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Sommaire

Dans ce mémoire, nous concevons l’analogue topologique d’un bit magnétique. À partir
du modèle de SSH-Holstein, nous avons montré qu’une perturbation externe transi-
toire entraine un changement permanent de la topologie de bande. Cela contraste avec
l’ingénierie de Floquet, dans laquelle le système revient à son état d’origine lorsque la
perturbation externe est désactivée. Le modèle SSH-Holstein se compose d’une chaine
unidimensionnelle d’orbitales avec couplage électron-phonon de type SSH (entre les
sites) et de type Holstein (sur site). Lorsque le couplage SSH domine, l’état fondamen-
tal présente une instabilité et devient une onde de densité de lien. L’onde de densité
de lien a deux états fondamentaux topologiquement distincts mais énergétiquement
identiques, qui diffèrent par le signe de la dimérisation. Lorsque le couplage Holstein
domine, le système devient une onde de densité de site. Cependant, cette dernière n’a
pas de topologie de bande bien définie. Près de la frontière de phase entre les ondes de
densité de lien et de site, nous avons effectué un calcul explicite du paramètre d’ordre
microscopique qui favorise l’onde de densité de lien. Ses deux états fondamentaux
énergétiquement identiques mais topologiquement distincts sont l’analogue des deux
états d’un bit magnétique. Le problème clé est alors de montrer qu’il est possible de
passer d’un état à l’autre de l’onde de densité de lien. Pour atteindre cet objectif, nous
avons utilisé le formalisme de l’intégrale de chemin pour dériver l’équation du mou-
vement du paramètre d’ordre. Nous avons constaté que l’équation du mouvement est
profondément liée à l’anomalie chirale, et qu’il y a une analogie avec l’effet Josephson
fractionnaire. Enfin, nous avons répondu par l’affirmative à la question clé et identi-
fié des régimes de paramètres et de perturbations dans lesquels le bit topologique est
réalisé.
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Summary

In this thesis, we design the topological analogue of a magnetic bit. Starting from the
SSH-Holstein model, we showed that a transient external perturbation leads to a per-
manent change in the band topology. This contrasts with Floquet engineering, in which
the system goes back to its original state when the external perturbation is turned off.
The SSH-Holstein model consists of a one-dimensional chain of orbitals with SSH-type
(inter-site) and Holstein-type (on-site) electron-phonon coupling. When the SSH cou-
pling dominates, the ground state displays an instability and becomes a bond-density
wave. The bond-density wave has two topologically distinct but energetically identical
ground states, differing by the sign of the dimerization. When the Holstein coupling
dominates, the system becomes a site-density wave. However, the latter has no well-
defined band topology. Close to the phase boundary between the bond- and site-density
waves, we performed an explicit calculation for the microscopic order parameters which
favor the bond-density wave ground state. These two energetically identical but topo-
logically distinct ground states are the analogue of the two states of a magnetic bit. The
key problem is then to show that it is possible to switch between the two states of the
bond-density wave. To achieve the goal, we used the path-integral formalism to derive
the equation of motion of the order parameter. We found that the equation of motion
is deeply related to the chiral anomaly, and that there is an analogy with the fractional
Josephson effect. Finally, we provided a positive answer to the key question, and we
identified parameter regimes in which the topological bit is realized.
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Chapter 1

Introduction

1.1 Topological phases

Over the last 15 years, there has been an explosion of research activity in topological
condensed matter physics [1, 2, 3, 4, 5], numerous papers related to topological phases
have been published.

Topological phases are exotic phases of matter characterized by a set of integer num-
bers known as topological invariants. These integers capture the topology of the elec-
tronic wave functions in momentum space (e.g. the winding number of the phase of the
wave function along the Brillouin zone edge) [6]. Generally, nonzero topological invari-
ants manifest themselves physically through the appearance of robust gapless (metallic)
electronic states at the boundaries of the material. Two celebrated examples of this phe-
nomenon are the quantum Hall insulator [7] and the quantum spin Hall insulator [2];
see Figs. (1.2)and (1.1).

In recent years, a keen interest has emerged to control and alter the values of topo-
logical invariants through the application of external perturbations [8]. A general mech-
anism to change a topological invariant is the "band inversion" [9]. A graph illustration
of the band inversion mechanism is given in Fig. (1.3). In the language of band the-
ory, in order to change the topology while preserving the symmetries of the system, one
needs to close the energy gap and then reopen it with the opposite band ordering. In the
inverted regime, a small fraction of the valence band goes to the conduction band, and
a small fraction of the conduction band goes to the valence band. As a consequence, the
boundary of the system has a metallic state and the bulk is insulating, since only a small
part of the bands is inverted. It must be noted that, in certain systems, one can realize a
band inversion without having to go through a closure of the energy gap. This situation
takes place when the topological invariant is protected by a symmetry and the external
perturbation breaks that symmetry. In chapter 4 of this thesis, we will be dealing with
precisely such a situation.

The band inversion mechanism is quite general, but it does not tell us the dynamics
of order parameter during this process, which will be the main focus of this thesis.
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Figure 1.1
Edge states of the 2D quantum spin hall insulator. The current in blue is carried by electrons
with spin 1/2 and the current in orange is carried by electrons with spin −1/2. The gapless
edge state is protected by time-reversal symmetry and is characterized by a Z2 topological
invariant.

Figure 1.2
Edge state in a quantum hall insulator. The current in blue is carried by electrons. There
is a magnetic field perpendicular to the plate. The gapless edge state is a consequence of
time-reversal symmetry breaking.
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Figure 1.3
Schematic description of a band inversion. On the left panel, the system is a normal or topo-
logically trivial insulator, in the sense that its band structure can be adiabatically deformed
(i.e. without the closure of the energy gap) toward the band structure of vacuum. In this case,
there is no gapless edge modes (top left inset). By closing the energy gap (middle panel) and
reopening it again with inverted band ordering (right panel), the band structure is no longer
adiabatically connected to that of vacuum and consequently there is a gapless state at the
sample boundary (top right inset).

1.2 Floquet engineering

A widely accepted way to achieve a band inversion with the application of external per-
turbations is through Floquet engineering. In this scheme,the band structure is modified
by a periodic driving and a band inversion is included in the Floquet Hamiltonian. In
some systems, this could be achieved by coupling the system to polarized light [10]. A
graph presentation of Floquet engineering is given in Fig. (1.4).

In Floquet engineering, the Hamiltonian of the system is periodic in time T : H(t) =
H(t + T ) [10]. Generally, the topological invariant is computed by using the Bloch
states |ukn(r)〉 [2], which form a static, complete orthogonal set of solutions for the
time-independent Schrodinger equation. For instance, in one dimension, the topological
invariant for the electronic band n is given by [2]

N =
1

2π

∮︂

dk〈ukn|i∂k|ukn〉, (1.1)

where the integral in the wave vector k is along the entire Brillouin zone. However, in
Floquet engineering we use a time-dependent basis |Φ(t)〉 [10], where exp(−iε̃t)|Φ(t)〉
forms a complete orthogonal set of solutions for the time-dependent Schrodinger equa-
tion, ε̃ is the generalized energy and |Φ(t)〉= |Φ(t+T )〉. The one-period time evolution
operator can be defined as

U(T, k) = exp

�

−i

∫︂ T

0

d t ′H(t ′, k)

�

≡ exp(−iHeff(k)T ), (1.2)
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and H
eff

is defined as

Heff =
i
T

log

�

exp

�

−i

∫︂ T

0

H(t)d t

��

, (1.3)

where Heff(k) is an effective time-independent Hamiltonian known as the Floquet Hamil-
tonian. The topological invariant for the periodically driven system can be calculated
directly from Heff(k), similarly as it is done in equilibrium (e.g. using Eq. (1.1) if the
system is one dimensional in space).

Let us suppose that the initial (equilibrium) Hamiltonian is topologically trivial. Ac-
cordingly, the band structure of the initial Hamiltonian does not display inverted bands.
Now, for an appropriate external drive, Heff can host inverted bands. When that hap-
pens, we say that the topological invariant has been changed due to the external periodic
perturbation.

One conceptual and practical limitation of Floquet engineering is that its effect is
written in water when the periodic perturbation is removed. In other words, once the
external drive is switched off, the system goes back to its initial state (e.g. to the topo-
logically trivial state in the example considered in the preceding paragraph). This lim-
itation motivates the main question of the present thesis: is it possible to conceive a
system in which a small transient external perturbation can lead to a permanent change
in the electronic band topology? If the answer to this question is affirmative, we will
have conceived a topological analogue of the magnetic bit, the system stays in the final
state permanently even if the perturbation is removed.

1.3 Magnetic bit and the Landau-Lifshitz-Gilbert equation

The magnetization of an easy-axis ferromagnet forms a “magnetic bit”, which is the
basis for magnetic memories in today’s information technology [11]. A magnetic bit
consists of two energetically degenerate magnetization confirgurations, labeled as "0"
state and "1" state. These two magnetic states minimize the energy of the ferromagnet.
In order to go from one energy minimum to another by changing the direction of the
magnetization, there is an energy cost known as the magnetic anisotropy energy. This
energy barrier ensures the stability of the magnetic memory. A graph presentation of
the magnetic bit is given in Fig. (1.5).

It is well-known that a transient small external perturbation can lead to a permanent
change from the "0" state to the "1" state permanently, This is necessary in order to
write new data in the magnetic memory. A graph presentation of the process is given
in Fig. (1.6). The dynamics of such process is described by the Landau-Lifshitz-Gilbert
equation [12]:

dM
d t
= −γM×Heff −λM× (M×Heff), (1.4)

4
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Figure 1.4
Example of Floquet engineering of topological phases. The equilibrium bulk band structure
is displayed in the top of panel (a), and A is the gauge field created by the light. It describes
a strip of graphene with armchair edges, which is topologically trivial. The bottom of panel
(a) shows the bulk band structure under light irradiation. The system now has bands with
nonzero topological invariants, which manifest themselves through the appearance of metallic
edge states (panels (b)). Figure taken from [8].

Figure 1.5
Schematic representation of a magnetic bit. (a) Magnetization of a ferromagnet, with polar
and azimuthal angles θ and φ. (b) Cartoon of the energy of an easy-axis ferromagnet as
a function of φ. There are two degenerate local minima, which describe the two states of
the magnetic bit ("0" and "1"). The energy barrier between the two states is the magnetic
anisotropy energy.
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Figure 1.6
Cartoon of magnetization switching produced by an external perturbation.

and

Heff = Hext +Hani, (1.5)

where M is the magnetization of the system in the mean-field approximation, Heff is
the effective magnetic field (perturbation), Hext is the external magnetic field and Hani
is the magnetic anisotropy field (obtained by taking the derivative of the anisotropy
energy with respect to the magnetization direction). The first term in the right-hand side
describes the precession of the magnetization around the effective magnetic field with
a gyromagnetic ratio γ, the second term in the right-hand side describes the damping
relaxation of the magnetization towards the effective magnetic field via damping of
amplitude λ. Damping is essential in order for the magnetization to settle into the new
energy minimum once the external perturbation is switched off. Likewise, magnetic
anisotropy energy is essential to ensure that the final state will be stable and that the
system will not return to its initial state once the perturbation is switched off.

In this thesis we intend to describe a counterpart of the magnetic bit and the Landau-
Lifshitz-Gilbert equation for a topological phase, where the role of 0 and 1 is played by
two states of different topological invariants. This is an example of dynamics and control
of topological invariants that goes beyond the Floquet engineering.

A presentation of the Landau-Lifshitz-Gilbert equation is given in Fig. (1.7). Eq. (1.4)
is only approximate, appropriate for slow-enough dynamics of the magnetization. In
addition, Eq. (1.4) conserves the magnitude of the magnetization; only its direction is
susceptible to change. This is a good approximation for many ferromagnets at tem-
peratures well below the Curie temperature, where the energetic cost of changing the
direction of magnetization (a consequence of spin-orbit interactions) is far less than the
energy required to change the magnitude of the magnetization.

6



Figure 1.7
A pictorial presentation of the Landau-Lifshitz-Gilbert equation.The red trajectory describes
the precession, and the blue trajectory describes the damping relaxation. The figure is taken
from Wikipedia (See the Wikipedia article on the "Landau–Lifshitz–Gilbert equation").

We map the order parameter to the magnetization, and we will derive a topological
analogue equation of the Landau-Lifshitz-Gilbert equation. This is an example of be-
yond Floquet engineering, instead of going back to the initial state when the external
perturbation is turned off, the system stays permanently in the final state.

In order to provide a proof-of-principle for the topological analogue of a magnetic
bit, we will work on the simplest possible model that gathers all the necessary ingre-
dients, namely: (i) energetically degenerate ground states with different values of the
topological invariants, (ii) an analogue of the magnetic anisotropy energy, (iii) an ana-
logue of external magnetic fields. This model, known as the SSH-Holstein model, will
be introduced in the next chapter.

7
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Chapter 2

SSH-Holstein model

In this chapter, we present and explain the SSH-Holstein model. We begin by review-
ing the SSH and Holstein models separately, and by describing the band topology in
each case. The SSH-Holstein model is then discussed. This model will be used in later
chapters for a proof-of-principle realization of the topological bit.

2.1 The SSH model

In its simplest realization, the SSH model describes spinless electrons moving in one
dimension with a hopping amplitude modulated by phonons. Its Hamiltonian is given
by [13]

HSSH = t0

∑︂

j

(c†
j c j+1 + h.c.)−αS

∑︂

j

(q j − q j+1)(c
†
j c j+1 +H.c.)

+
1
2

mS

∑︂

j

�

(q j̇ − q̇ j+1)
2 +ω2

S(q j − q j+1)
2
�

, (2.1)

where t0 is the hopping between nearest sites, q j is the lattice displacement at site j and
αS is the SSH electron-phonon coupling constant. We assume t0 is real. At half-filling
(one electron per two sites, since our model is spinless), the system undergoes a Peierls
instability towards a gapped bond density wave [14]. In the mean-field approximation,
the density wave is described by q j = (−1) j∆0x/2, where∆0x is a static order parameter.
When substituting this order parameter in Eq. (2.1), the hopping amplitude becomes
dimerized, so

HSSH,MF = t0

∑︂

j

(c†
j c j+1+H.c.)−αS∆0x

∑︂

j

(−1) j(c†
j c j+1+h.c.)+

1
2

mSω
2
S

∑︂

j

∆2
0x . (2.2)

A geometric presentation of the SSH model is given in Fig. (2.1). In pseudospin
representation, the bond density wave can be mapped onto an antiferromagnetic state.
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Figure 2.1
Schematic representation of the mean-field ground state of the SSH model. The hopping am-
plitude is modulated between weak and strong values (single and double lines, respectively).
As a result the system has a two-atom unit cell. The two sites in the unit cell are denoted as
A and B sites (in blue and yellow, respectively).

To see this we define the pseudospin operators

Sz
j = c†

j c j − c†
j+1c j+1

S x
j = c†

j c j+1 + c†
j+1c j

S y
j = −ic†

j c j+1 + ic†
j+1c j . (2.3)

Then, 〈S x
j+1〉 ∝ (−1) j+1αS∆0x , and ∆0x can be understood as a Néel order along x .

The mapping between the bond density wave order parameter and the magnetic order
parameter motivates our later approach of borrowing from the concepts of spintronics
in order to determine the dynamics of the density-wave order parameter.

Adopting periodic boundary conditions, Eq. (2.2) can be written in Fourier space as

HSSH,MF =
∑︂

k1

�

C†
k1A C†

k1B

�

dk1
·σ
�

Ck1A
Ck1B

�

+
N
2

KS∆
2
0x , (2.4)

we will use k1 for wavenumber and k0 for frequency. A and B denote the two sites in a
unit cell, N is the number of sites, KS = mSω

2
S is the phonon stiffness. C†

k1,A and C†
k1,B

are the electronic creation operator of A and B sites respectively; Ck1,A and Ck1,B are the
electronic annihilation operator of A and B sites respectively. Vector d is

dx = (t0 +αS∆0x) + (t0 −αS∆0x) cos(2k1a)

dy = −(t0 −αS∆0x) sin(2k1a)

dz = 0, (2.5)

and a is the lattice constant. The dispersion relation of the electrons is then

εk1± = ±
q

2(t2
0 +α

2
S∆

2
0x) + 2(t2

0 −α2
S∆

2
0x) cos(2k1a), (2.6)

and its spectrum is shown in Fig. (2.2). We expand the energy around the vicinity of

10
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E
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Figure 2.2
Energy spectrum of the SSH model, where "+" labels the conduction band, and "−" labels the
valence band. We choose a = 1 and αS∆0x/t0 = 0.3.

the two Fermi points k1 =
π
2a ± q1, so the ground state energy of the system is

E[∆0x]≈ −
∑︂

q1

q

4a2 t2
0q2

1 + 4α2
S∆

2
0x +

N
2

KS∆
2
0x

= −Na
2π

∫︂ Λ

0

dq1

q

4a2 t2
0q2

1 + 4α2
S∆

2
0x +

N
2

KS∆
2
0x (2.7)

the mean-field energy and order parameters are obtained by minimizing the energy, i.e,
imposing ∂ E/∂∆0x = 0. By doing this we get

∆0x = ±
2at0Λ

αS
exp−πt0KS

2α2
S

, (2.8)

where Λ is a momentum cutoff. Even though this value of ∆0x minimizes the energy,
∆0x = 0 is also a solution but corresponds to a higher energy state in one dimension.
At the mean-field level, there are only two possible values of ∆0x and they only differ
by a sign. This is an example of a commensurate charge density wave (commensurate
CDW).

The eigenvectors of the conduction band "+" and valence band "−" are

|+, k1〉=
�

cos θ2
eiϕ sin θ2

�

|−, k1〉=
� − sin θ2

eiϕ cos θ2

�

, (2.9)

where θ = arccos(dz/
q

d2
x + d2

y + d2
z ) and ϕ = arctan(dy/dx). In SSH model θ = π/2

because dz = 0.
It is clear that the energy spectrum is invariant under a sign change of∆0x . However

the sign of ∆0x has impact on the band topology of the system. To see this, let us
calculate the Berry phase for the SSH Hamiltonian in the mean-field approximation.
The Berry phase is a geometric phase that appears in quantum mechanical system. It

11



Figure 2.3
Schematic representation of the winding number of the SSH model, for the case of ∆0x < 0.
The blue line describes the closed path made by when k1 varies from −π/2a to π/2a. The
angle ϕ defined by tanϕ = dy/dx completes a full circle and therefore the winding number
is one.

only depends on the closed path of the external parameter [15] in parameter space.
When the parameter is the crystal momentum this phase is called the "Zak phase" [2].
The Zak phase is related to the electronic transport property of an insulator [16]. For
the SSH model the Berry phase is [2]

γ± = i

∫︂
π
2a

− π2a

dk1〈±, k1|∂k1
|±, k1〉= −

1
2

∫︂
π
2a

− π2a

dk1∂k1
ϕ

= −1
2

�

ϕ
� π

2a

�

−ϕ
�−π

2a

�
�

= −nπ.

Since π/2a and −π/2a are the same point, the single value property of the wave func-
tion implies that ϕ

�

π
2a

� − ϕ �−π2a

�

must be a multiple of 2π. The multiplicity n is the
winding number (the number of loops made by ϕ as k1 covers the Brillouin zone.)
For ∆0x < 0, it turns out that n = 1 and therefore the Berry phase is π (mod 2π); for
∆0x > 0, n = 0 and the Berry phase is 0 (mod2π). This is because the minimum value
of dx is equal to 2αS∆0x . See Fig. (2.3) and Fig. (2.4).

In the SSH model chiral symmetry is preserved because [H,σz]+ = 0 ([·, ·]+ is
the anti-commutator). There is a robust electron edge state, the Jackiw-Rebbi zero
mode [2]. As long as chiral symmetry is preserved, the edge mode will always be

12



Figure 2.4
Schematic representation of the winding number of the SSH model, for the case of ∆0x > 0.
The blue line describes the closed path made by when k1 varies from −π/2a to π/2a. The
angle ϕ defined by tanϕ = dy/dx does not complete a circle and therefore the winding
number is zero.

present [2] in finite-size chains, provided that the winding number therein is nonzero.
This is an example of symmetry-protected topological phase [6]. The physical interpre-
tation of the existence of the edge state is that a non-trivial Zak phase is related to the
non-trivial bulk polarization, so the edge state must carry charge.

2.2 The Holstein model

In its simplest realization, the Holstein model describes spinless electrons moving in one
dimension with an onsite potential modulated by phonons. Its Hamiltonian is given
by [17]

HHolstein = t0

∑︂

j

(c†
j c j+1 +H.c.)−αH

∑︂

j

Q j(c
†
j c j) +

1
2

mH

∑︂

j

�

Q j̇ 2 +ω2
HQ2

j

�

, (2.10)

where Q j is the lattice displacement at site j and αH is the Holstein electron-phonon
coupling constant. We work in a gauge where t0 is real. At half filling, the system
undergoes a Peierls instability towards a gapped site-density wave [17]. In mean field

approximation, the density wave is defined by Q j =
(−1) j

2 ∆0z , where∆0z is a static order

13



Figure 2.5
Schematic representation of the mean-field ground state of the Holstein model. The site
potential is modulated between weak and strong values (small and big balls, respectively).
As a result the system has a two-atom unit cell. The two sites in the unit cell are denoted as
A and B sites (in blue and yellow, respectively).

parameter. It follows that the onsite potential becomes dimerized, so

HHolstein,MF = t0

∑︂

j

(c†
j c j+1+h.c.)− 1

2
αH∆0z

∑︂

j

(−1) j(c†
j c j−c+j+1c j+1)+

1
2

mHω
2
H

∑︂

j

∆2
0z .

(2.11)
A geometric presentation of the Holstein model is given in Fig. (2.5). In the pseudospin
representation, the site density wave can also be mapped onto an antiferromagnetic
state by the same operators as in Eq. (2.3). Then, 〈Sz

j+1〉 ∝ (−1) j+1αH∆0z/2, and ∆0z
can be understood as a Néel order along z.

In Fourier space the Hamiltonian can be written as

HHolstein,MF ≈
∑︂

k1

�

C†
k1A C†

k1B

�

d ·σ
�

Ck1A
Ck1B

�

+
N
2

KH∆
2
0z , (2.12)

where

dx = t0 + t0 cos(2k1a)

dy = −t0 sin(2k1a)

dz = αH∆0z . (2.13)

A, B denotes sites within one unit cell and KH = mHω
2
H is the phonon stiffness.The

dispersion relation of the electrons is

εk1
= ±

q

α2
H∆

2
0z + 2t2

0 + 2t2
0 cos(2k1a), (2.14)

and its energy spectrum is shown in Fig. (2.6). The ground state energy of the system
at half-filling is

E[∆0z]≈ −
∑︂

q1

q

4a2 t2
0q2

1 +α
2
H∆

2
0z +

N
2

KH∆
2
0z , (2.15)
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−π/2a 0 π/2a

k1

−2

−1

0

1

2

E
/t

0

+

−

Figure 2.6
Energy spectrum of the Holstein model, where "+" means the conduction band, "-" means the
valence band. We choose a = 1 and α2

H∆
2
0z = 0.09.

Again the mean-field order parameter can be obtained by minimizing the energy:

∆0z = ±
4at0Λ

αH
exp−2πt0KS

α2
H

, (2.16)

where Λ is a UV (ultraviolet) momentum cutoff. ∆0z = 0 is also a solution by minimiz-
ing the energy, however ∆0z = 0 always corresponds to a higher energy state in one
dimension. At the mean-field level there are only two possible value of ∆0z and they
only differ by a sign.

The Berry phase can still be obtained from E.q (2.9), this time with d given by
Eq. (2.13):

γ± = i

∫︂
π
2a

− π2a

dk1〈±, k1|∂k1
|±, k1〉= −

1
2

�

ϕ
� π

2a

�

−ϕ
�−π

2a

�
�

− 1
2

∫︂
π
2a

− π2a

dk1∂k1
ϕ cosθ ,

the Berry phase could be an arbitary value depending on the value of αH∆0z . ∆0z and
−∆0z have the same energy, besides ∆0z and −∆0z both have no well-defined Berry
phase so there is no robust electron edge state since the chiral symmetry is broken.

Both the SSH state and the Holstein state of the CDW (charge density wave) break a
discrete symmetry. With periodic conditions, this symmetry is q j → q j+1 and c j → c j+1
(translation by one lattice site). The formation of the SSH or the Holstein ground state
costs elastic energy, but the gain in kinetic energy is larger, so they form stable ground
state.
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2.3 SSH-Holstein model

Combining Eqs. (2.1) and Eqs. (2.10), we obtain the Hamiltonian of the SSH-Holstein
model:

H = t0

∑︂

j

(c†
j c j+1 + h.c.)−αS

∑︂

j

(q j − q j+1)(c
†
j c j+1 + h.c.)−αH

∑︂

j

Q j(c
†
j c j)

+
1
2

mS

∑︂

j

�

(q j̇ − q̇ j+1)
2 +ω2

S(q j − q j+1)
2
�

+
1
2

mH

∑︂

j

�

Q j̇ 2 +ω2
HQ2

j

�

, (2.17)

where q j is the coordinate for the SSH-type phonon and Q j is the coordinate for the
Holstein-type phonon.

Based on the preceding sections, we propose the mean fields

q j =
(−1) j

2
∆0x

Q j =
(−1) j

2
∆0z . (2.18)

Like before, the values of the mean fields can be obtained by minimizing the energy. At
half filling, we can show that the energy of the system is

E[∆0x ,∆0z] = −
∑︂

k1

εk1
+

N
2
(KS∆

2
0x + KH∆

2
0z), (2.19)

where

εk1
=
q

2(t2
0 +α

2
S∆

2
0x) + 2(t2

0 −α2
S∆

2
0x) cos(2k1a) +α2

H∆
2
0z . (2.20)

Eq. (2.19) is plotted for different situations in Figs. (2.7), (2.8) and (2.9). These figures
can be understood analytically by expanding k1 in Eq. (2.20) around ±π/2a. Then,
Eq. (2.19) becomes

E[∆0x ,∆0z]≈ −
∑︂

q1

q

4a2 t2
0q2

1 + 4α2
S∆

2
0x +α

2
H∆

2
0z +

N
2
(KS∆

2
0x + KH∆

2
0z). (2.21)

Therefore, the conditions ∂ E/∂∆0x = ∂ E/∂∆0z = 0 give

 

∑︂

q1

1
q

4a2 t2
0q2

1 + 4α2
S∆

2
0x +α

2
H∆

2
0z

− N
2

K̃S

!

∆0x = 0,

 

∑︂

q1

1
q

4a2 t2
0q2

1 + 4α2
S∆

2
0x +α

2
H∆

2
0z

− N
2

K̃H

!

∆0z = 0, (2.22)
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Figure 2.7
Plot of E/t0N for K̃S < K̃H . The mean-field order parameter minimizing the energy is
�

± 2at0Λ
αS

e−2πt0 K̃S , 0
�

. We take t0K̃S = 2, t0KH̃ = 4.

where K̃S = KS/4α
2
S and K̃H = KH/α

2
H . Solving Eq. (2.22), the mean field order param-

eter is

(∆0x ,∆0z) =
�

±2at0Λ

αS
e−2πt0K̃S , 0

�

for K̃S < K̃H

(∆0x ,∆0z) =
�

0,±4at0Λ

αH
e−2πt0K̃H

�

for K̃S > K̃H

(∆0x ,∆0z) = 4at0Λe−2πt0K̃H

�

1
2αS

sinφ,
1
αH

cosφ
�

for K̃S = K̃H . (2.23)

In the third line of Eq. (2.23), the value of φ can be arbitrary because the ground
state energy does not depend on it. In summary: (1) when K̃S < K̃H , the ground state
displays SSH-like (bond density wave) order parameter; (2) when K̃S > K̃H , the ground
state displays Holstein-like (site density wave) order parameter; (3) when K̃S = K̃H ,
there are a infinite number of sites with degenerate energy, therefore there would be a
Goldstone mode know as "phason" [18].

The preceding observations are based on the mean-field approximation. It turns out
that the zero-temperature phase diagram of Eq. (2.17) has been obtained in Ref. [17]
using quantum Monte Carlo (see Fig. 2.10), which works well at large frequency. De-
pending on the value of parameters λs ≡ α2

H/(KH t0) and λb ≡ α2
S/(KS t0), there are

three different phases: the SSH phase, the Holstein phase and the Luther-Emery metal-
lic phase. When the values of the order parameters λb and λs increase the Luther-Emery
metallic phase tends to vanish and there is a common boundary between the SSH and
Holstein phases. The SSH CDW and Holstein CDW appear in the expected region. This
is the region of the phase diagram where our mean-field treatment matches well the
Monte Carlo prediction.

In order to realize a topological analogue of the magnetic bit, we place ourselves
in the regime K̃S < K̃H . Then, we notice that Fig. (2.7) looks similar to that of a two-
dimensional ferromagnet with easy-axis anisotropy. In our analogue, the two preferred
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Figure 2.8
Plotting of E/t0N for K̃S > K̃H . The mean-field order parameter minimizing the energy is
�

0,± 4at0Λ
αH

e−2πt0 K̃H

�

. We take t0K̃S = 4, t0KH̃ = 2.
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Figure 2.9
Plotting of E/t0N for K̃S ≈ K̃H . The mean-field order parameter minimizing the energy
is (∆0x ,∆0z) = 4at0Λe−2πt0 K̃H

�

1
2αS

sinφ, 1
αH

cosφ
�

. We take t0K̃S = 1.7, t0K̃H = 2. The

Goldstone mode does not appear in the case K̃S ≈ K̃H but instead appears when K̃S ≈ K̃H ,
this is because the graph is not given by expanding k1 around ±π/2a, but is given by direct
calculation of Eq. (2.19).

Figure 2.10
Phase diagram for SSH-Holstein model, where λb ≡ α2

S/(KS t0), λs ≡ α2
H/(KH t0), KS = mSω

2
S

and KH = mHω
2
H . Dashed lines are the phase boundaries. Figure taken from Ref. [17].
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(anti-parallel) orientations of the magnetization can be mapped to the order parameters
∆0x and −∆0x . For the case K̃S = K̃H (see Fig (2.9)), as an analogy of the magnetic
anisotropy energy vanishes and the magnetization has no preferred direction. In this
case, the rotational symmetry is spontaneously broken in the ground state, and the
low-energy excitation is a gapless magnon; such situation is clearly not desirable for a
magnetic bit.

The dynamics of the magnetization in a magnetic material is described by Landau-
Lifshitz-Gilbert equation [19], which is a ground state non-linear differential equation
beyond the small perturbations of the angle. Is there a similar non-perturbative equation
for describing the change in the band topology? This is the main question we will
address in the following chapters.
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Chapter 3

Small-angle order parameter
dynamics of the SSH-Holstein
model

Thus far we have discussed the mean-field ground state of the SSH-Holstein model and
we have described the presence of the two topologically distinct ground states therein.
In this chapter, we determine the dynamics of small fluctuations around the mean-field
ground state (small-angle dynamics). While insufficient to describe a topological bit,
the calculations of this chapter set the notation and formalism for Chapter 4, which will
concentrate on the large-angle dynamics of the order parameter.

3.1 Continuum model

We begin by introducing a continuum model, which will facilitate the calculations that
follow below. The continuum model is motivated by the fact that, for half-filling, low
energy excitations are concentrated in the vicinity of k1 = ±π/2a [20]. This allows to
write

c j =
∑︂

k1

1⎷
N
Ψ(k1)e

−ik1 x =
∑︂

k1≈−kF

1⎷
N
Ψ(k1)e

−ik1 x +
∑︂

k1≈kF

1⎷
N
Ψ(k1)e

−ik1 x

=
1⎷
a

�

ΨL(x)e
ikF x +ΨR(x)e

−ikF x
�

, (3.1)

and

ΨR,L =
⎷

Na

∫︂ λ

−λ

dk
2π
Ψk±KF

e−ikx , (3.2)

where ΨL is the field operator for the left-moving fermions, ΨR is the field operator for
the right-moving fermions and kF = π/2a. Substituting Eq. (3.1) into Eq. (2.17) and
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ignoring exp[±i2kF x] since it is fast-varying, then the Hamiltonian of the SSH-Holstein
model becomes

H =

∫︂

d xΨ†hΨ +
1

2a
mS

∫︂

d x
�

∆̇
2
x +ω

2
S∆

2
x

�

+
1

2a
mH

∫︂

d x
�

∆̇
2
z +ω

2
H∆

2
z

�

, (3.3)

where Ψ = (ΨL ,ΨR) and

h= −ivσz∂x − 2αs∆xσ
y +αH∆zσ

x (3.4)

is the Hamiltonian of 1D Dirac fermions with dynamical masses and velocity v = 2at0.
If we define

−2αS∆x ≡∆ sinφ

αH∆z ≡∆ cosφ, (3.5)

then h is consistent with the low-energy effective Hamiltonian derived by Goldstone
and Wilczek [21] for an incommensurate charge density wave (ICDW). The ICDW is a
charge density wave with degenerated ground state energy, consequently, there will be a
goldstone mode known as "phason", which indicates that the CDW is sliding. However,
in their paper, they treat ∆ and φ as known parameters, but in this project they are
dynamical parameters and we want to unveil their dynamics.

3.2 Perturbations

In order to study the dynamics of the order parameter, it is important to include the
effect of external perturbations. In the presence of such perturbations, Eq. (3.4) gets an
additional term that we label as δH. In the low-energy subspace of R and L fermions,
a generic perturbation can be written as

δH =

∫︂

d xΨ†δhΨ =

∫︂

d xΨ† (B ·σ + B0I)Ψ, (3.6)

where I is the identity matrix, and σ is a vector of Pauli matrices in the (L, R) space.
Let us discuss the physical meaning of the different components of the perturbations
(Bx , By , Bz) = B and B0. To begin with, we consider a spatial modulation of the onsite
potential,

δ, H =
∑︂

j

Vjc
†
j c j . (3.7)

Using Eq. (3.1) and transferring V (x) to Fourier space as V (x) =
∑︁

k1
vk1

eik1 x , we get

δH∝
∫︂

d xΨ†[v0 I +ℜ(v2kF
)σx −ℑ(v2kF

)σ y]Ψ

=

∫︂

d xΨ†[v0 I + Bxσ
x + Byσ

y]Ψ, (3.8)

22



where v0 renormalizes the chemical potential. Thus, a modulation of the onsite potential
produces the perturbation Bx and By . If the modulation is symmetric in space (V (x) =
V (−x)), then only Bx is present. Next, we consider the effect of a modulated strain:

δH =
∑︂

j

Vj(c
†
j c j+1 +H.c.), (3.9)

which leads to

δH∝
∫︂

d xΨ†[2ℜ(v2kF
)σ y]Ψ =

∫︂

d xΨ†[Byσ
y]Ψ. (3.10)

Thus a modulation of strain produces nonzero By . Finally, B0 and Bz can be interpreted
as scalar and vector electromagnetic potentials, respectively, because B0 couples to the
charge density and Bz enters the Hamiltonian as (−iv∂x + Bz)σz .

3.3 Effective action for the order parameters

A convenient and standard way to compute the order parameter dynamics is through
the minimization of an effective action. To obtain such an effective action, we begin by
writing the partition function of the system in the imaginary-time path integral formal-
ism [7]:

Z =

∫︂

D(Ψ†,Ψ,∆x ,∆z) e−S[Ψ†,Ψ,∆x ,∆z], (3.11)

where

S
�

Ψ†,Ψ,∆x ,∆z

�

=

∫︂

dτd x
�

Ψ†∂τΨ −µΨ†Ψ
�

+

∫︂

dτ (H +δH) (3.12)

is the action of the system, µ is the chemical potential, and τ= i t is the imaginary time.
The full action in Eq. (3.12) contains both fermion and phonon (order parameter) fields.
However, we are interested only in the dynamics of the order parameters.

