Two dimensional quantum memories

David Poulin

Département de Physique
Université de Sherbrooke

Collaborators H. Bombin, S. Bravyi, G. Duclos-Cianci, O. Landon-Cardinal, and B. Terhal

Institut transdisciplinaire d’informatique quantique, Bromont, April 2013
1. Check operators & local codes
2. Holographic Disentangling Lemma
3. Holographic Minimum Distance
4. Capacity-Stability Tradeoff
5. String-Like Logical Operators
6. Thermal instability
Check operators & local codes

Holographic Disentangling Lemma

Holographic Minimum Distance

Capacity-Stability Tradeoff

String-Like Logical Operators

Thermal instability
Classical codes

Noisy bit

At each time interval, the bit has a probability p of being flipped.

$0 \rightarrow 1 \quad \& \quad 1 \rightarrow 0$

Encoding: $0 \rightarrow 000$
$1 \rightarrow 111$

Receive 001 \rightarrow 000

Error probability $p \rightarrow 3p^2$ improvement provided $p < \frac{1}{3}$.

Quantum encoding:
$|0\rangle \rightarrow |000\rangle$
$|1\rangle \rightarrow |111\rangle$

But we can’t look at the bits to see if there was an error!

$\alpha|000\rangle + \beta|111\rangle \rightarrow \begin{cases} |000\rangle \text{ with prob. } |\alpha|^2 \\ |111\rangle \text{ with prob. } |\beta|^2 \end{cases}$
Classical codes

Noisy bit

At each time interval, the bit has a probability \(p \) of being flipped.

\[
0 \rightarrow 1 \quad \& \quad 1 \rightarrow 0
\]

Encoding:

\[
\begin{align*}
0 & \rightarrow 000 \\
1 & \rightarrow 111
\end{align*}
\]

Receive \(001 \rightarrow 000 \)

Error probability \(p \rightarrow 3p^2 \) improvement provided \(p < \frac{1}{3} \).

Quantum encoding:

\[
\begin{align*}
|0\rangle & \rightarrow |000\rangle \\
|1\rangle & \rightarrow |111\rangle
\end{align*}
\]

But we can’t look at the bits to see if there was an error!

\[
\alpha|000\rangle + \beta|111\rangle \rightarrow \left\{ \begin{array}{l}
|000\rangle \text{ with prob. } |\alpha|^2 \\
|111\rangle \text{ with prob. } |\beta|^2
\end{array} \right.
\]
Noisy bit

At each time interval, the bit has a probability p of being flipped.

$0 \rightarrow 1 \quad \& \quad 1 \rightarrow 0$

Encoding:

$0 \rightarrow 000$
$1 \rightarrow 111$

Receive $001 \rightarrow 000$

Error probability $p \rightarrow 3p^2$ improvement provided $p < \frac{1}{3}$.

Quantum encoding:

$|0\rangle \rightarrow |000\rangle$
$|1\rangle \rightarrow |111\rangle$

But we can't look at the bits to see if there was an error!

$\alpha|000\rangle + \beta|111\rangle \rightarrow \begin{cases} |000\rangle \text{ with prob. } |\alpha|^2 \\ |111\rangle \text{ with prob. } |\beta|^2 \end{cases}$
Check operators & local codes

Classical codes

Noisy bit

At each time interval, the bit has a probability p of being flipped.

\[0 \rightarrow 1 \quad \& \quad 1 \rightarrow 0 \]

Encoding:

\[\begin{align*}
0 & \rightarrow 000 \\
1 & \rightarrow 111
\end{align*} \]

Receive $001 \rightarrow 000$

Error probability $p \rightarrow 3p^2$ improvement provided $p < \frac{1}{3}$.

Quantum encoding:

\[\begin{align*}
|0\rangle & \rightarrow |000\rangle \\
|1\rangle & \rightarrow |111\rangle
\end{align*} \]

But we can’t look at the bits to see if there was an error!

\[\alpha|000\rangle + \beta|111\rangle \rightarrow \begin{cases}
|000\rangle \quad \text{with prob.} \quad |\alpha|^2 \\
|111\rangle \quad \text{with prob.} \quad |\beta|^2
\end{cases} \]
Classical codes

Noisy bit

At each time interval, the bit has a probability p of being flipped.

$$0 \rightarrow 1 \quad \& \quad 1 \rightarrow 0$$

Encoding:

- $0 \rightarrow 000$
- $1 \rightarrow 111$

Receive $001 \rightarrow 000$

Error probability $p \rightarrow 3p^2$ improvement provided $p < \frac{1}{3}$.

Quantum encoding:

- $|0\rangle \rightarrow |000\rangle$
- $|1\rangle \rightarrow |111\rangle$

But we can’t look at the bits to see if there was an error!

$$\alpha |000\rangle + \beta |111\rangle \rightarrow \begin{cases} |000\rangle \text{ with prob. } |\alpha|^2 \\ |111\rangle \text{ with prob. } |\beta|^2 \end{cases}$$
Syndrome measurement

- We do not need to know the bit values for the classical code, only the parities.
- The first two bits are the same, and the last two bits are different. ⇒ Flip the last one.
- These are degenerate measurements: \{00, 11\} vs \{01, 10\}.
- Quantum mechanics

\[P_E = |00\rangle\langle 00| + |11\rangle\langle 11| \quad P_O = |01\rangle\langle 01| + |10\rangle\langle 10| \]

⇒ Observable \(\sigma_z \otimes \sigma_z\)

- Measure \(\sigma_z \sigma_z = -1\) on first two qubits and \(-1\) on last two qubits ⇒ apply \(\sigma_x\) to middle qubit.

This type of measurement requires interactions between qubits.
Syndrome measurement

- We do not need to know the bit values for the classical code, only the parities.
- The first two bits are the same, and the last two bits are different. ⇒ Flip the last one.
- These are degenerate measurements: \{00, 11\} vs \{01, 10\}.
- Quantum mechanics

\[
P_E = |00\rangle\langle 00| + |11\rangle\langle 11| \quad P_O = |01\rangle\langle 01| + |10\rangle\langle 10|
\]

⇒ Observable \(\sigma_z \otimes \sigma_z\)
- Measure \(\sigma_z \sigma_z = -1\) on first two qubits and \(-1\) on last two qubits ⇒ apply \(\sigma_x\) to middle qubit.

This type of measurement requires interactions between qubits
 Syndrome measurement

- We do not need to know the bit values for the classical code, only the parities.
- The first two bits are the same, and the last two bits are different. ⇒ Flip the last one.

These are degenerate measurements: \{00, 11\} vs \{01, 10\}.

Quantum mechanics

\[
PE = |00⟩⟨00| + |11⟩⟨11| \quad PO = |01⟩⟨01| + |10⟩⟨10|
\]

⇒ Observable $σ_z ⊗ σ_z$

Measure $σ_zσ_z = -1$ on first two qubits and -1 on last two qubits
⇒ apply $σ_x$ to middle qubit.

This type of measurement requires interactions between qubits.
Syndrome measurement

- We do not need to know the bit values for the classical code, only the parities.
- The first two bits are the same, and the last two bits are different. ⇒ Flip the last one.
- These are degenerate measurements: \{00, 11\} vs \{01, 10\}.

Quantum mechanics

\[P_E = |00⟩⟨00| + |11⟩⟨11| \quad P_O = |01⟩⟨01| + |10⟩⟨10| \]

⇔ Observable \(σ_Z ⊗ σ_Z\)

Measure \(σ_Zσ_Z = -1\) on first two qubits and \(-1\) on last two qubits ⇒ apply \(σ_X\) to middle qubit.

This type of measurement requires interactions between qubits
Syndrome measurement

- We do not need to know the bit values for the classical code, only the parities.
- The first two bits are the same, and the last two bits are different. ⇒ Flip the last one.
- These are degenerate measurements: \{00, 11\} vs \{01, 10\}.
- Quantum mechanics

\[P_E = |00\rangle\langle 00| + |11\rangle\langle 11| \quad P_O = |01\rangle\langle 01| + |10\rangle\langle 10| \]

⇔ Observable \(\sigma_z \otimes \sigma_z\)

- Measure \(\sigma_z \sigma_z = -1\) on first two qubits and \(-1\) on last two qubits ⇒ apply \(\sigma_x\) to middle qubit.

This type of measurement requires interactions between qubits
Syndrome measurement

- We do not need to know the bit values for the classical code, only the parities.
- The first two bits are the same, and the last two bits are different. ⇒ Flip the last one.
- These are degenerate measurements: \{00, 11\} vs \{01, 10\}.

Quantum mechanics

\[
P_E = |00⟩⟨00| + |11⟩⟨11| \quad P_O = |01⟩⟨01| + |10⟩⟨10|
\]

⇔ Observable \(σ_Z ⊗ σ_Z\)

Measure \(σ_Zσ_Z = -1\) on first two qubits and \(-1\) on last two qubits ⇒ apply \(σ_X\) to middle qubit.

This type of measurement requires interactions between qubits
Syndrome measurement

- We do not need to know the bit values for the classical code, only the parities.
- The first two bits are the same, and the last two bits are different. ⇒ Flip the last one.
- These are degenerate measurements: \{00, 11\} vs \{01, 10\}.
- Quantum mechanics

\[P_E = |00\rangle\langle 00| + |11\rangle\langle 11| \quad P_O = |01\rangle\langle 01| + |10\rangle\langle 10| \]

⇔ Observable \(\sigma_z \otimes \sigma_z\)

- Measure \(\sigma_z \sigma_z = -1\) on first two qubits and \(-1\) on last two qubits ⇒ apply \(\sigma_x\) to middle qubit.

This type of measurement requires interactions between qubits
Syndrome measurement

- We do not need to know the bit values for the classical code, only the parities.
- The first two bits are the same, and the last two bits are different. ⇒ Flip the last one.
- These are degenerate measurements: \{00, 11\} vs \{01, 10\}.
- Quantum mechanics

\[
P_E = \ket{00}\bra{00} + \ket{11}\bra{11} \quad P_O = \ket{01}\bra{01} + \ket{10}\bra{10}
\]

⇔ Observable \(\sigma_z \otimes \sigma_z\)

- Measure \(\sigma_z \sigma_z = -1\) on first two qubits and \(-1\) on last two qubits ⇒ apply \(\sigma_x\) to middle qubit.

This type of measurement requires interactions between qubits
Syndrome measurement

- We do not need to know the bit values for the classical code, only the parities.
- The first two bits are the same, and the last two bits are different. ⇒ Flip the last one.
- These are degenerate measurements: \{00, 11\} vs \{01, 10\}.
- Quantum mechanics

\[P_E = \langle 00 | 00 \rangle + \langle 11 | 11 \rangle \quad P_O = \langle 01 | 01 \rangle + \langle 10 | 10 \rangle \]

⇔ Observable \(\sigma_z \otimes \sigma_z \)

- Measure \(\sigma_z \sigma_z = -1 \) on first two qubits and \(-1\) on last two qubits ⇒ apply \(\sigma_x \) to middle qubit.

This type of measurement requires interactions between qubits
Quantum codes

- Set of states that obey a bunch of check conditions
 \[C = \{ |\psi\rangle : P_j |\psi\rangle = |\psi\rangle, \forall j \} \]

- There must be more than one state in \(C \) for the code to be interesting.
- We measure the check operators, eigenvalue \(\neq +1 \) indicates an error.

Locality

- Because coherent measurement of checks requires coupling the qubits, we restrict the \(P_j \) to couple only neighbouring qubits in some geometry.
- In 2D, this leads to topological codes.

\[C = \text{degenerate ground space of Hamiltonian } H = - \sum_j P_j. \]
Quantum codes

- Set of states that obey a bunch of check conditions
 \[C = \{ |\psi\rangle : P_j |\psi\rangle = |\psi\rangle, \forall j \} \]

- There must be more than one state in \(C \) for the code to be interesting.
 - We measure the check operators, eigenvalue \(\neq +1 \) indicates an error.

Locality

- Because coherent measurement of checks requires coupling the qubits, we restrict the \(P_j \) to couple only neighbouring qubits in some geometry.
 - In 2D, this leads to topological codes.

- \(C = \) degenerate ground space of Hamiltonian \(H = - \sum_j P_j \).
Quantum codes

- Set of states that obey a bunch of check conditions
 \[\mathcal{C} = \{ |\psi\rangle : P_j|\psi\rangle = |\psi\rangle, \forall j \} \]
- There must be more than one state in \(\mathcal{C} \) for the code to be interesting.
- We measure the check operators, eigenvalue \(\neq +1 \) indicates an error.

Locality

- Because coherent measurement of checks requires coupling the qubits, we restrict the \(P_j \) to couple only neighbouring qubits in some geometry.
- In 2D, this leads to topological codes.

- \(\mathcal{C} = \) degenerate ground space of Hamiltonian \(H = - \sum_j P_j \).
Quantum codes

- Set of states that obey a bunch of check conditions
 \[\mathcal{C} = \{ |\psi\rangle : P_j |\psi\rangle = |\psi\rangle, \forall j \} \]

- There must be more than one state in \(\mathcal{C} \) for the code to be interesting.

- We measure the check operators, eigenvalue \(\neq +1 \) indicates an error.

Locality

- Because coherent measurement of checks requires coupling the qubits, we restrict the \(P_j \) to couple only neighbouring qubits in some geometry.

- In 2D, this leads to topological codes.

- \(\mathcal{C} = \text{degenerate ground space of Hamiltonian } H = - \sum_j P_j. \)
Quantum codes

- Set of states that obey a bunch of check conditions
 \[C = \{ |\psi\rangle : P_j |\psi\rangle = |\psi\rangle, \forall j \} \]
- There must be more than one state in \(C \) for the code to be interesting.
- We measure the check operators, eigenvalue \(\neq +1 \) indicates an error.

Locality

- Because coherent measurement of checks requires coupling the qubits, we restrict the \(P_j \) to couple only neighbouring qubits in some geometry.
- In 2D, this leads to topological codes.

\[C = \text{degenerate ground space of Hamiltonian } H = - \sum_j P_j. \]
Quantum codes

- Set of states that obey a bunch of check conditions
 \[C = \{ |\psi\rangle : P_j |\psi\rangle = |\psi\rangle, \forall j \} \]
- There must be more than one state in \(C \) for the code to be interesting.
- We measure the check operators, eigenvalue \(\neq +1 \) indicates an error.

Locality

- Because coherent measurement of checks requires coupling the qubits, we restrict the \(P_j \) to couple only neighbouring qubits in some geometry.
- In 2D, this leads to topological codes.

\[C = \text{degenerate ground space of Hamiltonian } H = - \sum_j P_j. \]
Definitions

- \(\Lambda \) is a 2D lattice.
- Each vertex occupied by \(d \)-level quantum particle.
- Hamiltonian \(H = - \sum_{X \subset \Lambda} P_X \) with
 - \(P_X = 0 \) if radius\((X)\) \(\geq w \).
 - \([P_X, P_Y] = 0\).
 - \(P_X \) are projectors (optional).
- Code \(\mathcal{C} = \{ \psi : P_X|\psi\rangle = |\psi\rangle \} \)
 = ground space of \(H \)
 = image of code projector \(\Pi = \prod_X P_X \)
- With proper coarse graining, we can assume that
 - \(\Lambda \) is a regular square lattice.
 - Each \(P_X \) acts on \(2 \times 2 \) cell.
Definitions

- Λ is a 2D lattice.
- Each vertex occupied by d-level quantum particle.
- Hamiltonian $H = -\sum_{X \subset \Lambda} P_X$ with
 - $P_X = 0$ if radius(X) $\geq w$.
 - $[P_X, P_Y] = 0$.
 - P_X are projectors (optional).
- Code $C = \{\psi : P_X|\psi\rangle = |\psi\rangle\}$
 - = ground space of H
 - = image of code projector $\Pi = \prod_X P_X$
- With proper coarse graining, we can assume that
 - Λ is a regular square lattice.
 - Each P_X acts on 2×2 cell.
\(\Lambda \) is a 2D lattice.

Each vertex occupied by \(d \)-level quantum particle.

Hamiltonian \(H = - \sum_{X \subset \Lambda} P_X \) with

- \(P_X = 0 \) if radius(\(X \)) \(\geq w \).
- \([P_X, P_Y] = 0\).
- \(P_X \) are projectors (optional).

Code \(C = \{ \psi : P_X |\psi\rangle = |\psi\rangle \} \)

- ground space of \(H \)
- image of code projector \(\Pi = \prod_X P_X \)

With proper coarse graining, we can assume that

- \(\Lambda \) is a regular square lattice.
- Each \(P_X \) acts on \(2 \times 2 \) cell.
Λ is a 2D lattice.

Each vertex occupied by d-level quantum particle.

Hamiltonian $H = - \sum_{X \subset \Lambda} P_X$ with

- $P_X = 0$ if $\text{radius}(X) \geq w$.
- $[P_X, P_Y] = 0$.
- P_X are projectors (optional).

Code $C = \{ \psi : P_X |\psi \rangle = |\psi \rangle \}$

= ground space of H

= image of code projector $\Pi = \prod_X P_X$

With proper coarse graining, we can assume that

- Λ is a regular square lattice.
- Each P_X acts on 2×2 cell.
Definitions

- Λ is a 2D lattice.
- Each vertex occupied by d-level quantum particle.
- Hamiltonian $H = -\sum_{X \subset \Lambda} P_X$ with
 - $P_X = 0$ if radius$(X) \geq w$.
 - $[P_X, P_Y] = 0$.
 - P_X are projectors (optional).
- Code $C = \{\psi : P_X|\psi\rangle = |\psi\rangle\}$
 = ground space of H
 = image of code projector $\Pi = \prod_X P_X$
- With proper coarse graining, we can assume that
 - Λ is a regular square lattice.
 - Each P_X acts on 2×2 cell.
\[\Lambda \text{ is a 2D lattice.} \]
\[\text{Each vertex occupied by } d\text{-level quantum particle.} \]
\[\text{Hamiltonian } H = - \sum_{X \subset \Lambda} P_X \text{ with} \]
\[P_X = 0 \text{ if radius}(X) \geq w. \]
\[[P_X, P_Y] = 0. \]
\[P_X \text{ are projectors (optional).} \]
\[\text{Code } \mathcal{C} = \{ \psi : P_X |\psi\rangle = |\psi\rangle \} \]
\[= \text{ground space of } H \]
\[= \text{image of code projector } \Pi = \prod_X P_X \]
\[\text{With proper coarse graining, we can assume that} \]
\[\Lambda \text{ is a regular square lattice.} \]
\[\text{Each } P_X \text{ acts on } 2 \times 2 \text{ cell.} \]
Definitions

- Λ is a 2D lattice.
- Each vertex occupied by d-level quantum particle.
- Hamiltonian $H = -\sum_{X \subset \Lambda} P_X$ with
 - $P_X = 0$ if $\text{radius}(X) \geq w$.
 - $[P_X, P_Y] = 0$.
 - P_X are projectors (optional).
- Code $C = \{ \psi : P_X|\psi\rangle = |\psi\rangle \}$
 - = ground space of H
 - = image of code projector $\Pi = \prod_X P_X$
- With proper coarse graining, we can assume that
 - Λ is a regular square lattice.
 - Each P_X acts on 2×2 cell.
Definitions

- Λ is a 2D lattice.
- Each vertex occupied by d-level quantum particle.
- Hamiltonian $H = -\sum_{X \subset \Lambda} P_X$ with
 - $P_X = 0$ if $\text{radius}(X) \geq w$.
 - $[P_X, P_Y] = 0$.
 - P_X are projectors (optional).
- Code $\mathcal{C} = \{\psi : P_X|\psi\rangle = |\psi\rangle\}$
 - = ground space of H
 - = image of code projector $\Pi = \prod_X P_X$
- With proper coarse graining, we can assume that
 - Λ is a regular square lattice.
 - Each P_X acts on 2×2 cell.
Definitions

- Λ is a 2D lattice.
- Each vertex occupied by d-level quantum particle.
- Hamiltonian $H = -\sum_{X \subseteq \Lambda} P_X$ with
 - $P_X = 0$ if $\text{radius}(X) \geq w$.
 - $[P_X, P_Y] = 0$.
 - P_X are projectors (optional).
- Code $\mathcal{C} = \{ \psi : P_X | \psi \rangle = | \psi \rangle \}$
 - = ground space of H
 - = image of code projector $\Pi = \prod_X P_X$
- With proper coarse graining, we can assume that
 - Λ is a regular square lattice.
 - Each P_X acts on 2×2 cell.
Definitions

- Λ is a 2D lattice.
- Each vertex occupied by d-level quantum particle.
- Hamiltonian $H = -\sum_{X\subset\Lambda} P_X$ with
 - $P_X = 0$ if $\text{radius}(X) \geq w$.
 - $[P_X, P_Y] = 0$.
 - P_X are projectors (optional).
- Code $\mathcal{C} = \{\psi : P_X|\psi\rangle = |\psi\rangle\}$
 - = ground space of H
 - = image of code projector $\Pi = \prod_X P_X$
- With proper coarse graining, we can assume that
 - Λ is a regular square lattice.
 - Each P_X acts on 2×2 cell.
Well known examples

- Kitaev’s toric code
- Bombin’s topological color codes
- Levin & Wen’s string-net models
- Turaev-Viro models
- Kitaev’s quantum double models
- Most known models with topological quantum order
Well known examples

- Kitaev’s toric code
- Bombin’s topological color codes
 - Levin & Wen’s string-net models
 - Turaev-Viro models
- Kitaev’s quantum double models
- Most known models with topological quantum order
Well known examples

- Kitaev’s toric code
- Bombin’s topological color codes
- Levin & Wen’s string-net models
 - Turaev-Viro models
 - Kitaev’s quantum double models
- Most known models with topological quantum order
Well known examples

- Kitaev’s toric code
- Bombin’s topological color codes
- Levin & Wen’s string-net models
- Turaev-Viro models
 - Kitaev’s quantum double models
 - Most known models with topological quantum order
Well known examples

- Kitaev’s toric code
- Bombin’s topological color codes
- Levin & Wen’s string-net models
- Turaev-Viro models
- Kitaev’s quantum double models

Most known models with topological quantum order
Well known examples

- Kitaev’s toric code
- Bombin’s topological color codes
- Levin & Wen’s string-net models
- Turaev-Viro models
- Kitaev’s quantum double models
- Most known models with topological quantum order
Lattice

- Two-dimensional square lattice
- Periodic boundary conditions
Kitaev’s code

- Site operator: \(A_s = \prod_{i \in \nu(s)} \sigma_x^i \)
- Plaquette operator: \(B_p = \prod_{i \in \nu(p)} \sigma_z^i \)
- Hamiltonian: \(H = -\left(\sum_s A_s + \sum_p B_p \right) \)
Check operators & local codes

Kitaev’s code

- Site operator:
 \[A_s = \prod_{i \in v(s)} \sigma^i_x \]

- Plaquette operator:
 \[B_p = \prod_{i \in v(p)} \sigma^i_z \]

- Hamiltonian:
 \[H = - (\sum_s A_s + \sum_p B_p) \]
Check operators & local codes

Kitaev’s code

- Site operator:
 \[A_s = \prod_{i \in v(s)} \sigma^i_x \]

- Plaquette operator:
 \[B_p = \prod_{i \in v(p)} \sigma^i_z \]

- Hamiltonian:
 \[H = -\left(\sum_s A_s + \sum_p B_p \right) \]
Motivation

- Aharonov & Eldar ’11: Topological order requires 4-qubit commuting checks.
 - Low-weight non-commuting checks possible?
 - Less error-prone

- Bombin ’10, Topological subsystem colour codes
 - Weight = 2
 - Low threshold

- Bravyi, Duclos-Cianci, DP, Suchara
 - Weight = 3
 - High threshold
 - Surface with boundaries
Motivation

- Aharonov & Eldar ’11: Topological order requires 4-qubit commuting checks.
 - Low-weight non-commuting checks possible?
 - Less error-prone

- Bombin ’10, Topological subsystem colour codes
 - Weight=2
 - Low threshold

- Bravyi, Duclos-Cianci, DP, Suchara
 - Weight = 3
 - High threshold
 - Surface with boundaries
Motivation

Aharonov & Eldar ’11: Topological order requires 4-qubit commuting checks.
- Low-weight non-commuting checks possible?
- Less error-prone

- Bombin ’10, Topological subsystem colour codes
 - Weight = 2
 - Low threshold

- Bravyi, Duclos-Cianci, DP, Suchara
 - Weight = 3
 - High threshold
 - Surface with boundaries
Motivation

- **Aharonov & Eldar ’11**: Topological order requires 4-qubit commuting checks.
 - Low-weight non-commuting checks possible?
 - Less error-prone

- **Bombin ’10, Topological subsystem colour codes**
 - Weight = 2
 - Low threshold

- **Bravyi, Duclos-Cianci, DP, Suchara**
 - Weight = 3
 - High threshold
 - Surface with boundaries
Motivation

Aharonov & Eldar ’11: Topological order requires 4-qubit commuting checks.
- Low-weight non-commuting checks possible?
- Less error-prone

Bombin ’10, Topological subsystem colour codes
- Weight=2.
- Low threshold.
- Bravyi, Duclos-Cianci, DP, Suchara
- Weight = 3.
- High threshold.
- Surface with boundaries
Motivation

- Aharonov & Eldar ’11: Topological order requires 4-qubit commuting checks.
 - Low-weight non-commuting checks possible?
 - Less error-prone

- Bombin ’10, Topological subsystem colour codes
 - Weight=2.
 - Low threshold.
 - Bravyi, Duclos-Cianci, DP, Suchara
 - Weight = 3.
 - High threshold
 - Surface with boundaries
Other codes

Motivation

- Aharonov & Eldar ’11: Topological order requires 4-qubit commuting checks.
 - Low-weight non-commuting checks possible?
 - Less error-prone

- Bombin ’10, Topological subsystem colour codes
 - Weight=2.
 - Low threshold.

- Bravyi, Duclos-Cianci, DP, Suchara
 - Weight = 3.
 - High threshold
 - Surface with boundaries.
Motivation

- Aharonov & Eldar ’11: Topological order requires 4-qubit commuting checks.
 - Low-weight non-commuting checks possible?
 - Less error-prone

- Bombin ’10, Topological subsystem colour codes
 - Weight=2.
 - Low threshold.

- Bravyi, Duclos-Cianci, DP, Suchara
 - Weight = 3.
 - High threshold.
 - Surface with boundaries.
Motivation

- Aharonov & Eldar ’11: Topological order requires 4-qubit commuting checks.
 - Low-weight non-commuting checks possible?
 - Less error-prone

- Bombin ’10, Topological subsystem colour codes
 - Weight=2.
 - Low threshold.

- Bravyi, Duclos-Cianci, DP, Suchara
 - Weight = 3.
 - High threshold.
 - Surface with boundaries.
Check operators & local codes

Other codes

Motivation

- Aharonov & Eldar ’11: Topological order requires 4-qubit commuting checks.
 - Low-weight non-commuting checks possible?
 - Less error-prone

- Bombin ’10, Topological subsystem colour codes
 - Weight=2.
 - Low threshold.

- Bravyi, Duclos-Cianci, DP, Suchara
 - Weight = 3.
 - High threshold.
 - Surface with boundaries.
Check operators & local codes

Other codes

Motivation

- Aharonov & Eldar ’11: Topological order requires 4-qubit commuting checks.
 - Low-weight non-commuting checks possible?
 - Less error-prone

- Bombin ’10, Topological subsystem colour codes
 - Weight=2.
 - Low threshold.

- Bravyi, Duclos-Cianci, DP, Suchara
 - Weight = 3.
 - High threshold.
 - Surface with boundaries.
Aharonov & Eldar ’11: Topological order requires 4-qubit commuting checks.
 - Low-weight non-commuting checks possible?
 - Less error-prone

Bombin ’10, Topological subsystem colour codes
 - Weight=2.
 - Low threshold.

Bravyi, Duclos-Cianci, DP, Suchara
 - Weight = 3.
 - High threshold.
 - Surface with boundaries.
Let $|\psi_1\rangle$ and $|\psi_2\rangle$ be two code states (ground states).

Suppose there exists a local (e.g. single spin) measurement σ that distinguishes them.

Then the environment can also learn which state is encoded by “looking” at a single spin.

\[\alpha|\psi_1\rangle + \beta|\psi_2\rangle \rightarrow \begin{cases}
|\psi_1\rangle \text{ with prob. } |\alpha|^2 \\
|\psi_2\rangle \text{ with prob. } |\beta|^2
\end{cases}\]

So a code should not have such local “order parameter” : all codes states should look identical locally.
Let $|\psi_1\rangle$ and $|\psi_2\rangle$ be two code states (ground states).

Suppose there exists a local (e.g. single spin) measurement σ that distinguishes them.

Then the environment can also learn which state is encoded by “looking” at a single spin.

$$\alpha|\psi_1\rangle + \beta|\psi_2\rangle \rightarrow \begin{cases} |\psi_1\rangle \text{ with prob. } |\alpha|^2 \\ |\psi_2\rangle \text{ with prob. } |\beta|^2 \end{cases}$$

So a code should not have such local “order parameter” : all codes states should look identical locally.
Desirable features

- Let $|\psi_1\rangle$ and $|\psi_2\rangle$ be two code states (ground states).
- Suppose there exists a local (e.g. single spin) measurement σ that distinguishes them.
- Then the environment can also learn which state is encoded by "looking" at a single spin.

$$\alpha|\psi_1\rangle + \beta|\psi_2\rangle \rightarrow \begin{cases} |\psi_1\rangle & \text{with prob. } |\alpha|^2 \\ |\psi_2\rangle & \text{with prob. } |\beta|^2 \end{cases}$$

- So a code should not have such local "order parameter": all codes states should look identical locally.
Let $|\psi_1\rangle$ and $|\psi_2\rangle$ be two code states (ground states).

Suppose there exists a local (e.g. single spin) measurement σ that distinguishes them.

Then the environment can also learn which state is encoded by “looking" at a single spin.

$\alpha|\psi_1\rangle + \beta|\psi_2\rangle \rightarrow \begin{cases} |\psi_1\rangle \text{ with prob. } |\alpha|^2 \\ |\psi_2\rangle \text{ with prob. } |\beta|^2 \end{cases}$

So a code should not have such local “order parameter" : all codes states should look identical locally.
Correctable region

A region $M \subset \Lambda$ is **correctable** if there exists a recovery operation R such that $R(\text{Tr}_M \rho) = \rho$ for all code states ρ.

M correctable \iff No order parameter on $M \iff \Pi \Omega_M \Pi \propto \Pi$.

Minimum distance

The minimum distance d is the size of the smallest non-correctable region.

Logical operator

Operator L such that $L |\psi\rangle$ is a code state for any code state $|\psi\rangle$.
Correctable region

A region $M \subset \Lambda$ is **correctable** if there exists a recovery operation \mathcal{R} such that $\mathcal{R}(\text{Tr}_M \rho) = \rho$ for all code states ρ.

M correctable \iff No order parameter on $M \iff \prod O_M \prod \propto \Pi$.

Minimum distance

The minimum distance d is the size of the smallest non-correctable region.

Logical operator

Operator L such that $L|\psi\rangle$ is a code state for any code state $|\psi\rangle$.

David Poulin (Sherbrooke)
Correctable region

A region $M \subset \Lambda$ is correctable if there exists a recovery operation \mathcal{R} such that $\mathcal{R}(\text{Tr}_M \rho) = \rho$ for all code states ρ.

M correctable \iff No order parameter on $M \iff \Pi O_M \Pi \propto \Pi$.

Minimum distance

The minimum distance d is the size of the smallest non-correctable region.

Logical operator

Operator L such that $L |\psi\rangle$ is a code state for any code state $|\psi\rangle$.
Outline

1. Check operators & local codes
2. Holographic Disentangling Lemma
3. Holographic Minimum Distance
4. Capacity-Stability Tradeoff
5. String-Like Logical Operators
6. Thermal instability
Holographic disentangling lemma (Bravyi, DP, Terhal)

Let $M \subset \Lambda$ be a correctable region and suppose that its boundary ∂M is also correctable. Then, there exists a unitary operator $U_{\partial M}$ acting only on the boundary of M such that, for any code state $|\psi\rangle$,

$$U_{\partial M} |\psi\rangle = |\phi_M\rangle \otimes |\psi'_M\rangle$$

for some fixed state $|\phi_M\rangle$ on M.
Let M be correctable.

Assume ∂M is correctable.

Let $M = A \cup B$, $\overline{M} = C \cup D$, and $\partial M = B \cup C$.

There exists a unitary transformation $U_{\partial M}$ such that, for any $|\psi\rangle \in \mathcal{C}$

$$U_{\partial M}|\psi\rangle = |\phi_M\rangle \otimes |\psi'_M\rangle$$

where $|\phi_M\rangle$ is the same for all $|\psi\rangle$.

Remark

For a trivial code $\text{Tr} \Pi = 1$, every region is correctable, so we recover the area law $S(M) \leq |\partial M|$ for commuting Hamiltonians of Wolf, Verstraete, Hastings, and Cirac.
Let \(M \) be correctable.

Assume \(\partial M \) is correctable.

Let \(M = A \cup B, \quad \overline{M} = C \cup D, \) and \(\partial M = B \cup C \).

There exists a unitary transformation \(U_{\partial M} \) such that, for any \(|\psi\rangle \in \mathcal{C} \)

\[
U_{\partial M} |\psi\rangle = |\phi_M\rangle \otimes |\psi'_M\rangle
\]

where \(|\phi_M\rangle \) is the same for all \(|\psi\rangle \).

Remark

For a trivial code \(\text{Tr} \Pi = 1 \), every region is correctable, so we recover the area law \(S(M) \leq |\partial M| \) for commuting Hamiltonians of Wolf, Verstraete, Hastings, and Cirac.
Let M be correctable.

Assume ∂M is correctable.

Let $M = A \cup B$, $\overline{M} = C \cup D$, and $\partial M = B \cup C$.

There exists a unitary transformation $U_{\partial M}$ such that, for any $|\psi\rangle \in \mathcal{C}$

$$U_{\partial M} |\psi\rangle = |\phi_M\rangle \otimes |\psi'_M\rangle$$

where $|\phi_M\rangle$ is the same for all $|\psi\rangle$.

Remark

For a trivial code $\text{Tr} \Pi = 1$, every region is correctable, so we recover the area law $S(M) \leq |\partial M|$ for commuting Hamiltonians of Wolf, Verstraete, Hastings, and Cirac.
Holographic Disentangling Lemma

Let M be correctable.
Assume ∂M is correctable.
Let $M = A \cup B$, $\overline{M} = C \cup D$, and $\partial M = B \cup C$.

There exists a unitary transformation $U_{\partial M}$ such that, for any $|\psi\rangle \in \mathcal{C}$

$$U_{\partial M}|\psi\rangle = |\phi_M\rangle \otimes |\psi_M'\rangle$$

where $|\phi_M\rangle$ is the same for all $|\psi\rangle$.

Remark

For a trivial code $\text{Tr} \Pi = 1$, every region is correctable, so we recover the area law $S(M) \leq |\partial M|$ for commuting Hamiltonians of Wolf, Verstraete, Hastings, and Cirac.
Let M be correctable.
Assume ∂M is correctable.
Let $M = A \cup B$, $\overline{M} = C \cup D$, and $\partial M = B \cup C$.
There exists a unitary transformation $U_{\partial M}$ such that, for any $|\psi\rangle \in C$

$$U_{\partial M}|\psi\rangle = |\phi_M\rangle \otimes |\psi'_{\overline{M}}\rangle$$

where $|\phi_M\rangle$ is the same for all $|\psi\rangle$.

Remark
For a trivial code $\text{Tr}\Pi = 1$, every region is correctable, so we recover the area law $S(M) \leq |\partial M|$ for commuting Hamiltonians of Wolf, Verstraete, Hastings, and Cirac.
With pictures

- Let \(M \) be correctable.
- Assume \(\partial M \) is correctable.
- Let \(M = A \cup B, \overline{M} = C \cup D, \) and \(\partial M = B \cup C. \)

There exists a unitary transformation \(U_{\partial M} \) such that, for any \(|\psi\rangle \in \mathcal{C} \)

\[
U_{\partial M} |\psi\rangle = |\phi_M\rangle \otimes |\psi'_{\overline{M}}\rangle
\]

where \(|\phi_M\rangle \) is the same for all \(|\psi\rangle \).

Remark

For a trivial code \(\text{Tr} \Pi = 1 \), every region is correctable, so we recover the area law \(S(M) \leq |\partial M| \) for commuting Hamiltonians of Wolf, Verstraete, Hastings, and Cirac.
Let M be correctable.
Assume ∂M is correctable.
Let $M = A \cup B$, $\overline{M} = C \cup D$, and $\partial M = B \cup C$.

There exists a unitary transformation $U_{\partial M}$ such that, for any $|\psi\rangle \in C$
\[U_{\partial M} |\psi\rangle = |\phi_M\rangle \otimes |\psi'_M\rangle \]
where $|\phi_M\rangle$ is the same for all $|\psi\rangle$.

Remark
For a trivial code $\text{Tr}\Pi = 1$, every region is correctable, so we recover the area law $S(M) \leq |\partial M|$ for commuting Hamiltonians of Wolf, Verstraete, Hastings, and Cirac.
Outline

1. Check operators & local codes
2. Holographic Disentangling Lemma
3. Holographic Minimum Distance
4. Capacity-Stability Tradeoff
5. String-Like Logical Operators
6. Thermal instability
Holographic minimum distance (Bravyi, DP, Terhal)

Region $M \subset \Lambda$ is correctable if its boundary is smaller than the minimum distance $|\partial M| \leq cd$.

- Bulky errors are not problematic: it’s the skinny ones we need to worry about.
- This hints at our next result: string-like logical operators.
Holographic minimum distance (Bravyi, DP, Terhal)

Region $M \subset \Lambda$ is correctable if its boundary is smaller than the minimum distance $|\partial M| \leq cd$.

- Bulky errors are not problematic: it’s the skinny ones we need to worry about.
- This hints at our next result: string-like logical operators.
Holographic minimum distance (Bravyi, DP, Terhal)

Region $M \subset \Lambda$ is correctable if its boundary is smaller than the minimum distance $|\partial M| \leq cd$.

- Bulky errors are not problematic: it’s the skinny ones we need to worry about.
- This hints at our next result: string-like logical operators.
Let $M \subseteq \Lambda$ be a correctable region.

- If $|\partial M| \leq d$, then ∂M is also correctable.
- Thus, we can reconstruct any code state ρ from $\rho_{AD} = \text{Tr}_{\partial M} \rho$.
- But from the Holographic disentangling lemma, $\rho_{AD} = \eta_A \otimes \rho_D$ with η_A independent of the encoded state ρ.
- Thus, we can reconstruct ρ from $\rho_D = \text{Tr}_{M \cup \partial M} \rho$, so $M \cup \partial M$ is correctable.
- We can continue to grow M this way until $|\partial M| \geq d$.
Proof

- Let $M \subset \Lambda$ be a correctable region.
- If $|\partial M| \leq d$, then ∂M is also correctable.
- Thus, we can reconstruct any code state ρ from $\rho_{AD} = \text{Tr}_{\partial M} \rho$.
- But from the Holographic disentangling lemma, $\rho_{AD} = \eta_A \otimes \rho_D$ with η_A independent of the encoded state ρ.
- Thus, we can reconstruct ρ from $\rho_D = \text{Tr}_{M \cup \partial M} \rho$, so $M \cup \partial M$ is correctable.
- We can continue to grow M this way until $|\partial M| \geq d$.

$\tilde{M} = \Lambda \setminus M$
Proof

- Let $M \subset \Lambda$ be a correctable region.
- If $|\partial M| \leq d$, then ∂M is also correctable.
- Thus, we can reconstruct any code state ρ from $\rho_{AD} = \text{Tr}_{\partial M} \rho$.
 - But from the Holographic disentangling lemma, $\rho_{AD} = \eta_A \otimes \rho_D$ with η_A independent of the encoded state ρ.
 - Thus, we can reconstruct ρ from $\rho_D = \text{Tr}_{M \cup \partial M} \rho$, so $M \cup \partial M$ is correctable.
 - We can continue to grow M this way until $|\partial M| \geq d$.
Proof

- Let $M \subset \Lambda$ be a correctable region.
- If $|\partial M| \leq d$, then ∂M is also correctable.
- Thus, we can reconstruct any code state ρ from $\rho_{AD} = \text{Tr}_{\partial M} \rho$.
- But from the Holographic disentangling lemma, $\rho_{AD} = \eta_A \otimes \rho_D$ with η_A independent of the encoded state ρ.
- Thus, we can reconstruct ρ from $\rho_D = \text{Tr}_{M \cup \partial M} \rho$, so $M \cup \partial M$ is correctable.
- We can continue to grow M this way until $|\partial M| \geq d$.

$\sim \sim \sim$

$\sim \sim \sim$

David Poulin (Sherbrooke)
Let $M \subset \Lambda$ be a correctable region.

If $|\partial M| \leq d$, then ∂M is also correctable.

Thus, we can reconstruct any code state ρ from $\rho_{AD} = \text{Tr}_{\partial M} \rho$.

But from the Holographic disentangling lemma, $\rho_{AD} = \eta_A \otimes \rho_D$ with η_A independent of the encoded state ρ.

Thus, we can reconstruct ρ from $\rho_D = \text{Tr}_{M \cup \partial M} \rho$, so $M \cup \partial M$ is correctable.

We can continue to grow M this way until $|\partial M| \geq d$.

Proof

- Let $M \subset \Lambda$ be a correctable region.
- If $|\partial M| \leq d$, then ∂M is also correctable.
- Thus, we can reconstruct any code state ρ from $\rho_{AD} = \text{Tr}_{\partial M} \rho$.
- But from the Holographic disentangling lemma, $\rho_{AD} = \eta_A \otimes \rho_D$ with η_A independent of the encoded state ρ.
- Thus, we can reconstruct ρ from $\rho_D = \text{Tr}_{M \cup \partial M} \rho$, so $M \cup \partial M$ is correctable.
- We can continue to grow M this way until $|\partial M| \geq d$.
Proof

- Let $M \subset \Lambda$ be a correctable region.
- If $|\partial M| \leq d$, then ∂M is also correctable.
- Thus, we can reconstruct any code state ρ from $\rho_{AD} = \text{Tr}_{\partial M} \rho$.
- But from the Holographic disentangling lemma, $\rho_{AD} = \eta_A \otimes \rho_D$ with η_A independent of the encoded state ρ.
- Thus, we can reconstruct ρ from $\rho_D = \text{Tr}_{M \cup \partial M} \rho$, so $M \cup \partial M$ is correctable.
- We can continue to grow M this way until $|\partial M| \geq d$.
Proof

- Let \(M \subset \Lambda \) be a correctable region.
- If \(|\partial M| \leq d \), then \(\partial M \) is also correctable.
- Thus, we can reconstruct any code state \(\rho \) from \(\rho_{AD} = \text{Tr}_{\partial M} \rho \).
- But from the Holographic disentangling lemma, \(\rho_{AD} = \eta_A \otimes \rho_D \) with \(\eta_A \) independent of the encoded state \(\rho \).
- Thus, we can reconstruct \(\rho \) from \(\rho_D = \text{Tr}_{M \cup \partial M} \rho \), so \(M \cup \partial M \) is correctable.
- We can continue to grow \(M \) this way until \(|\partial M| \geq d \).
Outline

1. Check operators & local codes
2. Holographic Disentangling Lemma
3. Holographic Minimum Distance
4. Capacity-Stability Tradeoff
5. String-Like Logical Operators
6. Thermal instability
Statement of the result

- $n =$ number of qubits
- $k =$ number of encoded qubits
- $d =$ minimum distance

Capacity-Stability Tradeoff

$$k \leq c \frac{n}{d^2}$$

- Singleton’s bound: $k \leq n - 2(d - 1)$.
- Hamming bound: $k \leq n \left[1 - \frac{d}{2^n} \log 3 - H(\frac{d}{2^n})\right]$.
- Kitaev’s codes (with punctures) saturate this bound, so it is tight.
- No “good codes” in 2D, i.e. $k \propto n$ and $d \propto n$.
- For 2D classical codes, $k \leq c \frac{n}{\sqrt{d}}$.
Statement of the result

- $n = \text{number of qubits}$
- $k = \text{number of encoded qubits}$
- $d = \text{minimum distance}$

Capacity-Stability Tradeoff

\[k \leq c \frac{n}{d^2} \]

- Singleton’s bound: $k \leq n - 2(d - 1)$.
- Hamming bound: $k \leq n \left[1 - \frac{d}{2n} \log 3 - H\left(\frac{d}{2n} \right) \right]$.
- Kitaev’s codes (with punctures) saturate this bound, so it is tight.
- No “good codes” in 2D, i.e. $k \propto n$ and $d \propto n$.
- For 2D classical codes, $k \leq c \frac{n}{\sqrt{d}}$.

