Universal topological phase of 2D stabilizer codes and decoding algorithms

David Poulin

Département de Physique
Université de Sherbrooke

Joint work with: G. Duclos-Cianci and H. Bombin

Institute for Quantum Information
California Institute of Technology, Pasadena, April 2011
Outline

1. Kitaev’s code
 - Definition
 - Hamiltonian’s symmetries

2. Errors: defect creation, diffusion, and annihilation

3. Decoding problem
 - Task description
 - Perfect matching algorithm

4. Renormalization Group Decoder
 - Coarse graining
 - Mean-Field Equations

5. Results for Kitaev’s code

6. Local equivalence
Outline

1. Kitaev’s code
 - Definition
 - Hamiltonian’s symmetries

2. Errors: defect creation, diffusion, and annihilation

3. Decoding problem
 - Task description
 - Perfect matching algorithm

4. Renormalization Group Decoder
 - Coarse graining
 - Mean-Field Equations

5. Results for Kitaev’s code

6. Local equivalence
Lattice

- Two-dimensional square lattice
- Periodic boundary conditions
Site operator:
\[A_s = \prod_{i \in V(s)} \sigma^x_i \]

Plaquette operator:
\[B_p = \prod_{i \in V(p)} \sigma^z_i \]

Hamiltonian:
\[H = - (\sum_s A_s + \sum_p B_p) \]
Kitaev's code

Hamiltonian

- **Site operator:**
 \[A_s = \prod_{i \in V(s)} \sigma^i_x \]

- **Plaquette operator:**
 \[B_p = \prod_{i \in V(p)} \sigma^i_z \]

- **Hamiltonian:**
 \[H = -\left(\sum_s A_s + \sum_p B_p \right) \]
- Site operator:
 \[A_s = \prod_{i \in V(s)} \sigma^i_x \]
- Plaquette operator:
 \[B_p = \prod_{i \in V(p)} \sigma^i_z \]
- \[H = - (\sum_s A_s + \sum_p B_p) \]
Kitaev's code

Hamiltonian

\[H = - (\sum_s A_s + \sum_p B_p) \]

- \([A_s, A_{s'}] = [B_p, B_{p'}] = 0\]
- \([A_s, B_p] = 0\]
- The Hamiltonian is a sum of commuting terms.
 - Exactly solvable
 - Constant gap
Hamiltonian

\[H = - \left(\sum_s A_s + \sum_p B_p \right) \]

- \([A_s, A_{s'}] = [B_p, B_{p'}] = 0\]
- \([A_s, B_p] = 0\]
- The Hamiltonian is a sum of commuting terms.
 - Exactly solvable
 - Constant gap
Kitaev's code

Definition

Hamiltonian

- \(H = -\left(\sum_s A_s + \sum_p B_p \right) \)
- \([A_s, A_{s'}] = [B_p, B_{p'}] = 0\)
- \([A_s, B_p] = 0\)
- The Hamiltonian is a sum of commuting terms.
 - Exactly solvable
 - Constant gap

David Poulin (Sherbrooke)
Topological RG
IQI Caltech’11 6 / 46
Hamiltonian

The Hamiltonian is a sum of commuting terms.

- $H = - (\sum_s A_s + \sum_p B_p)$
- $[A_s, A_{s'}] = [B_p, B_{p'}] = 0$
- $[A_s, B_p] = 0$

- Exactly solvable
- Constant gap
String operators

\[Z_1 = \prod_{i \in \gamma_1} \sigma_z^i \]

- \([Z_1, B_p] = 0\]
- \([Z_1, A_s] = 0\]
- \([Z_1, H] = 0\]
String operators

\[Z_{1} = \prod_{i \in \gamma_{1}} \sigma_{z}^{i} \]

\[[Z_{1}, B_{p}] = 0 \]

\[[Z_{1}, A_{s}] = 0 \]

\[[Z_{1}, H] = 0 \]
String operators

- $\overline{Z}_1 = \prod_{i \in \gamma_1} \sigma_z^i$
- $[\overline{Z}_1, B_p] = 0$
- $[\overline{Z}_1, A_s] = 0$
- $[\overline{Z}_1, H] = 0$
String operators

\(\overline{Z}_1 = \prod_{i \in \gamma_1} \sigma_z^i \)

\([\overline{Z}_1, B_p] = 0\)

\([\overline{Z}_1, A_s] = 0\)

\([\overline{Z}_1, H] = 0\)
String operators

\[X_1 = \prod_{i \in \gamma_1} \sigma_z^i \]

- \([X_1, B_p] = 0\]
- \([X_1, A_s] = 0\]
- \([X_1, H] = 0\]
- \([X_1, Z_1] = 0\]

\[\{X_1, Z_1\} = 0 \]
String operators

- $\overline{X}_1 = \prod_{i \in \gamma_1} \sigma_z^i$
- $[\overline{X}_1, B_p] = 0$
- $[\overline{X}_1, A_s] = 0$
- $[\overline{X}_1, H] = 0$
- $\{\overline{X}_1, \overline{Z}_1\} = 0$
String operators

- $\bar{X}_1 = \prod_{i \in \gamma_1} \sigma_z^i$
- $[\bar{X}_1, B_p] = 0$
- $[\bar{X}_1, A_s] = 0$
- $[\bar{X}_1, H] = 0$
- $\{\bar{X}_1, \bar{Z}_1\} = 0$
String operators

\(\overline{X}_1 = \prod_{i \in \gamma_1} \sigma_z^i \)

\([\overline{X}_1, B_p] = 0\)

\([\overline{X}_1, A_s] = 0\)

\([\overline{X}_1, H] = 0\)

\(\{\overline{X}_1, \overline{Z}_1\} = 0\)
String operators

- $\overline{X}_1 = \prod_{i \in \gamma_1} \sigma^i_z$
- $[\overline{X}_1, B_p] = 0$
- $[\overline{X}_1, A_s] = 0$
- $[\overline{X}_1, H] = 0$
- $\{\overline{X}_1, \overline{Z}_1\} = 0$
Second set of symmetries

- By reflecting around the diagonal, we obtain two new symmetry operators
 - \(\{X_2, Z_2\} = 0 \).
 - \(\{X_1, Z_1\} = 0 \).
 - \([Z_1, Z_2] = 0\)
 - \([X_1, X_2] = 0\)
 - \([X_2, Z_1] = 0\)
 - \([X_1, Z_2] = 0\)

Two encoded qubits
By reflecting around the diagonal, we obtain two new symmetry operators

\[\{ \bar{X}_2, \bar{Z}_2 \} = 0. \]

\[\{ X_1, \bar{Z}_1 \} = 0. \]

\[[\bar{Z}_1, \bar{Z}_2] = 0 \]

\[[\bar{X}_1, \bar{X}_2] = 0 \]

\[[\bar{X}_2, \bar{Z}_1] = 0 \]

\[[X_1, \bar{Z}_2] = 0 \]

Two encoded qubits
By reflecting around the diagonal, we obtain two new symmetry operators:

\[
\{X_2, Z_2\} = 0.
\]

\[
\{X_1, Z_1\} = 0.
\]

\[
[Z_1, Z_2] = 0
\]

\[
[X_1, X_2] = 0
\]

\[
[X_2, Z_1] = 0
\]

\[
[X_1, Z_2] = 0
\]
By reflecting around the diagonal, we obtain two new symmetry operators

\[
\{\overline{X}_2, \overline{Z}_2\} = 0.
\]

\[
\{\overline{X}_1, \overline{Z}_1\} = 0.
\]

\[
[\overline{Z}_1, \overline{Z}_2] = 0
\]

\[
[\overline{X}_1, \overline{X}_2] = 0
\]

\[
[\overline{X}_2, \overline{Z}_1] = 0
\]

\[
[\overline{X}_1, \overline{Z}_2] = 0
\]
Second set of symmetries

- By reflecting around the diagonal, we obtain two new symmetry operators:
 - $\{X_2, Z_2\} = 0$.
 - $\{X_1, Z_1\} = 0$.
 - $[Z_1, Z_2] = 0$
 - $[X_1, X_2] = 0$
 - $[X_2, Z_1] = 0$
 - $[X_1, Z_2] = 0$

Two encoded qubits
By reflecting around the diagonal, we obtain two new symmetry operators:

\[\{\overline{X}_2, \overline{Z}_2\} = 0. \]
\[\{\overline{X}_1, \overline{Z}_1\} = 0. \]
\[[\overline{Z}_1, \overline{Z}_2] = 0 \]
\[[\overline{X}_1, \overline{X}_2] = 0 \]
\[[\overline{X}_2, \overline{Z}_1] = 0 \]
\[[\overline{X}_1, \overline{Z}_2] = 0 \]

Two encoded qubits
Trivial cycles
Trivial cycles
Trivial cycles
Trivial cycles
Non-trivial cycles
Non-trivial cycles
Non-trivial cycles
Non-trivial cycles
Trivial cycles and ground space

- \(H = - (\sum_s A_s + \sum_p B_p) \)
- The \(A_s \) et \(B_p \) are trivial cycles
- Trivial action on ground space
 \[A_s \ket{\psi} = B_p \ket{\psi} = +1 \ket{\psi} \]
- \(A_s \), \(B_p \) generate all trivial loops.