One benefit of using the path-integral formalism is that we can integrate out the
electronic degrees of freedom (Ψ†, Ψ) in order to quantify their influence in the dynam-
ics of the order parameter (∆x , ∆z). Because Eq. (3.12) is quadratic in the fermion
fields, the integration of the electronic fields can be done exactly using the well-known
formula [7]

∫︂

D[Ψ†,Ψ,∆x ,∆y]e
−∫︁ dτd xΨ†G−1Ψ =

∫︂

D[∆x ,∆y]det(G−1)

=

∫︂

D[∆x ,∆y]exp[Tr ln G−1], (3.13)
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where G−1 = ∂τ −µ+ h+δh, and Tr represents the trace over both space-time and the
(L, R) pseudospin. In the usual jargon, G is the electronic Green’s function. As a result,
the partition function reads

Z =

∫︂

D[∆x ,∆z]e
−Seff(∆x ,∆z), (3.14)

where Seff = Sph − Tr ln G−1 is the so-called effective action for the order parameters,
and

Sph =

∫︂

dτd x
�

1
2a

mS

�

∆̇
2
x +ω

2
S∆

2
x

�

+
1

2a
mH

�

∆̇
2
z +ω

2
H∆

2
z

�

�

(3.15)

is the phonon-only part of the effective action. From the effective action, we obtain the
dynamics of the order parameters in two steps: first, we minimize the effective action
via δSeff/δ∆ = 0, and afterwards we switch back to real time. There is a problem,
however. While the expression for Seff is exact in principle, in practice it cannot be
computed exactly because G−1 contains order parameter fields with arbitrary time and
space dependence. As a result, we are unable to compute the trace over space and time.
Thus, it is necessary to resort to approximations. The simplest approximation one can
think of is to assume that the external fields are weak and that the deviations of the
order parameters from their mean-field values are small. Then, one can write

(∆x ,∆z) = (∆0x +δ∆x ,∆0z +δ∆z), (3.16)

where the first and second terms in the right hand side describe the mean-fields and
the small fluctuations, respectively. As stated in Chapter 2, we choose the microscopic
parameters of the Hamiltonian such that ∆0z = 0. Therefore, G−1 = G−1

0 + V , where

G−1
0 = ∂τ − ivσz∂x −µ− 2αS∆0xσ

y (3.17)

is the mean-field part of the electronic Green function and

V = G−1 − G−1
0 = −2αSδ∆xσ

y +αHδ∆zσ
x +δh (3.18)

is the perturbation that is assumed to be "small". Now the effective action can be written
as

Seff = Sph − Tr
�

G−1
0

�

+
∑︂

n

Sn, (3.19)

where

Sn =
1
n

Tr [(G0V )n] (3.20)

and we have used

Tr[ln G−1] = Tr ln[G−1
0 ] + Tr ln(1− G0V ). (3.21)
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From now on we truncate the perturbative expansion of the effective action at n =
2. This truncation is justified if the energy scale of the perturbation is small com-
pared to the gap of the unperturbed energy spectrum. Accordingly, the angle φ =
arctan(−2αS∆x/αH∆z) introduced in Eq. (3.5) will be restricted to the vicinity of π/2
or −π/2, depending on the sign of∆0x . It is in this sense that the dynamics of the order
parameter can be called "small-angle dynamics".

3.4 First order expansion of the action

Let us calculate the terms in the effective action that are linear in the fluctuations and
in the external perturbations. We begin concentrating on Tr[G0V ]. Since the trace is
basis-independent, we choose to write it in frequency and momentum space (ωn, k1).
The motivation for this choice is that G0 is diagonal in frequency and momentum space,
as the mean-field ground state is static and spatially uniform. Inverting Eq. (3.17) we
obtain

G0(ωn, k1) =
iωn +µ+ 2at0k1σ

z − 2αS∆0xσ
y

(iωn +µ)2 − ε2
k1

, (3.22)

where
εk1
=
q

v2k2
1 + 4α2

S∆
2
0x (3.23)

is the excitation energy for 1D massive Dirac fermions, ωn = (2n + 1)πkB T is the
fermionic Matsubara frequency, T is the temperature, kB is the Boltzmann constant,

V (q) = −2αSσ
yδ∆x(q) +αHσ

xδ∆z(q) +B(q) ·σ + B0(q)I (3.24)

is the perturbation in Fourier space, and q = (q0, q1) = (ωn −ω′n, k1 − k′1). We use the
following convention for Fourier transforms:

Ψ(x ,τ) =
1

p

βNa

∑︂

ωn,k1

exp(−iωnτ)exp(−ik1 x1)Ψ(k1,ωn)

Ψ(ωn, k1) =
1

p

Naβ

∫︂

d xdτexp(iωnτ)exp(ik1 x)Ψ(x ,τ). (3.25)

Using these conventions, writing k = (ωn, k1) and defining "tr" for the trace over (L, R)
pseudospin, we have

Tr[G0V ] =
∑︂

k

tr〈k|G0V |k〉=
∑︂

k

tr G0(k)〈k|V |k〉=
1

p

βNa

∑︂

k

tr G0(k)V (0)

= − �By(0)− 4α2
S∆0xδ∆x(0)

� 1
p

βNa

∑︂

ωn

∑︂

k1

1

(iωn +µ)2 − ε2
k1

, (3.26)

where we have used the notation

〈k|V |k′〉= 1
p

βNa
V (k′ − k), (3.27)
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valid because V is local in space and time. The next step is to compute the momentum
and frequency sums in Eq. (3.26). We begin with the sum of Matsubara frequencies,
which can be done as explained in Ref. [7]:

1
β

∑︂

ωn

1

(iωn +µ)2 − ε2
k1

= − 1
β

∑︂

λ

Res

�

1

(z +µ)2 − ε2
k1

�

β

exp(βz) + 1

|︁

|︁

|︁

z=zλ
=

fk1,− − fk1,+

2εk1

,

where λ is an index denoting poles, z = iωn, "+" represents the upper electron band
and "−" represents the lower electron band, as indicated in Fig. (2.2), and fk1,± =
1/
�

exp(−β(±εk1
−µ) + 1

�

is the Fermi-Dirac distribution function. We will be inter-
ested in the low-temperature regime, where fk1,+ ≈ 0 and fk1,− ≈ 1. Accordingly,

S1 =
�

By(0)− 4α2
S∆0xδ∆x(0)

�

∑︂

k1

1
2εk1

+ KS∆0xδ∆x(0). (3.28)

The first term of Eq. (3.28) does not contribute to the equation of motion δSeff/δ∆= 0
because it is independent from δ∆x and δ∆z . The second term does not contribute
either because time average of the fluctuation is zero.

3.5 Second order expansion of the action

Now we calculate the terms in the effective action which are quadratic in the perturba-
tion V . We will use the well-known formula [7, 22]

Tr[G0V G0V ] =
1
βNa

∑︂

q1,q0

1
Na

∑︂

k1,n,n′
|〈k1n|V |k1 + q1n′〉|2 fk1,n − fk1+q1,n′

εk1,n − εk1+q1,n′ + iq0
, (3.29)

where n = ± and n′ = ± are the mean-field electronic band indices, εk1± = ±εk1
is the

band energy, |k1,+〉= (cos(θk1
/2), sin(θk1

/2))T and |k1,−〉= (− sin(θk1
/2), cos(θk1

/2))T

are the band eigenstates, and cosθk1
= 2vk1/εk1

. At zero temperature, only n = −n′

contribute to Eq. (3.29). Therefore the only matrix elements to compute are

|〈k1,+|V |k′1,−〉|2 = 4α2
S cos2

�

θk1
+ θk′1
2

�

|δ∆̃x(q)|2 +α2
H cos2

�

θk1
− θk′1
2

�

|δ∆̃z(q)|2

− 2iαSαH cos

�

θk1
+ θk′1
2

�

cos

�

θk1
− θk′1
2

�

�

δ∆̃
⋆

x(q)δ∆̃z(q)−H.c
�

(3.30)

and
|〈k1,−|V |k′1,+〉|2 = |〈k1,+|V |k′1,−〉|2αH→−αH

, (3.31)

where we have defined δ∆̃z ≡ δ∆z + Bx/αH and δ∆̃x ≡ δ∆x − By/2αS . In Eq. (3.30),
we have omitted the gauge fields B0 and Bz for simplicity. We will treat them in the next
chapter.
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Using Eq. (3.29) we get

S2 + Sph =
1

2β L

∑︂

q0,q1

(δ∆̃⋆x ,δ∆̃⋆z)K(δ∆̃x ,δ∆̃z)
T , (3.32)

where K is a 2× 2 matrix. In the long wavelength and the low energy approximation,
i.e. |q0|, v|q1| ≪ |∆0x |, the matrix elements of K are

K00(q)≈
1
N
∂ 2E
∂∆2

x

|︁

|︁

|︁

|︁

(∆x0,0)
+

α2
S

24πt0

v2q2
1 + q2

0

α2
S∆

2
0x

+m2
Sq2

0,

K01(q)≈
αSαH

16π3

aq1q0

t2
0

= −K10,

K11(q) =
1
N
∂ 2E
∂∆2

z

|︁

|︁

|︁

|︁

(∆x0,0)
+

α2
H

32πt0

v2q2
1 + q2

0

α2
S∆

2
0x

+m2
Hq2

0. (3.33)

In the static and uniform configuration (q0, q1 = 0), K behaves as a matrix of spring
constants,

K00(0) =
1
N
∂ 2E
∂∆2

x

|︁

|︁

|︁

|︁

(∆x0,0)

K11(0) =
1
N
∂ 2E
∂∆2

z

|︁

|︁

|︁

|︁

(∆x0,0)

K01(0) = −K10 = 0. (3.34)

From Eq. (3.32) we obtain the equation of motion
�

K00 K01
K10 K11

��

δ∆̃x
δ∆̃z

�

= 0. (3.35)

Considering the spatially uniform dynamics, Eq. (3.35) can be rewritten as

K00(0)δ∆x +

�

1

24πt0∆
2
0x

+mS

�

∂ 2
t δ∆x = K00(0)

By

2αS
+

�

1

24πt0∆
2
0x

+mS

�

∂ 2
t By

2αS

K11(0)δ∆z +

�

α2
H

32πt0α
2
S∆

2
0x

+mH

�

∂ 2
t δ∆z = −K11(0)

By

αH
−
�

1

32πt0∆
2
0x

+mH

�

∂ 2
t By

αH
.

(3.36)

These equations describe harmonic oscillations around the local minimum (∆0x , 0)with
external forces. When By = 0 = Bx the dispersion relation for the low energy fluctua-
tions of the order parameter can be obtained by equaling the determinant of the matrix
in Eq (3.35) to zero.

This concludes our discussion of small-angle order parameter dynamics. We will
not discuss further aspects of small-angle dynamics (such as collective modes), since
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the main goal of the present chapter is to set the technical formalism for the next chap-
ter. Next, we will go beyond small-angle order parameter dynamics by a more judicious
choice of perturbation. That will allow us to realize a proof-of-principle for the topolog-
ical bit.
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Chapter 4

Large-angle order parameter
dynamics of the SSH-Holstein
model

In the previous chapter, we studied the small-angle order parameter dynamics of the
SSH-Holstein model. In the SSH-Holstein model, the charge-density wave order pa-
rameter can be written as ∆(sinφ, cosφ, 0), where φ is the order parameter angle and
∆ is the amplitude. In Chapter 3 we studied the small-angle order parameter dynamics
(φ close to π/2 or −π/2). However, in order to describe the dynamics across a topo-
logical phase transition, we need an equation of motion for the order parameter that
will be valid for an arbitrary value of φ ("large angle" dynamics). The purpose of the
present chapter is to introduce a method that fulfills that need and enable us to pro-
vide a proof-of-principle for the topological analogue of the magnetic bit. We have been
aware of a similar transformation in the literature of incommensurate charge density
waves (ICDW) [21, 23, 24, 25].

In Sec. 4.1 we will introduce the method of calculation. In Sec. 4.2 we will calculate
the order parameter as a function of the order parameter angle, and will derive the
analogue of the magnetic anisotropy energy in our system. In Sec. 4.3 we will derive
the chiral anomaly using Fujikawa method. In Sec. .4 we will calculate the contribution
to the action from the regular part. In Sec. 4.5 and Sec. 4.6 we will list and solve
some problems arsing from the calculations. In Sec. 4.7 we will compare our result to
earlier works [21, 23, 24, 25]. In Sec. 4.8 we will discuss the physical meaning of the
anomaly term. In Sec. 4.8 we will derive the equation of motion for the order parameter
involving a damping term. In Sec. 4.9 we will discuss the similarity with the Josephson
effect. In Sec. 4.10 we will discuss the polarization. In Sec. 4.11 we will discuss the
shape of the pulse which could induce the topological phase transition.
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4.1 Chiral gauge transformation

In chapter 3, we presented a method to calculated the effective action of the order
parameter and the equation of motion in the presence of external perturbations. Then,
we performed perturbation theory in the vicinity of the ground state. As a result, the
order parameter angle φ was always limited to the neighborhood of ±π/2. In this
section, using the same overall method we will introduce a gauge transformation of
the coordinate which will allow us to study the same system, but in the large angular
fluctuation regime.

Let us begin by recalling the electronic part of the action, obtained in Chapter 3:

Sele =

∫︂

d xdτΨ† [∂τ − ivσz∂x −∆Ω ·σ −µ+B ·σ + B0 I]Ψ, (4.1)

where Ω = (cosφ, sinφ, 0) and φ is defined in Eq. (3.5). Now consider a change of
variables Ψ′ = RΨ, where R= exp (−iσzφ/2) is a unitary operator that rotates the left-
moving and right-moving fermions in the opposite sense by an angle π/2. Because of
this twisted sense of rotation, R can be called a chiral gauge transformation. Upon this
transformation, the electronic action becomes

Sele =

∫︂

d xdτΨ′†
�

∂τ − ivσz∂x +∆σ
x − i

2
σz∂τφ −

v
2
∂xφ

−µ+σx(B ·Ω)−σ y[(B×Ω) · ẑ] + Bzσ
z + B0 I

�

Ψ′. (4.2)

Here, we notice that the time and space gradients of φ have been separated out from
φ itself. The later only appears only in terms that multiply with the small external
perturbation B. Thus, this opens the door of doing perturbation theory in ∂τφ and ∂xφ

instead of φ itself.

4.2 Magnitude of the order parameter and anisotropy energy

In Eq. (4.2) there remains a difficulty in the term∆σx . Because∆ is generally space and
time dependent, the calculation of the effective action for the order parameter becomes
very complicated. To overcome this difficulty, we borrow an approximation method
from magnetism, for temperatures below the Curie temperature, the fluctuations in the
magnitude of the magnetization are neglected because they involve higher energies
than the fluctuations in the angle of the magnetization. In our model, the magnetization
could be mapped to the magnitude∆ of the charge density wave order parameter. Then,
we assume that∆ can be minimizing the total energy of the system for each value of φ.
This amounts to neglecting the fluctuations of ∆ around its mean-field value. Ignoring
the contributions of B, the total energy of the system is given by Eq. (2.19). In the
continuum approximation (cf. Chapter 3), the sum over the wave vector can be done
analytically as function of ∆ and φ (which are treated as parameters in calculation).
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The price of the analytical convenience of the continuum model is the need to introduce
an ultraviolet (UV) momentum cutoff Λ. Once we have obtained the energy E[∆,φ],
we minimize it with respect to ∆. Such minimization gives

∆min = 4at0Λexp(−2πt0(K̃S sin2φ + K̃H cos2φ)). (4.3)

We can define a parameter γ that

γ=
∆2

0

2a
(K̃S − K̃H). (4.4)

If K̃H = K̃S , the magnitude of order parameter is

∆0 = 4at0Λexp(−2πt0K̃H), (4.5)

we will assume that K̃S , K̃H are close to each other, so that

∆min = ξ cos2φ − ξ+∆0, (4.6)

where ξ is defined as

ξ= πt0∆0(K̃S − K̃H). (4.7)

We will treat ξ as pertubation, which represents a first order dependence on the mag-
nitude of order parameter.

Now we find the expression of the minimum energy (ground state energy) by sub-
stituting the minimized order parameter ∆min in Eq. (2.19):

Emin = log
4at0Λ∆min

16a2 t2
0Λ

2 +∆2
min

≈ log
∆min

4at0Λ

= log(e−2πt0(K̃ s sin2φ+K̃H cos2φ))

= −2πt0

��

K̃S − K̃H

�

sin2φ + K̃H

�

, (4.8)

thus

Emin[φ]≈ −
N∆2

min(φ)

8πt0
, (4.9)

and
∂ Emin

∂ φ
= 0→ γ sin 2φ = 0, (4.10)

For γ < 0, the energy of the system reaches a local minimum at φ = π
2 (2n + 1), and

reaches a local maximum at φ = nπ, where n is an integer.
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4.3 The chiral anomaly

In section 4.1, we have seen how the electronic action changes under a chiral gauge
transformation. This is not the whole story. In 1979, Kazuo Fujikawa [26, 27] pointed
out that, when a chiral gauge transformation is applied to Dirac fermions in even space-
time dimensions, the measure of the path integral changes as well. This change in the
measure results in an additional term in the effective action, which is known as the chiral
anomaly contribution. In this section, we calculate the anomaly contribution appearing
in our model. We denote the anomaly part of the action as Sa.

Including the electromagnetic vector potential A = (A0, A1), the electronic part of
the action of the system can be written as [28]

Sele = −i

∫︂

dτd xΨ̄
�

i /D̃+ iM(φ)
�

Ψ, (4.11)

where
Ψ̄ = Ψ†σx . (4.12)

The Hermitian and gauge-invariant derivative operator i /D is

i /D̃ = i /∂ + e/Ã, (4.13)

where /Ã= Ãµγ
µ is the "Feynman slashed notation", γµ are Dirac gamma matrices with

µ = 0, 1 (γ0 = σx ,γ1 = −σ y), which satisfy the anti-commutation relation [γu,γv]+ =
2δµv(we take the Fermi velocity v = 1), and Ã0 = A0− i v

2e∂xφ and Ã1 = A1+
i

2e∂τφ are
the generalized gauge fields [29]. The chemical potential µ can be absorbed by A0 and
Bz can be absorbed by A1. The mass of the fermion is

M(φ) = −∆(x) cosφ + Bx −σz(By −∆(x) sinφ), (4.14)

The general formula for the partition function is

Z =

∫︂

D[Ψ, Ψ̄,φ,∆]e−S[Ψ,Ψ̄,φ,∆] =

∫︂

D[Ψ̄′,Ψ′,φ,∆]exp[−2 ln Tr J]e−S[Ψ′,Ψ̄′,φ,∆],

(4.15)

where J is the Jacobian and it involves singularity. The crucial part of the Fujikawa
method is the singularity should be regularized, details calculations are in Appendix A.
The action for the chiral anomaly is

Sa = −2 lnTr J =
i

2π

∫︂

dτd x
�

eφEx +
1

4πv
(∂τφ)

2 +
v

4π
(∂xφ)

2
�

, (4.16)

the action for the chiral anomaly in the real time is

Sa =
−1
2π

∫︂

d td x
�

eφEx −
1

4πv
(∂tφ)

2 +
v

4π
(∂xφ)

2
�

. (4.17)

32



At first glance, one may be concerned with the fact that Sa appears to change under
φ→φ+2π. Yet, φ and φ+2π should be physically indistinguishable. This implies that
exp(−Sa), which appears directly in the partition function, must be invariant under φ
to φ + 2π. Fortunately, this turns out to be the case, as shown by the so-called Atiyah-
Singer-Patodi index theorem [28].

The chiral anomaly action Sa has important physical consequences. Let us discuss a
few of them. First, using Eq. (4.17), we notice that

j0 =
δS
δA0

= −e∂xφ = −
1
2

eδ

j1 =
δS
δA1

=
1
2

e∂tφ. (4.18)

Therefore, space- and time-gradients of angleφ result in electric charge ( j0) and current
densities ( j1). The factor of 1/2 in Eq. (4.18) is indicative of charge fractionalization.
For example, let us suppose a sharp domain wall between φ = π/2 and φ = −π/2,
centered at x = 0. It follows from Eq. (4.18) that j0 = −1/2eδ(x). Thus, a particle
of charge e/2 is trapped at the domain wall between a topologically trivial and a topo-
logically non-trivial insulator. The result is known in the SSH model literature, from an
alternative point of view [30].

4.4 Perturbative contributions to the effective action

In the previous section, we derived the contribution to the effective action of the phonon
order parameter, coming from the chiral gauge transformation. That contribution is
non-perturbative. In this section, we integrate out electrons (like in Chapter 3) in order
to obtain the remaining parts of the effective action. The starting point is the partition
function:

Z ≃
∫︂

D[φ]e−Sa−Sph det[G−1(τ, x)] =

∫︂

D[φ]e−Sa−Sph exp(Tr ln[G−1]), (4.19)

where

G−1 = ∂τ − ivσz∂x +∆minσ
x +σx(B ·Ω)−σ y[(B×Ω) · z] +σzBz −µ+ B0 I

− i
2
σz∂τφ −

v
2
∂xφ − evσzA1 − ievA0 (4.20)

is the inverse electronic Green function after the chiral gauge transformation. As men-
tioned in Chapter 3, we notice once again that the electromagnetic gauge fields A1 and
A0 can be absorbed into the terms containing Bz and B0. With this in mind, from here
on we only keep A0 and Bz .

We define the unperturbed inverse electronic Green function

G−1
0 (x ,τ) = ∂τ − ivσz∂x −µ+∆0σ

x (4.21)
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and a perturbation

V (x ,τ) = G−1
0 − G−1

= −σx(B ·Ω) +σ y[(B×Ω) · z]−σzBz +
i
2
σz∂τφ +

v
2
∂xφ

− ξ(cos2φ − 1)σx + ievA0, (4.22)

which represents the interaction of electrons with the order parameter angle φ and
with the external field B. We consider the case where the magnitude of the interaction
is much smaller than the energy gap of the unperturbed system: |V | ≪∆0. Specifically,
the small parameters in Eq. (4.22) are B, ξ, ∂xφ and ∂tφ. Thus, a perturbative treatment
on V does allow to explore arbitrary values of φ; such is the gain from the chiral gauge
transformation in Sec. 4.1. To second order in V , we have

ln(G−1
0 − V ) = ln G−1

0 + ln(1− G0V )≈ ln G−1
0 − G0V − 1

2
G0V G0V. (4.23)

Therefore, the perturbative contribution to the order parameter effective action (not
including the anomaly part) is

S[φ] = Tr(G0V ) +
1
2

Tr(G0V G0V ) + Sph[φ], (4.24)

where we have omitted a term that is independent of φ and thus does not contribute to
the equation of motion of the order parameter.

4.4.1 First order expansion of the action

Here we focus on the first order contribution of the action, which corresponds to

Tr[G0V ] =
1
βNa

tr
∑︂

k

〈k|G0V |k〉

=
1
βNa

tr
∑︂

k

∫︂

d xdτ〈k|G0V |x〉〈x |k〉

=
1
βNa

tr
�∑︂

k

G0(k)

∫︂

d xdτ− Bx(x) cosφ(x)σx + Bx sinφσ y − By cosφσ y

− By sinφσx − ξ(cos2φ − 1)σx +
i
2
σz∂τφ +

v
2
∂xφ −σzBz + ievA0

�

, (4.25)

where tr[...] represents the trace over pseudo-spin indices. Since

G0 =
(iωn −µ+ vk1σ

z +∆0σ
x)

(iωn +µ)2 − v2k2
1 −∆2

0

, (4.26)

we get

tr[Bx G0 cosφσx] = −2Bx cosφ
∆0

(iωn +µ)2 − v2k2
1 −∆2

0

, (4.27)
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and

tr[G0σ
y] = 0 (4.28)

∑︂

k1

tr[G0σ
z] = 0. (4.29)

Since a total derivative term in the Lagrangian has no effect in the equation of motion,
it follows that the terms involving ∂xφ and ∂tφ make no contribution to the effective
action at first order. For the rest, we use the same calculational method as in Sec. 3.4
and we arrive at

Tr(G0V ) =

∫︂

d xdτ
�

−∆0

a
Bx K̃H cosφ − ∆0

a
By K̃H sinφ − ∆0

a
K̃Hξ(cos2φ − 1)

�

,

(4.30)
where we have taken the zero temperature limit. Since we are missing a "kinetic" term
from the 1st order expansion(i.e., terms involving ∂τφ or ∂xφ), we need to consider
the second order contribution.