David Poulin (Sherbrooke) 2D quantum memories INTRIQ13 21 / 31
Statement of the result

- \(n \) = number of qubits
- \(k \) = number of encoded qubits
- \(d \) = minimum distance

Capacity-Stability Tradeoff

\[k \leq c \frac{n}{d^2} \]

- Singleton’s bound: \(k \leq n - 2(d - 1) \).
- Hamming bound: \(k \leq n \left[1 - \frac{d}{2n} \log 3 - H(\frac{d}{2n})\right] \).
- Kitaev’s codes (with punctures) saturate this bound, so it is tight.
- No “good codes” in 2D, i.e. \(k \propto n \) and \(d \propto n \).
- For 2D classical codes, \(k \leq c \frac{n}{\sqrt{d}} \).
Statement of the result

- $n = \text{number of qubits}$
- $k = \text{number of encoded qubits}$
- $d = \text{minimum distance}$

\[k \leq cn^2d^{-2} \]

- Singleton's bound: $k \leq n - 2(d - 1)$.
- Hamming bound: $k \leq n \left[1 - \frac{d}{2n} \log 3 - H\left(\frac{d}{2n}\right)\right]$.
- Kitaev's codes (with punctures) saturate this bound, so it is tight.
- No “good codes” in 2D, i.e. $k \propto n$ and $d \propto n$.
- For 2D classical codes, $k \leq c \frac{n}{\sqrt{d}}$.
Statement of the result

- $n =$ number of qubits
- $k =$ number of encoded qubits
- $d =$ minimum distance

Singleton’s bound: $k \leq n - 2(d - 1)$.

Hamming bound: $k \leq n \left[1 - \frac{d}{2^n} \log 3 - H\left(\frac{d}{2^n}\right)\right]$.

Kitaev’s codes (with punctures) saturate this bound, so it is tight.

No “good codes” in 2D, i.e. $k \propto n$ and $d \propto n$.

For 2D classical codes, $k \leq c \frac{n}{\sqrt{d}}$.
Statement of the result

- \(n \) = number of qubits
- \(k \) = number of encoded qubits
- \(d \) = minimum distance

Singleton’s bound: \(k \leq n - 2(d - 1) \).

Hamming bound: \(k \leq n \left[1 - \frac{d}{2n} \log 3 - H\left(\frac{d}{2n}\right) \right] \).

- Kitaev’s codes (with punctures) saturate this bound, so it is tight.
- No “good codes” in 2D, i.e. \(k \propto n \) and \(d \propto n \).
- For 2D classical codes, \(k \leq c \frac{n}{\sqrt{d}} \).
Statement of the result

- $n =$ number of qubits
- $k =$ number of encoded qubits
- $d =$ minimum distance

Capacity-Stability Tradeoff

$k \leq c \frac{n}{d^2}$

- Singleton’s bound: $k \leq n - 2(d - 1)$.
- Hamming bound: $k \leq n \left[1 - \frac{d}{2n} \log 3 - H\left(\frac{d}{2n}\right)\right]$.
- Kitaev’s codes (with punctures) saturate this bound, so it is tight.
 - No “good codes" in 2D, i.e. $k \propto n$ and $d \propto n$.
 - For 2D classical codes, $k \leq c \frac{n}{\sqrt{d}}$.
Statement of the result

- $n =$ number of qubits
- $k =$ number of encoded qubits
- $d =$ minimum distance

Capacity-Stability Tradeoff

$$k \leq c \frac{n}{d^2}$$

- Singleton’s bound: $k \leq n - 2(d - 1)$.
- Hamming bound: $k \leq n \left[1 - \frac{d}{2n} \log 3 - H\left(\frac{d}{2n}\right) \right]$.
- Kitaev’s codes (with punctures) saturate this bound, so it is tight.
- No “good codes” in 2D, i.e. $k \propto n$ and $d \propto n$.
- For 2D classical codes, $k \leq c \frac{n}{\sqrt{d}}$.
Statement of the result

- $n =$ number of qubits
- $k =$ number of encoded qubits
- $d =$ minimum distance

Capacity-Stability Tradeoff

\[k \leq c \frac{n}{d^2} \]

- Singleton’s bound: $k \leq n - 2(d - 1)$.
- Hamming bound: $k \leq n \left[1 - \frac{d}{2n} \log 3 - H\left(\frac{d}{2n}\right) \right]$.
- Kitaev’s codes (with punctures) saturate this bound, so it is tight.
- No “good codes” in 2D, i.e. $k \propto n$ and $d \propto n$.
- For 2D classical codes, $k \leq c \frac{n}{\sqrt{d}}$.
Outline

1. Check operators & local codes
2. Holographic Disentangling Lemma
3. Holographic Minimum Distance
4. Capacity-Stability Tradeoff
5. String-Like Logical Operators
6. Thermal instability
String-like logical operators (Haah, Preskill)

There exists a non-trivial logical operator supported on a string-like region.

- Exists U_M such that $U_M|\psi\rangle = |\psi'\rangle$.
 - $|\psi\rangle \neq |\psi'\rangle$.
 - $|\psi\rangle, |\psi'\rangle \in \mathcal{C}$.
- Well known for Kitaev’s toric code.
- Intuitive for known models that support anyons:
 - The ground state can be changed by dragging an anyon around a topologically non-trivial loop.
 - This process is realized on a string, and generated a logical operation.
String-like logical operators (Haah, Preskill)

There exists a non-trivial logical operator supported on a string-like region.

- Exists U_M such that $U_M |\psi\rangle = |\psi'\rangle$.
 - $|\psi\rangle \neq |\psi'\rangle$.
 - $|\psi\rangle, |\psi'\rangle \in \mathcal{C}$.

Well known for Kitaev’s toric code.

Intuitive for known models that support anyons:
 - The ground state can be changed by dragging an anyon around a topologically non-trivial loop.
 - This process is realized on a string, and generated a logical operation.
There exists a non-trivial logical operator supported on a string-like region.

- Exists U_M such that $U_M |\psi\rangle = |\psi'\rangle$.
 - $|\psi\rangle \neq |\psi'\rangle$.
 - $|\psi\rangle, |\psi'\rangle \in \mathcal{C}$.

- Well known for Kitaev’s toric code.
- Intuitive for known models that support anyons:
 - The ground state can be changed by dragging an anyon around a topologically non-trivial loop.
 - This process is realized on a string, and generated a logical operation.
String-like logical operators (Haah, Preskill)

There exists a non-trivial logical operator supported on a string-like region.

- Exists U_M such that $U_M\ket{\psi} = \ket{\psi'}$.
 - $\ket{\psi} \neq \ket{\psi'}$.
 - $\ket{\psi}, \ket{\psi'} \in \mathcal{C}$.

- Well known for Kitaev’s toric code.
 - Intuitive for known models that support anyons:
 - The ground state can be changed by dragging an anyon around a topologically non-trivial loop.
 - This process is realized on a string, and generated a logical operation.
String-like logical operators (Haah, Preskill)

There exists a non-trivial logical operator supported on a string-like region.

- Exists U_M such that $U_M|\psi\rangle = |\psi'\rangle$.
 - $|\psi\rangle \neq |\psi'\rangle$.
 - $|\psi\rangle, |\psi'\rangle \in C$.

- Well known for Kitaev’s toric code.
- Intuitive for known models that support anyons:
 - The ground state can be changed by dragging an anyon around a topologically non-trivial loop.
 - This process is realized on a string, and generated a logical operation.
String-like logical operators (Haah, Preskill)

There exists a non-trivial logical operator supported on a string-like region.

- Exists U_M such that $U_M|\psi\rangle = |\psi'\rangle$.
 - $|\psi\rangle \neq |\psi'\rangle$.
 - $|\psi\rangle, |\psi'\rangle \in \mathcal{C}$.

- Well known for Kitaev’s toric code.
- Intuitive for known models that support anyons:
 - The ground state can be changed by dragging an anyon around a topologically non-trivial loop.
 - This process is realized on a string, and generated a logical operation.
String-like logical operators (Haah, Preskill)

There exists a non-trivial logical operator supported on a string-like region.

- Exists U_M such that $U_M|\psi\rangle = |\psi'\rangle$.
 - $|\psi\rangle \neq |\psi'\rangle$.
 - $|\psi\rangle, |\psi'\rangle \in \mathcal{C}$.

Well known for Kitaev’s toric code.

Intuitive for known models that support anyons:
 - The ground state can be changed by dragging an anyon around a topologically non-trivial loop.
 - This process is realized on a string, and generated a logical operation.
Thermal instability

Outline

1. Check operators & local codes
2. Holographic Disentangling Lemma
3. Holographic Minimum Distance
4. Capacity-Stability Tradeoff
5. String-Like Logical Operators
6. Thermal instability
Classical memories are robust

- Energy barrier $\propto \sqrt{n}$ between logical states through local moves.
- Boltzmann: configuration x has probability $\propto \exp(-E(x)/T)$.
- Probability of flipping the whole configuration by local moves decreases with n.

Thermal instability
Thermal instability

Classical memories are robust

- Energy barrier $\propto \sqrt{n}$ between logical states through local moves.
- Boltzmann: configuration x has probability $\propto \exp(-E(x)/T)$.
- Probability of flipping the whole configuration by local moves decreases with n.
Thermal instability

Classical memories are robust

- Energy barrier $\propto \sqrt{n}$ between logical states through local moves.
- Boltzmann: configuration x has probability $\propto \exp(-E(x)/T)$.
- Probability of flipping the whole configuration by local moves decreases with n.

Thermal instability

Classical memories are robust

- Energy barrier $\propto \sqrt{n}$ between logical states through local moves.
- Boltzmann: configuration x has probability $\propto \exp(-E(x)/T)$.
- Probability of flipping the whole configuration by local moves decreases with n.
Energy barrier $\propto \sqrt{n}$ between logical states through local moves.

Boltzmann: configuration x has probability $\propto \exp(-E(x)/T)$.

Probability of flipping the whole configuration by local moves decreases with n.
Thermal instability

Classical memories are robust

- Energy barrier $\propto \sqrt{n}$ between logical states through local moves.
- Boltzmann: configuration x has probability $\propto \exp(-E(x)/T)$.
- Probability of flipping the whole configuration by local moves decreases with n.
Thermal instability

Classical memories are robust

- Energy barrier $\propto \sqrt{n}$ between logical states through local moves.
- Boltzmann: configuration x has probability $\propto \exp(-E(x)/T)$.
- Probability of flipping the whole configuration by local moves decreases with n.
Thermal instability

Classical memories are robust

- Energy barrier $\propto \sqrt{n}$ between logical states through local moves.
- Boltzmann: configuration x has probability $\propto \exp(-E(x)/T)$.
- Probability of flipping the whole configuration by local moves decreases with n.
Thermal instability

Classical memories are robust

- Energy barrier $\propto \sqrt{n}$ between logical states through local moves.
- Boltzmann: configuration x has probability $\propto \exp(-E(x)/T)$.
- Probability of flipping the whole configuration by local moves decreases with n.
Thermal instability

Classical memories are robust

- Energy barrier $\propto \sqrt{n}$ between logical states through local moves.
- Boltzmann: configuration x has probability $\propto \exp(-E(x)/T)$.
- Probability of flipping the whole configuration by local moves decreases with n.
Classical memories are robust

- Energy barrier $\propto \sqrt{n}$ between logical states through local moves.
- Boltzmann: configuration x has probability $\propto \exp(-E(x)/T)$.
- Probability of flipping the whole configuration by local moves decreases with n.
Thermal instability

Classical memories are robust

- Energy barrier $\propto \sqrt{n}$ between logical states through local moves.
- Boltzmann: configuration x has probability $\propto \exp(-E(x)/T)$.
- Probability of flipping the whole configuration by local moves decreases with n.
System has two ground states $|\uparrow\uparrow \ldots \uparrow\rangle$ and $|\downarrow\downarrow \ldots \downarrow\rangle$.

- $\alpha|\uparrow\uparrow \ldots \uparrow\rangle + \beta|\downarrow\downarrow \ldots \downarrow\rangle$ does not evolve in time.
- Local observable σ^z_i distinguishes them.
- Local order parameter σ^z.
- Local perturbation $B\sigma_z$ lifts degeneracy:

$$\alpha|\uparrow\uparrow \ldots \uparrow\rangle + \beta|\downarrow\downarrow \ldots \downarrow\rangle \rightarrow e^{-iBt}\alpha|\uparrow\uparrow \ldots \uparrow\rangle + e^{iBt}\beta|\downarrow\downarrow \ldots \downarrow\rangle$$

Unknown B:

$$\begin{pmatrix} |\alpha|^2 & e^{-i2Bt}\alpha\beta^* \\ e^{i2Bt}\alpha^*\beta & |\beta|^2 \end{pmatrix} \rightarrow \int dB \begin{pmatrix} |\alpha|^2 & 0 \\ 0 & |\beta|^2 \end{pmatrix}$$

- Quantum superposition \rightarrow Statistical mixture.
System has two ground states $|\uparrow\uparrow\ldots\uparrow\rangle$ and $|\downarrow\downarrow\ldots\downarrow\rangle$.

- $\alpha|\uparrow\uparrow\ldots\uparrow\rangle + \beta|\downarrow\downarrow\ldots\downarrow\rangle$ does not evolve in time.

- Local observable σ_z^i distinguishes them.
 - Local order parameter σ_z.

- Local perturbation $B\sigma_z$ lifts degeneracy:

$$\alpha|\uparrow\uparrow\ldots\uparrow\rangle + \beta|\downarrow\downarrow\ldots\downarrow\rangle \rightarrow e^{-iBt}\alpha|\uparrow\uparrow\ldots\uparrow\rangle + e^{iBt}\beta|\downarrow\downarrow\ldots\downarrow\rangle$$

- Unknown B:

$$\begin{pmatrix}
|\alpha|^2 & e^{-i2Bt}\alpha^*\beta \\
e^{i2Bt}\alpha\beta^* & |\beta|^2
\end{pmatrix} \rightarrow \begin{pmatrix}
|\alpha|^2 & 0 \\
0 & |\beta|^2
\end{pmatrix}$$

- Quantum superposition \rightarrow Statistical mixture.
System has two ground states $|\uparrow\uparrow\ldots\uparrow\rangle$ and $|\downarrow\downarrow\ldots\downarrow\rangle$.

- $\alpha|\uparrow\uparrow\ldots\uparrow\rangle + \beta|\downarrow\downarrow\ldots\downarrow\rangle$ does not evolve in time.

- Local observable σ^z_i distinguishes them.
 - Local order parameter σ^z.
 - Local perturbation $B\sigma^z$ lifts degeneracy:

$$\alpha|\uparrow\uparrow\ldots\uparrow\rangle + \beta|\downarrow\downarrow\ldots\downarrow\rangle \xrightarrow{t} e^{-iBt}\alpha|\uparrow\uparrow\ldots\uparrow\rangle + e^{iBt}\beta|\downarrow\downarrow\ldots\downarrow\rangle$$

Unknown B:

$$\begin{pmatrix} |\alpha|^2 & e^{-i2Bt}\alpha\beta^* \\ e^{i2Bt}\alpha^*\beta & |\beta|^2 \end{pmatrix} \xrightarrow{\int dB} \begin{pmatrix} |\alpha|^2 & 0 \\ 0 & |\beta|^2 \end{pmatrix}$$

- Quantum superposition \rightarrow Statistical mixture.
Local order parameter & decoherence

- System has two ground states $|\uparrow\uparrow \ldots \uparrow\rangle$ and $|\downarrow\downarrow \ldots \downarrow\rangle$.
 - $\alpha |\uparrow\uparrow \ldots \uparrow\rangle + \beta |\downarrow\downarrow \ldots \downarrow\rangle$ does not evolve in time.
- Local observable σ^z_i distinguishes them.
 - Local order parameter σ^z.
- Local perturbation $B \sigma_z$ lifts degeneracy:

$$\alpha |\uparrow\uparrow \ldots \uparrow\rangle + \beta |\downarrow\downarrow \ldots \downarrow\rangle \xrightarrow{t} e^{-iBt} \alpha |\uparrow\uparrow \ldots \uparrow\rangle + e^{iBt} \beta |\downarrow\downarrow \ldots \downarrow\rangle$$

- Unknown B:

$$\begin{pmatrix}
|\alpha|^2 & e^{-i2Bt} \alpha^* \beta \\
e^{i2Bt} \alpha \beta^* & |\beta|^2
\end{pmatrix} \xrightarrow{\int dB} \begin{pmatrix}
|\alpha|^2 & 0 \\
0 & |\beta|^2
\end{pmatrix}$$

- Quantum superposition \rightarrow Statistical mixture.
System has two ground states $|\uparrow\uparrow \ldots \uparrow\rangle$ and $|\downarrow\downarrow \ldots \downarrow\rangle$.

- $\alpha|\uparrow\uparrow \ldots \uparrow\rangle + \beta|\downarrow\downarrow \ldots \downarrow\rangle$ does not evolve in time.

Local observable σ^z_i distinguishes them.

- Local order parameter σ^z.

Local perturbation $B\sigma_z$ lifts degeneracy:

$$\alpha|\uparrow\uparrow \ldots \uparrow\rangle + \beta|\downarrow\downarrow \ldots \downarrow\rangle \rightarrow e^{-iBt}\alpha|\uparrow\uparrow \ldots \uparrow\rangle + e^{iBt}\beta|\downarrow\downarrow \ldots \downarrow\rangle$$

Unknown B:

$$\begin{pmatrix} \alpha^* \beta^t & e^{-i2Bt}\alpha^2 \\ e^{i2Bt}\beta^2 & \beta^* \end{pmatrix} \int dB \begin{pmatrix} |\alpha|^2 & 0 \\ 0 & |\beta|^2 \end{pmatrix}$$

- Quantum superposition \rightarrow Statistical mixture.
System has two ground states \(|\uparrow\uparrow \ldots \uparrow\rangle\) and \(|\downarrow\downarrow \ldots \downarrow\rangle\).

- \(\alpha|\uparrow\uparrow \ldots \uparrow\rangle + \beta|\downarrow\downarrow \ldots \downarrow\rangle\) does not evolve in time.

- Local observable \(\sigma^z_i\) distinguishes them.

- Local order parameter \(\sigma^z\).

- Local perturbation \(B\sigma^z\) lifts degeneracy:

\[
\alpha|\uparrow\uparrow \ldots \uparrow\rangle + \beta|\downarrow\downarrow \ldots \downarrow\rangle \xrightarrow{t} e^{-iBt}\alpha|\uparrow\uparrow \ldots \uparrow\rangle + e^{iBt}\beta|\downarrow\downarrow \ldots \downarrow\rangle
\]

Unknown \(B\):

\[
\begin{pmatrix}
|\alpha|^2 & e^{-i2Bt}\alpha\beta^* \\
e^{i2Bt}\alpha^*\beta & |\beta|^2
\end{pmatrix}
\xrightarrow{\int dB}
\begin{pmatrix}
|\alpha|^2 & 0 \\
0 & |\beta|^2
\end{pmatrix}
\]

- Quantum superposition \(\rightarrow\) Statistical mixture.
Thermal instability

Local order parameter & decoherence

- System has two ground states $| \uparrow\uparrow \ldots \uparrow \rangle$ and $| \downarrow\downarrow \ldots \downarrow \rangle$.
 - $\alpha | \uparrow\uparrow \ldots \uparrow \rangle + \beta | \downarrow\downarrow \ldots \downarrow \rangle$ does not evolve in time.

- Local observable σ_i^z distinguishes them.
 - Local order parameter σ^z.

- Local perturbation $B\sigma^z$ lifts degeneracy:

$$
\alpha | \uparrow\uparrow \ldots \uparrow \rangle + \beta | \downarrow\downarrow \ldots \downarrow \rangle \rightarrow e^{-iBt} \alpha | \uparrow\uparrow \ldots \uparrow \rangle + e^{iBt} \beta | \downarrow\downarrow \ldots \downarrow \rangle
$$

- **Unknown B:**

$$
\begin{pmatrix}
|\alpha|^2 & e^{-i2Bt} \alpha \beta^* \\
e^{i2Bt} \alpha^* \beta & |\beta|^2
\end{pmatrix}
\int dB
\begin{pmatrix}
|\alpha|^2 & 0 \\
0 & |\beta|^2
\end{pmatrix}
$$

- Quantum superposition \rightarrow Statistical mixture.
System has two ground states $|\uparrow\uparrow \ldots \uparrow\rangle$ and $|\downarrow\downarrow \ldots \downarrow\rangle$.

- $\alpha |\uparrow\uparrow \ldots \uparrow\rangle + \beta |\downarrow\downarrow \ldots \downarrow\rangle$ does not evolve in time.