Trivial loops act trivially on ground space
Kitaev's code

Hamiltonian's symmetries

Trivial cycles and ground space

\[H = - \left(\sum_s A_s + \sum_p B_p \right) \]

The \(A_s \) et \(B_p \) are trivial cycles

- Trivial action on ground space
 \[A_s |\psi\rangle = B_p |\psi\rangle = +1 |\psi\rangle \]

- \(A_s \) \(B_p \) generate all trivial loops.

Trivial loops act trivially on ground space
Trivial cycles and ground space

- \(H = - (\sum_s A_s + \sum_p B_p) \)
- The \(A_s \) et \(B_p \) are trivial cycles
- Trivial action on ground space
 \(A_s |\psi\rangle = B_p |\psi\rangle = +1 |\psi\rangle \)
- \(A_s \) \(B_p \) generate all trivial loops.

Trivial loops act trivially on ground space
Kitaev’s code

Hamiltonian’s symmetries

Trivial cycles and ground space

- $H = -\left(\sum_s A_s + \sum_p B_p \right)$
- The A_s et B_p are trivial cycles
- Trivial action on ground space
 $A_s |\psi\rangle = B_p |\psi\rangle = +1 |\psi\rangle$
- A_s B_p generate all trivial loops.

Trivial loops act trivially on ground space
Kitaev’s code

Hamiltonian’s symmetries

Trivial cycles and ground space

- $H = - (\sum_s A_s + \sum_p B_p)$
- The A_s et B_p are trivial cycles
- Trivial action on ground space
 $A_s |\psi\rangle = B_p |\psi\rangle = +1 |\psi\rangle$
- $A_s \ B_p$ generate all trivial loops.

Trivial loops act trivially on ground space
Trivial cycles and ground space

- \(H = - (\sum_s A_s + \sum_p B_p) \)
- The \(A_s \) et \(B_p \) are trivial cycles
- Trivial action on ground space
 \(A_s |\psi\rangle = B_p |\psi\rangle = +1 |\psi\rangle \)
- \(A_s \) \(B_p \) generate all trivial loops.

Trivial loops act trivially on ground space
Kitaev’s code
Hamiltonian’s symmetries

Trivial cycles and ground space

\[H = -(\sum_s A_s + \sum_p B_p) \]

The \(A_s \) et \(B_p \) are trivial cycles

Trivial action on ground space

\[A_s |\psi\rangle = B_p |\psi\rangle = +1 |\psi\rangle \]

\(A_s \) \(B_p \) generate all trivial loops.

Trivial loops act trivially on ground space
Non-trivial cycles

- γ_1 and γ_2 wrap around the torus: they are non-trivial cycles
Kitaev’s code

Hamiltonian’s symmetries

Gauge choice

\[|\psi\rangle = B_{p'} |\psi\rangle \]

\[\bar{Z}_1 |\psi\rangle = \bar{Z}_1 B_{p'} |\psi\rangle \]

\[Z_1 \equiv Z_1 B_{p'} \]

\[\equiv \bar{Z}_1 B_{p'} B_{p''} \]

\[\equiv \bar{Z}_1 \prod_{\rho} B_{\rho} \]
\[|\psi\rangle = B_{p'} |\psi\rangle \]
\[\bar{Z}_1 |\psi\rangle = \bar{Z}_1 B_{p'} |\psi\rangle \]
\[\bar{Z}_1 \equiv \bar{Z}_1 B_{p'} \]
\[\equiv \bar{Z}_1 B_{p'} B_{p''} \]
\[\equiv \bar{Z}_1 \prod_{p} B_{p} \]
Gauge choice

\[|\psi\rangle = B_{p'} |\psi\rangle \]
\[\overline{Z}_1 |\psi\rangle = \overline{Z}_1 B_{p'} |\psi\rangle \]
\[\overline{Z}_1 \equiv \overline{Z}_1 B_{p'} \]
\[\equiv \overline{Z}_1 B_{p'} B_{p''} \]
\[\equiv \overline{Z}_1 \prod_p B_p \]
|ψ⟩ = B_{p'} |ψ⟩

\overline{Z}_1 |ψ⟩ = \overline{Z}_1 B_{p'} |ψ⟩

\overline{Z}_1 \equiv \overline{Z}_1 B_{p'}

\equiv \overline{Z}_1 B_{p'} B_{p''}

\equiv \overline{Z}_1 \prod_p B_p
Gauge choice

- $|\psi\rangle = B_{p'} |\psi\rangle$
- $\overline{Z}_1 |\psi\rangle = \overline{Z}_1 B_{p'} |\psi\rangle$
- $\overline{Z}_1 \equiv \overline{Z}_1 B_{p'}$
 $\equiv \overline{Z}_1 B_{p'} B_{p''}$
 $\equiv \overline{Z}_1 \prod_p B_p$
Gauge choice

- $|\psi\rangle = B_p' |\psi\rangle$
- $\bar{Z}_1 |\psi\rangle = \bar{Z}_1 B_p' |\psi\rangle$
- $\bar{Z}_1 \equiv \bar{Z}_1 B_p'$
- $\equiv \bar{Z}_1 B_p' B_p''$
- $\equiv \bar{Z}_1 \prod_p B_p$
Gauge choice

\[|\psi\rangle = B_{p'} |\psi\rangle \]
\[\overline{Z}_1 |\psi\rangle = \overline{Z}_1 B_{p'} |\psi\rangle \]
\[\overline{Z}_1 \equiv \overline{Z}_1 B_{p'} \]
\[\equiv \overline{Z}_1 B_{p'} B_{p''} \]
\[\equiv \overline{Z}_1 \prod_{p} B_{p} \]
One degree of freedom associated to each non-trivial cycle.
- Operator in same homological class act identically on ground space.
- We encode the quantum information is those degrees of freedom:
 - The information can only be modified by topologically non-trivial operators.
 - Robust when \((\ell \to \infty)\)... ?
One degree of freedom associated to each non-trivial cycle.

Operator in same homological class act identically on ground space.

We encode the quantum information in those degrees of freedom:
- The information can only be modified by topologically non-trivial operators.
- Robust when $(\ell \to \infty)$...?
One degree of freedom associated to each non-trivial cycle.

Operator in same homological class act identically on ground space.

We encode the quantum information is those degrees of freedom:

- The information can only be modified by topologically non-trivial operators.
- Robust when \((\ell \to \infty)\)... ?
One degree of freedom associated to each non-trivial cycle.
Operator in same homological class act identically on ground space.
We encode the quantum information in those degrees of freedom:
- The information can only be modified by topologically non-trivial operators.
- Robust when \((\ell \to \infty)\)... ?
One degree of freedom associated to each non-trivial cycle.
Operator in same homological class act identically on ground space.
We encode the quantum information is those degrees of freedom:
- The information can only be modified by topologically non-trivial operators.
- Robust when \(\ell \to \infty \) ?
Outline

1. Kitaev’s code
 - Definition
 - Hamiltonian’s symmetries

2. Errors: defect creation, diffusion, and annihilation

3. Decoding problem
 - Task description
 - Perfect matching algorithm

4. Renormalization Group Decoder
 - Coarse graining
 - Mean-Field Equations

5. Results for Kitaev’s code

6. Local equivalence
Consider error $E = \sigma^i_x$.

- σ^i_x anti-commutes with adjacent plaquettes.
- $\sigma^i_x|\psi\rangle$ is a -1 eigenstate of B_p and $B_{p'}$.
- Since $H = -(\sum_s A_s + \sum_p B_p)$, σ^i_x costs 2 energy units.
- This error has created a pair of magnetic particles.
Consider error $E = \sigma_x^i$.

σ_x^i anti-commutes with adjacent plaquettes.

$\sigma_x^i |\psi\rangle$ is a -1 eigenstate of B_p and $B_{p'}$.

Since $H = - (\sum_s A_s + \sum_p B_p)$, σ_x^i costs 2 energy units.

This error has created a pair of magnetic particles.
Particle creation

- Consider error $E = \sigma_x^i$.
- σ_x^i anti-commutes with adjacent plaquettes.
- $\sigma_x^i|\psi\rangle$ is a -1 eigenstate of B_p and $B_{p'}$.
- Since $H = - (\sum_s A_s + \sum_p B_p)$, σ_x^i costs 2 energy units.
- This error has created a pair of magnetic particles.
Consider error $E = \sigma^i_x$.

σ^i_x anti-commutes with adjacent plaquettes.

$\sigma^i_x |\psi\rangle$ is a -1 eigenstate of B_p and $B_{p'}$.

Since $H = -(\sum_s A_s + \sum_p B_p)$, σ^i_x costs 2 energy units.

This error has created a pair of magnetic particles.
Consider error \(E = \sigma_x^i \).

\(\sigma_x^i \) anti-commutes with adjacent plaquettes.

\(\sigma_x^i \vert \psi \rangle \) is a -1 eigenstate of \(B_p \) and \(B_{p'} \).

Since \(H = -\left(\sum_s A_s + \sum_p B_p \right) \), \(\sigma_x^i \) costs 2 energy units.

This error has created a pair of magnetic particles.
Particle diffusion

New error occurs on neighboring qubit:

- Restores the sign of the middle plaquette
- Flips the sign of the right plaquette

No net energy cost: particle has moved
Errors: defect creation, diffusion, and annihilation

Particle diffusion

New error occurs on neighboring qubit:

- Restores the sign of the middle plaquette
- Flips the sign of the right plaquette

No net energy cost: particle has moved
New error occurs on neighboring qubit:

- Restores the sign of the middle plaquette
- Flips the sign of the right plaquette

No net energy cost: particle has moved
Particle diffusion

New error occurs on neighboring qubit:

- Restores the sign of the middle plaquette
- Flips the sign of the right plaquette

No net energy cost: particle has moved
- Error chains are attached to particles, each with given energy.
- Particles can move around at no energy cost.
- Error chains can be stretched freely.
Error chains

- Error chains are attached to particles, each with given energy.
- Particles can move around at no energy cost.
- Error chains can be stretched freely.
Error chains are attached to particles, each with given energy.

- Particles can move around at no energy cost.
- Error chains can be stretched freely.
An error can annihilate two particles.

The particle’s worldline is left behind after fusion.

Particle fusion can leave behind a worldline corresponding to a logical operation.

Memory corruption
Errors: defect creation, diffusion, and annihilation

Particle annihilation

- An error can annihilate two particles
- The particle’s worldline is left behind after fusion.
- Particle fusion can leave behind a worldline corresponding to a logical operation

Memory corruption
Errors: defect creation, diffusion, and annihilation

Particle annihilation

- An error can annihilate two particles
- The particle’s worldline is left behind after fusion.
- Particle fusion can leave behind a worldline corresponding to a logical operation

Memory corruption
Errors: defect creation, diffusion, and annihilation

Particle annihilation

- An error can annihilate two particles
- The particle’s worldline is left behind after fusion.
- Particle fusion can leave behind a worldline corresponding to a logical operation

Memory corruption
The same story holds for σ_z errors

These will create electrical particles located at the lattice’s vertices (plaquette of dual lattice).
Outline

1. Kitaev’s code
 - Definition
 - Hamiltonian’s symmetries

2. Errors: defect creation, diffusion, and annihilation

3. Decoding problem
 - Task description
 - Perfect matching algorithm

4. Renormalization Group Decoder
 - Coarse graining
 - Mean-Field Equations

5. Results for Kitaev’s code

6. Local equivalence
An error produces defects (error syndrome)

- Measure particle position, but not worldline.
- Many worldlines consistent with defects.
- Worldline with different homologies have different effect on ground space: MUST be distinguished.

Decoding

Infer worldline homology from particle location.

15% Noise rate
Decoding problem

Task description

Error syndrome & decoding

- An error produces defects (error syndrome)
- Measure particle position, but not worldline.
- Many worldlines consistent with defects.
- Worldline with different homologies have different effect on ground space: MUST be distinguished.

Decoding

Infer worldline homology from particle location.

15% Noise rate
Error syndrome & decoding

- An error produces defects (error syndrome)
- Measure particle position, but not worldline.
- Many worldlines consistent with defects.
- Worldline with different homologies have different effect on ground space: MUST be distinguished.

Decoding
Infer worldline homology from particle location.

15 % Noise rate
Error syndrome & decoding

- An error produces defects (error syndrome)
- Measure particle position, but not worldline.
- Many worldlines consistent with defects.
- Worldline with different homologies have different effect on ground space: MUST be distinguished.

Decoding

Infer worldline homology from particle location.
Error syndrome & decoding

- An error produces defects (error syndrome)
- Measure particle position, but not worldline.
- Many worldlines consistent with defects.
- Worldline with different homologies have different effect on ground space: MUST be distinguished.

Decoding
Infer worldline homology from particle location.

15% Noise rate
Decoding problem

Task description

Error syndrome & decoding

- An error produces defects (error syndrome)
- Measure particle position, but not worldline.
- Many worldlines consistent with defects.
- Worldline with different homologies have different effect on ground space: MUST be distinguished.

Decoding

Infer worldline homology from particle location.
Existing methods

Energy Minimization

- Find shortest path connecting all defects.
- Equivalent to minimizing energy of random bond Ising model.
- Edmonds’ perfect matching algorithm: $O(\ell^6)$

- It is very slow, $O(\ell^6)$, limited to lattices $\ell \approx 100$.
- It is not optimal:
 - Does not take into account the topological equivalence of errors.
 - Does not take into account correlations between magnetic and electric particles.

Depolarization error model

- Independent on every qubit.
- No error with probability $1 - p$.
- Error X, Y, or Z with probability $p/3$.
Existing methods

Energy Minimization

- Find shortest path connecting all defects.
- Equivalent to minimizing energy of random bond Ising model.
- Edmonds’ perfect matching algorithm: $O(\ell^6)$

- It is very slow, $O(\ell^6)$, limited to lattices $\ell \approx 100$.
- It is not optimal:
 - Does not take into account the topological equivalence of errors.
 - Does not take into account correlations between magnetic and electric particles.

Depolarization error model

- Independent on every qubit.
- No error with probability $1 - p$.
- Error X, Y, or Z with probability $p/3$.
Existing methods

Energy Minimization

- Find shortest path connecting all defects.
- Equivalent to minimizing energy of random bond Ising model.
- Edmonds’ perfect matching algorithm: $O(\ell^6)$

- It is very slow, $O(\ell^6)$, limited to lattices $\ell \approx 100$.
- It is not optimal:
 - Does not take into account the topological equivalence of errors.
 - Does not take into account correlations between magnetic and electric particles.

Depolarization error model

- Independent on every qubit.
- No error with probability $1 - p$.
- Error X, Y, or Z with probability $p/3$.
Existing methods

Energy Minimization

- Find shortest path connecting all defects.
- Equivalent to minimizing energy of random bond Ising model.
- Edmonds’ perfect matching algorithm: $O(\ell^6)$

- It is very slow, $O(\ell^6)$, limited to lattices $\ell \approx 100$.
- It is not optimal:
 - Does not take into account the topological equivalence of errors.
 - Does not take into account correlations between magnetic and electric particles.

Depolarization error model

- Independent on every qubit.
- No error with probability $1 - p$.
- Error X, Y, or Z with probability $p/3$.
Decoding problem

Perfect matching algorithm

Existing methods

Energy Minimization

- Find shortest path connecting all defects.
- Equivalent to minimizing energy of random bond Ising model.
- Edmonds’ perfect matching algorithm: $O(\ell^6)$

- It is very slow, $O(\ell^6)$, limited to lattices $\ell \approx 100$.
- It is not optimal:
 - Does not take into account the topological equivalence of errors.
 - Does not take into account correlations between magnetic and electric particles.

Depolarization error model

- Independent on every qubit.
- No error with probability $1 - p$.
- Error X, Y, or Z with probability $p/3$.
Existing methods

Energy Minimization

- Find shortest path connecting all defects.
- Equivalent to minimizing energy of random bond Ising model.
- Edmonds’ perfect matching algorithm: \(O(\ell^6) \)

- It is very slow, \(O(\ell^6) \), limited to lattices \(\ell \approx 100 \).
- It is not optimal:
 - Does not take into account the topological equivalence of errors.
 - Does not take into account correlations between magnetic and electric particles.