4.4.2 Second order contribution to the action

Here we compute the second order contribution to the effective action of the order
parameter. According to Appendix ??,

Tr[
1
2

G0V G0V ] =

∫︂

d xdτ
1

8πv
(∂τφ)

2 +
i

2π
eφ(x)∂0A1

−
�

1
8πv
− 1

2v
arctanh

�

2v2

2v2 +∆2
0

��

e2v2A2
1, (4.31)

where we have only kept the leading order derivatives terms. At first glance, the result
is problematic. It is neither Lorentz invariant nor gauge invariant. The problem of
gauge non-invariance is the most serious one. This is because Eq. (4.31) is obtained
by doing the Matsubara sum first, followed by the momentum sum. If we reverse the
order between Matsubara sum and the momentum sum, we still get the same result if
the momentum sum has a finite cutoff. To keep the lorentz invariance, one needs to do
the momentum sum first from −∞ to∞, then do the Matsubara sum. So according to
Appendix B the result is

Tr[
1
2

G0V G0V ] =

∫︂

dτd x
1

8πv
(∂τφ)

2 +
1

8π
v(∂xφ)

2 +
i

2π
eφ(x)∂0A1 −

i
2π

veφ∂1A0

−
�

1
8πv
− 1

2v
arctanh

�

2v2

2v2 +∆2
0

��

e2v2A2
1 +

1
8π

ve2A2
0. (4.32)
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4.4.3 The effective action

There is also a phonon-only action Sph which should be included in the total effective
action. This action has been presented above in Eq. (3.15). Here, we will rewrite it
using the coordinates (∆,φ). To that end, the following relations are useful:

∂τ∆x(x ,τ) = ∂τ
∆0 sinφ

2αS
=
∆0

2αs
∂τφ cosφ,

∂τ∆z(x ,τ) = −∂τ
∆0

αH
cosφ =

∆0

αH
∂τφ sinφ, (4.33)

Then, the phonon-only action is

Sph[φ] =

∫︂

dτd x
1

2a
∆2

0 cos2φ

�

K̃S

ω2
S

(∂tφ)
2 − K̃H

�

+
1

2a
∆2

0 sin2φ

�

K̃H

ω2
H

(∂tφ)
2 − K̃S

�

=
�

γ− 2
a
∆0ξ

�

∫︂

dτd x sin2φ +

∫︂

dτd x
1

2a
∆2

0 cos2φ
K̃S

ω2
S

(∂tφ)
2

+

∫︂

dτd x
1

2a
∆2

0 sin2φ
K̃H

ω2
H

(∂tφ)
2. (4.34)

Combining with Eq. (4.17), Eq. (4.30) and Eq. (4.32) we get the total effective action
in real time is

Seff[φ] =

∫︂

d xd t
� 1

4πv
(∂tφ)

2 − 1
4π

v(∂xφ)
2 − γ

2
(cos2φ − 1)− 1

π
eφEx

+
1

2a
∆2

0(∂tφ)
2

�

K̃S

ω2
S

cos2φ +
K̃H

ω2
H

sin2φ

�

− ∆0

a
K̃H Bx cosφ − ∆0

a
K̃H By sinφ

�

,

(4.35)

the important terms are the kinetic term (∂tφ)2, the phonon anistropy part γ and the
external perturbation terms Ex , Bx , By .

4.5 Problems

Our derivation of the Eq. (4.35) hides three important problems, which we now list.

4.5.1 Problem of non-gauge invariance

Our expression for Tr[G0V G0V ] is not gauge invariant. This is obvious in Eq. (4.31). By
revising the order between Matsubara sum and momentum sum, we obtained Eq. (4.32),
which does not seem gauge invariant. Notwithstanding the fact that a non-commutativity
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between Matsubara and momentum sum is a sign of alert, even Eq. (4.32) has a prob-
lem. In it, we omitted terms that are second order in A0 and A1. If we keep those terms,
our result for Tr[G0V G0V ] breaks gauge invariance no matter the ordering between
Matsubara sum and momentum sum.

4.5.2 Problem of non-commutation of ωn and k1

As mentioned in the previous subsection,
∑︁

ωn
and

∫︁

dk1 does not commute in the sense
that if we do the sum over frequencies first we get Eq. (4.31). However, if we do the
integral first we get Eq. (4.32). Why don’t the two operations commute?

4.5.3 Problem of "fractional charge"

It is well-known from SSH literature that domain walls between φ = π/2 and φ =
−π/2 host a fractional charge of e/2 [21]. However in Eq. (4.35) we have 1

π eφEx

instead of 1
2π eφEx . This is because the Jacobian gives a 1

2π eφEx and Tr[1
2 G0V G0V ]

gives another 1
2π eφEx . Combining the two gives an integer charge for the edge mode,

which is certainly incorrect. Why is this so?

4.6 Solution to the problems

All of the problems listed in Sec. 4.5 originate from the fact that Tr[G0V G0V ] involves
a singularity. The integral in question is (see Appendix B)

∫︂ ∞

0

dk0dk1
(−k2

0 + v2k2
1 +∆

2
0)

(k2
0 + v2k2

1 +∆
2
0)2
=

∫︂ 2π

0

dθ

∫︂ ∞

0

dr
1
v

r
∆2

0 − r2 cos2θ

(r2 +∆2
0)2

. (4.36)

This integral is ill-defined, in the sense that

∫︂ ∞

0

dr
r3

(r2 +∆2
0)2
→∞, (4.37)

and
∫︂ ∞

0

dθ cos2θ = 0. (4.38)

Thus, we have a case of 0×∞, which is ill-defined. This kind of problematic integral
is well-known in quantum field theory. One recipe to solve the problem is to regularize
Tr[G0V G0V ] following the Pauli-Villars regularization [31]. This consists of replacing

(−k2
0 + v2k2

1 +∆
2
0)

(k2
0 + v2k2

1 +∆
2
0)2
→ (−k2

0 + v2k2
1 +∆

2
0)

(k2
0 + v2k2

1 +∆
2
0)2
− (−k2

0 + v2k2
1 +M2)

(k2
0 + v2k2

1 +M2)2
, (4.39)
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where M is a large-momentum cutoff that is taken to∞ at the end. Then Eq. (4.36)
becomes

∫︂ π

0

dθ

∫︂ ∞

0

dr
1
v

r

�

∆2
0

(r2 +∆2
0)2
− M2

(r2 +M2)2

�

= 0. (4.40)

This is a remarkable result. It means that Eq. (4.65) and Eq. (4.32) should be replaced
with zero. This does not mean that the regularized Tr[G0V G0V ] is exactly zero: it has
higher order derivative terms in φ and in the gauge fields, but those terms are small
compared to the ones that appear in the chiral anomaly action. They can therefore be
neglected. Another bonus of the Pauli-Villars regularization is that the A2

0 and A2
1 that

broke gauge invariance will be canceled. Finally, once we regularize Tr[G0V G0V ], the
result is independent of the ordering between the Matsubara sum and momentum sum.

4.7 Comparing with previous works

In the course of our work, we noticed a number of related previous works that investi-
gated the dynamics of incommensurate charge density waves (ICDW) [32, 24, 23, 25,
33]. By ICDW, it is meant that the energy of the system is independent of φ. In all these
papers, the calculation of Tr[G0V G0V ] and the role of the chiral anomaly are discussed
in some form.

In [32] the authors claim that all the contributions to the action come from the
regular Tr[G0V G0V ] term and they do not consider the Jacobian term. We think their
argument is not fully correct because Tr[G0V G0V ] has singular part and needs to be
regularized. Also, their expression for Tr[G0V G0V ] is not gauge-invariant either.

In [24] the authors use a very different regularization, that is not Lorentz invariant
or gauge invariant, and they choose a finite momentum cut-off which does not preserve
Lorentz invariance. Actually, their treatment is half relativistic and half non-relativistic.
The authors claim that part of the regular term Tr[G0V G0V ] and part of the Jacobian
term contribute to the action, and the combined term is gauge invariant. The authors
get the standard answer, however their method is non-standard because normally the
regularization should be gauge invariant.

In [25] the authors claim that Tr[G0V G0V ] does not contribute to the action at
leading order and that all the leading contributions come from the anomaly term. Their
conclusion matches our result. However, they claim that Tr[G0V G0V ] can be neglected
is not substantiated by an explicit calculation. As we have seen, an explicit calculation
shows that Tr[G0V G0V ] is of the same order as the anomaly term if one forgets to
regularize it.

In [23, 33] the authors use different approaches from ours. The effective action
is computed by different methods and they use a different regularization. Our result
matches their result.

Comparing with all these papers, the main novelties in our result is that (i) we
consider a commensurate charge density wave with non-zero anisotropy energy; (ii)
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we consider the effect of external perturbations beyond a simple electric field (i.e. we
consider Bx and By); (iii) we seek to realize a proof of principle for a topological bit.
The points (i) and (ii) are essential for the point (iii); as such, our work is distinct from
the earlier literature on the dynamics of charge density waves.

We also notice that some well-cited papers, such as [34], claim that there is no
chiral anomaly for massive fermions because the axial current is conserved in that case.
By axial current, it is meant the difference in the currents of the left-moving fermions
and right-moving fermions. However, there is no contradiction with our result, because
by "anomaly contribution" we mean the Jacobian contribution and the axial current is
indeed conserved. However, even if the axial current is conserved the Jacobian term
can still lead to observable effect. The axial current conservation is

〈∂µ jµ5 〉= 2〈MΨ̄σzΨ〉+ e
2π
εµv〈F̃µv〉, (4.41)

where j5 is the axial current and M is the fermion mass. When the fermion mass is non-
zero, then the axial current should be conserved such that 〈∂µ jµ5 〉= 0, this is because due
to the presence of the mass gap, there is no net left mover nor right mover been created
by the external electric field. Such argument agrees with the semiclassical electron
dynamics in band theory [35]. Consequently, the Jacobian terms would still contribute
to the action (second term on the right-hand side of Eq. (4.41)) because it needs to be
there to cancel the mass contribution. We noticed a similar result has been obtained
in [36] independently.

4.8 Equation of motion of the phonon order parameter

In this section we derive the equation of motion for the phonon order parameter, which
is a topological analogue of the Landau-Lifshitz-Gilbert equation for the magnetization
in a ferromagnet. The effective action is

Seff[φ] = Tr[G0V ] + Sa[φ] + Sph[φ]. (4.42)

Assuming for simplicityω2
S = ω

2
H , the magnetization of effective action with respect to

φgives the equation of motion

(1+η)∂ 2
t φ−v2∂ 2

x φ+4πvγ sin 2φ+ηω2
H Bx sinφ−ηω2

H By cosφ+4πevEx = 0, (4.43)

where η is defined as

η=
4πv∆2

0K̃H

aω2
H

. (4.44)

When the ground state and the external perturbations are spatially uniform, then the
equation of motion reduces to

(1+η)∂ 2
t φ + 4πvγ sin2φ +

ηω2
H Bx

∆0
sinφ − ηω

2
H By

∆0
cosφ + 4πevEx = 0. (4.45)
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The equation of motion describes the motion of a sliding commensurate CDW pinned
by phonon anisotropy γ. It is well-known that impurities could pin the CDW [37], and
we showed that the phonon anisotropy γ can also pin the CDW.

4.9 Effective action of the phonon order parameter involving
damping

In order to form a bit there should be a possibility of transition between two different
states. In our model, we know that if φ moves from the local minimum φ = π

2 to local
minimum φ = −π2 , then we can reverse the sign of order parameter ∆x and induce a
topological phase transition. However, if there is no energy loss, φ will permanently
move between the two local minima, which is not good for creating a topological bit.
In order to stabilize φ at one of the local minima, φ = π

2 or φ = −π2 , the system needs
to dissipate energy, in other words, the system needs to be damped.

