Tradeoffs Between Thermal and Quantum Fluctuations in 2D Quantum Memories

David Poulin
Département de Physique
Université de Sherbrooke

Q+ seminar, May 2013
Classical memories are robust

- Energy barrier $\propto \sqrt{n}$ between logical states through local moves.
- Boltzmann: configuration x has probability $\propto \exp(-E(x)/T)$.
- Probability of flipping the whole configuration by local moves decreases with n.
Classical memories are robust

- Energy barrier $\propto \sqrt{n}$ between logical states through local moves.
- Boltzmann: configuration x has probability $\propto \exp(-E(x)/T)$.
- Probability of flipping the whole configuration by local moves decreases with n.
Classical memories are robust

- Energy barrier $\propto \sqrt{n}$ between logical states through local moves.
- Boltzmann: configuration x has probability $\propto \exp(-E(x)/T)$.
- Probability of flipping the whole configuration by local moves decreases with n.
Classical memories are robust

- Energy barrier $\propto \sqrt{n}$ between logical states through local moves.
- Boltzmann: configuration x has probability $\propto \exp(-E(x)/T)$.
- Probability of flipping the whole configuration by local moves decreases with n.
Classical memories are robust

- Energy barrier $\propto \sqrt{n}$ between logical states through local moves.
- Boltzmann: configuration x has probability $\propto \exp(-E(x)/T)$.
- Probability of flipping the whole configuration by local moves decreases with n.
Classical memories are robust

- Energy barrier $\propto \sqrt{n}$ between logical states through local moves.
- Boltzmann: configuration x has probability $\propto \exp(-E(x)/T)$.
- Probability of flipping the whole configuration by local moves decreases with n.
Classical memories are robust

- Energy barrier $\propto \sqrt{n}$ between logical states through local moves.
- Boltzmann: configuration x has probability $\propto \exp(-E(x)/T)$.
- Probability of flipping the whole configuration by local moves decreases with n.

David Poulin (Sherbrooke)
Classical memories are robust

- Energy barrier $\propto \sqrt{n}$ between logical states through local moves.
- Boltzmann: configuration x has probability $\propto \exp(-E(x)/T)$.
- Probability of flipping the whole configuration by local moves decreases with n.
Classical memories are robust

- Energy barrier $\propto \sqrt{n}$ between logical states through local moves.
- Boltzmann: configuration x has probability $\propto \exp(-E(x)/T)$.
- Probability of flipping the whole configuration by local moves decreases with n.
Classical memories are robust

- Energy barrier $\propto \sqrt{n}$ between logical states through local moves.
- Boltzmann: configuration x has probability $\propto \exp(-E(x)/T)$.
- Probability of flipping the whole configuration by local moves decreases with n.
Classical memories are robust

- Energy barrier $\propto \sqrt{n}$ between logical states through local moves.
- Boltzmann: configuration x has probability $\propto \exp(-E(x)/T)$.
- Probability of flipping the whole configuration by local moves decreases with n.
Classical memories are robust

- Energy barrier $\propto \sqrt{n}$ between logical states through local moves.
- Boltzmann: configuration x has probability $\propto \exp(-E(x)/T)$.
- Probability of flipping the whole configuration by local moves decreases with n.
System has two ground states $|\uparrow\uparrow \ldots \uparrow\rangle$ and $|\downarrow\downarrow \ldots \downarrow\rangle$.

- $\alpha|\uparrow\uparrow \ldots \uparrow\rangle + \beta|\downarrow\downarrow \ldots \downarrow\rangle$ does not evolve in time.

- Local observable σ_i^z distinguishes them.

- Local order parameter σ^z.

- Local perturbation $B\sigma_z$ lifts degeneracy:

$$\alpha|\uparrow\uparrow \ldots \uparrow\rangle + \beta|\downarrow\downarrow \ldots \downarrow\rangle \xrightarrow{t} e^{-iBt}\alpha|\uparrow\uparrow \ldots \uparrow\rangle + e^{iBt}\beta|\downarrow\downarrow \ldots \downarrow\rangle$$

Unknown B:

$$\begin{pmatrix}
|\alpha|^2 & e^{-i2Bt}\alpha^*\beta \\
e^{i2Bt}\alpha\beta^* & |\beta|^2
\end{pmatrix}
\xrightarrow{\int dB}
\begin{pmatrix}
|\alpha|^2 & 0 \\
0 & |\beta|^2
\end{pmatrix}$$

- Quantum superposition \rightarrow Statistical mixture.
System has two ground states $|\uparrow\uparrow\ldots\uparrow\rangle$ and $|\downarrow\downarrow\ldots\downarrow\rangle$.

- $\alpha|\uparrow\uparrow\ldots\uparrow\rangle + \beta|\downarrow\downarrow\ldots\downarrow\rangle$ does not evolve in time.

Local observable σ^z_i distinguishes them.
- Local order parameter σ^z.
- Local perturbation $B\sigma_z$ lifts degeneracy:

$$\alpha|\uparrow\uparrow\ldots\uparrow\rangle + \beta|\downarrow\downarrow\ldots\downarrow\rangle \rightarrow e^{-iBt}\alpha|\uparrow\uparrow\ldots\uparrow\rangle + e^{iBt}\beta|\downarrow\downarrow\ldots\downarrow\rangle$$

Unknown B:

$$\left(\begin{array}{cc} |\alpha|^2 & e^{-i2Bt}\alpha^*\beta \\ e^{i2Bt}\alpha^*\beta & |\beta|^2 \end{array} \right) \int dB \rightarrow \left(\begin{array}{cc} |\alpha|^2 & 0 \\ 0 & |\beta|^2 \end{array} \right)$$

- Quantum superposition \rightarrow Statistical mixture.
Local order parameter & decoherence

- System has two ground states $|\uparrow\uparrow \ldots \uparrow\rangle$ and $|\downarrow\downarrow \ldots \downarrow\rangle$.
 - $\alpha|\uparrow\uparrow \ldots \uparrow\rangle + \beta|\downarrow\downarrow \ldots \downarrow\rangle$ does not evolve in time.
- Local observable σ^z_i distinguishes them.
 - Local order parameter σ^z.
- Local perturbation $B\sigma^z$ lifts degeneracy:
 $$\alpha|\uparrow\uparrow \ldots \uparrow\rangle + \beta|\downarrow\downarrow \ldots \downarrow\rangle \rightarrow e^{-iBt}\alpha|\uparrow\uparrow \ldots \uparrow\rangle + e^{iBt}\beta|\downarrow\downarrow \ldots \downarrow\rangle$$

- Unknown B:
 $$\begin{pmatrix}
 |\alpha|^2 & e^{-i2Bt}\alpha^*\beta \\
 e^{i2Bt}\alpha\beta^* & |\beta|^2
 \end{pmatrix} \rightarrow \int dB \begin{pmatrix}
 |\alpha|^2 & 0 \\
 0 & |\beta|^2
 \end{pmatrix}$$
- Quantum superposition \rightarrow Statistical mixture.
Local order parameter & decoherence

- System has two ground states $|\uparrow\uparrow \ldots \uparrow\rangle$ and $|\downarrow\downarrow \ldots \downarrow\rangle$.
 - $\alpha |\uparrow\uparrow \ldots \uparrow\rangle + \beta |\downarrow\downarrow \ldots \downarrow\rangle$ does not evolve in time.