Depolarization error model

- Independent on every qubit.
- No error with probability \(1 - p \).
- Error \(X \), \(Y \), or \(Z \) with probability \(p/3 \).
Existing methods

Energy Minimization

- Find shortest path connecting all defects.
- Equivalent to minimizing energy of random bond Ising model.
- Edmonds’ perfect matching algorithm: $O(\ell^6)$

- It is very slow, $O(\ell^6)$, limited to lattices $\ell \approx 100$.
- It is not optimal:
 - Does not take into account the topological equivalence of errors.
 - Does not take into account correlations between magnetic and electric particles.

Depolarization error model

- Independent on every qubit.
- No error with probability $1 - p$.
- Error X, Y, or Z with probability $p/3$.

David Poulin (Sherbrooke)
Two possible pairings with different homologies
- First one has lower weight (Energy).
- Second one is highly degenerate (Entropy).

Optimal decoding
Homology class with lowest free energy \(F = E - TS \).
- Nishimori \(T^{-1} = \ln \frac{3(1-p)}{p} \).
- Sum over all equivalent errors.
Two possible pairings with different homologies
- First one has lower weight (Energy).
- Second one is highly degenerate (Entropy).

Optimal decoding
Homology class with lowest free energy \(F = E - TS \).
- Nishimori \(T^{-1} = \ln \frac{3(1-p)}{p} \).
- Sum over all equivalent errors.
Two possible pairings with different homologies
- First one has lower weight (Energy).
- Second one is highly degenerate (Entropy).

Optimal decoding
Homology class with lowest free energy $F = E - TS$.
- Nishimori $T^{-1} = \ln \frac{3(1-p)}{p}$.
- Sum over all equivalent errors.
Two possible pairings with different homologies

- First one has lower weight (Energy).
- Second one is highly degenerate (Entropy).

Optimal decoding

Homology class with lowest free energy $F = E - TS$.

- Nishimori $T^{-1} = \ln \frac{3(1-p)}{p}$.
- Sum over all equivalent errors.
Two possible pairings with different homologies
- First one has lower weight (Energy).
- Second one is highly degenerate (Entropy).

Optimal decoding
Homology class with lowest free energy $F = E - TS$.
- Nishimori $T^{-1} = \ln \frac{3(1-p)}{p}$.
- Sum over all equivalent errors.
Two possible pairings with different homologies
- First one has lower weight (Energy).
- Second one is highly degenerate (Entropy).

Optimal decoding
Homology class with lowest free energy \(F = E - TS \).
- Nishimori \(T^{-1} = \ln \frac{3(1-p)}{p} \).
- Sum over all equivalent errors.
Two possible pairings with different homologies

- Both seemingly have same weight
- A Y error has same weight as X and Z: we were overcounting.
- Electric Z and Magnetic X errors are not independent.
Magnetic-Electric correlations

- Two possible pairings with different homologies
- Both seemingly have same weight
- A Y error has same weight as X and Z: we were overcounting.
- Electric Z and Magnetic X errors are not independent.
Two possible pairings with different homologies

- Both seemingly have same weight
- A Y error has same weight as X and Z: we were overcounting.
- Electric Z and Magnetic X errors are not independent.
Two possible pairings with different homologies
Both seemingly have same weight
A Y error has same weight as X and Z: we were overcounting.

Electric Z and Magnetic X errors are not independent.
Magnetic-Electric correlations

- Two possible pairings with different homologies
- Both seemingly have same weight
- A Y error has same weight as X and Z: we were overcounting.
- Electric Z and Magnetic X errors are not independent.
Two possible pairings with different homologies
Both seemingly have same weight
A Y error has same weight as X and Z: we were overcounting.
Electric Z and Magnetic X errors are not independent.
Outline

1. Kitaev’s code
 - Definition
 - Hamiltonian’s symmetries

2. Errors: defect creation, diffusion, and annihilation

3. Decoding problem
 - Task description
 - Perfect matching algorithm

4. Renormalization Group Decoder
 - Coarse graining
 - Mean-Field Equations

5. Results for Kitaev’s code

6. Local equivalence
Scale invariance

- **Original B_p checks**
 - Basis change (row operations on C)
 - Obtain scale invariant generators
 - Structure similar to a concatenated code.
 - Soft-decode each small block.
 - Pass information to next encoding level.
- Original B_p checks
- Basis change
 (row operations on C)
- Obtain scale invariant generators
- Structure similar to a concatenated code.

- Soft-decode each small block.
- Pass information to next encoding level.
Scale invariance

- Original B_P checks
- Basis change (row operations on C)
 - Obtain scale invariant generators
 - Structure similar to a concatenated code.
- Soft-decode each small block.
- Pass information to next encoding level.
Scale invariance

- Original B_p checks
- Basis change (row operations on C)
 - Obtain scale invariant generators
 - Structure similar to a concatenated code.
- Soft-decode each small block.
- Pass information to next encoding level.
Scale invariance

- Original B_p checks
- Basis change (row operations on C)
- Obtain scale invariant generators
 - Structure similar to a concatenated code.
 - Soft-decode each small block.
 - Pass information to next encoding level.
Scale invariance

- Original B_p checks
- Basis change (row operations on C)
- Obtain scale invariant generators
- Structure similar to a concatenated code.

- Soft-decode each small block.
- Pass information to next encoding level.
Scale invariance

- Original B_p checks
- Basis change (row operations on C)
- Obtain scale invariant generators
- Structure similar to a concatenated code.

- Soft-decode each small block.
- Pass information to next encoding level.
Scale invariance

- Original B_p checks
- Basis change (row operations on C)
- Obtain scale invariant generators
- Structure similar to a concatenated code.

- Soft-decode each small block.
- Pass information to next encoding level.
Concatenated code

- Encoding one qubit in 3 qubits.

Decoding

$P(L) = \sum'_{E} P(E)$ where

- Sum over E equivalent to L and with right syndrome.
- $P(E)$ given by error model.

- Encode each of these qubits...

Decoding

- Compute error probability for each encoded qubit.
- Pass that probability to the next level up.
Concatenated code

- Encoding one qubit in 3 qubits.

Decoding

\[P(L) = \sum_E' P(E) \text{ where} \]

- Sum over \(E \) equivalent to \(L \) and with right syndrome.
- \(P(E) \) given by error model.

- Encode each of these qubits...

Decoding

- Compute error probability for each encoded qubit.
- Pass that probability to the next level up.
Concatenated code

- Encoding one qubit in 3 qubits.

Decoding

\[P(L) = \sum'_E P(E) \]

- Sum over \(E \) equivalent to \(L \) and with right syndrome.
- \(P(E) \) given by error model.

- Encode each of these qubits...

Decoding

- Compute error probability for each encoded qubit.
- Pass that probability to the next level up.
Concatenated code

- Encoding one qubit in 3 qubits.

Decoding

\[P(L) = \sum'_{E} P(E) \] where

- Sum over \(E \) equivalent to \(L \) and with right syndrome.
- \(P(E) \) given by error model.

- Encode each of these qubits...

Decoding

- Compute error probability for each encoded qubit.
- Pass that probability to the next level up.
Concatenated code

- Encoding one qubit in 3 qubits.

Decoding

\[P(L) = \sum_E' P(E) \] where

- Sum over \(E \) equivalent to \(L \) and with right syndrome.
- \(P(E) \) given by error model.

- Encode each of these qubits...

Decoding

- Compute error probability for each encoded qubit.
- Pass that probability to the next level up.
Think of the Kitaev’s code as a concatenated code:
- It is made up of a bunch of small (open boundary) topological codes, joined into larger topological codes, etc.
- Given the particle configuration in a unit cell, compute the prob.
 - That it is transversed from top to bottom by a magnetic particle.
 - That it is transversed from top to bottom by an electric particle.
 - That it is transversed from left to right by a magnetic particle.
 - etc.
- There are 16 possibilities corresponding to \(\{I, X, Y, Z\}^2\), 2 qubits.
- This is done by brute force: sum over all worldline configurations.
Think of the Kitaev’s code as a concatenated code:
- It is made up of a bunch of small (open boundary) topological codes, joined into larger topological codes, etc.
Given the particle configuration in a unit cell, compute the prob.
- That it is transversed from top to bottom by a magnetic particle.
- That it is transversed from top to bottom by a electric particle.
- That it is transversed from left to right by a magnetic particle.
- etc.
There are 16 possibilities corresponding to $\{I, X, Y, Z\}^2$, 2 qubits.
This is done by brute force: sum over all worldline configurations.
Think of the Kitaev’s code as a concatenated code:

- It is made up of a bunch of small (open boundary) topological codes, joined into larger topological codes, etc.

Given the particle configuration in a unit cell, compute the prob.
- That it is transversed from top to bottom by a magnetic particle.
- That it is transversed from top to bottom by an electric particle.
- That it is transversed from left to right by a magnetic particle.
- etc.