Damping of the system mainly comes from two main contributions: electrons and
phonons. The mechanism for damping originating from electrons is the creation of
electron-hole pairs from residual fluctuations of the order parameter, which eventually
annihilate into phonons and thus dissipate energy. However, at zero temperature and
when the characteristic frequency of the dynamics of the order parameter is smaller
than the energy gap (which we have assumed above int he perturbative analysis), then
this process is suppressed.

According to the pioneering works of Leggett and co-authors on the Caldeira-Leggett
model and environmental effect on spin-boson systems [38], even a small fluctuation
from the environment will cause energy dissipation in the system.

Let us connect the system to a dissipating environment. Dissipation actions Senv[∆x]
and Senv[∆z] describe the interactions of the SSH order parameter with the environment
and the Holstein order parameter with the environment respectively, then the phonon-
only part action becomes

Sph[∆x ,∆z] = Sbulk[∆x ,∆z] + Senv[∆x] + Senv[∆z], (4.46)

with the dissipation action, δS = 0 describes the equation of motion including damping.
The bulk part of the phonon-only action obtained from Chapter 3 is given by

Sbulk[∆x ,∆z] =
1
2

ms

∫︂

d xdτ[(∂τ∆x)
2 + 4α2

Sω
2
S∆

2
x] +

1
2

mH[(∂τ∆z)
2 +α2

Hω
2
H∆

2
z ].

(4.47)

In the Caldeira-Leggett model, the dissipation part of the action is [7]

Senv[∆x] =

∫︂

d xdτd x ′dτ′ ∆x(x ,τ)K∆x
(x − x ′,τ−τ′)∆x(x

′,τ′)

Senv[∆z] =

∫︂

d xdτd x ′dτ′ ∆z(x ,τ)K∆z
(x − x ′,τ−τ′)∆z(x

′,τ′) (4.48)
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where

K∆x
(x ,τ) =

∫︂ ∞

0

dω J∆x
(ω)Dω(x ,τ)

K∆z
(x ,τ) =

∫︂ ∞

0

dω J∆z
(ω)Dω(x ,τ) (4.49)

and Dω is the phonon Green function, in the Fourier space [7]

Dω(ωn) =
ω2

n

ω(ω2 +ω2
n)

, (4.50)

where ω is the frequency of external phonon (phonons from the environment) modes,
ωn is the Matsubara frequency of the SSH and Holstein phonon modes. And

J∆x
(ω) = Γ̃ S|ω|

J∆z
(ω) = Γ̃ H |ω| (4.51)

are the ohmic interactions for SSH and Holstein order parameters with the environment.
Where Γ̃ S represents the coupling between a SSH-type phonon with the environment,
and Γ̃ H represents the coupling between a Holstein-type phonon with the environment.
The ohmic interactions break the time-reversal symmetry of the system. In real time,
we get [7]

Senv[∆x ,∆z] =

∫︂

d xd td t ′Γ̃ S

�

∆x(t, x)−∆x(t ′, x)
t − t ′

�2

+ Γ̃ H

�

∆z(t, x)−∆z(t ′, x)
t − t ′

�2

,

(4.52)

4.9.1 Equation of motion of the phonon with damping term

In this subsection, we will use the Caldeira-Leggett model to derive the equation of
motion involving damping. Using the chain rule,

δSenv

φ
=
δSenv

δ∆x

δ∆x

δφ
+
δSenv

δ∆z

δ∆z

δφ
. (4.53)

Also, we write t ′ to Fourier space [39]

δSenv

δ∆x
=

∫︂

d t ′ Γ̃ S
2
�

∆x(x , t)−∆x(x , t ′)
�

(t − t ′)2
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∫︂

d t ′ Γ̃ S

�

∆x(x , t)−∆x(x , t ′)
�

D(t − t ′)

=

∫︂

dω Γ̃ S[D(ω)− D(0)]∆x(ω, x)e−iωt

=

∫︂

dω Γ̃ S

�

iω
Im D(ω)
ω

+ω2 Re (D(ω)−D(0))
ω2

�

∆x(ω, x)e−iωt , (4.54)
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where−Γ̃ S Im D(ω)/ω≡ ΓS is the normalized coupling coefficient and Re (D(ω)−D(0))/ω2

can be absorbed into the mass term. We assume ΓS is approximately a constant, conse-
quently

δSenv

δ∆x
=

∫︂

d t ΓS∂t∆x . (4.55)

Similarly

δSenv

δ∆z
=

∫︂

d t ΓH∂t∆z , (4.56)

where −Γ̃ H Im D(ω)/ω≡ ΓH is the normalized coupling coefficient. So

δSenv =

∫︂

d xd t
�

ΓS∆
2 cosφ∂t sinφ − ΓH∆2 sinφ∂t cosφ

�

δφ (4.57)

where we ignore terms involving ΓSγ and ΓHγ. If we set ωS = ωH and ΓS = ΓH , the
equation of motion involving damping is

(1+η)∂ 2
t φ+4πγ sin 2φ+ηΓH∆

2
0∂tφ =

−ηω2
H Bx

∆0
sinφ+

ηω2
H By

∆0
cosφ − 4πevEx .(4.58)

4.10 Analogue with the Josephson effect

In this section, we describe an analogy between Eq. (4.58) and a current-biased Joseph-
son junction. While this analogy has been described in earlier works [37], we identify
a novel element that follows from Bx and By .

The Josephson effect consists of tunneling of Cooper pairs between two weakly-
coupled superconductors [40]. Adopting the Resistively Capacitively Shunted Junction
(RCSJ) model, the current conservation equation in a Josephson junction can be ap-
proximately described as [41]

Ibias = I0 sin2φ +
1
eR
∂tφ +

C
e
∂ 2

t φ, (4.59)

where Ibias is the bias current, 2φ is the phase difference between the two superconduc-
tors, R is the normal-state resistance of the weak link, and C is the junction caacitance.
The first term on the right-hand side of Eq. (4.59) describes the dissipationless current
due to the tunneling of Cooper pairs, with its maximum amplitude given by I0. The
second term on the right-hand side of Eq. (4.59) describes the normal (quasiparticle)
dissipative current, while the third term on the right-hand side describes Maxwell’s dis-
placement current.

It is clear that, if we take Bx = By = 0, Eq. (4.59) has the same form as Eq. (4.58).
This analogy was first recognized in Refs. ([32, 37]). Modulo numerical factors, the
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Figure 4.1
Pinning Potential for φ. Panel A represents the case where the charge density wave is local-
ized, in the plot eEx/γ = 0. Panel B represents the case where the electrical field can move
the charge density wave, in the plot eEx/γ= 2

correspondence between the Josephson junction and the CDW goes as follows: (1)
φ↔ φ; (2) I0↔ anisotropy energy γ; (3) dissipative current↔ damping term; (4)
displacement current↔ inertial term; (5) Ibias↔ Ex .

Taking advantage of the analogy with the Josephson effect, we can anticipate the
effect of the electric field in the dynamics of the charge density wave. To that end, we
first recognize that (still for Bx = By = 0) Eq. (4.58) can be understood as the equation
of motion of an effective particle moving in a titled washboard potential.

U[φ] = 2πγ cos2φ − eExφ, (4.60)

where φ plays the role of the position of the particle. If |eEx | < 4πγ, then there will
be a steady-state solution and φ is a constant. In this case, Ex along cannot induce a
topological phase transition. Graphically, this situation is represented in Fig. (4.1).

For |Ex |> 4πγ/e, the effective particle keeps sliding down the washboard potential.
This situation is represented graphically in Fig. (4.1B). In this case, while the electric
field is on, the system undergoes a succession of topological phase transitions. Once the
electric field is turned off, the system will once again relax towards a local minimum of
the untilted washboard potential, aided by the damping. If the final and the initial values
of φ differ by π (modulo 2π), then we will have realized a permanent topological phase
transition with a transient electric field. We will discuss this transition further below.

Thus far, we have considered Bx = By = 0. In earlier works of the dynamics of
charge density waves, Bx and By are not included. Yet, there is interesting physical con-
tent associated with them. For example, when Bx ̸= 0, we get a new supercurrent-like
term with a doubled periodicity in φ: in Eq. (4.58), Bx multiplies sinφ while γ mul-
tiplies sin2φ. Therefore, a constant Bx ̸= 0 gives rise to an effect that is analogous to
the fractional Josephson effect. Recently, the fractional Josephson effect has attracted
a lot of interest in Josephson junctions made out of topological superconductors [42].
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In these systems, Majorana bound states are responsible for the fractional Josephson ef-
fect. Intense efforts have been devoted to detect such an effect through unconventional
Shapiro steps and Josephson radiation, for example. It is potentially interesting and
new that an analogue of the fractional Josephson effect could also take place in charge
density wave systems. In addition, the effect of By is also unconventional in the sense
that it multiplies a cosφ factor in Eq. (4.58). The analogy of this term in Josephson
junctions needs to be further investigated.

4.11 Permanent topological phase transition from transient
perturbations

In this section, we respond affirmatively to the central question of this thesis: can a
transient external perturbation (Ex , Bx , By) induce a permanent topological phase tran-
sition? By doing so, we provide a proof of concept for the topological analogue of the
magnetic bit.

As usual, we place ourselves in the regime with γ<0. Then, without external per-
turbations, the system will be in either one of the degenerate ground states which corre-
sponds to φ = π

2 (mod2π) and φ = 3π
2 (mod2π) respectively. The two ground states are

topologically distinct, which means that for a finite chain there is a localized zero-energy
electronic edge mode in one ground state, and no such mode in the other.

With an external perturbation (Ex , Bx , By) turned on, we are interested in what
pulse shape of the perturbations can induce the topologically non-trivial phase tran-
sition. Then we will be able to construct a topological bit as an analogue of a magnetic
bit.

To that end, we will solve Eq. (4.58) numerically. Let us rewrite that equation in a di-
mensionless form that is suitable for computer calculation. We define the characteristic
time of the anisotropy field as

1
τ2

a
= −4πvγ, (4.61)

and the characteristic times of the external fields to be

1

τ2
Bx

= 8πt0K̃H∆0Bx ,

1

τ2
Ex

= 4πveEx ,

1

τ2
By

= 8πt0K̃H∆0By , (4.62)

and the characteristic damping time to be

1
τd
= ηΓ . (4.63)
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Moreover we will use a dimensionless time

t̄ =
t
τa

, (4.64)

which amounts to setting 1/τa as the unit of time. Proceeding to the appropriate
changes in Eq. (4.58), we find

(1+η)∂ 2
t̄ φ − sin2φ + Bx sinφ − By cosφ + Ex + Γ∂ t̄φ = 0, (4.65)

where we have defined the dimensionless coefficients Bx = τ2
a/τ

2
Bx

, By = τ2
a/τ

2
By

,

Ex = τ2
a/τ

2
Ex

and Γ = τa/τd .
For correctness, we take the initial state of the system (before the perturbation is

switched on) to be φ = π/2. Solving Eq. (4.65) for transient perturbations, we will
obtain the final state at long times (well after the perturbation is switched off). If the
final state turns out to beφ = π

2 +(2n+1)π for n in Z, we will have achieved the desired
topological phase transition.

The numerical results for the aforementioned final state are displaced in Figs. (4.3), (4.4)
and (4.5), for different damping strengths. A sample python code for the case τa/τd =
1/10 is given in Appendix ??. The red color corresponds to a final state that is topologi-
cally different from the initial state (φ = π

2 +(2n+1)π). The blue color corresponds to
a final state that is topologically equivalent to the initial state (φ = π

2 + 2nπ). In these
figures, we take By = 0 but we allow for non-zero Ex and Bx . For the latter, we consider
pulses with finite duration t̄ p, a graph for a pulse is given in Fig .(4.2).

We can see in all the solution diagrams there exists a critical value of Ex beyond
which the topological phase transition is realized. This critical value of Ex does not
depend on the damping strength. This is consistent with the analytical discussion about
the tilted washboard potential in Sec. 4.10. The diagrams contain many "arcs" (for
example in the left lower corner of Fig. 4.3), which are caused by the inertia of CDW.
Even when the pulse stops, the CDW will continue to move until it is finally stopped by
damping.

For larger values of Bx , the red regions in the figures become overall wider. In other
words, Bx helps realize the desired topological phase transition. To understand why
that is the case, we recall that Bx multiplies sinφ in the equation of motion, while
the anisotropy field scales as sin 2φ. Thus, in the effective potential energy, Bx will be
accompanied by cosφ, while the anisotropy energy will scale as cos2φ. Because cosφ
is different for φ = π/2 and φ = −π/2. Plotting combined cos2φ and cosφ functions,
we see that Bx reduces the energy barrier for transitions between topologically distinct
states (e.g. φ → φ + π), while it increases the energy barrier for transitions between
topologically identical transitions (e.g φ→ φ + 2π).

When the duration of the pulse tp increases, the patterns of the final state diagrams
repeat themselves. This is because the effective potential of the CDW is approximately
periodic inφ. Admittedly, due to theφEx term in the potential, the value of the potential
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Figure 4.2
An example of the shape of the pulse. The value of the pulse is (Bx cosφ + Ex)Θ( t̄ p − t̄),
where we take Bx = 0, EX = 2.5, t̄ p = 4, and Θ is the Heaviside function.

itself is not periodic, however, the value of φ which minimizes the potential energy is
periodic since the derivative of the potential is periodic.

In all the graphs there exists a critical value of tp beyond which the topological phase
transition is realized. An easy thought experiment is assuming tp to be a Dirac-delta
function tp = δ(0), then weather how strong the external perturbations are, they will
not contribute to the equation of motion (Eq. (4.65)). Both Bx and Ex have significant
impacts on the critical value of tp.

When Ex is large, a small increase of tp/τa leads to a large change of φ in the final
state. This is why successive blue and red arcs get closer at stronger electric fields. As a
result, for strong Ex , it is harder to predict whether final value of φ will end being the
"correct" one (red) or the "wrong" one (blue). An easy thought experiment is assuming
the Ex becomes infinite, in that case, the final value of φ becomes unpredictable.

When damping becomes weaker, the final state diagrams become more chaotic, and
it is harder to predict whether final value of φ will end being the "correct" one (red)
or the "wrong" one (blue). This is because, with weaker damping, the system behaves
closer to the undamped case, for which the "particle" moves constantly and never local-
izes.

In conclusion, the optimal set of parameters that helps to realize the topological
bit are: (i) strong damping; (ii) Ex exceeding critical value; (iii) non-zero Bx ; (iv) tp
exceeding critical value.
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Figure 4.3
Phase diagram for strong damping. Blue: initial topology; Red: Different topology. Ex is the
dimensionless electrical field, Bx is the dimensionless pseudo magnetic field in x direction.
t0/τa is the characteristic time for the lifetime of the plus, where we take the equation of
motion to be: ∂ 2

t̄ φ − sin 2φ + (Bx sinφ + Ex) Θ( t̄ p − t̄) + 1
0.4∂ t̄φ = 0, Θ is the Heaviside step

function.
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Figure 4.4
Phase diagram for medium damping. Blue: initial topology; Red: Different topology. Ex is the
dimensionless electrical field, Bx is the dimensionless pseudo magnetic field in x direction.
t0/τa is the characteristic time for the lifetime of the plus, where we take the equation of
motion to be: ∂ 2

t̄ φ − sin2φ + (Bx sinφ + Ex) Θ( t̄ p − t̄) + 1
4∂ t̄φ = 0, Θ is the Heaviside step

function.
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Figure 4.5
Phase diagram for weak damping. Blue: initial topology; Red: Different topology. Ex is the
dimensionless electrical field, Bx is the dimensionless pseudo magnetic field in x direction.
t0/τa is the characteristic assuming the lifetime of the plus, where we take the equation of
motion to be: ∂ 2

t̄ φ − sin2φ + (Bx sinφ + Ex) Θ( t̄ p − t̄) + 1
10∂ t̄φ = 0, Θ is the Heaviside step

function.
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[15-17] Conclusion I studied the topological phase transition induced by perturba-
tions beyond the general “Floquet” picture. In Floquet engineering, the time-periodic
Hamiltonian could change the topological phase of the system, however, the topologi-
cal phase returns to its initial value when the perturbation is turned off. Is it possible
to conceive a system in which a transient external perturbation can lead to a perma-
nent change in the electronic band topology? If such a perturbation exists, then the two
phases could form a “topological bit”, an analog of the magnetic bit. In a magnetic mem-
ory, a pair of mean-field magnetizations with opposite orientations forms a “magnetic
bit”. It is well-known that the magnetization could be reversed by external perturbations
and remains in the final position. Such dynamics is described by the Landau-Lifshitz-
Gilbert equation. Inspired by the magnetic memory, we constructed and focused on the
“SSH-Holstein” model and tried to derive an equation for the topological phase of the
system as an analog of the Landau-Lifshitz-Gilbert equation, which could describe the
dynamics of the topological phase, and allow the system to remain in its final topological
phase even if the perturbation is turned off.
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Appendix A

Detailed calculations of the chiral
anomaly term in the action

In Chapter 4, we attempt to calculate the anomaly contribution to the effective action,
in this appendix, we are performing the detailed calculations. Recall the chiral gauge
transformation we used in the previous section is

Ψ = exp
�

−i
σzφ

2

�

Ψ′, (A.1)

and since [σx ,σz]+ = 0 we get

Ψ̄ = Ψ̄′ exp
�

−i
σzφ

2

�

, (A.2)

after the gauge transformation the action stays the same. However, the measure should
change to D[Ψ, Ψ̄]→ D[Ψ′, Ψ̄′]det(J)−2 since Ψ̄,Ψ are fermionic fields. We expand the
fields Ψ, Ψ̄ in the basis of eigenfunctions of iD:

Ψ =
∑︂

k

anψn(x)

Ψ̄ =
∑︂

n

bnψn(x), (A.3)

where an, bn are Grassmann numbers [27]. After the gauge transformation

Ψ′ =
∑︂

n

a′nψn(x)

Ψ̄
′ =

∑︂

n

b′nψn(x), (A.4)
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so

a′n = 〈ψn|Ψ′〉= 〈ψn|exp
�

−i
σzφ

2

�

|Ψ〉

=
∑︂

m

〈ψn|exp
�

−i
σzφ

2

�

|ψm〉〈ψm|Ψ〉=
∑︂

m

Jmnam, (A.5)

where the Jacobian J is

Jmn =
δa′n
δam

= 〈ψn|exp
�

−i
σzφ

2

�

|ψm〉. (A.6)

First we assume φ to be infinitesimal (φ→ δφ). Then the Jacobian is given by

det(J)−2 = exp[−2 lnTr J]

= exp
�

− 2 ln
∑︂

n

tr

∫︂

dτd xψ†
n(τ, x)exp

�

−i
σzδφ

2

�

ψn(τ, x)
�

≈ exp
�

− 2 ln
∑︂

n

tr

∫︂

dτd xψ†
n(τ, x)(1− i

σzδφ

2
)ψn(τ, x)

�

(A.7)

≈ exp
�

2i
∑︂

n

tr

∫︂

dτd xψ†
n
σzδφ

2
ψn

�

. (A.8)

However,
∑︁

n

∫︁

d xdτψ+n (τ, x)ψn(τ, x) =
∫︁

dτd xδ(0) is singular, thus det(J)−2 is ill-
defined. We need to regularize this expression, which we do by adding a gauge invariant
factor −/D̃2

/C2 where C2 is a large momentum scale [28], so the partition function
becomes

∫︂

D[Ψ, Ψ̄,φ]e−S′[Ψ,Ψ̄,φ] =

∫︂

D[Ψ̄,Ψ,φ]det(J)−2e−S[Ψ,Ψ̄,φ]

=

∫︂

D[Ψ̄,Ψ,φ]limC→∞ exp

�

2i tr

∫︂

dτdx
δφ

2

�

ψ†
nσ

ze−/D̃
2
/C2
ψn

�

�

e−S[Ψ,Ψ̄,φ]

=

∫︂

D[Ψ̄,Ψ,φ]e−Sa eS , (A.9)

the regular part action

S[Ψ, Ψ̄,φ] =

∫︂

dτd xΨ̄Ḡ−1
Ψ =

∫︂

dτd xΨ+G−1Ψ (A.10)

and the anomaly part action

Sa[Ψ, Ψ̄,φ] = −2 Tr
�

ψ+nφσ
ze−/D̃

2
/C2
ψn

�

(A.11)
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depends on both electrons degree of freedom (Ψ) and the phonon order parameter
∆min. In order to study the dynamics of the phonon order parameter, we would like to
know how the electron degrees of freedom affect the phonon order parameter. Transfer
to Fourier space we get

exp
�

2i Tr
�

ψ†
n
φ

2
σze−/D̃

2
/C2
ψn

��

= exp

�

i
4π2

∫︂

dτd x tr

∫︂

dkσze
−k2

C2 +
1

4C2 [γ
µ,γv]F̃µvφ

�

≈ exp

�

i
16π2C2

∫︂

dτd x tr

∫︂

dkσz[γµ,γv]F̃µvφe−k2/C2

�

= exp

�∫︂

dτd x
−i
4π
εµv F̃µvφ

�

= exp

�−i
2π

∫︂

dτd x eφEx −
1

4πv
(∂τφ)

2 − v
4π
(∂xφ)

2

�

, (A.12)

where k = (k0, k1) and F̃µv = ∂µÃv − ∂vÃµ. In Eq. (A.12), k is integrated out. As a
consequence, C component in the exp

�−k2/C2
�

term cancels with the C component in
the i/16π2C2 term. So, the result is C independent. The action for the chiral anomaly
is

Sa =
i

2πv

∫︂

dτd x
�

eφEx +
1

4π
(∂τφ)

2 +
v

4π
(∂xφ)

2
�

. (A.13)

Or, in real-time:

Sa =
−1
2πv

∫︂

d td x
�

eφEx −
1

4πv
(∂tφ)

2 +
v

4π
(∂xφ)

2
�

. (A.14)
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Appendix B

Detailed calculation of
Tr
�

1
2G0V G0V

�

(second part)

In Chapter 4, we attempt to calculate Tr
�1

2 G0V G0V
�

explicitly, in the appendix, we are
performing more detailed calculations. If we calculate the momentum sum first from
−∞ to∞, then we calculate the Matsubara sum, the result is

Tr
�

1
2

G0V G0V
�

≃
∫︂

d xdτ
1

8πv
(∂τφ)

2 +
i

2π
eφ(x)∂0A1

−
�

1
8πv
− 1

2v
arctanh

�

2v2

2v2 +∆2
0

��

e2v2A2
1

+ tr
∑︂

q,k

(ik0 + vk1 +∆0σ
x)

k2
0 + v2k2

1 +∆
2
0

(ik0 + vk1 +∆0σ
x + iq0 + vq1σ

z)
(k0 + q0)2 + v2(k1 + q1)2 +∆2

0
�

− 1
2

v2eq1Ã0(q)φ̃
⋆
(q) +

1
2

ev2q1Ã⋆0(q)φ̃(q) +
1
4

v2q2
1φ̃(q)φ̃

⋆
(q) + e2v2Ã0(q)Ã

⋆

0(q)
�

+
∑︂

k

1
π

∫︂ ∞

0

dk0dk1
(−k2

0 + v2k2
1 +∆

2
0)

(k2
0 + v2k2

1 +∆
2
0)
�

(k0 + q0)2 + v2(k1 + q1)2 +∆2
0

�

�

− 1
2

v2eq1Ã0(q)φ̃
⋆
(q) +

1
2

ev2q1Ã⋆0(q)φ̃(q) +
1
4

v2q2
1φ̃(q)φ̃

⋆
(q) + e2v2Ã0(q)Ã

⋆

0(q)
�

=

∫︂

dτd x
1

8πv
(∂τφ)

2 +
1

8π
v(∂xφ)

2 +
i

2π
eφ(x)∂0A1 −

i
2π

veφ∂1A0

−
�

1
8πv
− 1

2v
arctanh

�

2v2

2v2 +∆2
0

��

e2v2A2
1 +

1
8π

ve2A2
0 (B.1)
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