Local observable σ^z_i distinguishes them.

- Local order parameter σ^z.
- Local perturbation $B\sigma_z$ lifts degeneracy:

$$\alpha |\uparrow\uparrow \ldots \uparrow\rangle + \beta |\downarrow\downarrow \ldots \downarrow\rangle \xrightarrow{t} e^{-iBt} \alpha |\uparrow\uparrow \ldots \uparrow\rangle + e^{iBt} \beta |\downarrow\downarrow \ldots \downarrow\rangle$$

Unknown B:

$$\begin{pmatrix} |\alpha|^2 & e^{-i2Bt}\alpha\beta^* \\ e^{i2Bt}\alpha^*\beta & |\beta|^2 \end{pmatrix} \xrightarrow{\int dB} \begin{pmatrix} |\alpha|^2 & 0 \\ 0 & |\beta|^2 \end{pmatrix}$$

- Quantum superposition \rightarrow Statistical mixture.
Bravyi, Hastings, & Michalakis

- (TQO1) System has no local order parameter.
- (TQO2) System is locally consistent.

The system has a stable spectrum.
Long lived memory at zero temperature.

\[H = - \sum_i \sigma_i^z \sigma_{i+1}^z + \sigma_{23}^z \]

The ground state manifold changes abruptly when including site 23.

Can we combine this spectral stability with the thermal stability of the 2D Ising model?
Topological quantum order

Bravyi, Hastings, & Michalakis

- (TQO1) System has no local order parameter.
- (TQO2) System is locally consistent.

The system has a stable spectrum.
Long lived memory at zero temperature.

\[
H = - \sum_i \sigma_i^z \sigma_{i+1}^z + \sigma_{23}^z
\]

The ground state manifold changes abruptly when including site 23.

Can we combine this spectral stability with the thermal stability of the 2D Ising model?
(TQO1) System has no local order parameter.
(TQO2) System is locally consistent.

The system has a stable spectrum.
Long lived memory at zero temperature.

\[H = - \sum_{i} \sigma_i^z \sigma_{i+1}^z + \sigma_{23}^z \]

The ground state manifold changes abruptly when including site 23.

Can we combine this spectral stability with the thermal stability of the 2D Ising model?
Thermal instability

Topological quantum order

Bravyi, Hastings, & Michalakis

- **(TQO1)** System has no local order parameter.
- **(TQO2)** System is locally consistent.

The system has a stable spectrum.

Long lived memory at zero temperature.

\[H = - \sum_i \sigma_i^z \sigma_{i+1}^z + \sigma_{23}^z \]

The ground state manifold changes abruptly when including site 23.

Can we combine this spectral stability with the thermal stability of the 2D Ising model?
Thermal instability

Topological quantum order

Bravyi, Hastings, & Michalakis

- (TQO1) System has no local order parameter.
- (TQO2) System is locally consistent.

The system has a stable spectrum.
Long lived memory at zero temperature.

\[H = - \sum_i \sigma_i^z \sigma_{i+1}^z + \sigma_{23}^z \]

The ground state manifold changes abruptly when including site 23.

Can we combine this spectral stability with the thermal stability of the 2D Ising model?
Bravyi, Hastings, & Michalakis

- (TQO1) System has no local order parameter.
- (TQO2) System is locally consistent.

The system has a stable spectrum.
Long lived memory at zero temperature.

\[H = - \sum_i \sigma_i^z \sigma_{i+1}^z + \sigma_{23}^z \]

The ground state manifold changes abruptly when including site 23.

Can we combine this spectral stability with the thermal stability of the 2D Ising model?
Main result (Landon-Cardinal & DP)

The minimum set of conditions required to prove spectral stability imply the existence of a sequence of local maps that corrupt the system at an energy cost bounded by a constant.
Thermal instability

Noise model

1. Apply random unitary on sites 1 & 2.
2. Measure P_{12}
 - If $P_{12} = 0$ go to 1.
3. Apply random unitary on site 3.
4. Measure P_{23}
 - If $P_{23} = 0$ go to 3.

- Only a constant amount of energy at any given time.
- No need to backtrack.
- Number of steps \propto lattice linear size.
- If successful, final state is corrupted. (not trivial)
1. Apply random unitary on sites 1 & 2.
2. Measure P_{12}
 - If $P_{12} = 0$ go to 1.
3. Apply random unitary on site 3.
4. Measure P_{23}
 - If $P_{23} = 0$ go to 3.

- Only a constant amount of energy at any given time.
- No need to backtrack.
- Number of steps \propto lattice linear size.
- If successful, final state is corrupted. (not trivial)
1. Apply random unitary on sites 1 & 2.
2. Measure P_{12}
 - If $P_{12} = 0$ go to 1.
3. Apply random unitary on site 3.
4. Measure P_{23}
 - If $P_{23} = 0$ go to 3.

- Only a constant amount of energy at any given time.
- No need to backtrack.
- Number of steps \propto lattice linear size.
- If successful, final state is corrupted. (not trivial)
Noise model

1. Apply random unitary on sites 1 & 2.
2. Measure P_{12}
 - If $P_{12} = 0$ go to 1.
3. Apply random unitary on site 3.
4. Measure P_{23}
 - If $P_{23} = 0$ go to 3.

- Only a constant amount of energy at any given time.
- No need to backtrack.
- Number of steps \propto lattice linear size.
- If successful, final state is corrupted. (not trivial)
Thermal instability

Noise model

1. Apply random unitary on sites 1 & 2.
2. Measure P_{12}
 - If $P_{12} = 0$ go to 1.
3. Apply random unitary on site 3.
4. Measure P_{23}
 - If $P_{23} = 0$ go to 3.

- Only a constant amount of energy at any given time.
- No need to backtrack.
- Number of steps \propto lattice linear size.
- If successful, final state is corrupted. (not trivial)
Noise model

1. Apply random unitary on sites 1 & 2.
2. Measure P_{12}
 - If $P_{12} = 0$ go to 1.
3. Apply random unitary on site 3.
4. Measure P_{23}
 - If $P_{23} = 0$ go to 3.

- Only a constant amount of energy at any given time.
- No need to backtrack.
- Number of steps \propto lattice linear size.
- If successful, final state is corrupted. (not trivial)
Apply random unitary on sites 1 & 2.

Measure P_{12}
 - If $P_{12} = 0$ go to 1.

Apply random unitary on site 3.

Measure P_{23}
 - If $P_{23} = 0$ go to 3.

- Only a constant amount of energy at any given time.
- No need to backtrack.
- Number of steps \propto lattice linear size.
- If successful, final state is corrupted. (not trivial)
Thermal instability

Noise model

1. Apply random unitary on sites 1 & 2.
2. Measure P_{12}
 - If $P_{12} = 0$ go to 1.
3. Apply random unitary on site 3.
4. Measure P_{23}
 - If $P_{23} = 0$ go to 3.

- Only a constant amount of energy at any given time.
- No need to backtrack.
- Number of steps \propto lattice linear size.
- If successful, final state is corrupted. (not trivial)
Thermal instability

1. Apply random unitary on sites 1 & 2.
2. Measure P_{12}
 - If $P_{12} = 0$ go to 1.
3. Apply random unitary on site 3.
4. Measure P_{23}
 - If $P_{23} = 0$ go to 3.

- Only a constant amount of energy at any given time.
- No need to backtrack.
- Number of steps \propto lattice linear size.
- If successful, final state is corrupted. (not trivial)
Apply random unitary on sites 1 & 2.
Measure P_{12}
 - If $P_{12} = 0$ go to 1.
Apply random unitary on site 3.
Measure P_{23}
 - If $P_{23} = 0$ go to 3.

Only a constant amount of energy at any given time.
No need to backtrack.
Number of steps \propto lattice linear size.
If successful, final state is corrupted. (not trivial)
Thermal instability

Noise model

Apply random unitary on sites 1 & 2.
Measure P_{12}
 - If $P_{12} = 0$ go to 1.

Apply random unitary on site 3.
Measure P_{23}
 - If $P_{23} = 0$ go to 3.

- Only a constant amount of energy at any given time.
- No need to backtrack.
- Number of steps \propto lattice linear size.
- If successful, final state is corrupted. (not trivial)
Apply random unitary on sites 1 & 2.
Measure P_{12}
- If $P_{12} = 0$ go to 1.
Apply random unitary on site 3.
Measure P_{23}
- If $P_{23} = 0$ go to 3.

- Only a constant amount of energy at any given time.
- No need to backtrack.
 - Number of steps \propto lattice linear size.
 - If successful, final state is corrupted. (not trivial)
Apply random unitary on sites 1 & 2.

Measure P_{12}
- If $P_{12} = 0$ go to 1.

Apply random unitary on site 3.

Measure P_{23}
- If $P_{23} = 0$ go to 3.

- Only a constant amount of energy at any given time.
- No need to backtrack.
- Number of steps \propto lattice linear size.
- If successful, final state is corrupted. (not trivial)
Thermal instability

Noise model

1. Apply random unitary on sites 1 & 2.
2. Measure P_{12}
 - If $P_{12} = 0$ go to 1.
3. Apply random unitary on site 3.
4. Measure P_{23}
 - If $P_{23} = 0$ go to 3.

- Only a constant amount of energy at any given time.
- No need to backtrack.
- Number of steps \propto lattice linear size.
- If successful, final state is corrupted. (not trivial)
Take home messages

- Quantum error correction requires joint qubit measurements.
 - Local check operators in 2D \Rightarrow topological codes.
- Natural relation between codes and quantum many-body physics.
 - Large minimum distance \Leftrightarrow Topological quantum order (order with no local order parameter).
 - Disentangling lemma \Leftrightarrow Area law.
 - Fault tolerant threshold \Leftrightarrow phase transition.
- Impossible to combine spectral and thermal stability with existing tools.
Take home messages

- Quantum error correction requires joint qubit measurements.
 - Local check operators in 2D \Rightarrow topological codes.
- Natural relation between codes and quantum many-body physics.
 - Large minimum distance \Leftrightarrow Topological quantum order (order with no local order parameter).
 - Disentangling lemma \Leftrightarrow Area law.
 - Fault tolerant threshold \Leftrightarrow phase transition.
- Impossible to combine spectral and thermal stability with existing tools.
Conclusion

Take home messages

- Quantum error correction requires joint qubit measurements.
 - Local check operators in 2D \Rightarrow topological codes.
- Natural relation between codes and quantum many-body physics.
 - Large minimum distance \Leftrightarrow Topological quantum order (order with no local order parameter).
 - Disentangling lemma \Leftrightarrow Area law.
 - Fault tolerant threshold \Leftrightarrow phase transition.
- Impossible to combine spectral and thermal stability with existing tools.

Take home messages

- Quantum error correction requires joint qubit measurements.
 - Local check operators in 2D \Rightarrow topological codes.
- Natural relation between codes and quantum many-body physics.
 - Large minimum distance \Leftrightarrow Topological quantum order (order with no local order parameter).
 - Disentangling lemma \Leftrightarrow Area law.
 - Fault tolerant threshold \Leftrightarrow phase transition.
- Impossible to combine spectral and thermal stability with existing tools.
Take home messages

- Quantum error correction requires joint qubit measurements.
 - Local check operators in 2D ⇒ topological codes.
- Natural relation between codes and quantum many-body physics.
 - Large minimum distance ⇔ Topological quantum order (order with no local order parameter).
 - Disentangling lemma ⇔ Area law.
 - Fault tolerant threshold ⇔ phase transition.
- Impossible to combine spectral and thermal stability with existing tools.
Take home messages

- Quantum error correction requires joint qubit measurements.
 - Local check operators in 2D \Rightarrow topological codes.

- Natural relation between codes and quantum many-body physics.
 - Large minimum distance \Leftrightarrow Topological quantum order (order with no local order parameter).
 - Disentangling lemma \Leftrightarrow Area law.
 - Fault tolerant threshold \Leftrightarrow phase transition.

- Impossible to combine spectral and thermal stability with existing tools.

David Poulin (Sherbrooke)
Take home messages

- Quantum error correction requires joint qubit measurements.
 - Local check operators in 2D \Rightarrow topological codes.
- Natural relation between codes and quantum many-body physics.
 - Large minimum distance \Leftrightarrow Topological quantum order (order with no local order parameter).
 - Disentangling lemma \Leftrightarrow Area law.
 - Fault tolerant threshold \Leftrightarrow phase transition.
- Impossible to combine spectral and thermal stability with existing tools.
Open questions

- **String-like logical operators +TQO ⇒ constant energy barrier.**
 - This is not directly related to thermal instability.
 - 2D Ising model has an energy barrier $\propto \sqrt{n}$, but an energy $\propto n$ at finite temperature.
 - What matters is entropy (for a given energy, many more configurations many with small error droplets than with a large one).
 - Can we characterize all string-like logical operators?
 - We have shown information corruption in time $\propto \sqrt{n}$. Can it be parallelized? (Percolation)
 - Relation between commuting projector codes and anyon models.

- Can we engineer dead ends?
 - Memory that is stabilized by complexity.

- Extension to subsystem codes?
 - With local stabilizer (Bombin) and without (Bacon-Shor).

- Extend to frustration-free Hamiltonians (and therefore to all gapped Hamiltonians, i.e. Hastings).
Open questions

- String-like logical operators + TQO \Rightarrow constant energy barrier.
 - This is not directly related to thermal instability.
 - 2D Ising model has an energy barrier $\propto \sqrt{n}$, but an energy $\propto n$ at finite temperature.
 - What matters is entropy (for a given energy, many more configurations many with small error droplets than with a large one).
 - Can we characterize all string-like logical operators?
 - We have shown information corruption in time $\propto \sqrt{n}$. Can it be parallelized? (Percolation)
 - Relation between commuting projector codes and anyon models.

- Can we engineer dead ends?
 - Memory that is stabilized by complexity.

- Extension to subsystem codes?
 - With local stabilizer (Bombin) and without (Bacon-Shor).

- Extend to frustration-free Hamiltonians (and therefore to all gapped Hamiltonians, i.e. Hastings).
Open questions

- String-like logical operators $+TQO \implies$ constant energy barrier.
 - This is not directly related to thermal instability.
 - 2D Ising model has an energy barrier $\propto \sqrt{n}$, but an energy $\propto n$ at finite temperature.
 - What matters is entropy (for a given energy, many more configurations many with small error droplets than with a large one).
- Can we characterize all string-like logical operators?
- We have shown information corruption in time $\propto \sqrt{n}$. Can it be parallelized? (Percolation)
- Relation between commuting projector codes and anyon models.
- Can we engineer dead ends?
 - Memory that is stabilized by complexity.
- Extension to subsystem codes?
 - With local stabilizer (Bombin) and without (Bacon-Shor).
- Extend to frustration-free Hamiltonians (and therefore to all gapped Hamiltonians, i.e. Hastings).
Open questions

- String-like logical operators + TQO \Rightarrow constant energy barrier.
 - This is not directly related to thermal instability.
 - 2D Ising model has an energy barrier $\propto \sqrt{n}$, but an energy $\propto n$ at finite temperature.
 - What matters is entropy (for a given energy, many more configurations many with small error droplets than with a large one).
- Can we characterize all string-like logical operators?
- We have shown information corruption in time $\propto \sqrt{n}$. Can it be parallelized? (Percolation)
- Relation between commuting projector codes and anyon models.
- Can we engineer dead ends?
 - Memory that is stabilized by complexity.
- Extension to subsystem codes?
 - With local stabilizer (Bombin) and without (Bacon-Shor).
- Extend to frustration-free Hamiltonians (and therefore to all gapped Hamiltonians, i.e. Hastings).
Open questions

- String-like logical operators + TQO \Rightarrow constant energy barrier.
 - This is not directly related to thermal instability.
 - 2D Ising model has an energy barrier $\propto \sqrt{n}$, but an energy $\propto n$ at finite temperature.
 - What matters is entropy (for a given energy, many more configurations many with small error droplets than with a large one).
- Can we characterize all string-like logical operators?
 - We have shown information corruption in time $\propto \sqrt{n}$. Can it be parallelized? (Percolation)
 - Relation between commuting projector codes and anyon models.
- Can we engineer dead ends?
 - Memory that is stabilized by complexity.
- Extension to subsystem codes?
 - With local stabilizer (Bombin) and without (Bacon-Shor).
- Extend to frustration-free Hamiltonians (and therefore to all gapped Hamiltonians, i.e. Hastings).
Open questions

- String-like logical operators + TQO \(\Rightarrow \) constant energy barrier.
 - This is not directly related to thermal instability.
 - 2D Ising model has an energy barrier \(\propto \sqrt{n} \), but an energy \(\propto n \) at finite temperature.
 - What matters is entropy (for a given energy, many more configurations many with small error droplets than with a large one).
- Can we characterize all string-like logical operators?
- We have shown information corruption in time \(\propto \sqrt{n} \). Can it be parallelized? (Percolation)
- Relation between commuting projector codes and anyon models.
- Can we engineer dead ends?
 - Memory that is stabilized by complexity.
- Extension to subsystem codes?
 - With local stabilizer (Bombin) and without (Bacon-Shor).
- Extend to frustration-free Hamiltonians (and therefore to all gapped Hamiltonians, i.e. Hastings).
Open questions

- String-like logical operators +TQO \Rightarrow constant energy barrier.
 - This is not directly related to thermal instability.
 - 2D Ising model has an energy barrier $\propto \sqrt{n}$, but an energy $\propto n$ at finite temperature.
 - What matters is entropy (for a given energy, many more configurations many with small error droplets than with a large one).
- Can we characterize all string-like logical operators?
- We have shown information corruption in time $\propto \sqrt{n}$. Can it be parallelized? (Percolation)
- Relation between commuting projector codes and anyon models.

- Can we engineer dead ends?
 - Memory that is stabilized by complexity.
- Extension to subsystem codes?
 - With local stabilizer (Bombin) and without (Bacon-Shor).
- Extend to frustration-free Hamiltonians (and therefore to all gapped Hamiltonians, i.e. Hastings).
Open questions

- String-like logical operators $+TQO \Rightarrow$ constant energy barrier.
 - This is not directly related to thermal instability.
 - 2D Ising model has an energy barrier $\propto \sqrt{n}$, but an energy $\propto n$ at finite temperature.
 - What matters is entropy (for a given energy, many more configurations many with small error droplets than with a large one).
 - Can we characterize all string-like logical operators?
 - We have shown information corruption in time $\propto \sqrt{n}$. Can it be parallelized? (Percolation)
 - Relation between commuting projector codes and anyon models.

- Can we engineer dead ends?
 - Memory that is stabilized by complexity.
 - Extension to subsystem codes?
 - With local stabilizer (Bombin) and without (Bacon-Shor).
 - Extend to frustration-free Hamiltonians (and therefore to all gapped Hamiltonians, i.e. Hastings).
Open questions

- String-like logical operators + TQO ⇒ constant energy barrier.
 - This is not directly related to thermal instability.
 - 2D Ising model has an energy barrier $\propto \sqrt{n}$, but an energy $\propto n$ at finite temperature.
 - What matters is entropy (for a given energy, many more configurations many with small error droplets than with a large one).
 - Can we characterize all string-like logical operators?
 - We have shown information corruption in time $\propto \sqrt{n}$. Can it be parallelized? (Percolation)
 - Relation between commuting projector codes and anyon models.

- Can we engineer dead ends?
 - Memory that is stabilized by complexity.

- Extension to subsystem codes?
 - With local stabilizer (Bombin) and without (Bacon-Shor).

- Extend to frustration-free Hamiltonians (and therefore to all gapped Hamiltonians, i.e. Hastings).
Open questions

- String-like logical operators +TQO \Rightarrow constant energy barrier.
 - This is not directly related to thermal instability.
 - 2D Ising model has an energy barrier $\propto \sqrt{n}$, but an energy $\propto n$ at finite temperature.
 - What matters is entropy (for a given energy, many more configurations many with small error droplets than with a large one).
- Can we characterize all string-like logical operators?
 - We have shown information corruption in time $\propto \sqrt{n}$. Can it be parallelized? (Percolation)
- Relation between commuting projector codes and anyon models.

- Can we engineer dead ends?
 - Memory that is stabilized by complexity.

- Extension to subsystem codes?
 - With local stabilizer (Bombin) and without (Bacon-Shor).
 - Extend to frustration-free Hamiltonians (and therefore to all gapped Hamiltonians, i.e. Hastings).
Open questions

- String-like logical operators +TQO \Rightarrow constant energy barrier.
 - This is not directly related to thermal instability.
 - 2D Ising model has an energy barrier $\propto \sqrt{n}$, but an energy $\propto n$ at finite temperature.
 - What matters is entropy (for a given energy, many more configurations many with small error droplets than with a large one).
 - Can we characterize all string-like logical operators?
 - We have shown information corruption in time $\propto \sqrt{n}$. Can it be parallelized? (Percolation)
 - Relation between commuting projector codes and anyon models.

- Can we engineer dead ends?
 - Memory that is stabilized by complexity.

- Extension to subsystem codes?
 - With local stabilizer (Bombin) and without (Bacon-Shor).
 - Extend to frustration-free Hamiltonians (and therefore to all gapped Hamiltonians, i.e. Hastings).
Open questions

- String-like logical operators + TQO \Rightarrow constant energy barrier.
 - This is not directly related to thermal instability.
 - 2D Ising model has an energy barrier $\propto \sqrt{n}$, but an energy $\propto n$ at finite temperature.
 - What matters is entropy (for a given energy, many more configurations many with small error droplets than with a large one).
 - Can we characterize all string-like logical operators?
 - We have shown information corruption in time $\propto \sqrt{n}$. Can it be parallelized? (Percolation)
 - Relation between commuting projector codes and anyon models.

- Can we engineer dead ends?
 - Memory that is stabilized by complexity.

- Extension to subsystem codes?
 - With local stabilizer (Bombin) and without (Bacon-Shor).

- Extend to frustration-free Hamiltonians (and therefore to all gapped Hamiltonians, i.e. Hastings).