There are 16 possibilities corresponding to \(\{I, X, Y, Z\}^2 \), 2 qubits.
- This is done by brute force: sum over all worldline configurations.
Think of the Kitaev’s code as a concatenated code:

- It is made up of a bunch of small (open boundary) topological codes, joined into larger topological codes, etc.

Given the particle configuration in a unit cell, compute the prob.

- That it is transversed from top to bottom by a magnetic particle.
- That it is transversed from top to bottom by an electric particle.
- That it is transversed from left to right by a magnetic particle.

- etc.

There are 16 possibilities corresponding to $\{I, X, Y, Z\}^2$, 2 qubits.

This is done by brute force: sum over all worldline configurations.
Think of the Kitaev’s code as a concatenated code:
- It is made up of a bunch of small (open boundary) topological codes, joined into larger topological codes, etc.

Given the particle configuration in a unit cell, compute the prob.
- That it is transversed from top to bottom by a magnetic particle.
- That it is transversed from top to bottom by an electric particle.
- That it is transversed from left to right by a magnetic particle.
- etc.

There are 16 possibilities corresponding to \(\{I, X, Y, Z\}^2 \), 2 qubits.

This is done by brute force: sum over all worldline configurations.
Think of the Kitaev’s code as a concatenated code:
- It is made up of a bunch of small (open boundary) topological codes, joined into larger topological codes, etc.

Given the particle configuration in a unit cell, compute the prob.
- That it is transversed from top to bottom by a magnetic particle.
- That it is transversed from top to bottom by an electric particle.
- That it is transversed from left to right by a magnetic particle.
- etc.

There are 16 possibilities corresponding to $\{I, X, Y, Z\}^2$, 2 qubits.

This is done by brute force: sum over all worldline configurations.
Think of the Kitaev’s code as a concatenated code:
- It is made up of a bunch of small (open boundary) topological codes, joined into larger topological codes, etc.

Given the particle configuration in a unit cell, compute the prob.
- That it is transversed from top to bottom by a magnetic particle.
- That it is transversed from top to bottom by a electric particle.
- That it is transversed from left to right by a magnetic particle.
- etc.

There are 16 possibilities corresponding to \(\{I, X, Y, Z\}^2 \), 2 qubits.

This is done by brute force: sum over all worldline configurations.
Think of the Kitaev’s code as a concatenated code:
- It is made up of a bunch of small (open boundary) topological codes, joined into larger topological codes, etc.
- Given the particle configuration in a unit cell, compute the prob.
 - That it is transversed from top to bottom by a magnetic particle.
 - That it is transversed from top to bottom by an electric particle.
 - That it is transversed from left to right by a magnetic particle.
 - etc.
- There are 16 possibilities corresponding to \(\{I, X, Y, Z\}^2 \), 2 qubits.
- This is done by brute force: sum over all worldline configurations.
Topological codes are NOT concatenated codes.

- Unit cell does not enclose enough stabilizers.
- Area law increase of parameter space.
- Use overlapping cells instead.
Overlapping cells

Topological codes are NOT concatenated codes.

- Unit cell does not enclose enough stabilizers.
 - Area law increase of parameter space.
- Use overlapping cells instead.
Topological codes are NOT concatenated codes.

- Unit cell does not enclose enough stabilizers.
- Area law increase of parameter space.

- Use overlapping cells instead.
Topological codes are NOT concatenated codes.

- Unit cell does not enclose enough stabilizers.
 - Area law increase of parameter space.
- Use overlapping cells instead.
Topological codes are NOT concatenated codes.

- Unit cell does not enclose enough stabilizers.
 - Area law increase of parameter space.
- Use overlapping cells instead.
Self-consistence

- Boundary qubits treated as independent variables on neighboring unit cells.
- Probabilities assigned by different cells to a given qubit differ.
- Impose mean-field consistencies conditions on marginal probabilities.
- Solve by belief propagation.
- Complexity $O(\ell^2)$ parallelizable to constant time.
Self-consistence

- Boundary qubits treated as independent variables on neighboring unit cells.
- Probabilities assigned by different cells to a given qubit differ.
- Impose mean-field consistencies conditions on marginal probabilities.
- Solve by belief propagation.
- Complexity $O(\ell^2)$ parallelizable to constant time.
Boundary qubits treated as independent variables on neighboring unit cells.

Probabilities assigned by different cells to a given qubit differ.

Impose mean-field consistencies conditions on marginal probabilities.

Solve by belief propagation.

Complexity $O(\ell^2)$ parallelizable to constant time.
Self-consistence

- Boundary qubits treated as independent variables on neighboring unit cells.
- Probabilities assigned by different cells to a given qubit differ.
- Impose mean-field consistencies conditions on marginal probabilities.
- Solve by belief propagation.
- Complexity $O(\ell^2)$ parallelizable to constant time.
Boundary qubits treated as independent variables on neighboring unit cells.

Probabilities assigned by different cells to a given qubit differ.

Impose mean-field consistencies conditions on marginal probabilities.

Solve by belief propagation.

Complexity $\mathcal{O}(\ell^2)$ parallelizable to constant time.
Outline

1. Kitaev’s code
 - Definition
 - Hamiltonian’s symmetries

2. Errors: defect creation, diffusion, and annihilation

3. Decoding problem
 - Task description
 - Perfect matching algorithm

4. Renormalization Group Decoder
 - Coarse graining
 - Mean-Field Equations

5. Results for Kitaev’s code

6. Local equivalence
- Threshold $\approx 15\%$, compared to 15.5\% for PMA.
- Exponentially faster with marginal performance loss.
Results for Kitaev’s code

Smaller unit cell, 2×1

- Bit-flip threshold $\approx 8.2\%$, compared to 10.3% for PMA.
- Much faster even without parallelization (10^6 sites).
- Illustrates flexibility.
Use of additional belief propagation.

Threshold $\approx 16.5\%$, compared to 15.5% for PMA.

Illustrates flexibility.
Outline

1. Kitaev’s code
 - Definition
 - Hamiltonian’s symmetries

2. Errors: defect creation, diffusion, and annihilation

3. Decoding problem
 - Task description
 - Perfect matching algorithm

4. Renormalization Group Decoder
 - Coarse graining
 - Mean-Field Equations

5. Results for Kitaev’s code

6. Local equivalence
Conventional phases of matter are classified by order parameters and symmetry breaking (Landau-Ginsberg)

How to characterize and classify topological phases?
Chen, Gu, and Wen: local equivalence of ground-state manifold

\[U P_0 U^\dagger = P'_0 \]

If \(|\sigma| \leq r \), then \(|U\sigma U^\dagger| \leq w + c \) (finite light cone).
\(P_0 \) and \(P'_0 \) are adiabatically connected.
Hard to determine (not constructive).

If two topological codes are in the same phase

Switch between them fault tolerantly during computation
Virtually switch between them for the sake of decoding
Error model remains local
Stabilizers remain local, reliable error syndrome
Topological phase

- Conventional phases of matter are classified by order parameters and symmetry breaking (Landau-Ginsberg).
- How to characterize and classify topological phases?
 - Chen, Gu, and Wen: local equivalence of ground-space manifold
 \[UP_0 U^\dagger = P'_0 \]
 If \(|\sigma| \leq r\), then \(|U\sigma U^\dagger| \leq w + c\) (finite light cone).
 - \(P_0\) and \(P'_0\) are adiabatically connected.
 - Hard to determine (not constructive).

If two topological codes are in the same phase

- Switch between them fault tolerantly during computation
- Virtually switch between them for the sake of decoding
 - Error model remains local
 - Stabilizers remain local, reliable error syndrome
Topological phase

- Conventional phases of matter are classified by order parameters and symmetry breaking (Landau-Ginsberg).
- How to characterize and classify topological phases?
- Chen, Gu, and Wen: local equivalence of ground-pace manifold
 - $U P_0 U^\dagger = P'_0$
 - If $|\sigma| \leq r$, then $|U \sigma U^\dagger| \leq w + c$ (finite light cone).
 - P_0 and P'_0 are adiabatically connected.
 - Hard to determine (not constructive).

If two topological codes are in the same phase
- Switch between them fault tolerantly during computation
- Virtually switch between them for the sake of decoding
 - Error model remains local
 - Stabilizers remain local, reliable error syndrome
Topological phase

Conventional phases of matter are classified by order parameters and symmetry breaking (Landau-Ginsberg).

How to characterize and classify topological phases?

Chen, Gu, and Wen: local equivalence of ground-space manifold

\[UP_0 U^\dagger = P'_0 \]

If \(|\sigma| \leq r\), then \(|U\sigma U^\dagger| \leq w + c\) (finite light cone).