- Local observable σ_i^Z distinguishes them.
 - Local order parameter σ^Z.

- Local perturbation $B\sigma^Z$ lifts degeneracy:

$$
\alpha |\uparrow\uparrow \ldots \uparrow\rangle + \beta |\downarrow\downarrow \ldots \downarrow\rangle \rightarrow e^{-iBt} \alpha |\uparrow\uparrow \ldots \uparrow\rangle + e^{iBt} \beta |\downarrow\downarrow \ldots \downarrow\rangle
$$

- Unknown B:

$$
\begin{pmatrix}
|\alpha|^2 & e^{-i2Bt} \alpha^* \beta \\
e^{i2Bt} \alpha \beta^* & |\beta|^2
\end{pmatrix}
\rightarrow
\begin{pmatrix}
|\alpha|^2 & 0 \\
0 & |\beta|^2
\end{pmatrix}
$$

- Quantum superposition \rightarrow Statistical mixture.
Local order parameter & decoherence

- System has two ground states $|↑↑ \ldots ↑\rangle$ and $|↓↓ \ldots ↓\rangle$.
 - $\alpha|↑↑ \ldots ↑\rangle + \beta|↓↓ \ldots ↓\rangle$ does not evolve in time.
- Local observable σ_i^z distinguishes them.
 - Local order parameter σ^z.
- Local perturbation $B\sigma_z$ lifts degeneracy:

\[
\alpha|↑↑ \ldots ↑\rangle + \beta|↓↓ \ldots ↓\rangle \rightarrow e^{-iBt}\alpha|↑↑ \ldots ↑\rangle + e^{iBt}\beta|↓↓ \ldots ↓\rangle
\]

Unknown B:

\[
\begin{pmatrix}
|\alpha|^2 & e^{-i2Bt}\alpha^*\beta \\
e^{i2Bt}\alpha\beta^* & |\beta|^2
\end{pmatrix}
\rightarrow
\begin{pmatrix}
|\alpha|^2 & 0 \\
0 & |\beta|^2
\end{pmatrix}
\]

- Quantum superposition \rightarrow Statistical mixture.
Local order parameter & decoherence

- System has two ground states $|\uparrow\uparrow\ldots\uparrow\rangle$ and $|\downarrow\downarrow\ldots\downarrow\rangle$.
 - $\alpha|\uparrow\uparrow\ldots\uparrow\rangle + \beta|\downarrow\downarrow\ldots\downarrow\rangle$ does not evolve in time.
- Local observable σ^z_i distinguishes them.
 - Local order parameter σ^z.
- Local perturbation $B\sigma^z$ lifts degeneracy:

\[
\alpha|\uparrow\uparrow\ldots\uparrow\rangle + \beta|\downarrow\downarrow\ldots\downarrow\rangle \rightarrow e^{-iBt}\alpha|\uparrow\uparrow\ldots\uparrow\rangle + e^{iBt}\beta|\downarrow\downarrow\ldots\downarrow\rangle
\]

Unknown B:

\[
\begin{pmatrix}
|\alpha|^2 & e^{-i2Bt}\alpha^*\beta \\
e^{i2Bt}\alpha\beta^* & |\beta|^2
\end{pmatrix}
\int dB \begin{pmatrix}
|\alpha|^2 & 0 \\
0 & |\beta|^2
\end{pmatrix}
\]

- Quantum superposition \rightarrow Statistical mixture.
Local order parameter & decoherence

- System has two ground states $|\uparrow\uparrow\ldots\uparrow\rangle$ and $|\downarrow\downarrow\ldots\downarrow\rangle$.
 - $\alpha|\uparrow\uparrow\ldots\uparrow\rangle + \beta|\downarrow\downarrow\ldots\downarrow\rangle$ does not evolve in time.
- Local observable σ^z_i distinguishes them.
 - Local order parameter σ^z.
- Local perturbation $B\sigma^z$ lifts degeneracy:

$$\alpha|\uparrow\uparrow\ldots\uparrow\rangle + \beta|\downarrow\downarrow\ldots\downarrow\rangle \xrightarrow{t} e^{-iBt}\alpha|\uparrow\uparrow\ldots\uparrow\rangle + e^{iBt}\beta|\downarrow\downarrow\ldots\downarrow\rangle$$

- Unknown B:

$$\left(\begin{array}{cc} |\alpha|^2 & e^{-i2Bt}\alpha\beta^* \\ e^{i2Bt}\alpha^*\beta & |\beta|^2 \end{array} \right) \overset{\int dB}{\rightarrow} \left(\begin{array}{cc} |\alpha|^2 & 0 \\ 0 & |\beta|^2 \end{array} \right)$$

 - Quantum superposition \rightarrow Statistical mixture.
System has two ground states \(|\uparrow\uparrow \ldots \uparrow\rangle\) and \(|\downarrow\downarrow \ldots \downarrow\rangle\).
- \(\alpha|\uparrow\uparrow \ldots \uparrow\rangle + \beta|\downarrow\downarrow \ldots \downarrow\rangle\) does not evolve in time.

Local observable \(\sigma^z_i\) distinguishes them.
- Local order parameter \(\sigma^z\).
- Local perturbation \(B\sigma^z\) lifts degeneracy:

\[
\alpha|\uparrow\uparrow \ldots \uparrow\rangle + \beta|\downarrow\downarrow \ldots \downarrow\rangle \rightarrow e^{-iBt}\alpha|\uparrow\uparrow \ldots \uparrow\rangle + e^{iBt}\beta|\downarrow\downarrow \ldots \downarrow\rangle
\]

Unknown \(B\):

\[
\begin{pmatrix}
|\alpha|^2 & e^{-i2Bt}\alpha\beta^* \\
e^{i2Bt}\alpha^*\beta & |\beta|^2
\end{pmatrix}
\int dB
\begin{pmatrix}
|\alpha|^2 & 0 \\
0 & |\beta|^2
\end{pmatrix}
\]
- Quantum superposition \(\rightarrow\) Statistical mixture.
The system has a stable spectrum.
Long lived memory at zero temperature.

\[
H = \sum_i \sigma_i^z \sigma_{i+1}^z + \sigma_{23}^z
\]

The ground state manifold changes abruptly when including site 23.

Can we combine this spectral stability with the thermal stability of the 2D Ising model?

In this talk: some evidence that it cannot be done in 2D.
Topological quantum order

Bravyi, Hastings, & Michalakis

(TQO1) System has no local order parameter.
(TQO2) System is locally consistent.

The system has a stable spectrum.
Long lived memory at zero temperature.

\[H = \sum_i \sigma_i^z \sigma_{i+1}^z + \sigma_{23}^z \]

The ground state manifold changes abruptly when including site 23.

- Can we combine this spectral stability with the thermal stability of the 2D Ising model?
- In this talk: some evidence that it cannot be done in 2D.
Bravyi, Hastings, & Michalakis

- (TQO1) System has no local order parameter.
- (TQO2) System is locally consistent.

The system has a stable spectrum.
Long lived memory at zero temperature.

$$H = \sum_i \sigma_i^z \sigma_{i+1}^z + \sigma_{23}^z$$

The ground state manifold changes abruptly when including site 23.

- Can we combine this spectral stability with the thermal stability of the 2D Ising model?
- In this talk: some evidence that it cannot be done in 2D.
Bravyi, Hastings, & Michalakis

- (TQO1) System has no local order parameter.
- (TQO2) System is locally consistent.

The system has a stable spectrum.
Long lived memory at zero temperature.

\[H = \sum_i \sigma_i^z \sigma_{i+1}^z + \sigma_{23}^z \]

The ground state manifold changes abruptly when including site 23.

Can we combine this spectral stability with the thermal stability of the 2D Ising model?

In this talk: some evidence that it cannot be done in 2D.
Topological quantum order

Bravyi, Hastings, & Michalakis

(TQO1) System has no local order parameter.
(TQO2) System is locally consistent.

The system has a stable spectrum.
Long lived memory at zero temperature.

\[H = \sum \sigma_i^z \sigma_{i+1}^z + \sigma_{23}^z \]

The ground state manifold changes abruptly when including site 23.

Can we combine this spectral stability with the thermal stability of the 2D Ising model?

In this talk: some evidence that it cannot be done in 2D.
Topological quantum order

Bravyi, Hastings, & Michalakis

(TQO1) System has no local order parameter.
(TQO2) System is locally consistent.

The system has a stable spectrum.
Long lived memory at zero temperature.

\[H = \sum_{i} \sigma_{i}^{z} \sigma_{i+1}^{z} + \sigma_{23}^{z} \]

The ground state manifold changes abruptly when including site 23.

- Can we combine this spectral stability with the thermal stability of the 2D Ising model?
- In this talk: some evidence that it cannot be done in 2D.
Topological quantum order

Bravyi, Hastings, & Michalakis

(TQO1) System has no local order parameter.
(TQO2) System is locally consistent.

The system has a stable spectrum.
Long lived memory at zero temperature.

\[H = \sum_i \sigma_i^z \sigma_{i+1}^z + \sigma_{23}^z \]

The ground state manifold changes abruptly when including site 23.

- Can we combine this spectral stability with the thermal stability of the 2D Ising model?
- In this talk: some evidence that it cannot be done in 2D.
Outline

1. 2D Commuting Projector Codes
2. Holographic Disentangling Lemma
3. Holographic Minimum Distance
4. String-Like Logical Operators
5. Thermal instability
6. Open Questions
Outline

1. 2D Commuting Projector Codes
2. Holographic Disentangling Lemma
3. Holographic Minimum Distance
4. String-Like Logical Operators
5. Thermal instability
6. Open Questions
Definitions

- Λ is a 2D lattice.
- Each vertex occupied by d-level quantum particle.
- Hamiltonian $H = -\sum_{X \subseteq \Lambda} P_X$ with
 - $P_X = 0$ if radius(X) $\geq w$.
 - $[P_X, P_Y] = 0$.
 - P_X are projectors (optional).
- Code $C = \{\psi : P_X |\psi\rangle = |\psi\rangle\}$
 - = ground space of H
 - = image of code projector $\Pi = \prod_X P_X$
- With proper coarse graining, we can assume that
 - Λ is a regular square lattice.
 - Each P_X acts on 2×2 cell.
Definitions

- Λ is a 2D lattice.
- Each vertex occupied by d-level quantum particle.
- Hamiltonian $H = - \sum_{X \subseteq \Lambda} P_X$ with
 - $P_X = 0$ if radius$(X) \geq w$.
 - $[P_X, P_Y] = 0$.
 - P_X are projectors (optional).
- Code $C = \{ \psi : P_X|\psi\rangle = |\psi\rangle \}$
 = ground space of H
 = image of code projector $\Pi = \prod_X P_X$
- With proper coarse graining, we can assume that
 - Λ is a regular square lattice.
 - Each P_X acts on 2×2 cell.
\(\Lambda \) is a 2D lattice.

Each vertex occupied by \(d \)-level quantum particle.

Hamiltonian \(H = - \sum_{X \subset \Lambda} P_X \) with
- \(P_X = 0 \) if \(\text{radius}(X) \geq w \).
- \([P_X, P_Y] = 0\).
- \(P_X \) are projectors (optional).

Code \(C = \{ \psi : P_X |\psi\rangle = |\psi\rangle \} \)
- = ground space of \(H \)
- = image of code projector \(\Pi = \prod_X P_X \)

With proper coarse graining, we can assume that
- \(\Lambda \) is a regular square lattice.
- Each \(P_X \) acts on \(2 \times 2 \) cell.
Definitions

- \(\Lambda \) is a 2D lattice.
- Each vertex occupied by \(d \)-level quantum particle.
- Hamiltonian \(H = - \sum_{X \subset \Lambda} P_X \) with
 - \(P_X = 0 \) if \(\text{radius}(X) \geq w \).
 - \([P_X, P_Y] = 0\).
 - \(P_X \) are projectors (optional).
- Code \(C = \{ \psi : P_X |\psi\rangle = |\psi\rangle \} \)
 - = ground space of \(H \)
 - = image of code projector \(\Pi = \prod_X P_X \)
- With proper coarse graining, we can assume that
 - \(\Lambda \) is a regular square lattice.
 - Each \(P_X \) acts on \(2 \times 2 \) cell.
\(\Lambda \) is a 2D lattice.

Each vertex occupied by \(d \)-level quantum particle.

Hamiltonian \(H = - \sum_{X \subset \Lambda} P_X \) with
- \(P_X = 0 \) if radius(\(X \)) \(\geq w \).
- \([P_X, P_Y] = 0 \).
- \(P_X \) are projectors (optional).

Code \(C = \{ \psi : P_X|\psi\rangle = |\psi\rangle \} \)

= ground space of \(H \)

= image of code projector \(\Pi = \prod_X P_X \)

With proper coarse graining, we can assume that
- \(\Lambda \) is a regular square lattice.
- Each \(P_X \) acts on \(2 \times 2 \) cell.
Definitions

- Λ is a 2D lattice.
- Each vertex occupied by d-level quantum particle.
- Hamiltonian $H = -\sum_{X \subset \Lambda} P_X$ with
 - $P_X = 0$ if $\text{radius}(X) \geq w$.
 - $[P_X, P_Y] = 0$.
 - P_X are projectors (optional).
- Code $C = \{ \psi : P_X|\psi\rangle = |\psi\rangle \}$
 - $\{ \psi : P_X|\psi\rangle = |\psi\rangle \}$ is ground space of H
 - $\{ \psi : P_X|\psi\rangle = |\psi\rangle \}$ is image of code projector $\Pi = \prod_X P_X$
- With proper coarse graining, we can assume that
 - Λ is a regular square lattice.
 - Each P_X acts on 2×2 cell.
Definitions

- \(\Lambda \) is a 2D lattice.
- Each vertex occupied by a \(d \)-level quantum particle.
- Hamiltonian \(H = -\sum_{X \subseteq \Lambda} P_X \) with
 - \(P_X = 0 \) if \(\text{radius}(X) \geq w \).
 - \([P_X, P_Y] = 0 \).
 - \(P_X \) are projectors (optional).
- Code \(\mathcal{C} = \{ \psi : P_X|\psi\rangle = |\psi\rangle \} \)
 - = ground space of \(H \)
 - = image of code projector \(\Pi = \prod_X P_X \)
- With proper coarse graining, we can assume that
 - \(\Lambda \) is a regular square lattice.
 - Each \(P_X \) acts on a \(2 \times 2 \) cell.
Definitions

- \(\Lambda \) is a 2D lattice.
- Each vertex occupied by \(d \)-level quantum particle.
- Hamiltonian \(H = -\sum_{X \subseteq \Lambda} P_X \) with
 - \(P_X = 0 \) if \(\text{radius}(X) \geq w \).
 - \([P_X, P_Y] = 0 \).
 - \(P_X \) are projectors (optional).
- Code \(C = \{ \psi : P_X |\psi\rangle = |\psi\rangle \} \)
 - = ground space of \(H \)
 - = image of code projector \(\Pi = \prod_X P_X \)
- With proper coarse graining, we can assume that
 - \(\Lambda \) is a regular square lattice.
 - Each \(P_X \) acts on \(2 \times 2 \) cell.
Definitions

- Λ is a 2D lattice.
- Each vertex occupied by d-level quantum particle.
- Hamiltonian $H = - \sum_{X \subset \Lambda} P_X$ with
 - $P_X = 0$ if $\text{radius}(X) \geq w$.
 - $[P_X, P_Y] = 0$.
 - P_X are projectors (optional).
- Code $C = \{ \psi : P_X |\psi\rangle = |\psi\rangle \}$
 - = ground space of H
 - = image of code projector $\Pi = \prod_X P_X$
- With proper coarse graining, we can assume that
 - Λ is a regular square lattice.
 - Each P_X acts on 2×2 cell.
Definitions

- Λ is a 2D lattice.
- Each vertex occupied by d-level quantum particle.
- Hamiltonian $H = -\sum_{X \subset \Lambda} P_X$ with
 - $P_X = 0$ if $\text{radius}(X) \geq w$.
 - $[P_X, P_Y] = 0$.
 - P_X are projectors (optional).
- Code $C = \{ \psi : P_X|\psi\rangle = |\psi\rangle \}$
 = ground space of H
 = image of code projector $\Pi = \prod_X P_X$
- With proper coarse graining, we can assume that
 - Λ is a regular square lattice.
 - Each P_X acts on 2×2 cell.
Well known examples

- Kitaev’s toric code
- Bombin’s topological color codes
- Levin & Wen’s string-net models
- Turaev-Viro models
- Kitaev’s quantum double models
- Most known models with topological quantum order

Remark
The first two example are simple because they are stabilizer codes. Most things I will say are trivial to prove in this case.

Remark
Subsystem codes do not belong to this family.
Well known examples

- Kitaev’s toric code
- Bombin’s topological color codes
- Levin & Wen’s string-net models
- Turaev-Viro models
- Kitaev’s quantum double models
- Most known models with topological quantum order

Remark
The first two example are simple because they are stabilizer codes. Most things I will say are trivial to prove in this case.

Remark
Subsystem codes do not belong to this family.
Well known examples

- Kitaev’s toric code
- Bombin’s topological color codes
- Levin & Wen’s string-net models
 - Turaev-Viro models
 - Kitaev’s quantum double models
 - Most known models with topological quantum order

Remark
The first two example are simple because they are stabilizer codes. Most things I will say are trivial to prove in this case.

Remark
Subsystem codes do not belong to this family.
Well known examples

- Kitaev’s toric code
- Bombin’s topological color codes
- Levin & Wen’s string-net models
- Turaev-Viro models
 - Kitaev’s quantum double models
 - Most known models with topological quantum order

Remark
The first two example are simple because they are stabilizer codes. Most things I will say are trivial to prove in this case.

Remark
Subsystem codes do not belong to this family.
Well known examples

- Kitaev’s toric code
- Bombin’s topological color codes
- Levin & Wen’s string-net models
- Turaev-Viro models
- Kitaev’s quantum double models
- Most known models with topological quantum order

Remark
The first two example are simple because they are stabilizer codes. Most things I will say are trivial to prove in this case.

Remark
Subsystem codes do not belong to this family.
Well known examples

- Kitaev’s toric code
- Bombin’s topological color codes
- Levin & Wen’s string-net models
- Turaev-Viro models
- Kitaev’s quantum double models
- Most known models with topological quantum order

Remark
The first two example are simple because they are stabilizer codes. Most things I will say are trivial to prove in this case.

Remark
Subsystem codes do not belong to this family.
Well known examples

- Kitaev’s toric code
- Bombin’s topological color codes
- Levin & Wen’s string-net models
- Turaev-Viro models
- Kitaev’s quantum double models
- Most known models with topological quantum order

Remark
The first two example are simple because they are stabilizer codes. Most things I will say are trivial to prove in this case.

Remark
Subsystem codes do not belong to this family.
Well known examples

- Kitaev's toric code
- Bombin's topological color codes
- Levin & Wen's string-net models
- Turaev-Viro models
- Kitaev's quantum double models
- Most known models with topological quantum order

Remark
The first two example are simple because they are stabilizer codes. Most things I will say are trivial to prove in this case.

Remark
Subsystem codes do not belong to this family.
Correctable region

A region $M \subset \Lambda$ is \textit{correctable} if there exists a recovery operation \mathcal{R} such that $\mathcal{R}(\text{Tr}_M \rho) = \rho$ for all code states ρ.

M correctable \iff No order parameter on $M \iff \Pi O_M \Pi \propto \Pi$.

Minimum distance

The minimum distance d is the size of the smallest non-correctable region.

Logical operator

Operator L such that $L|\psi\rangle$ is a code state for any code state $|\psi\rangle$.

David Poulin (Sherbrooke)
Standard definitions

Correctable region

A region \(M \subset \Lambda \) is *correctable* if there exists a recovery operation \(R \) such that \(R(\text{Tr}_M\rho) = \rho \) for all code states \(\rho \).

\(M \) correctable \iff \(\text{No order parameter on } M \iff \Pi O_M \Pi \propto \Pi \).

Minimum distance

The minimum distance \(d \) is the size of the smallest non-correctable region.

Logical operator

Operator \(L \) such that \(L|\psi\rangle \) is a code state for any code state \(|\psi\rangle \).
Standard definitions

Correctable region
A region $M \subset \Lambda$ is correctable if there exists a recovery operation R such that $R(\text{Tr}_M \rho) = \rho$ for all code states ρ.
M correctable \iff No order parameter on $M \iff \Pi O_M \Pi \propto \Pi$.

Minimum distance
The minimum distance d is the size of the smallest non-correctable region.

Logical operator
Operator L such that $L|\psi\rangle$ is a code state for any code state $|\psi\rangle$.

Outline

1. 2D Commuting Projector Codes
2. Holographic Disentangling Lemma
3. Holographic Minimum Distance
4. String-Like Logical Operators
5. Thermal instability
6. Open Questions
Holographic disentangling lemma (Bravyi, DP, Terhal)

Let $M \subset \Lambda$ be a correctable region and suppose that its boundary ∂M is also correctable. Then, there exists a unitary operator $U_{\partial M}$ acting only on the boundary of M such that, for any code state $|\psi\rangle$,

$$U_{\partial M} |\psi\rangle = |\phi_M\rangle \otimes |\psi'_M\rangle$$

for some fixed state $|\phi_M\rangle$ on M.

Remark

For a trivial code $\text{Tr} \Pi = 1$, every region is correctable, so we recover the area law $S(M) \leq |\partial M|$ for commuting Hamiltonians of Wolf, Verstraete, Hastings, and Cirac.
Holographic disentangling lemma (Bravyi, DP, Terhal)

Let $M \subset \Lambda$ be a correctable region and suppose that its boundary ∂M is also correctable. Then, there exists a unitary operator $U_{\partial M}$ acting only on the boundary of M such that, for any code state $|\psi\rangle$,

$$U_{\partial M} |\psi\rangle = |\phi_M\rangle \otimes |\psi'_M\rangle$$

for some fixed state $|\phi_M\rangle$ on M.

Remark

For a trivial code $\text{Tr} \Pi = 1$, every region is correctable, so we recover the area law $S(M) \leq |\partial M|$ for commuting Hamiltonians of Wolf, Verstraete, Hastings, and Cirac.
Proof

- Let M be correctable.
- Assume ∂M is correctable.
- Let $M = A \cup B$, $\overline{M} = C \cup D$, and $\partial M = B \cup C$.
- Write $\Pi = P_{AB} P_{BM}$ with $[P_{AB}, P_{BM}] = 0$.

\[\mathcal{H}_B = \bigoplus_J \mathcal{H}_{B^J_L} \otimes \mathcal{H}_{B^J_R} \text{ and } \Pi = \bigoplus_J P_{AB^J_L} \otimes P_{B^J_R \overline{M}} \]

This last sum over J contains only one non-zero factor since $B \subset M$ is correctable.
- We can divide B into two subsystems B^1 and B^2 such that
 \[\Pi = V_B P_{AB^1} \otimes P_{B^2 \overline{M}} V_B^\dagger. \text{ (*)} \]
Proof

- Let M be correctable.
- Assume ∂M is correctable.
- Let $M = A \cup B$, $\bar{M} = C \cup D$, and $\partial M = B \cup C$.
- Write $\Pi = P_{AB}P_{BM}$ with $[P_{AB}, P_{BM}] = 0$.
- $\mathcal{H}_B = \bigoplus_J \mathcal{H}_{B'_L} \otimes \mathcal{H}_{B'_R}$ and $\Pi = \bigoplus_J P_{AB'_L} \otimes P_{B'_R\bar{M}}$
- This last sum over J contains only one non-zero factor since $B \subset M$ is correctable.
- We can divide B into two subsystems B^1 and B^2 such that $\Pi = V_B P_{AB^1} \otimes P_{B^2\bar{M}} V_B^\dagger$. ($\star$)
Proof

- Let M be correctable.
- Assume ∂M is correctable.
- Let $M = A \cup B$, $\overline{M} = C \cup D$, and $\partial M = B \cup C$.

Write $\Pi = P_{AB}P_{BM}$ with $[P_{AB}, P_{BM}] = 0$.

- $\mathcal{H}_B = \bigoplus_J \mathcal{H}_{B^I} \otimes \mathcal{H}_{B^R}$ and $\Pi = \bigoplus_J P_{AB^I} \otimes P_{BR}M$

This last sum over J contains only one non-zero factor since $B \subset M$ is correctable.

- We can divide B into two subsystems B^1 and B^2 such that $\Pi = V_B P_{AB^1} \otimes P_{B^2}M V_B^\dagger$. (*)

[$\overline{M} = \Lambda \setminus M$]
Proof

- Let M be correctable.
- Assume ∂M is correctable.
- Let $M = A \cup B$, $\overline{M} = C \cup D$, and $\partial M = B \cup C$.
 - Write $\Pi = P_{AB}P_{BM}$ with $[P_{AB}, P_{BM}] = 0$.
 - $\mathcal{H}_B = \bigoplus_J \mathcal{H}_{B_J^L} \otimes \mathcal{H}_{B_J^R}$ and $\Pi = \bigoplus_J P_{AB_J^L} \otimes P_{B_J^R M}$
 - This last sum over J contains only one non-zero factor since $B \subset M$ is correctable.
 - We can divide B into two subsystems B^1 and B^2 such that $\Pi = V_B P_{AB^1} \otimes P_{B^2 \overline{M}} V_B^\dagger$. (⋆)
Proof

- Let M be correctable.
- Assume ∂M is correctable.
- Let $M = A \cup B$, $\overline{M} = C \cup D$, and $\partial M = B \cup C$.
- Write $\Pi = P_{AB} P_{BM}$ with $[P_{AB}, P_{BM}] = 0$.

- $\mathcal{H}_B = \bigoplus_J \mathcal{H}_{B_L} \otimes \mathcal{H}_{B_R}$ and $\Pi = \bigoplus_J P_{AB_L} \otimes P_{B_{R \overline{M}}}$

- This last sum over J contains only one non-zero factor since $B \subset M$ is correctable.

- We can divide B into two subsystems B^1 and B^2 such that $\Pi = V_B P_{AB^1} \otimes P_{B^2_{\overline{M}}} V_B^\dagger$. (⋆)
Proof

- Let M be correctable.
- Assume ∂M is correctable.
- Let $M = A \cup B$, $\overline{M} = C \cup D$, and $\partial M = B \cup C$.
- Write $\Pi = P_{AB}P_{BM}$ with $[P_{AB}, P_{BM}] = 0$.
- $\mathcal{H}_B = \bigoplus_J \mathcal{H}_{B_L}^J \otimes \mathcal{H}_{B_R}^J$ and $\Pi = \bigoplus_J P_{AB_L}^J \otimes P_{B_R}^J \overline{M}$
- This last sum over J contains only one non-zero factor since $B \subset M$ is correctable.
- We can divide B into two subsystems B^1 and B^2 such that $\Pi = V_B P_{AB^1} \otimes P_{B^2 \overline{M}} V_B^\dagger$. (⋆)
Proof

- Let M be correctable.
- Assume ∂M is correctable.
- Let $M = A \cup B$, $\overline{M} = C \cup D$, and $\partial M = B \cup C$.
- Write $\Pi = P_{AB}P_{BM}$ with $[P_{AB}, P_{BM}] = 0$.

\[
\mathcal{H}_B = \bigoplus_J \mathcal{H}_{B_L}^J \otimes \mathcal{H}_{B_R}^J \quad \text{and} \quad \Pi = \bigoplus_J P_{AB_L}^J \otimes P_{B_R}^J \overline{M}
\]

This last sum over J contains only one non-zero factor since $B \subset M$ is correctable.

- We can divide B into two subsystems B^1 and B^2 such that $\Pi = V_B P_{AB^1} \otimes P_{B^2 \overline{M}} V_B^\dagger$. (*)
Proof

- Let M be correctable.
- Assume ∂M is correctable.
- Let $M = A \cup B$, $\overline{M} = C \cup D$, and $\partial M = B \cup C$.
- Write $\Pi = P_{AB} P_{B\overline{M}}$ with $[P_{AB}, P_{B\overline{M}}] = 0$.

\[\mathcal{H}_B = \bigoplus_J \mathcal{H}_{B_L^J} \otimes \mathcal{H}_{B_R^J} \quad \text{and} \quad \Pi = \bigoplus_J P_{AB_L^J} \otimes P_{B_R^J \overline{M}} \]

This last sum over J contains only one non-zero factor since $B \subset M$ is correctable.

- We can divide B into two subsystems B^1 and B^2 such that $\Pi = V_B P_{AB^1} \otimes P_{B^2 \overline{M}} V_B^\dagger$. (\textbf{\#})
Holographic Disentangling Lemma

Proof

- Let M be correctable.
- Assume ∂M is correctable.
- Let $M = A \cup B$, $\overline{M} = C \cup D$, and $\partial M = B \cup C$.
- Write $\Pi = P_{MC}P_{CD}$ with $[P_{MC}, P_{CD}] = 0$.
- $\mathcal{H}_C = \bigoplus_J \mathcal{H}_{C_L}^J \otimes \mathcal{H}_{C_R}^J$ and $\Pi = \bigoplus_J P_{MC_L}^J \otimes P_{C_R}^J D$
- This last sum over J contains only one non-zero factor since $C \subset \partial M$ is correctable.
- We can divide C into two subsystems C^1 and C^2 such that $\Pi = V_C P_{MC^1} \otimes P_{C^2 D} V_C^\dagger$. ($\star \star$)
Proof

- Let M be correctable.
- Assume ∂M is correctable.
- Let $M = A \cup B$, $\overline{M} = C \cup D$, and $\partial M = B \cup C$.
- Write $\Pi = P_{MC}P_{CD}$ with $[P_{MC}, P_{CD}] = 0$.

- $\mathcal{H}_C = \bigoplus_J \mathcal{H}_{C_J^L} \otimes \mathcal{H}_{C_J^R}$ and $\Pi = \bigoplus_J P_{MC_J^L} \otimes P_{C_R^J D}$
- This last sum over J contains only one non-zero factor since $C \subset \partial M$ is correctable.
- We can divide C into two subsystems C^1 and C^2 such that $\Pi = V_C P_{MC^1} \otimes P_{C^2 D} V_C^\dagger$. (⋆⋆)
Let M be correctable.
Assume ∂M is correctable.
Let $M = A \cup B$, $\overline{M} = C \cup D$, and $\partial M = B \cup C$.
Write $\Pi = P_{MC}P_{CD}$ with $[P_{MC}, P_{CD}] = 0$.

$\mathcal{H}_C = \bigoplus_J \mathcal{H}_{C_L}^{J} \otimes \mathcal{H}_{C_R}^{J}$ and $\Pi = \bigoplus_J P_{MC_L}^{J} \otimes P_{C_R}^{J}D$

This last sum over J contains only one non-zero factor since $C \subset \partial M$ is correctable.

We can divide C into two subsystems C^1 and C^2 such that $\Pi = V_C P_{MC^1} \otimes P_{C^2D} V_C^\dagger$. (***)
Proof

- Let M be correctable.
- Assume ∂M is correctable.
- Let $M = A \cup B$, $\overline{M} = C \cup D$, and $\partial M = B \cup C$.
- Write $\Pi = P_{MC}P_{CD}$ with $[P_{MC}, P_{CD}] = 0$.

\[\mathcal{H}_C = \bigoplus_{J} \mathcal{H}_{C_L} \otimes \mathcal{H}_{C_R} \] and $\Pi = \bigoplus_{J} P_{MC_L}^J \otimes P_{C_R}^J D$

This last sum over J contains only one non-zero factor since $C \subset \partial M$ is correctable.

- We can divide C into two subsystems C^1 and C^2 such that $\Pi = V_C P_{MC^1} \otimes P_{C^2 D} V_C^\dagger$. (***)
Proof

- Let M be correctable.
- Assume ∂M is correctable.
- Let $M = A \cup B$, $\overline{M} = C \cup D$, and $\partial M = B \cup C$.
- Write $\Pi = P_{MC}P_{CD}$ with $[P_{MC}, P_{CD}] = 0$.

\[\mathcal{H}_C = \bigoplus_J \mathcal{H}_{C_L}^J \otimes \mathcal{H}_{C_R}^J \] and $\Pi = \bigoplus_J P_{MC_L}^J \otimes P_{C_R}^J$.

This last sum over J contains only one non-zero factor since $C \subset \partial M$ is correctable.

- We can divide C into two subsystems C^1 and C^2 such that $\Pi = V_C P_{MC} C^1 \otimes P_{C^2 D} V_C^\dagger$. (**)
Proof

- Let M be correctable.
- Assume ∂M is correctable.
- Let $M = A \cup B$, $\overline{M} = C \cup D$, and $\partial M = B \cup C$.

- Combining (\ast) with ($\ast\ast$), $\Pi' = V_B^\dagger V_C^\dagger \Pi V_B V_C = P_{AB}^1 P_{B^2C^1} P_{C^2D}$
- $P_{AB}^1 = |\eta_{AB}^1\rangle \langle \eta_{AB}^1|$ is rank one since $AB^1 \subset M$ is correctable.
- $P_{B^2C^1} = |\nu_{B^2C^1}\rangle \langle \nu_{B^2C^1}|$ is rank one since $B^2C^1 \subset \partial M$ is correctable.
- Let $V_{B^2C^1}$ be any unitary such that $V_{B^2C^1} |\nu_{B^2C^1}\rangle = |\alpha_{B^2}\rangle \otimes |\beta_{C^2}\rangle$.
- Then $U_{\partial M} = V_{B^2C^1} V_B^\dagger V_C^\dagger$ disentangles region M as claimed.
Proof

- Let M be correctable.
- Assume ∂M is correctable.
- Let $M = A \cup B$, $\overline{M} = C \cup D$, and $\partial M = B \cup C$.

Combining (\star) with ($\star\star$), $\Pi' = V_B^\dagger V_C^\dagger \Pi V_B V_C = P_{AB^1} P_{B^2C^1} P_{C^2D}$

- $P_{AB^1} = |\eta_{AB^1}\rangle \langle \eta_{AB^1}|$ is rank one since $AB^1 \subset M$ is correctable.
- $P_{B^2C^1} = |\nu_{B^2C^1}\rangle \langle \nu_{B^2C^1}|$ is rank one since $B^2C^1 \subset \partial M$ is correctable.
- Let $V_{B^2C^1}$ be any unitary such that $V_{B^2C^1} |\nu_{B^2C^1}\rangle = |\alpha_{B^2}\rangle \otimes |\beta_{C^2}\rangle$.
- Then $U_{\partial M} = V_{B^2C^1} V_B^\dagger V_C^\dagger$ disentangles region M as claimed.
Holographic Disentangling Lemma

Proof

- Let M be correctable.
- Assume ∂M is correctable.
- Let $M = A \cup B$, $\overline{M} = C \cup D$, and $\partial M = B \cup C$.

Combining (⋆) with (⋆⋆), $\Pi' = V_B^\dagger V_C^\dagger \cap V_B V_C = P_{AB^1} P_{B^2 C^1} P_{C^2 D}$

- $P_{AB^1} = |\eta_{AB^1}\rangle\langle \eta_{AB^1}|$ is rank one since $AB^1 \subset M$ is correctable.
- $P_{B^2 C^1} = |\nu_{B^2 C^1}\rangle\langle \nu_{B^2 C^1}|$ is rank one since $B^2 C^1 \subset \partial M$ is correctable.
- Let $V_{B^2 C^1}$ be any unitary such that $V_{B^2 C^1}|\nu_{B^2 C^1}\rangle = |\alpha_{B^2}\rangle \otimes |\beta_{C^2}\rangle$.
- Then $U_{\partial M} = V_{B^2 C^1} V_B^\dagger V_C^\dagger$ disentangles region M as claimed.
Proof

- Let M be correctable.
- Assume ∂M is correctable.
- Let $M = A \cup B$, $\overline{M} = C \cup D$, and $\partial M = B \cup C$.

Combining (\star) with $(\star \star)$, $\Pi' = V_B^\dagger V_C^\dagger \Pi V_B V_C = P_{AB^1} P_{B^2C^1} P_{C^2D}$

- $P_{AB^1} = |\eta_{AB^1}\rangle \langle \eta_{AB^1}|$ is rank one since $AB^1 \subset M$ is correctable.
- $P_{B^2C^1} = |\nu_{B^2C^1}\rangle \langle \nu_{B^2C^1}|$ is rank one since $B^2C^1 \subset \partial M$ is correctable.

- Let $V_{B^2C^1}$ be any unitary such that $V_{B^2C^1} |\nu_{B^2C^1}\rangle = |\alpha_{B^2}\rangle \otimes |\beta_{C^2}\rangle$.
- Then $U_{\partial M} = V_{B^2C^1} V_B^\dagger V_C^\dagger$ disentangles region M as claimed.
Proof

- Let M be correctable.
- Assume ∂M is correctable.
- Let $M = A \cup B$, $\overline{M} = C \cup D$, and $\partial M = B \cup C$.

Combining (\ast) with ($\ast\ast$), $\Pi' = V_B^\dagger V_C^\dagger \Pi V_B V_C = P_{AB^1} P_{B^2C^1} P_{C^2D}$

- $P_{AB^1} = |\eta_{AB^1}\rangle \langle \eta_{AB^1}|$ is rank one since $AB^1 \subset M$ is correctable.
- $P_{B^2C^1} = |\nu_{B^2C^1}\rangle \langle \nu_{B^2C^1}|$ is rank one since $B^2C^1 \subset \partial M$ is correctable.

- Let $V_{B^2C^1}$ be any unitary such that $V_{B^2C^1} |\nu_{B^2C^1}\rangle = |\alpha_{B^2}\rangle \otimes |\beta_{C^2}\rangle$.

Then $U_{\partial M} = V_{B^2C^1} V_B^\dagger V_C^\dagger$ disentangles region M as claimed.
Proof

- Let M be correctable.
- Assume ∂M is correctable.
- Let $M = A \cup B$, $\overline{M} = C \cup D$, and $\partial M = B \cup C$.

Combining (⋆) with (之星), $\Pi' = V_B^\dagger V_C^\dagger \Pi V_B V_C = P_{AB^1} P_{B^2C^1} P_{C^2D}$

- $P_{AB^1} = |\eta_{AB^1}\rangle\langle\eta_{AB^1}|$ is rank one since $AB^1 \subset M$ is correctable.
- $P_{B^2C^1} = |\nu_{B^2C^1}\rangle\langle\nu_{B^2C^1}|$ is rank one since $B^2C^1 \subset \partial M$ is correctable.
- Let $V_{B^2C^1}$ be any unitary such that $V_{B^2C^1}|\nu_{B^2C^1}\rangle = |\alpha_{B^2}\rangle \otimes |\beta_{C^2}\rangle$.
- Then $U_{\partial M} = V_{B^2C^1} V_B^\dagger V_C^\dagger$ disentangles region M as claimed.
Outline

1. 2D Commuting Projector Codes
2. Holographic Disentangling Lemma
3. Holographic Minimum Distance
4. String-Like Logical Operators
5. Thermal instability
6. Open Questions
Holographic minimum distance (Bravyi, DP, Terhal)

Region $M \subset \Lambda$ is correctable if its boundary is smaller than the minimum distance $|\partial M| \leq cd$.

- Bulky errors are not problematic: it's the skinny ones we need to worry about.
- This hints at our next result: string-like logical operators.
Statement of the result

Holographic minimum distance (Bravyi, DP, Terhal)

Region $M \subset \Lambda$ is correctable if its boundary is smaller than the minimum distance $|\partial M| \leq cd$.

- Bulky errors are not problematic: it’s the skinny ones we need to worry about.
- This hints at our next result: string-like logical operators.
Holographic minimum distance (Bravyi, DP, Terhal)

Region $M \subset \Lambda$ is correctable if its boundary is smaller than the minimum distance $|\partial M| \leq cd$.

- Bulky errors are not problematic: it’s the skinny ones we need to worry about.
- This hints at our next result: string-like logical operators.
Proof

Let \(M \subset \Lambda \) be a correctable region.

- If \(|\partial M| \leq d\), then \(\partial M \) is also correctable.
- Thus, we can reconstruct any code state \(\rho \) from \(\rho_{AD} = \text{Tr}_{\partial M} \rho \).
- But from the Holographic disentangling lemma, \(\rho_{AD} = \eta_A \otimes \rho_D \) with \(\eta_A \) independent of the encoded state \(\rho \).
- Thus, we can reconstruct \(\rho \) from \(\rho_D = \text{Tr}_{M \cup \partial M} \rho \), so \(M \cup \partial M \) is correctable.
- We can continue to grow \(M \) this way until \(|\partial M| \geq d\).

\[\bar{M} = \Lambda \setminus M \]
Proof

- Let $M \subset \Lambda$ be a correctable region.
- If $|\partial M| \leq d$, then ∂M is also correctable.
- Thus, we can reconstruct any code state ρ from $\rho_{AD} = \text{Tr}_{\partial M} \rho$.
- But from the Holographic disentangling lemma, $\rho_{AD} = \eta_A \otimes \rho_D$ with η_A independent of the encoded state ρ.
- Thus, we can reconstruct ρ from $\rho_D = \text{Tr}_{M \cup \partial M} \rho$, so $M \cup \partial M$ is correctable.
- We can continue to grow M this way until $|\partial M| \geq d$.

$\bar{M} = \Lambda \setminus M$
Let $M \subset \Lambda$ be a correctable region.

If $|\partial M| \leq d$, then ∂M is also correctable.

Thus, we can reconstruct any code state ρ from $\rho_{AD} = \text{Tr}_{\partial M} \rho$.

But from the Holographic disentangling lemma, $\rho_{AD} = \eta_A \otimes \rho_D$ with η_A independent of the encoded state ρ.

Thus, we can reconstruct ρ from $\rho_D = \text{Tr}_{M \cup \partial M} \rho$, so $M \cup \partial M$ is correctable.

We can continue to grow M this way until $|\partial M| \geq d$.

\[\bar{M} = \Lambda \setminus M \]
Proof

- Let $M \subseteq \Lambda$ be a correctable region.
- If $|\partial M| \leq d$, then ∂M is also correctable.
- Thus, we can reconstruct any code state ρ from $\rho_{AD} = \text{Tr}_{\partial M}\rho$.
- But from the Holographic disentangling lemma, $\rho_{AD} = \eta_A \otimes \rho_D$ with η_A independent of the encoded state ρ.
- Thus, we can reconstruct ρ from $\rho_D = \text{Tr}_{M \cup \partial M}\rho$, so $M \cup \partial M$ is correctable.
- We can continue to grow M this way until $|\partial M| \geq d$.

\[\tilde{M} = \Lambda \setminus M \]
Proof

- Let $M \subset \Lambda$ be a correctable region.
- If $|\partial M| \leq d$, then ∂M is also correctable.
- Thus, we can reconstruct any code state ρ from $\rho_{AD} = \text{Tr}_{\partial M} \rho$.
- But from the Holographic disentangling lemma, $\rho_{AD} = \eta_A \otimes \rho_D$ with η_A independent of the encoded state ρ.
- Thus, we can reconstruct ρ from $\rho_D = \text{Tr}_{M \cup \partial M} \rho$, so $M \cup \partial M$ is correctable.
- We can continue to grow M this way until $|\partial M| \geq d$.
Proof

- Let $M \subset \Lambda$ be a correctable region.
- If $|\partial M| \leq d$, then ∂M is also correctable.
- Thus, we can reconstruct any code state ρ from $\rho_{AD} = \text{Tr}\partial M \rho$.
- But from the Holographic disentangling lemma, $\rho_{AD} = \eta_A \otimes \rho_D$ with η_A independent of the encoded state ρ.
- Thus, we can reconstruct ρ from $\rho_D = \text{Tr}_{M \cup \partial M} \rho$, so $M \cup \partial M$ is correctable.
- We can continue to grow M this way until $|\partial M| \geq d$.
Proof

- Let $M \subset \Lambda$ be a correctable region.
- If $|\partial M| \leq d$, then ∂M is also correctable.
- Thus, we can reconstruct any code state ρ from $\rho_{AD} = \text{Tr}_{\partial M} \rho$.
- But from the Holographic disentangling lemma, $\rho_{AD} = \eta_A \otimes \rho_D$ with η_A independent of the encoded state ρ.
- Thus, we can reconstruct ρ from $\rho_D = \text{Tr}_{M \cup \partial M} \rho$, so $M \cup \partial M$ is correctable.
- We can continue to grow M this way until $|\partial M| \geq d$.
Proof

- Let $M \subset \Lambda$ be a correctable region.
- If $|\partial M| \leq d$, then ∂M is also correctable.
- Thus, we can reconstruct any code state ρ from $\rho_{AD} = \text{Tr}_{\partial M}\rho$.
- But from the Holographic disentangling lemma, $\rho_{AD} = \eta_A \otimes \rho_D$ with η_A independent of the encoded state ρ.
- Thus, we can reconstruct ρ from $\rho_D = \text{Tr}_{M \cup \partial M}\rho$, so $M \cup \partial M$ is correctable.
- We can continue to grow M this way until $|\partial M| \geq d$.
Outline

1. 2D Commuting Projector Codes
2. Holographic Disentangling Lemma
3. Holographic Minimum Distance
4. String-Like Logical Operators
5. Thermal instability
6. Open Questions
String-like logical operators (Haah, Preskill)

There exists a non-trivial logical operator supported on a string-like region.

- Well known for Kitaev's toric code.
- Intuitive for known models that support anyons:
 - The ground state can be changed by dragging an anyon around a topologically non-trivial loop.
 - This process is realized on a string, and generated a logical operation.
- Relation to thermal instability?
String-like logical operators (Haah, Preskill)

There exists a non-trivial logical operator supported on a string-like region.

- Well known for Kitaev’s toric code.
- Intuitive for known models that support anyons:
 - The ground state can be changed by dragging an anyon around a topologically non-trivial loop.
 - This process is realized on a string, and generated a logical operation.
- Relation to thermal instability?
String-Like Logical Operators

Statement of the result

String-like logical operators (Haah, Preskill)

There exists a non-trivial logical operator supported on a string-like region.

- Well known for Kitaev’s toric code.
- Intuitive for known models that support anyons:
 - The ground state can be changed by dragging an anyon around a topologically non-trivial loop.
 - This process is realized on a string, and generated a logical operation.
- Relation to thermal instability?
String-like logical operators (Haah, