕ ≃ 0 and we do not vary the frequency

too much, we should obtain a linear relationship, i.e.

Q ∝ (ω − ω0)

where ω0 is the frequency at which the phase is nulled. Doing a linear fit of

these points allows us to determine ω0. With a feedback loop we can carry out

this procedure with our measured frequencies centred around ω0, and saving the

value of ω0 in a table. Since this is always the frequency at which the phase is

equal to zero, relative changes in frequency will follow relative changes in sound

velocity. As long as the sound velocity does not change too rapidly, it is possible

to track the zero-phase condition and obtain a measurement of the relative change

of velocity. In practice, this often allows us to obtain a precision of 10−6 on the

sound velocity. This is a result of the fact that we are doing an interferometry

measurement comparing the phase of the synthesizer to the phase of the resulting

echoes.

The signal amplitude I(ω0) is also saved in order to look at how changes in the

magnetic field or temperature lead to an attenuation of sound within the material.

3.3 Results

In this section, I will present our sound velocity results on NbP, beginning with

a rough determination of the absolute sound velocity, and then moving on to

more precise measurements of relative changes in sound velocity as a function of

temperature and magnetic field. In order to obtain a full analysis of the quantum
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oscillations and possible indications of a chiral anomaly, as measured by sound

velocity, it was necessary to take measurements with the magnetic field oriented

both in the ab-plane (varying the azimuthal angle ϕ) and out-of-plane (varying

the polar angle θ).

3.3.1 Absolute Velocity Calculation

The pulsed-echo ultrasonic interferometer can be used to determine relative or

fractional changes in velocity of the acoustic waves through the sample, that is

∆v/v. As mentioned previously, this can be done by adjusting the frequency in

order to maintain a constant phase of a specific echo. Relative changes in frequency

are equal to relative changes in velocity, ∆ω/ω = ∆v/v. In practice, these relative

changes are usually quite small at low temperatures.

To obtain the absolute velocity v of the sound waves, for example to compare with

theoretical values calculated with density functional theory, one must measure the

position in time of the first echo, or else measure the time difference between echos.

The theoretical value of the velocity of the acoustic waves is given by:

v44 =

√︄
C44

ρ
(3.3)

where C44 is the elastic constant of NbP and ρ is the density of NbP. From [46],

we expect that C44=111.9 GPa and we also know that ρ=6.52 g·cm−3. Plugging

this into 3.3, we obtain:

v44 =

√︄
11.19× 109 g · cm−1s−2

6.52 g · cm−3
(3.4)

v44 = 4.14 km/s
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Now we must find the experimental value. This can be found using the following

equation:

v44 =
2L

1
∆fa

− 1
∆fb

=
2L

∆t
(3.5)

where L is the length of the sample and ∆t is measured using the technique

explained above. We know that L=(4.00 ± 0.04) × 10−3 m and from observing a

specific echo we find that ∆t=(2.1± 0.2)×10−6 s.

We can therefore find the value of v44.

v44 =
2(4.00× 10−3 m)

2.1× 10−6 s
(3.6)

v44 = (3.81± 0.4) km/s

The experimental value obtained for the velocity of the acoustic waves is given

by 3.81 km/s. This gives us an error of 7.97%. Taking into consideration the

uncertainty caused by the difficulty to locate the exact position of the echo, our

answer is very close to the theoretical value calculated above.

While our measurements of the absolute value of the sound velocity is not precise,

we can obtain extremely precise measurements of the relative changes ∆v/v using

the phase-nulling feedback method described above. In the rest of the thesis, we

will just present relative changes, ∆v/v, as a function of field and temperature.
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3.3.2 In-Plane Measurements

Figure 3.6: Definition of the various orientations of the sample. The gray
prism represents the ab-plane. θ represents the angle definitions in-plane and φ

represents the angle definitions out-of-plane.

In-plane measurements are done with the magnetic field rotating within the ab-

plane. Measurements at [110] are labeled as ϕ = 0◦ and measurements at [11̄0]

are labeled as ϕ = 90◦. A schematic of the angle definitions that we have adopted

can be seen in Figure 3.6.

3.3.2.1 Angle Sweeps

When gluing the sample to the rotator probe, it is possible to have a misalignment

of several degrees. In order to obtain the true orientation of the sample in the

ultrasound probe, angle sweep measurements must be taken at a fixed magnetic

field. We expect these results to show a symmetry about certain crystallographic

orientations. For instance one these points of high symmetry is expected at ϕ = 45◦

in the rotator’s convention (when q⃗ and B⃗ are expected to be parallel). Locating

this point will help determine the true alignment of the sample in the probe. These

measurements were taken with a magnetic field of 2 T because this is where some

of the large changes can be observed. These measurements can be seen in Figure

3.7. The symmetry point determined by finding the maximum of the curve and

indicated by the red arrow is located at 52.1◦. This value is expected to be 45◦

in the rotator’s coordinates. This tells us that the true angle at which the field
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is aligned with [110] is given by 7.1◦. This value allows us to determine which

orientation to position our sample in for the next measurements.

Figure 3.7: The variation of the frequency as a function of the angle of the
sample for measurements with the magnetic field in-plane. The red arrow indi-
cates the symmetry point of the data. Oscillations at 70◦ and above are likely
artefacts resulting from heating of the sample caused by the movement of the

rotator.

3.3.2.2 Field Sweeps

Since the primary goal of this project is to explore the effects of magnetic field, as

a method of searching for the chiral anomaly and exploring quantum oscillations,

we have performed field sweep measurements at various angles. We expect in-

plane measurements to be particularly important for showing evidence of the chiral

anomaly, which would reduce the symmetry from 4-fold to 2-fold. Field sweep

measurements at various angles allow us to observe how quantum oscillations

change at different orientations of the sample, thereby mapping out the Fermi

surfaces of the material. Multiple measurements were taken at each angle to

ensure repeatability. Data was collected with the magnetic field sweeping up from

0 T to 14 T and with the field sweeping down from 14 T to 0 T. These curves

were then averaged to take into consideration the hysteresis that occurs between

increasing and decreasing magnetic field. The raw data collected for measurements

of the variation of the magnetic field can be seen in Figure 3.8.



Chapter 3: Sound Velocity Measurements 47

Figure 3.8: Variation of the relative change in velocity as a function of the
magnetic field for measurements taken in-plane.

As it can be seen, many pairs of curves have similar shapes. For example the 0◦

and 90◦ are similar, 5◦ and 85◦ curves have similar quantum oscillations, the 10◦

and 80◦ curves are similar, the 15◦ and 75◦ curves are similar, and the 30◦ and

60◦ curves have the same oscillations. This indicates a symmetry about 45◦ as

is normally expected for a tetragonal structure.1 However, the chiral anomaly is

thought to break the tetragonal C4 symmetry of the lattice in applied magnetic

and electric fields, reducing it to a 2-fold symmetry. Therefore we would expect

to see a difference between the curves at 0◦ and 90◦. A comparison of the data

collected at both 0◦ and 90◦ can be seen in Figure 3.9. As can be seen, the

difference between both curves is very small and is not enough to say it is caused

by the chiral anomaly.

Therefore, these measurements, in contrast to those carried out by Laliberté et al.

[26] on TaAs, show no clear evidence of the chiral anomaly. We cannot prove that

it does not exist in NbP as it may simply appear as a difference that is too small

to observe in our measurements. Multiple measurements were taken at each angle

to show that this difference was reproducible (Figure A.1 in Appendix A). There

could be several possible explanations for this discrepancy. First it may be that

having Weyl nodes of opposite chirality enclosed within the same Fermi surface in

1Recall that we have corrected the angle for misalignment of the rotator’s coordinates.
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NbP does away entirely with the chiral anomaly. Alternatively, the differences in

electronic structure and sample purity between TaAs and NbP may simply lead to

a different magnitude of the chiral anomaly as seen by sound velocity. The effect

was already quite small in TaAs (of the order of 1 part in 104). If material details

reduced its effect by an order of magnitude in NbP, it would be imperceptible in

our data.

Figure 3.9: Comparison between the measurements taken at 0◦ and 90◦

The most evident feature of the data is the presence of oscillations. Once the raw

data is collected it is then plotted as a function of the inverse magnetic field (Figure

3.10). From this figure we can see clean oscillations with equal distances between

them (i.e. a well defined periodicity). This demonstrates clearly that these are

quantum oscillations, not unlike Shubnikov-de Haas (SdH) or de Haas-van Alphen

(dHvA) oscillations. These plots allow us to extract the oscillation frequencies of

the sample that correspond to different Fermi surfaces.



Chapter 3: Sound Velocity Measurements 49

Figure 3.10: The changes of sound velocity as a function of the inverse mag-
netic field.

In order to obtain the various quantum oscillation frequencies of NbP that are

visible for in-plane ultrasound measurements, we take a fast Fourier transform

(FFT) of the data seen in Figure 3.10. A Fourier transform is performed on each

data set to see how the oscillation frequencies change at various orientations of the

sample. When looking at Figure 3.11, we can see that there is a symmetry of the

data around 45◦ which is expected for tetragonal structures. Moreover, we are not

aware of a reason to expect the chiral anomaly to affect the frequency of quantum

oscillations, which simply results from the cross-sectional area of the Fermi surface.

It can also be noted that this symmetry is an indicator of the excellent alignment

of the sample, since a small out-of-plane alignment should give rise to a noticeable

change in oscillation frequency. Peaks can also be seen at higher frequencies in

Figure A.2 in Appendix A.
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Figure 3.11: Evolution of the quantum oscillation frequencies at various orien-
tations of NbP for in-plane measurements at lower oscillation frequencies. The

curves are staggered for ease of viewing.

Figure 3.12 shows a closer look at the Fourier transform of the measurements taken

at 0◦ and 90◦. Both curves have the same oscillation frequencies with very similar

FFT amplitudes. This, once again, further emphasizes that more measurements

must be done on NbP to try to observe signs of the chiral anomaly. This is not an

indication that the chiral anomaly is not present in niobium phosphide. It simply

indicates that NbP’s complex electronic structure creates many contributions to

the sound velocity measurements that could be overwhelming the expected chiral

anomaly results.
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Figure 3.12: Comparison of the fast Fourier transform taken at 0◦ and 90◦.
Both results are very similar.

3.3.2.3 Frequency dependence

All the previous data collections were done at a frequency around 24 MHz which is

the fundamental resonant frequency (or first harmonic) of the transducer. Nomi-

nally, the transducers should have a resonant frequency of 30 MHz, but when glued

to the sample and loaded with wires attached with silver epoxy, the resonant fre-

quency is often somewhat reduced. Our primary measurements were done at the

first harmonic because it gave the strongest signal and the clearest echoes. It was

also possible to see echoes at the third harmonic of the transducer (86 MHz). By

taking measurements at this frequency, we are able to compare the results obtained

at both harmonics and check the frequency dependence of our measurement. If

they are both consistent with each other, this is a good indication that the results

obtained are valid and fully representative of intrinsic physics within the sample.
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Figure 3.13: Comparison of the first harmonic and third harmonic resonant
frequencies of NbP in ultrasound measurements.Top: Data collected with the
magnetic field at 0◦ with regards to the current. Bottom: Data collected with

the magnetic field at 90◦ from the current.

From Figure 3.13 we can see that the results obtained at both frequencies are

comparable. They both have the same quantum oscillations at the same position

and generally look very similar. There does appear to be a slight difference in

magnitude between the results at these two frequencies, but nothing that would

suggest major problems with interpretation of our data.

Since the results obtained at both frequencies are comparable, we can be confident

that our results are valid, that the transducers are well placed and that we have
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selected isolated echos free of interference problems. Echoes could also be seen

around 120 MHz, however the signal to noise was too small to obtain clear results.

3.3.2.4 Temperature dependence

Magnetic field sweeps were done on the sample at various temperatures ranging

from 2 K to 20 K. These field sweeps allow us to observe how the quantum oscil-

lations change as the temperature increases. These measurements were performed

at three different orientations of the sample (0◦, 45◦ and 90◦).
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Figure 3.14: Variation of frequency as a function of the magnetic field at
different temperatures. Top: Measurements taken with the field parallel to
the current. Middle: Data collected with the magnetic field at 45◦ from the
current. Bottom: Data collected with the magnetic field perpendicular to the

current.

As expected, we can see from Figure 3.14 that the amplitude of the oscillations

decreases as the temperature is increased, which is qualitatively consistent with

the thermal damping factor in the Lifshitz-Kosevitch formalism [22]. However,
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when looking at the measurements taken at 0◦, we can see that the measurements

at 10 K are not entirely consistent with the rest of the data. This once again

occurs at 15 K and 20 K for the measurements taken at 45◦ and 90◦. When

collecting the data, we discovered that it was very difficult to obtain clean results

at higher temperatures due to a degradation in the signal. It often took many

attempts for measurements above 10 K before obtaining usable results. We can

therefore deduce that the data collected at higher temperatures might not be

completely accurate. The likely cause of this problem is that the overall sound

velocity varies much more significantly as a function of temperature than as a

function of magnetic field. This can lead to significant phase changes and even

shifting of echo positions that make it difficult to maintain the same spectrometer

settings for all temperatures. To obtain better results, we would likely have to

optimize the spectrometer parameters (in particular the choice of initial frequency

and the position of the boxcar integrators) at each temperature before launching a

field sweep. This would be quite a laborious process and was not seen as a priority

for this project.

In practice, this appears to lead to a strong change in background as the temper-

ature is increased. A Fourier transform can nonetheless be applied to the data

collected at each temperature in an attempt to observe whether the oscillation

frequencies change with an increase in temperature and in particular to observe

changes in amplitude of the oscillations.



Chapter 3: Sound Velocity Measurements 56

Figure 3.15: The variation of the oscillation frequencies as a function of the
temperature after a Fourier transform when: Top the magnetic field is parallel
to the current. Middle the magnetic field is at 45◦ from the current. Bottom

the magnetic field is perpendicular to the current.
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We once again see that the oscillations decrease in amplitude as the temperature

increases. The same discrepancies occur as in Figure 3.14. The amplitudes of the

oscillations in Figure 3.15 can in principle be used to determine the effective mass

of the sample. However, I was unsuccessful in extracting the effective mass from

the temperature dependence of the ultrasound data. Again this is likely because

there is a significant change in background and data quality as the temperature is

increased, making it very difficult to precisely follow the oscillation amplitude in

temperature. This change in background can be seen in Figure 3.14.

3.3.3 Out-of-Plane Measurements

In-plane measurements are the ideal approach to look for the chiral anomaly,

since we can probe the configurations where q⃗ ⊥ B⃗ and q⃗ ∥ B⃗ with the field

along crystallographically equivalent directions. On the other hand, in order to

best characterize the quantum oscillations in NbP, it is important to study the

significant anisotropy between in-plane and out-of-plane magnetic fields. Indeed,

previous sound velocity measurements in TaAs [26] showed a sensitivity to dif-

ferent types of pockets depending on whether the field was oriented parallel or

perpendicular to the c-axis. More precisely, oscillations from a trivial hole pocket

were particularly evident in the data when the field was in the plane, whereas a

topological Weyl pocket gave rise to the dominant signal as the field was rotated

out of the plane.

Out-of-plane measurements were done with the magnetic field rotating out of the

ab-plane. Measurements at [110] are labeled as θ = 0◦ and measurements at [001]

are labeled as θ = 90◦. A schematic of the angle definitions can be seen in Figure

3.6.

3.3.3.1 Angle Sweeps

Once again, angle sweeps were taken to correctly identify the sample orientation by

looking for points of high symmetry. First an angle sweep from 100◦ to 0◦ was taken
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in hopes of finding a high symmetry point, but no symmetry point was visible.

When observing the angle sweep we noticed that a large dip in frequency occurred

around 0◦ which could be an indication of a high symmetry point. Another angle

sweep was then performed from -10◦ to 5◦ and it was found that the symmetry

point was located at -1◦. This point corresponds to the point where the sample is

positioned at [001]. For consistency with our previous data, the symmetry point

corresponds to 90◦ since it perpendicular to the plane, and therefore perpendicular

to the current. The true value of absolute zero is therefore taken as 89◦ when the

field is positioned at [110]. Note that at 14 T (Figure 3.16a) this point corresponds

to a minimum, but at 9.8 T (Figure 3.16b) it gives a maximum.

Figure 3.16: a): Frequency as a function of the sample position from 100◦

to 0◦ at 2K with a magnetic field at 14T. b): Frequency as a function of the
sample position from -10◦ to 5◦ at 2K with a magnetic field at 9.8T. The arrow
corresponds to the position of the symmetry point. Recall that changes in the
measurement frequency (with constant phase) are proportional to changes in

sound velocity.

3.3.3.2 Field Sweeps

Following the same procedure as was mentioned in Section 3.3.2.2 we can obtain

clear data when measuring changes in velocity as a function of the magnetic field

for different sample positions rotating out of the plane. Figure 3.17 shows the

quantum oscillations visible at different sample positions. We can see that the

shape of the curve obtained at 0◦ (parallel to the current) resembles the curves

obtained for our previous in-plane measurements. This indicates that the symme-

try point found in our angle sweeps was correct.
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Figure 3.17: The relative change in velocity as a function of the magnetic
field as the NbP sample is rotated out-of-plane.

When taking a closer look at the data collected in the [110] direction (0◦) and [001]

direction (90◦) we can see that there is a very big difference between the two curves

(Figure 3.18). We can see that there are many more quantum oscillations visible

with the field out-of-plane than in-plane. We can see that the oscillations also

have a much larger amplitude for measurements out-of-plane than those in-plane.

This large difference between both curves is the reason why the project focused on

in-plane measurements. The symmetry seen in-plane and the less complex data

makes it easier to observe different phenomena that could occur such as the chiral

anomaly.
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Figure 3.18: Comparison between field sweeps taken at 0◦ and 90◦

The Fourier transform is then taken to determine the different oscillation frequen-

cies that are visible. Because of the many quantum oscillations visible in Figure

3.17, it is expected that the Fourier transform show many more peaks when the

sample is rotated out-of-plane. This is what we observe in Figure 3.19.

Figure 3.19: Evolution of the quantum oscillation frequencies of NbP as the
magnetic field is rotating out-of-plane. The curves are shifted for ease of viewing.
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For measurements close to the plane (below 30◦), only low oscillation frequencies

are visible. The closer we get to [001], the more oscillation frequencies are visible

and the more complex the results become. There is no visible symmetry seen

within the results collected with the field rotating out-of-plane unlike what was

seen for the in-plane results. This is normal given the anisotropy of a tetragonal

system. Evidently, as we rotate the field towards the c-axis, our measurement

becomes sensitive to additional Fermi surfaces that are not seen for in-plane mea-

surements, leading to a more complicated Fourier transform.

3.3.3.3 Temperature dependence

Again, field sweeps were done at different temperatures to see if the out-of-plane

measurements behaved similarly to the in-plane measurements. Only three dif-

ferent temperature measurements were taken due to time constraints. The mea-

surements were all taken with the magnetic field pointed in the [001] direction.

from Figure 3.20, we can see that the amplitude of the oscillations decreases as

the temperature increases like what was seen for in-plane measurements. It can

also be seen that the smaller amplitude and higher frequency oscillations start

to disappear at 10 K, and we are mostly left with the larger amplitude, lower

frequency oscillations. This implies a higher effective mass for the high-frequency

oscillations.
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Figure 3.20: d

irection]Relative changes in sound velocity as a function of the magnetic field at

different temperatures with the magnetic field oriented in the [001] direction.

When taking the Fourier transform of the temperature measurements (Figure

3.21), we see the same decrease in amplitude of the peaks that was seen for the

in-plane measurements. It can also be seen that the oscillations above 40 T seem

to completely disappear once at 10 K. From these results, we can predict that

most of the oscillations would flatten out and disappear at temperatures above

20 K.
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Figure 3.21: The variation of the oscillation frequencies as a function of the
temperature after a Fourier transform with the magnetic field in the [001] di-

rection

Effective mass calculations were not performed for the out-of-plane measurements

due to only having data points at three different temperatures which is not enough

points to fit equation 1.17 to the data.

3.3.4 Comparison with other ultrasound measurements

The sound velocity and attenuation of NbP has previously been measured by

Schindler et al. [47]. While they have measured multiple acoustic modes and

looked at particularly high magnetic fields (up to about 37 T) they have not done

a full study as a function of field angle and have only considered B⃗//ĉ. Another

difference to note between their work and ours is that the direction of sound wave

propagation in their measurements is along [100] whereas for us it is always along

[110]. However, a magnetic field applied along [001] does not break the tetragonal

symmetry of the sample and therefore all measurements with polarization along

[001] and sound propagation at any angle in the ab-plane should be related to the

C44 element of the elasticity tensor and give rise to the same results. When the

field is applied along a different direction, it can break the tetragonal symmetry

of the system and lead to an anisotropy as a function of q⃗.
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Figure 3.22: Comparison between our sound velocity data and digitized data
of Schindler et al. [47] for B⃗//[001].

In Figure 3.22 we show a comparison of our results (using mode C44 with B⃗//ĉ)

with two of their curves (for the modes C11 and C44), digitized to the best of

our ability. As can be seen, the agreement is surprisingly poor. Of course this is

particularly surprising when we are using the same mode C44. We cannot attribute

this difference to a mistake in our mode selection as a mistake in transducer

polarization would likely select the mode C11 and this does not provide any better

agreement.

We can also compare the oscillation frequencies extracted from our respective

measurements, although it should be noted that Schindler et al. used Landau

fan diagrams to determine the oscillation frequency whereas we used a Fourier

transform. Nonetheless, we have found several frequencies that are equal, within

the error bars, to frequencies found by Schindler et al. Other frequencies appear

to be quite different, especially our lowest frequency of 1.5(1) T, which can be

compared with their lowest frequency of 0.9(1) T, which they attribute to the β2

orbit.

Both groups have carried out important consistency checks. Schindler et al. have

obtained similar frequencies with multiple acoustic modes. Meanwhile, we have
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obtained consistent results between different measurement frequencies and differ-

ent echos. Thus there is little reason to assume that experimental errors are giving

rise to the observed differences. Despite the discovery of some frequencies in com-

mon, it seems likely that the observed discrepancies can be attributed to a strong

sample dependence.

Table 3.1: Comparison of quantum oscillation frequencies obtained for
B⃗//[001] (θ = 90◦) from our sound velocity measurements, and those of

Schindler et al. [47].

Our work Schindler
F (T) F (T)
1.5(1) 0.9(1)
6.3(9) 6.81(7)
12.0(2) 14.74(4)
16.6(7)
30.7(2) 30.89(5)
33.2(4) 31.7(5)
47.0(8) 42(1)
61.2(4)
67.8(6)

3.3.5 Association of frequencies with Fermi pockets

Since this is not the first experimental study of quantum oscillations in NbP, we

can draw on other research groups’ previous results in order to identify the various

Fermi pockets that give rise to our observed oscillations. In order to give ourselves

the best chance of comparing with other works, we first plot our Fourier transforms

is such a way as to extract the most possible frequencies. For out-of-plane rotations

we have achieved this by multiplying the FFT amplitude by the frequency. As

can be seen in Figs. 3.23 and 3.24, this reveals a number of higher frequencies

that have comparatively small amplitudes, but should nonetheless be taken into

account.
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Figure 3.23: Zooming in on higher frequency peaks visible for in-plane rota-
tions of the magnetic field.
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Figure 3.24: Plots of FFT amplitude multiplied by frequency to accentuate
high frequencies for out-of-plane rotations.

Note that the different research groups with which we will compare our data have

used different conventions for labeling the oscillations frequencies and Fermi pock-

ets. These research groups have relied DFT calculations to identify the observed
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frequencies. We will compare with 4 different groups whose labelling conventions

are described as follows:

• Klotz et al. [28] carried out SdH measurements and Schindler et al. [47],

as mentioned in the previous section, carried out ultrasound measurements.

These two groups have used the same labelling convention: a Greek letter

and a subscript. The subscript refers to the Weyl pocket and the Greek

letter refers to one of the possible orbits of that pocket. For example α1

signifies the α orbit of Weyl pocket number 1.

• Wang et al. [29] have carried out SdH and dHvA measurements, as well as

Nernst and Seebeck effect measurements. Here we will quote their SdH and

dHvA results. In their labelling convention, frequency F0 comes from the

Weyl pocket 1 that they have named W1. This pocket in fact corresponds

to Weyl pocket number 2 for other research groups. Conversely, frequencies

F1 and F2 are associated with the Weyl pocket that they have named W2

but this is Weyl pocket number 1 for other researchers. The frequency F3 is

associated with a trivial hole pocket.

• Sergelius et al. [27] carried out dHvA measurements. They have simply

labelled their frequencies with Greek letters from α to θ. Sergelius et al.

have also reported harmonics of certain peaks which are presented here (eg.

2δ, 2θ).

We will start with the magnetic field parallel to the c-axis, since this is the most

commonly used configuration in the literature. A comparison of our frequencies

with those of other groups is shown in Table 3.2. Here we show correspondence

between certain measured frequencies by placing them on the same rows. Several

frequencies appear to be well matched between multiple research groups, including

ours. We can clearly associate several of our measured frequencies with the α2,

α1 and γ1 orbits. Other frequencies that we have measured match less well, but

are not too far off either. It is likely we can attribute our frequency at 12 T to

the β1 orbit, and our 47 T peak to the δ1 orbit. If we follow Wang et al. [29],
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the 61.2 T peak is likely resulting from a trivial hole pocket. The peak at 1.6 T

is not very well matched to other groups whose lowest frequency is around 0.9 T.

Nonetheless, it is tempting to attribute the 1.6 T peak to the β2 orbit. Finally, our

measured peaks at 16.6 T and 68 T do not seem to correspond to any frequencies

measured by other research groups and remain somewhat mysterious. Some peaks

are attributed to harmonics by Sergelius et al. but to distinct orbits by other

groups. For example a frequency around 12-14 T is attributed to the β1 orbit by

Klotz et al. [28] but is simply considered to be a second harmonic of the η orbit

identified by Sergelius et al. [27] whose fundamental frequency is 6.6 T.

In Table 3.3 we show the same comparison for B⃗//[100], that is θ = 0, ϕ = 45◦.

The sparsity of this table demonstrates the surprising lack of agreement between

research groups for this field orientation. Our two lowest frequencies (1.24 and 2.2

T) might correspond to the β and γ orbits of Sergelius et al. [27], obtained using

the dHvA technique. However the agreement is far from excellent. It appears that

our 58.6 T peak likely equates to the F1a orbit of Wang et al.. They attribute

this to Weyl node 2, which is considered Weyl node 1 by other research groups

like Klotz et al.. The only truly convincing agreement, between our measurements

and two other groups, is for our 135.3 T frequency which has been attributed to

a trivial hole pocket (orbit F3b) by Wang et al..

It is far from clear to us what is causing such poor agreement between measure-

ments. It seems clear that the ultrasound measurements are particularly sensitive

to lower frequency oscillations (the high frequency oscillations have orders of mag-

nitude smaller signal). Meanwhile, the SdH technique seems (for this orientation

of the sample) to only pick out rather high frequency oscillations (> 35 T). Evi-

dently the dHvA technique is also quite sensitive to lower frequency oscillations.

We would argue that the α frequency of Sergelius et al. is likely an artefact of the

analysis as they do not appear to be covering a large enough range in 1/B to pick

up such a low frequency. Some peaks may be harmonics. For example our 58.6

T peak might be a harmonic of the 31.7 T oscillation seen by Sergelius et al.. It

seems surprising to not observe the fundamental, though Sergelius et al. do see a

larger peak at the second harmonic.
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Table 3.3: Comparison of oscillation frequencies for B//[100] from our work
(using sound velocity) from Klotz et al. [28] and Wang et al. [29] using the
Shubnikov-de Haas (SdH) technique and from Sergelius et al. [27] using the
de Haas-van Alphen (dHvA) technique. Each research group has adopted their
own labelling convention. We have also included harmonics (2δ, 4δ) reported

by Sergelius et al.

Our work Sergelius Wang Klotz
Label F (T) Label F (T) Label F (T) Label F (T)

α 0.16
1.24(5) β 0.8
2.2(1) γ 2.5
3.5(1)
6.3(3)
8.0(4)
11.5(6)

δ 31.7 F0 (W1) 35
58.6(5) 2δ 60.4 F1a (W2) 57

F1b (W2) 71
δ′2 97

4δ 119 F2 (W2) 117
135.3(5) ϵ 137.6 F3b (H) 136

δ′′1 324

3.3.6 Phase analysis

As mentioned in Section 1.3.4, the phase of quantum oscillations may provide infor-

mation about the topology of the band structure and might allow us to distinguish

Weyl pockets from trivial hole pockets. Given that the phase analysis has proven

inconsistent in the SdH and dHvA measurements, it is interesting to explore how

well it could apply in ultrasound velocity measurements. It is possible to obtain

more information about our sample by further analyzing the Fourier transforms of

the above data. Here we use the phase-analysis method of Luk’yanchuk [21] which

was used to distinguish different types of Fermi surfaces in graphite. We define

the phase-shift function as K(ϕ, ν) = Re{eiϕχ(ν)} where χ(ν) is the complex-

valued Fourier transform, with frequency ν in units of Tesla and ϕ is the phase.

This function can be visualized with a contour plot as a function of ϕ and ν. It

presents maxima at the same value of ν seen in the modulus of the Fourier trans-

form |χ(ν)|. Additionally, the position of the maxima along the ϕ-axis provides
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the phase of the corresponding oscillations. K also presents minima at points π

out of phase with the maximum. However, in our analysis we have suppressed all

negative values of K to simplify the contour plots.

This analysis is shown in Fig. 3.25 for field along [100] and in Fig. 3.26 for field

along [001]. We have not performed this analysis for all frequencies in the data

since for some there appears to be a large background in the FFT around the

peaks and this makes it difficult to extract the phase. The presented peaks appear

to be relatively free of background signal. For each orientation of the field, we

present the real part, imaginary part and modulus of the Fourier transform in the

upper panels, and contour plots of the positive part of K(ϕ, ν) in the lower panels.
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Figure 3.25: Phase analysis of several oscillation frequencies for in-plane field
along [100]. In the upper panels the real part, imaginary part and modulus of
the FFT amplitude is plotted (arbitrarily scaled each time). In lower panels,
the corresponding phase is shown in a contour plot with a method described in

the text.
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Table 3.4: Summary of phase analysis results. Here we present just the fre-
quencies for which it was possible to reliably determine the phase and the ten-

tative labels that were assigned in the previous section.

B⃗//ĉ B⃗//â
Label F (T) Phase/π Label F (T) Phase/π
β2? 1.6(3) -0.08(5) ? 1.24(5) 0.1(3)
α2 5.8(9) 0.49(5) ? 3.5(1) 0.37(5)
β1? 12.0(3) 0.69(5) ? 58.6(5) 0.31(4)
? 16.6(7) 0.84(5) ? 135.3(5) 0.37(4)
α1 30.3(2) 1.15(10)
γ1 33.5(4) 1.09(10)

The results are summarized in Table 3.4. Clear differences in phase are observed

for the various oscillations. This is particularly true for B⃗//ĉ. However, our näıve

expectations regarding the phase are not met. That is, we would normally expect

the oscillations to fall into two categories: topological (Weyl) pockets and topo-

logically trivial pockets. These two categories would be separated by a difference

of π in phase, resulting from a trivial Berry phase of 0, or a topological Berry

phase of π. There could also be smaller variations of the order of π/4 resulting

from the concavity or convexity of the Fermi surfaces, for example. This is clearly

not what is observed here. For B⃗//ĉ we see a mostly progressive increase in phase
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from -0.08(5)π at low frequency to 1.09(10)π at high frequency. In the case of

B⃗//â, there are perhaps two categories of oscillations, with the lowest frequency

oscillation giving a phase near to 0 and the others giving phases of 0.31π to 0.37π.

However, this is clearly not a difference of π.

Hence, it seems that the phase analysis here is either not particularly reliable,

or else it is too simplistic to expect the phase to fall into two categories with a

phase difference of roughly π and that the theory of quantum oscillations in Weyl

semimetals is in fact more complicated.



Chapter 4

Transport Measurements

The transport measurements presented in the following chapter are intended to

be used primarily as a sample characterization tool. Plenty of researchers have

already done a complete analysis of NbP using transport measurements, making it

redundant to redo all of these measurements. The main purpose of these measure-

ments is to see if the same quantum oscillations are visible in both ultrasound and

transport measurements using samples that were produced from the same batch.

This will help determine the mechanism that allows us to observe quantum oscil-

lations in ultrasound measurements. It was seen in Chapter 3 that the frequencies

observed in ultrasounds are not the same as the ones seen for transport measure-

ments done by other research groups. It is important to verify these comparisons

with samples procured from the same batch since samples from different batches

could have a slightly different Fermi energy and therefore have a smaller or larger

Fermi surfaces with different oscillation frequencies. Furthermore, it is interesting

to show that transport measurements can be quite sensitive to extrinsic effects

like current jetting and compare this with controlled and reproducible ultrasound

measurements.

74
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4.1 Experimental Method

4.1.1 Sample Preparation

Figure 4.1: Sample used for transport measurements

The NbP samples used for transport measurements had a smaller thickness and

flatter surfaces than the one that was used for sound velocity measurements (Figure

4.1). Samples were first cleaned using acetone and water. Next the contacts were

applied using silver paint so as to impose a current along the [110] direction (Figure

4.2). Silver wires were then glued onto the contacts using more silver paint. Wires

with a diameter of 50 µm were used for the I+ and I− contacts, and silver wires

with a diameter of 25 µm were used for the voltage contacts (seen in Figure 4.2).

The samples were placed on sample boards using vacuum grease. The samples

were placed on different boards depending on the types of measurements taken

(in-plane or out-of-plane) and the wires were soldered onto their respective pins

on the sample board. Each connection is then verified to check for short circuits.

When taking out-of-plane measurements, we found that one contact had a poor

connection. In order to fix this problem we sent a current shock through the wire

which strengthened the connection.
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Figure 4.2: a)Schematic of the sample contacts on the NbP samples prepared
for transport measurements. b)NbP samples on the sample board for in-plane
measurements. c)NbP samples on the sample board for out-of-plane measure-

ments.

4.1.2 Physical Property Measurement System (PPMS)

All transport measurements were done on a QuantumDesign Dynacool Physical

Property Measurement System (PPMS) located in the Quantum Fab Lab (QFL) of

the Institut Quantique. The PPMS is an automated low-temperature and magnet

system that allows for the measurement of various material properties. Properties

that it can in principle measure include specific heat, magnetic AC and DC suscep-

tibility and electrical and thermal transport properties. This device is paired with

a superconducting magnet with a field reaching 14 T and can cover temperatures

ranging from 1.9 K to 400 K. DC transport measurements were taken using the

DC Resistivity Option for the PPMS, using a resistivity puck (Figure 4.3).

Measurements were taken at a variety of different angles in order to observe the

angular dependence of the electrical resistance. In order to take these measure-

ments, a horizontal rotator was used. This horizontal rotator allows a sample

to be rotated over 360◦ while in the presence of an applied magnetic field. The

device has an automated indexing procedure and encoder that ensures that the

angular positions are accurate [48]. Various sample boards allow for measurements

with the field either parallel or perpendicular to the plane of the sample. When

transport measurements are taken with the magnetic field B in-plane, the sample

board used is the one seen in Figure 4.3b). When transport measurements are

taken with the magnetic field out-of-plane, the sample board used is the one seen

in Figure 4.3c).
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Figure 4.3: a) Resistivity puck used for AC and DC resistance measurements.
b) Sample board used for measurements with the magnetic field in plane. c)
Sample board used for transport measurements with the magnetic field out-of-

plane.

4.1.3 Current Jetting and Non-Ideal Contact Geometry

Various inconsistencies can be seen in the results obtained in this chapter, most

of which can be explained by the current jetting effect. The current jetting effect

occurs when current contacts are smaller than the cross-section of the sample being

analyzed. It is characterized by a highly non-uniform current distribution within

the sample and can lead to a negative magnetoresistance which makes observing

effects like the chiral anomaly very difficult. The current jetting effect is a well

documented problem that can be seen in materials like NbP [49].

The current jetting effect tends to hide any signs of the chiral anomaly. It might

be possible to separate both effects, however it would require detailed knowledge

and modelling of the current jetting. Since the main purpose of the transport

measurements in this research is to compare the results with those obtained in ul-

trasound, current jetting should not have a large effect on our results. We expect

that the current jetting will not change the overall frequencies or the tempera-

ture dependence of the quantum oscillations for sufficiently small variations in

background.

The sample contacts were painted onto the sample by hand leading to some im-

perfect contact geometries. Due to these imperfect contacts, it is possible that the

results could be slightly affected. For example, it is possible that this could lead



Chapter 4: Transport Measurements 78

to the mixing of the Hall effect into our resistance measurements. In some cases

it appears even to lead to a negative resistance, which is clearly artificial.

4.2 Results (Field In-Plane)

Figure 4.4: Definition of the various orientations of the sample. θ represents
the angle definitions in-plane and φ represents the angle definitions out-of-plane.

As mentioned in Chapter 1, niobium phosphide has many Fermi surfaces. Each

of these Fermi surfaces will have a contribution to the results that will be seen

in transport measurements. In order to see these different contributions, it is

necessary to take measurements at a variety of angles. As was done with the

ultrasound experiments, we have done series of measurements either rotating in

the ab-plane (varying the angle φ), or between the plane and the c-axis (varying

the angle θ). The first measurements that were taken were with the magnetic field

staying in the plane of our niobium phosphide samples. The sample starts with

the field parallel to the current in the [110] direction (corresponding to φ = 0◦)

and is then rotated in order to have the field perpendicular to the current in the

[11̄0] direction (corresponding to φ = 90◦) (Figure 4.4). Figure 4.5 shows the

cross sections of the different Fermi surfaces that can be observed for in-plane

measurements. The Fermi surface schematic used for our analysis is that of Wang

et al. [29]. This is because the oscillation frequencies found in our transport data

correspond almost perfectly with those found by Wang et al..
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Figure 4.5: a)Schematic of the Fermi surface cross-sections for the different
pockets of NbP[29]. b) Schematic of the Fermi surfaces of NbP as depicted by

Klotz et al. [28]

The raw data obtained from transport measurements is composed of two differ-

ent contributions: the resistivity and the Hall effect. Figure 4.6 shows a simple

schematic of these two components, in an ideal configuration. The oscillation fre-

quencies of niobium phosphide are found by taking the Fourier transform of the

resistivity. It is therefore necessary to separate the resistivity from the Hall effect.

It is important to note that when the contacts are not perfectly aligned parallel

and perpendicular to the current, there will be a cross-contamination of the two

signals. We can therefore expect some cross-contamination in our measurements

since the contacts are not perfectly aligned. The Hall effect is not a component

that we were aiming to measure, but it feeds into the longitudinal resistivity mea-

surement because of the imperfect sample and contact geometries. This is done

by symmetrizing and anti-symmetrizing the results using the following equations:

ρ =
f(−B) + f(+B)

2
(4.1)

H =
f(−B)− f(+B)

2
(4.2)

where ρ is the resistivity, H is the Hall effect, f(-B) is the data from -14T to 0T,

and f(+B) is the data from 0T to 14T. By using equations 4.1 and 4.2, we obtain

the results seen in Figure 4.7.
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Figure 4.6: Simple schematic of the Hall effect component and the resistivity
component in transport measurements.

Figure 4.7: Hall effect and resistivity components of the raw transport data
with the field oriented at φ= 45◦ from the current.

Next we must subtract the background magnetoresistance from the data. This is

done by fitting a fifth order polynomial curve to the resistivity curve (this gives

the best fit to the data). This gives us an equation for the background noise.

The polynomial is then subtracted from the resistivity, giving clean data that can

then be used to calculate the Fourier transform. In Figure 4.8 we can see this

background subtraction take place. It is important to note that every set of raw

data was taken with the field sweeping up (-14 T to 14 T) and down (14 T to

-14 T). These two sets of data are then averaged to obtain the final results. By

averaging the curves we are avoiding any hysteresis in the applied magnetic field
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that could cause problems with the periodicity of the oscillations as a function of

1/B.

Figure 4.8: Background subtraction of the resistivity with the field at 45◦ to
the current

Finally the Fourier transform is taken. Both the modulus and the apodized mod-

ulus were taken. The apodized data is used to reduce the residual background at

low field that gives rise to a big peak at F=0. In order to apodize the data, the

data is multiplied by a Gaussian function of 1/B which gradually suppresses the

data at high inverse field, which reduces noise in the Fourier transform. However,

since the data points at high inverse field are still there, they will still contribute

to the Fourier transform and the density of points in the Fourier transform will

remain high. When analyzing the data, if one uses a sharp cut-off in 1/B to fil-

ter the data, the resulting Fourier transform peaks will be modulated with a sinc

function. This leads to additional peaks and data that is very difficult to interpret.
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Figure 4.9: The Fourier transform of the transport measurements with the
field at 45◦ to the current.

4.2.1 Angle Sweeps

In order to determine the orientation of the sample, measurements were taken at a

fixed field and temperature with the sample rotating from -10◦ to 360◦ (the PPMS

rotator covers a much larger range of angles than the ultrasound rotator probe).

From the results observed in Figure 4.10, we can see that there does not seem to

be a point of high symmetry that clearly indicates the position of φ = 0, unlike

what will be presented in Section 4.3. This lack of C4 and C2 symmetry could

be due to a number of factors. The current distribution will depend intricately

on the sample and contact geometry relative to the field direction. Therefore,

our imperfect contacts could explain this lack of symmetry. It is also possible

that this is caused by the current jetting effect or the chiral anomaly. In order

to determine the value of φ=0, a picture of the sample was taken and lines were

drawn along the edge of the sample and the edge of the sample board. This allowed

us to estimate the orientation of the sample. This method is not as precise as

the method used for ultrasound measurements and can therefore lead to a less

precise measurement of the sample orientation. The value of φ=0 was found to

be located at approximately 78◦. It is possible that the missing symmetry point is

caused by the sample geometry or by current jetting. This shows that the angular
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dependence is more complicated than looking at the angle between the magnetic

field and crystallographic axes, being there is also the orientation of the current

and voltage contacts and the possible inhomogeneities of the conductivity within

the sample. This is an indication that the transport measurements are less reliable

than the ultrasound measurements.

Figure 4.10: The variation of the resistance as a function of the sample posi-
tion measured by the rotator for measurements with the magnetic field in-plane

4.2.2 Field Sweeps

Field sweep measurements were taken at various angles to observe how the quan-

tum oscillations change at different orientations of the sample. We can see that

at -45◦ and -40◦ the resistivity is negative. However for all other orientations, the

resistivity stays positive. It is also possible to observe that the Hall effect switches

signs at our symmetry point(0◦) and at 90◦). These results are not what we would

expect from these kind of measurements. When current jetting is present in trans-

port measurements, it is possible to see a distorted electric potential profile within

the sample that can give strange counter intuitive results. The data also seems to

show that there is a large amount of Hall effect going into the longitudinal resis-

tance measurements. Once again, this is a result of the current jetting effect. For

the purpose of this research, we are not very concerned with the current jetting

that occurs since this is an issue that has already been tackled by other researchers
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[41, 42]. These effects should not have an effect on the frequencies of quantum

oscillations. They should however make it impossible to correctly determine the

phase of oscillations. This is an issue that can easily be avoided when taking

ultrasound measurements where there is no reason to expect current jetting to

occur.

Figure 4.11: Resistance as a function of the magnetic field on NbP at various
angles. a)φ=45◦ from the current. b)Measurements perpendicular to the cur-

rent (φ=90).

Fourier transforms of the resistivity can be found in Figure 4.12 and present a

number of peaks that can be compared with those of Wang et al [29]. They are

identified as F0, F1, F2 and F3 the different Fermi surface cross-sections seen in

Figure 4.5.
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Figure 4.12: Transport measurements of the evolution of F0, F1, F2 and F3 as
a function of φ after a polynomial background subtraction and Fourier transform

Figure 4.12 shows the angle dependence of the Shubnikov-de Haas (SdH) oscilla-

tions in NbP. The different oscillation peaks represent the different Fermi surface

cross-sections that are found in-plane. In order to determine which peaks corre-

spond to which pocket, reference [29] was used as a reference guide. In this paper,

transport measurements were done on NbP. Measurements start in-plane and the

field is then rotated out-of-plane. When the field is at 90◦ in this paper, it corre-

sponds to the oscillations we see when our sample is at φ=45◦ from the current.

By comparing these two spectra, we can then determine which peaks correspond

to which Fermi surface at φ=45◦. From these peaks, we can then follow how the

peaks shift as the orientation of the magnetic field is changed. In Wang et al. the

peaks found at our alignmnemnt of φ = 45◦ are F0=35 T, F1=60 T, F1=70 T,

F2 + F3=118 T and F3=135 T. These values match our values almost perfectly

where we obtain F0=37 T, F1=57 T, F1=74 T, F2 + F3=121 T and F3=135 T.

From observing Figure 4.12, we can see that some peaks have larger angle depen-

dence than others. For example, the F2 peak shifts from F = 162 T to F = 122 T

where as F0 shifts from F = 52 T to F = 37 T. We can also see from the data



Chapter 4: Transport Measurements 86

that the largest value of F3 is found at φ=5◦ and not at φ=0◦. This could just be

due to a misalignment of the sample on the sample holder. Something interesting

to observe is that certain peaks split as the field is rotated. This is typical for

ellipsoid-shaped Fermi surfaces of parabolic energy bands[29]. We can also see

that as the field is rotated in-plane, the F2 and the first F3 peaks are merged

together to form one large peak. When rotating the field out-of-plane this is not

the case. As seen in Figure A.7 in Appendix A, we can see that low oscillation fre-

quencies cannot be observed for in-plane transport measurements due to the large

amount of noise visible at low frequencies. This is the opposite of what we see in

ultrasound measurements where it is primarily the low oscillation frequencies that

are visible.

4.2.3 Temperature Dependence

As expected, the quantum oscillations that we see in our measurements decrease

as we increase the temperature of the sample. All temperature measurements

were done with the sample positioned at φ=0. As previously mentioned, the

oscillations decrease in amplitude as the temperature is increased. Once at 20 K,

the oscillations completely disappear. These measurements can be used to perform

mass calculations on our data.
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Figure 4.13: a)Field sweeps from -14T to 14T at various temperatures. The
oscillations decrease in amplitude as the temperature increases. b)A zoom of
the oscillations at negative fields to properly show the change in amplitude of

the oscillations. c)A zoom of the oscillations at positive fields

Next the Fourier transform of these oscillations were taken in order to see the

evolution of the oscillations frequencies as the temperature is increased.
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Figure 4.14: The temperature dependent SdH oscillations when the magnetic
field is parallel to the current.

Figure 4.14 shows the decay of the different oscillation peaks as the temperature

is increased. We can see that at a temperature of 10K the oscillation peaks F0

and F2+F3 are almost completely indiscernible whereas the oscillation peaks F1

and F3 are still present. This could be related to the fact that F0 and F2 are Weyl

semimetal pockets, whereas F1 and F3 are trivial pockets.

Using the method explained in Section 1.3.3 it is possible to calculate the effective

mass of the carriers in the measured Fermi surfaces. These measurements are done

on the resistivity measurements without a Fourier transform. This is because each

peak in the Fourier transform does not have a well defined magnetic field value

(since it is taken from an analysis of a broad range of magnetic fields), making the

peak useless in equation 1.17. It is more straightforward to follow the oscillation

amplitude at a particular field value for ρ(B).
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Figure 4.15: Temperature dependence of the quantum oscillations after a
background subtraction.

In order to determine the effective mass, the height of the oscillation located at

12.5 T was noted at each temperature. The H = 12.5 T peak was chosen because

it has a flatter background and has the clearest oscillation. The height of the peak

as a function of the temperature was then plotted out and was fitted with equation

1.17. Because the background subtraction was not perfect, an offset was added to

the thermal factor to properly fit the curve. By fitting the thermal damping factor,

the effective mass was found to be m∗ = 0.309me. Effective mass calculations on

NbP were done by Wang et al. [29], however the measurements were done with

H = 13.4 T and at a different field orientation. The values found by Wang et al.

ranged from m∗=0.1me to m
∗=0.47me. Therefore the value found for the effective

mass from our data seems to be consistent with what is found in the literature.

We were unable to find other papers that calculated the effective mass of NbP at

the same orientation as our research.
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Figure 4.16: Temperature dependence of the height of the quantum oscillation
located at H=12.5 T. The red dotted line represents the fit of equation 1.17

where m∗ = 0.309me.

4.3 Results (Field Out-of-Plane)

Transport measurements were taken with the magnetic field rotating out of the

plane of the sample. The same samples were used for the out-of-plane measure-

ments as the in-plane measurements with the current along the [110] direction.

The magnetic field was rotated from [110] to [001] where [110] corresponds to

Θ = 0◦ and [001] corresponds to Θ = 90◦ for the results seen in this section (Fig-

ure 4.4). The samples were placed on a sample board like the one seen in Figure

4.3c) using vacuum grease. The data analysis in the section is the same as the

analysis technique explained in Section 4.2.

4.3.1 Angle Sweeps

As done for the in-plane measurements, an angle sweep of the sample was done at

various fields to try and find the symmetry point of the sample. With the sample

rotating from -10◦ to 175◦ and the field varying from 2T to 16T, a symmetry

point was found at around 95◦ (Figure 4.17). The absolute value of 0◦ is therefore

located at 95◦. This differs from our results found in Section 4.2.1, where there

was no evident point of high symmetry.



Chapter 4: Transport Measurements 91

Figure 4.17: The variation of the resistance as a function of the orientation of
the sample for measurements with the field rotating out-of-plane. The sample

position corresponds to the angle as defined by the rotating PPMS probe.

4.3.2 Field Sweeps

Figure 4.18: Resistance as a function of the magnetic field on NbP at various
angles. a)Out-of-plane measurements done at Θ=45◦ from the current and

b)Θ=90◦ from the current.

Unlike what was seen for the in-plane measurements, the resistivity does not switch

signs for out-of-plane measurements. This could be linked to the current jetting

effect. Similarly to Section 4.2.2, we want to take the Fourier transform of the

curves seen in Figures A.5 and A.6 in order to obtain information about the Fermi

surface of NbP. These Fourier transforms can be seen in Figure 4.19.
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Figure 4.19: Transport measurements of the evolution of the Fermi surfaces of
NbP as a function of Θ after a polynomial background subtraction and Fourier

transform.

These curves are much more complex than those seen for the in-plane measure-

ments. The many oscillations seen are a combination of the Fermi surface oscil-

lation frequencies and of the harmonics of these peaks. Taking a closer look at

the measurements taken with the field perpendicular to the current (i.e. θ = 90◦)

allows us to compare with the literature and identify these different peaks.

Figure 4.20: Fermi surfaces F0, F1, F2 and F3 when the magnetic field is
perpendicular to the current.
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As in the previous section for in-plane measurements, the peaks F0, F1, F2 and

F3 were identified using the reference [29]. The oscillation frequencies determined

in reference [29] are quite close to the peaks shown in our data in Figure 4.20.

More precisely, peaks were found at F0 = 5.8 T, F1 = 12.0 T, F2 = 32.5 T and

F3 = 66.4 T. The various other peaks that can be found in Figure 4.20 are likely

higher harmonics of the frequencies F0, F1, F2 and F3. These can be identified as

harmonics because they are evenly spaced, multiples of the fundamental frequen-

cies and have smaller intensities than the fundamental peaks.

Figure 4.21: FFT amplitude as a function of the quantum oscillation fre-
quency when the magnetic field is at 85◦ from the current. The red rectangles
represent the different areas where there are two frequencies nearly out of phase.

There are additional features that can be seen in the curves that cannot be at-

tributed to higher harmonics. These features can be seen in Figure 4.21. When

the field is at 85◦ from the current, sharp dips in the frequencies can be observed.

These dips occur at approximately 17 T, 32 T and at 76 T. These dips can be

created by two frequencies that are nearly out of phase.
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Figure 4.22: Asymmetry seen in the up and down sweeps of the magnetic
field when the field is parallel to the current.

It is important to note that an abnormality was seen in the data collected when

the magnetic field was at an angle of 0◦. Hysteresis is visible, that is a difference

between the data that was taken with the magnetic field sweeping up and the data

with the magnetic field sweeping down. This gap is only seen at positive magnetic

fields and can only be seen at Θ=0◦. In order to confirm that these results were

true, a second set of measurements were taken with the same parameters. These

results can be seen in Figure 4.22 and the same gap can be seen in the second set

of measurements. Despite the hysteresis to the background magnetoresistance, up

and down sweeps both have the same oscillation frequencies. These results might

be a mechanical hysteresis resulting from an unstable or multi-stable rotator at

specific angles that shifts under an applied field.

4.3.3 Temperature Sweeps

As it was seen for the in-plane measurements, the quantum oscillations decrease

in amplitude as the temperature is increased. All temperature measurements were

done with the magnetic field perpendicular to the current. The magnetic field was

swept from -16 T to 16 T.
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Figure 4.23: Field sweeps from -16 T to 16 T at various temperatures. The
oscillations decrease in amplitude as the temperature increases.

The Fourier transform of the quantum oscillations was taken for each tempera-

ture measurement in order to properly observe the revolution of the oscillation

frequencies.

Figure 4.24: Temperature dependent SdH oscillations when the magnetic field
is perpendicular to the current

From Figure 4.24, the decay of the different oscillation peaks can be observed as

the temperature is increased. We can see that the F3 peak is almost completely
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gone when a temperature of 15 K is reached, whereas peaks F0 and F2 are still

very discernible. We would expect F1 to behave similarly to F3 because they are

both trivial pockets. It is possible that this difference is caused the the visible

harmonics. These harmonics could be mixing with the F1 peak, making it appear

larger than it truly is.

Effective mass calculations were performed using the same method described in

Section 4.2.3. The oscillation peaks located at 7.5 T and 13.4 T were chosen for

effective mass measurements. These peaks had the clearest oscillations allowing

us to properly calculate the effective mass.

Figure 4.25: Temperature dependence of the quantum oscillations after a
background subtraction for out-of-plane measurements.

The height dependence of the peaks as a function of the temperature was plotted

and the thermal damping factor was fit to the data to obtain the effective mass

with an offset to account for the background. The effective mass at H=7.5 T

was found to be m∗ = 0.160me and the effective mass at H=13.4T was found to

be m∗ = 0.292me. Klotz et al. performed effective mass calculation on NbP as

well at similar magnetic fields [28]. They found m∗ = 0.05me for H=9 T and

m∗ = 0.120me for H=13 T. The difference between our results could be because

we have a different contact geometry than what Klotz et al. have. This shows

that the exact value of the effective mass changes according to the magnetic field
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chosen. This could be because different Fermi surfaces contribute at each field and

we are therefore measuring the effective mass of different Weyl nodes. An ideal

analysis would likely need to consider the amplitude of a particular peak in the

Fourier transform, but would also have to take into account the width of the peak.

This is because the damping factors have a field-dependence which leads to to a

faster decay of the oscillations as a function of 1/B as temperature is increased,

leading to a broadening of the Fourier transform peaks.

Figure 4.26: Temperature dependence of the height of the quantum oscilla-
tions located at H=7.5T and H=13.4T with m∗ = 0.160me and m∗ = 0.292me

respectively.

4.4 Discussion

Despite the likely presence of current jetting and a non-ideal sample and contact

geometry, these transport measurements showed clear quantum oscillations and

these could be compared with those measured by other groups in the literature.

In particular, the oscillation frequencies that we observed were found to be quite

consistent with the measurements of Wang et al. This shows that our samples are

of comparable quality to theirs and have a similar Fermi energy.

Moreover, the transport measurements we carried out on our samples have allowed

us to confirm that sound velocity and electrical transport give rather different
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results. Most importantly, sound velocity can be seen to be highly sensitive to

lower-frequency oscillations that are almost completely invisible in the resistivity

results. When comparing the results obtained using each method, we can see

that ultrasound measurements detect certain oscillation frequencies that transport

measurements cannot. For example, ultrasound measurements detect oscillation

frequencies at 1.7 T, 5.4 T, 12 T and 20 T when measuring at φ=0◦ when transport

measurements cannot. Sound velocity measurements also detect frequencies at

1.5 T and 5.5 T when θ=90◦, which cannot be seen in transport measurements.

The transport measurements also show the risks of current jetting and the difficulty

of obtaining a reliable measurement of a longitudinal negative magnetoresistance

brought on by the chiral anomaly. For example, one could be tempted to proclaim

evidence for a chiral anomaly-induced negative magnetoresistance in the high-field

downturn of the curve measured at 5◦ presented in Figure A.4. However, it can be

seen that this effect is absent in the 0◦ curve in Figure A.3, implying that it is most

likely a result of current-jetting. This emphasizes our claim that sound velocity is

a more reliable method to look for the chiral anomaly, even if the previous chapter

shows that it is either not present or too small to be observed in NbP. It is also

likely that the phase of quantum oscillations is particularly difficult to extract

reliably from the transport measurements.

Finally, the significant differences between transport and sound velocity show that

we likely cannot attribute changes in sound velocity as a function of magnetic

field to changes in conductivity of the sample (resulting from screening of the

piezoelectric effect caused by sound waves propagating in the sample). The large

background (slowly varying) magnetoresistance that is seen in transport measure-

ments is simply not present in the sound velocity measurements, which are instead

dominated by the quantum oscillations.
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Within this thesis, we have managed to analyse a number of results on the Weyl

semimetal NbP obtained using both sound velocity measurements and transport

measurements. These results have allowed us to determine the differences between

the quantum oscillations of each measurement technique. The ultrasound measure-

ments have allowed for a more precise determination of the quantum oscillation

frequencies, especially when observing low oscillation frequencies.

A careful analysis of angular variations of the sound velocity show no significant

evidence of the chiral anomaly, in contrast with what was seen in previous research

performed on TaAs. This indicates that further work must be done on NbP to try

and observe the chiral anomaly or else explain why it is not observable.

This research has helped solidify the importance of using sound velocity measure-

ments as an analysis technique for detecting quantum oscillations. As previously

stated, ultrasound measurements were better at detecting lower oscillation frequen-

cies. They are also much more reliable than transport measurements, as they are

not affected by effects such as the current jetting effect and a slowly-varying back-

ground magnetoresistance that make transport measurements particularly difficult

to analyse and interpret.

There is still more work that can be done to continue this project. It would be

important to perform more measurements on TaAs to confirm that the previous
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observations of the chiral anomaly in the sample are correct. It would also be

pertinent to carry out more measurements on NbP at higher magnetic fields to

see if it would reveal the chiral anomaly. More research needs to be done to

better understand how sound velocity is coupled to different Fermi surfaces in

Weyl semimetals. Our initial, näıve expectation that decreases in sound velocity

are related to increases in conductivity appears to be false. This assumption

would imply that the sound velocity and transport measurements would be equally

sensitive to all quantum oscillation frequencies, which is evidently not what we

observe. To better understand the results obtained in this thesis, it would be

extremely valuable to launch a discussion with theorists to consider how the various

Fermi surfaces ought to be coupled to strain in the sample.

It also remains difficult to identify certain oscillations, particularly those at very

low frequencies, and in this regard we could also benefit from a collaboration with

researchers who have an expertise in ab initio electronic structure calculations.

Even Subnikov-de Haas oscillations between different groups do not agree very well

regarding certain oscillation frequencies in NbP and these discrepencies probably

call for further theoretical work on this material’s complex Fermi surface and the

possible effects of sample disorder.

Finally, the qualitative disagreement between our work and that of Schindler et

al. [47] needs to be resolved. It would be worth remeasuring their sample with our

apparatus, or vice versa to verify that the origin of the difference is not experi-

mental error and indeed comes from the sample.

Meanwhile, the family of Weyl semimetals of various types has grown considerably

in recent years and we feel that sound velocity measurements on many of these

materials could bring important contributions to this research area. So far only

TaAs and NbP have been studied with sound velocity. Two other members of this

family, TaP and NbAs, could easily be studied, not to mention rather different

Type-II Weyl semimetals like MoTe2 and WTe2.



Appendix A

Supplementary Plots

A.1 Sound Velocity

Figure A.1: Comparison between the measurements taken at 0◦ and 90◦. The
difference between the curves at each angle is largely reproducible, but there

are some small discrepancies visible for 90◦ above roughly 11 T.
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Figure A.2: Evolution of the quantum oscillation frequencies at various orien-
tations of NbP for in-plane measurements at higher oscillation frequencies. The
FFT amplitude is multiplied by the frequency to better expose small peaks at

higher frequencies.
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A.2 Raw Transport Measurement Results

Figure A.3: Resistance as a function of the magnetic field on NbP at various
angles. a)In-plane measurements done at φ=-45◦ from the current. b)φ=-40◦

from the current. c)φ=-30◦ from the current. d)φ=-15◦ from the current.
e)φ=-5◦ from the current. f)Measurements parallel to the current (φ=0).
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Figure A.4: Resistance as a function of the magnetic field on NbP at various
angles. a)In-plane measurements done at φ=5◦ from the current. b)φ=10◦ from
the current. c)φ=15◦ from the current. d)φ=30◦ from the current. e)φ=45◦

from the current. f)Measurements perpendicular to the current(φ=90).
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Figure A.5: Resistance as a function of the magnetic field on NbP at var-
ious angles. a)Out-of-plane measurements done at Θ=0◦ from the current.
b)Θ=5◦ from the current. c)Θ=15◦ from the current. d)Θ=30◦ from the cur-

rent. e)Θ=45◦ from the current. f)Θ=60◦ from the current.
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Figure A.6: Resistance as a function of the magnetic field on NbP at var-
ious angles. a)Out-of-plane measurements done at Θ=70◦ from the current.
b)Θ=75◦ from the current. c)Θ=80◦ from the current. d)Θ=85◦ from the

current. e)Θ=90◦ from the current. f)Θ=95◦ from the current.
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A.3 Lower Frequency Oscillations From Trans-

port

Figure A.7: FFT of the in-plane transport measurements as a function of φ
after a polynomial background subtraction at low oscillation frequencies.
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