\(P_0\) and \(P'_0\) are adiabatically connected.

Hard to determine (not constructive).

If two topological codes are in the same phase

- Switch between them fault tolerantly during computation
- Virtually switch between them for the sake of decoding
 - Error model remains local
 - Stabilizers remain local, reliable error syndrome
Topological phase

- Conventional phases of matter are classified by order parameters and symmetry breaking (Landau-Ginsberg).
- How to characterize and classify topological phases?
- Chen, Gu, and Wen: local equivalence of ground-state manifold
 \[UP_0 U^\dagger = P'_0 \]
 - If \(|\sigma| \leq r\), then \(|U\sigma U^\dagger| \leq w + c\) (finite light cone).
 - \(P_0\) and \(P'_0\) are adiabatically connected.
 - Hard to determine (not constructive).

If two topological codes are in the same phase

- Switch between them fault tolerantly during computation
- Virtually switch between them for the sake of decoding
 - Error model remains local
 - Stabilizers remain local, reliable error syndrome
Conventional phases of matter are classified by order parameters and symmetry breaking (Landau-Ginsberg).

How to characterize and classify topological phases?

Chen, Gu, and Wen: local equivalence of ground-page manifold

\[UP_0 U^\dagger = P'_0 \]

If \(|\sigma| \leq r\), then \(|U\sigma U^\dagger| \leq w + c\) (finite light cone).

\(P_0 \) and \(P'_0 \) are adiabatically connected.

Hard to determine (not constructive).

If two topological codes are in the same phase

- Switch between them fault tolerantly during computation
- Virtually switch between them for the sake of decoding
 - Error model remains local
 - Stabilizers remain local, reliable error syndrome
Conventional phases of matter are classified by order parameters and symmetry breaking (Landau-Ginsberg).

How to characterize and classify topological phases?

Chen, Gu, and Wen: local equivalence of ground-space manifold

\[UP_0 U^\dagger = P'_0 \]

If \(|\sigma| \leq r \), then \(|U\sigma U^\dagger| \leq w + c \) (finite light cone).

\(P_0 \) and \(P'_0 \) are adiabatically connected.

Hard to determine (not constructive).

If two topological codes are in the same phase

- Switch between them fault tolerantly during computation
- Virtually switch between them for the sake of decoding
 - Error model remains local
 - Stabilizers remain local, reliable error syndrome
Topological phase

- Conventional phases of matter are classified by order parameters and symmetry breaking (Landau-Ginsberg).
- How to characterize and classify topological phases?
- Chen, Gu, and Wen: local equivalence of ground-space manifold
 \[UP_0 U^\dagger = P'_0 \]
 If \(|\sigma| \leq r \), then \(|U\sigma U^\dagger| \leq w + c \) (finite light cone).
 \(P_0 \) and \(P'_0 \) are adiabatically connected.
 Hard to determine (not constructive).

If two topological codes are in the same phase
- Switch between them fault tolerantly during computation
- Virtually switch between them for the sake of decoding
 - Error model remains local
 - Stabilizers remain local, reliable error syndrome
Conventional phases of matter are classified by order parameters and symmetry breaking (Landau-Ginsberg).

How to characterize and classify topological phases?

Chen, Gu, and Wen: local equivalence of ground-state manifold

\[U P_0 U^\dagger = P'_0 \]

If \(|\sigma| \leq r\), then \(|U\sigma U^\dagger| \leq w + c\) (finite light cone).

\(P_0\) and \(P'_0\) are adiabatically connected.

Hard to determine (not constructive).

If two topological codes are in the same phase

- Switch between them fault tolerantly during computation
- Virtually switch between them for the sake of decoding
 - Error model remains local
 - Stabilizers remain local, reliable error syndrome
Local equivalence

Topological phase

- Conventional phases of matter are classified by order parameters and symmetry breaking (Landau-Ginsberg).

- How to characterize and classify topological phases?

- Chen, Gu, and Wen: local equivalence of ground-state manifold

 \[UP_0 U^\dagger = P'_0 \]

 If \(|\sigma| \leq r\), then \(|U\sigma U^\dagger| \leq w + c\) (finite light cone).

- \(P_0\) and \(P'_0\) are adiabatically connected.

- Hard to determine (not constructive).

If two topological codes are in the same phase

- Switch between them fault tolerantly during computation

- Virtually switch between them for the sake of decoding

 - Error model remains local

 - Stabilizers remain local, reliable error syndrome
Topological phase

- Conventional phases of matter are classified by order parameters and symmetry breaking (Landau-Ginsberg).
- How to characterize and classify topological phases?
- Chen, Gu, and Wen: local equivalence of ground-pace manifold
 \[UP_0 U^\dagger = P'_0 \]
 - If \(|\sigma| \leq r\), then \(|U\sigma U^\dagger| \leq w + c\) (finite light cone).
 - \(P_0\) and \(P'_0\) are adiabatically connected.
 - Hard to determine (not constructive).

If two topological codes are in the same phase

- Switch between them fault tolerantly during computation
- Virtually switch between them for the sake of decoding
 - Error model remains local
 - Stabilizers remain local, reliable error syndrome
Consider two syndromes patterns s_1 and s_2 supported on a finite region R. These syndromes associate a topological charge to R. The charges of s_1 and s_2 are identical if there exists a transformation on R that takes s_1 to s_2. Topological charges are their own anti-particle. String operators between two identical charges.
Consider two syndromes patterns s_1 and s_2 supported on a finite region R.

These syndromes associate a topological charge to R.

The charges of s_1 and s_2 are identical if there exists a transformation on R that takes s_1 to s_2.

Topological charges are their own anti-particle.

String operators between two identical charges.
Consider two syndromes patterns s_1 and s_2 supported on a finite region R.

These syndromes associate a topological charge to R.

The charges of s_1 and s_2 are identical if there exists a transformation on R that takes s_1 to s_2.

Topological charges are their own anti-particle.

String operators between two identical charges.
Consider two syndromes patterns s_1 and s_2 supported on a finite region R.

These syndromes associate a topological charge to R.

The charges of s_1 and s_2 are identical if there exists a transformation on R that takes s_1 to s_2.

Topological charges are their own anti-particle.

String operators between two identical charges.
Consider two syndromes patterns s_1 and s_2 supported on a finite region R.
These syndromes associate a topological charge to R.
The charges of s_1 and s_2 are identical if there exists a transformation on R that takes s_1 to s_2.
Topological charges are their own anti-particle.
String operators between two identical charges.
Consider two syndromes patterns s_1 and s_2 supported on a finite region R.

These syndromes associate a topological charge to R.

The charges of s_1 and s_2 are identical if there exists a transformation on R that takes s_1 to s_2.

Topological charges are their own anti-particle.

String operators between two identical charges.

$$\lambda(c) = (p;q)(p;r)(q;r)$$
Consider two syndromes patterns s_1 and s_2 supported on a finite region R.

These syndromes associate a topological charge to R.

The charges of s_1 and s_2 are identical if there exists a transformation on R that takes s_1 to s_2.

Topological charges are their own anti-particle.

String operators between two identical charges.

$$
\lambda(c) = (p;q)(p;r)(q;r)
$$

$$
\kappa(c,c') = (p;q)
$$
Qubits located on vertices

Plaquette stabilizers $S_p = \bigotimes_{j \in \partial p} \sigma_j$, for
$\sigma = \sigma^x$ and σ^z.

16 topological charges
- 10 bosons
- 6 fermions

Same particle type and statistics as 2 copies of Kitaev’s code
- Qubits located on vertices
- Plaquette stabilizers $S_p = \bigotimes_{j \in \partial p} \sigma_j$, for $\sigma = \sigma^x$ and σ^z.
- 16 topological charges
 - 10 bosons
 - 6 fermions
- Same particle type and statistics as 2 copies of Kitaev’s code
Qubits located on vertices
Plaquette stabilizers $S_p = \bigotimes_{j \in \partial p} \sigma_j$, for $\sigma = \sigma^x$ and σ^z.
16 topological charges
- 10 bosons
- 6 fermions
Same particle type and statistics as 2 copies of Kitaev’s code
Qubits located on vertices
Plaquette stabilizers $S_p = \bigotimes_{j \in \partial p} \sigma_j$, for $\sigma = \sigma^x$ and σ^z.
16 topological charges
 - 10 bosons
 - 6 fermions
Same particle type and statistics as 2 copies of Kitaev’s code
Obtained by identifying topological charges

- Local stabilizers \Rightarrow Local stabilizers
- Syndrome information directly available
Obtained by identifying topological charges
Local stabilizers \Rightarrow Local stabilizers
Syndrome information directly available
Obtained by identifying topological charges
Local stabilizers \Rightarrow Local stabilizers
Syndrome information directly available
Results

Decoding error probability vs Bit-Flip channel strength $p\%$ for different values of l.
Every 2D, translationally invariant, non-chiral stabilizer code with local generators and macroscopic minimal distance is locally equivalent to a finite number of copies of Kitaev’s code.
Topological subsystem code

- **Qubits located on vertices**
- **Gauge generators on edges** $\sigma \otimes \sigma$
 - $\sigma = \sigma^x, \sigma^y, \sigma^z$ red, green blue
- **Stabilizers = center of gauge group**
 - Has local generators
- **Transversal Clifford group**
- **Only 3 semionic fermions**
- **Matches a subset of** $2 \times$ Kitaev’s code
 - $f_1 \leftrightarrow (f, 0)$
 - $f_2 \leftrightarrow (e, f)$
 - $f_3 \leftrightarrow (m, f)$
- **Locally equivalent to at least 2 copies of Kitaev’s code.**
- **Only a subset of topological charges carry information, other are gauge.**
- **Not all topological charges are stabilized: only those that topologically interact with f_1, f_2, and f_3.**
Topological subsystem code

- Qubits located on vertices
- Gauge generators on edges $\sigma \otimes \sigma$
 - $\sigma = \sigma^x, \sigma^y, \sigma^z$ red, green blue
- Stabilizers = center of gauge group
 - Has local generators
- Transversal Clifford group
- Only 3 semionic fermions
- Matches a subset of $2 \times$ Kitaev’s code
 - $f_1 \leftrightarrow (f, 0)$
 - $f_2 \leftrightarrow (e, f)$
 - $f_3 \leftrightarrow (m, f)$
- Locally equivalent to at least 2 copies of Kitaev’s code.
- Only a subset of topological charges carry information, other are gauge.
- Not all topological charges are stabilized: only those that topologically interact with f_1, f_2, and f_3.

David Poulin (Sherbrooke)
Topological RG
IQI Caltech’11 44 / 46
Topological subsystem code

- Qubits located on vertices
- Gauge generators on edges $\sigma \otimes \sigma$
 - $\sigma = \sigma^x, \sigma^y, \sigma^z$ red, green blue
- Stabilizers = center of gauge group
 - Has local generators
- Transversal Clifford group
- Only 3 semionic fermions
- Matches a subset of $2 \times$ Kitaev’s code
 - $f_1 \leftrightarrow (f, 0)$
 - $f_2 \leftrightarrow (e, f)$
 - $f_3 \leftrightarrow (m, f)$
- Locally equivalent to at least 2 copies of Kitaev’s code.
- Only a subset of topological charges carry information, other are gauge.
- Not all topological charges are stabilized: only those that topologically interact with f_1, f_2, and f_3.
Topological subsystem code

- Qubits located on vertices
- Gauge generators on edges $\sigma \otimes \sigma$
 - $\sigma = \sigma^x, \sigma^y, \sigma^z$ red, green blue
- Stabilizers = center of gauge group
 - Has local generators
- Transversal Clifford group
 - Only 3 semionic fermions
 - Matches a subset of $2 \times$ Kitaev’s code
 - $f_1 \leftrightarrow (f, 0)$
 - $f_2 \leftrightarrow (e, f)$
 - $f_3 \leftrightarrow (m, f)$
 - Locally equivalent to at least 2 copies of Kitaev’s code.
 - Only a subset of topological charges carry information, other are gauge.
 - Not all topological charges are stabilized: only those that topologically interact with f_1, f_2, and f_3.
Topological subsystem code

- Qubits located on vertices
- Gauge generators on edges $\sigma \otimes \sigma$
 - $\sigma = \sigma^x, \sigma^y, \sigma^z$ red, green blue
- Stabilizers = center of gauge group
 - Has local generators
- Transversal Clifford group
- Only 3 semionic fermions
 - Matches a subset of $2 \times$ Kitaev’s code
 - $f_1 \leftrightarrow (f, 0)$
 - $f_2 \leftrightarrow (e, f)$
 - $f_3 \leftrightarrow (m, f)$
 - Locally equivalent to at least 2 copies of Kitaev’s code.
 - Only a subset of topological charges carry information, other are gauge.
 - Not all topological charges are stabilized: only those that topologically interact with f_1, f_2, and f_3.
Topological subsystem code

- Qubits located on vertices
- Gauge generators on edges $\sigma \otimes \sigma$
 - $\sigma = \sigma^x, \sigma^y, \sigma^z$ red, green blue
- Stabilizers = center of gauge group
 - Has local generators
- Transversal Clifford group
- Only 3 semionic fermions
- Matches a subset of $2 \times$ Kitaev’s code
 - $f_1 \leftrightarrow (f, 0)$
 - $f_2 \leftrightarrow (e, f)$
 - $f_3 \leftrightarrow (m, f)$

- Locally equivalent to at least 2 copies of Kitaev’s code.
- Only a subset of topological charges carry information, other are gauge.
- Not all topological charges are stabilized: only those that topologically interact with f_1, f_2, and f_3.
Topological subsystem code

- Qubits located on vertices
- Gauge generators on edges $\sigma \otimes \sigma$
 - $\sigma = \sigma^x, \sigma^y, \sigma^z$ red, green blue
- Stabilizers = center of gauge group
 - Has local generators
- Transversal Clifford group
- Only 3 semionic fermions
- Matches a subset of $2 \times$ Kitaev’s code
 - $f_1 \leftrightarrow (f, 0)$
 - $f_2 \leftrightarrow (e, f)$
 - $f_3 \leftrightarrow (m, f)$
- Locally equivalent to at least 2 copies of Kitaev’s code.
 - Only a subset of topological charges carry information, other are gauge.
 - Not all topological charges are stabilized: only those that topologically interact with f_1, f_2, and f_3.

David Poulin (Sherbrooke)
Topological subsystem code

- Qubits located on vertices
- Gauge generators on edges $\sigma \otimes \sigma$
 - $\sigma = \sigma^x, \sigma^y, \sigma^z$ red, green blue
- Stabilizers = center of gauge group
 - Has local generators
- Transversal Clifford group
- Only 3 semionic fermions
- Matches a subset of $2 \times$ Kitaev’s code
 - $f_1 \leftrightarrow (f, 0)$
 - $f_2 \leftrightarrow (e, f)$
 - $f_3 \leftrightarrow (m, f)$
- Locally equivalent to at least 2 copies of Kitaev’s code.
- Only a subset of topological charges carry information, other are gauge.
 - Not all topological charges are stabilized: only those that topologically interact with f_1, f_2, and f_3.

Local equivalence
Topological subsystem code

- Qubits located on vertices
- Gauge generators on edges $\sigma \otimes \sigma$
 - $\sigma = \sigma^x, \sigma^y, \sigma^z$ red, green blue
- Stabilizers = center of gauge group
 - Has local generators
- Transversal Clifford group
- Only 3 semionic fermions
- Matches a subset of $2 \times$ Kitaev’s code
 - $f_1 \leftrightarrow (f, 0)$
 - $f_2 \leftrightarrow (e, f)$
 - $f_3 \leftrightarrow (m, f)$
- Locally equivalent to at least 2 copies of Kitaev’s code.
- Only a subset of topological charges carry information, other are gauge.
- Not all topological charges are stabilized: only those that topologically interact with f_1, f_2, and f_3.
Results

Decoding error probability vs. Depolarizing channel strength, for different values of l. The graph shows a clear trend where the decoding error probability increases with the depolarizing channel strength for each l. The data points for $l=8$, $l=16$, $l=32$, $l=64$, and $l=128$ are clearly visible, indicating a consistent pattern across different values of l. The legend indicates the line styles and colors corresponding to each value of l. The graph helps in understanding the relationship between the decoding error probability and the depolarizing channel strength, which is crucial for optimizing error correction strategies in quantum computing.
Decoding problem: infer defect worldline homology from "snapshots" of their configuration.

- Equivalent to minimizing free energy of some spin model.
 - Minimizing energy can be done efficiently for Kitaev’s code (RBIM).
 - Suboptimal, slow.

- RG decoding algorithm
 - Exponentially faster.
 - Versatile (other codes, time/performance tradeoff).
 - Higher threshold.
 - Heuristic (Bravyi has proved a threshold... 10^{-22})

- Local equivalence between codes
 - Defines topological phases
 - Universality of decoding algorithms
 - Enhanced fault tolerance?
 - All 2D stabilizer codes topologically equivalent to Kitaev. (Chiral?)
 - True for some subsystem codes as well.
Decoding problem: infer defect worldline homology from "snapshots" of their configuration.

Equivalent to minimizing free energy of some spin model.

- Minimizing energy can be done efficiently for Kitaev’s code (RBIM).
- Suboptimal, slow.

RG decoding algorithm

- Exponentially faster.
- Versatile (other codes, time/performance tradeoff).
- Higher threshold.
- Heuristic (Bravyi has proved a threshold... 10^{-22})

Local equivalence between codes

- Defines topological phases
- Universality of decoding algorithms
- Enhanced fault tolerance ?
- All 2D stabilizer codes topologically equivalent to Kitaev. (Chiral?)
- True for some subsystem codes as well.
Decoding problem: infer defect worldline homology from "snapshots" of their configuration.

Equivalent to minimizing free energy of some spin model.
- Minimizing energy can be done efficiently for Kitaev’s code (RBIM).
 - Suboptimal, slow.

RG decoding algorithm
- Exponentially faster.
- Versatile (other codes, time/performance tradeoff).
- Higher threshold.
- Heuristic (Bravyi has proved a threshold... 10^{-22})

Local equivalence between codes
- Defines topological phases
- Universality of decoding algorithms
- Enhanced fault tolerance?
- All 2D stabilizer codes topologically equivalent to Kitaev. (Chiral?)
- True for some subsystem codes as well.
Decoding problem: infer defect worldline homology from "snapshots" of their configuration.

Equivalent to minimizing free energy of some spin model.

- Minimizing energy can be done efficiently for Kitaev’s code (RBIM).
- Suboptimal, slow.

RG decoding algorithm

- Exponentially faster.
- Versatile (other codes, time/performance tradeoff).
- Higher threshold.
- Heuristic (Bravyi has proved a threshold... 10^{-22})

Local equivalence between codes

- Defines topological phases
- Universality of decoding algorithms
- Enhanced fault tolerance ?
- All 2D stabilizer codes topologically equivalent to Kitaev. (Chiral?)
- True for some subsystem codes as well.
Decoding problem: infer defect worldline homology from "snapshots" of their configuration.

Equivalent to minimizing free energy of some spin model.
 - Minimizing energy can be done efficiently for Kitaev’s code (RBIM).
 - Suboptimal, slow.

RG decoding algorithm
 - Exponentially faster.
 - Versatile (other codes, time/performance tradeoff).
 - Higher threshold.
 - Heuristic (Bravyi has proved a threshold... 10^{-22})

Local equivalence between codes
 - Defines topological phases
 - Universality of decoding algorithms
 - Enhanced fault tolerance?
 - All 2D stabilizer codes topologically equivalent to Kitaev. (Chiral?)
 - True for some subsystem codes as well.
Decoding problem: infer defect worldline homology from "snapshots" of their configuration.

Equivalent to minimizing free energy of some spin model.
 - Minimizing energy can be done efficiently for Kitaev’s code (RBIM).
 - Suboptimal, slow.

RG decoding algorithm
 - Exponentially faster.
 - Versatile (other codes, time/performance tradeoff).
 - Higher threshold.
 - Heuristic (Bravyi has proved a threshold... 10^{-22})

Local equivalence between codes
 - Defines topological phases
 - Universality of decoding algorithms
 - Enhanced fault tolerance?
 - All 2D stabilizer codes topologically equivalent to Kitaev. (Chiral?)
 - True for some subsystem codes as well.
Decoding problem: infer defect worldline homology from "snapshots" of their configuration.

Equivalent to minimizing free energy of some spin model.
- Minimizing energy can be done efficiently for Kitaev’s code (RBIM).
- Suboptimal, slow.

RG decoding algorithm
- Exponentially faster.
- Versatile (other codes, time/performance tradeoff).
- Higher threshold.
 - Heuristic (Bravyi has proved a threshold... 10^{-22})

Local equivalence between codes
- Defines topological phases
- Universality of decoding algorithms
- Enhanced fault tolerance?
- All 2D stabilizer codes topologically equivalent to Kitaev. (Chiral?)
- True for some subsystem codes as well.
Decoding problem: infer defect worldline homology from "snapshots" of their configuration.

Equivalent to minimizing free energy of some spin model.
- Minimizing energy can be done efficiently for Kitaev’s code (RBIM).
- Suboptimal, slow.

RG decoding algorithm
- Exponentially faster.
- Versatile (other codes, time/performance tradeoff).
- Higher threshold.
- Heuristic (Bravyi has proved a threshold... 10^{-22})

Local equivalence between codes
- Defines topological phases
- Universality of decoding algorithms
- Enhanced fault tolerance?
- All 2D stabilizer codes topologically equivalent to Kitaev. (Chiral?)
- True for some subsystem codes as well.
Decoding problem: infer defect worldline homology from "snapshots" of their configuration.

Equivalent to minimizing free energy of some spin model.

- Minimizing energy can be done efficiently for Kitaev’s code (RBIM).
- Suboptimal, slow.

RG decoding algorithm

- Exponentially faster.
- Versatile (other codes, time/performance tradeoff).
- Higher threshold.
- Heuristic (Bravyi has proved a threshold... 10^{-22})

Local equivalence between codes

- Defines topological phases
- Universality of decoding algorithms
- Enhanced fault tolerance?
- All 2D stabilizer codes topologically equivalent to Kitaev. (Chiral?)
- True for some subsystem codes as well.
Decoding problem: infer defect worldline homology from "snapshots" of their configuration.

Equivalent to minimizing free energy of some spin model.
- Minimizing energy can be done efficiently for Kitaev’s code (RBIM).
- Suboptimal, slow.

RG decoding algorithm
- Exponentially faster.
- Versatile (other codes, time/performance tradeoff).
- Higher threshold.
- Heuristic (Bravyi has proved a threshold... 10^{-22})

Local equivalence between codes
- Defines topological phases
- Universality of decoding algorithms
- Enhanced fault tolerance?
- All 2D stabilizer codes topologically equivalent to Kitaev. (Chiral?)
- True for some subsystem codes as well.
Decoding problem: infer defect worldline homology from "snapshots" of their configuration.

Equivalent to minimizing free energy of some spin model.
- Minimizing energy can be done efficiently for Kitaev’s code (RBIM).
- Suboptimal, slow.

RG decoding algorithm
- Exponentially faster.
- Versatile (other codes, time/performance tradeoff).
- Higher threshold.
- Heuristic (Bravyi has proved a threshold... 10^{-22})

Local equivalence between codes
- Defines topological phases
- Universality of decoding algorithms
- Enhanced fault tolerance?
- All 2D stabilizer codes topologically equivalent to Kitaev. (Chiral?)
- True for some subsystem codes as well.
Decoding problem: infer defect worldline homology from "snapshots" of their configuration.

Equivalent to minimizing free energy of some spin model.
 - Minimizing energy can be done efficiently for Kitaev’s code (RBIM).
 - Suboptimal, slow.

RG decoding algorithm
 - Exponentially faster.
 - Versatile (other codes, time/performance tradeoff).
 - Higher threshold.
 - Heuristic (Bravyi has proved a threshold... 10^{-22})

Local equivalence between codes
 - Defines topological phases
 - Universality of decoding algorithms
 - Enhanced fault tolerance?
 - All 2D stabilizer codes topologically equivalent to Kitaev. (Chiral?)
 - True for some subsystem codes as well.
Decoding problem: infer defect worldline homology from "snapshots" of their configuration.

Equivalent to minimizing free energy of some spin model.
 - Minimizing energy can be done efficiently for Kitaev’s code (RBIM).
 - Suboptimal, slow.

RG decoding algorithm
 - Exponentially faster.
 - Versatile (other codes, time/performance tradeoff).
 - Higher threshold.
 - Heuristic (Bravyi has proved a threshold... 10^{-22})

Local equivalence between codes
 - Defines topological phases
 - Universality of decoding algorithms
 - Enhanced fault tolerance?
 - All 2D stabilizer codes topologically equivalent to Kitaev. (Chiral?)
 - True for some subsystem codes as well.
Decoding problem: infer defect worldline homology from "snapshots" of their configuration.

Equivalent to minimizing free energy of some spin model.
- Minimizing energy can be done efficiently for Kitaev’s code (RBIM).
- Suboptimal, slow.

RG decoding algorithm
- Exponentially faster.
- Versatile (other codes, time/performance tradeoff).
- Higher threshold.
- Heuristic (Bravyi has proved a threshold... 10^{-22})

Local equivalence between codes
- Defines topological phases
- Universality of decoding algorithms
- Enhanced fault tolerance?
- All 2D stabilizer codes topologically equivalent to Kitaev. (Chiral?)
- True for some subsystem codes as well.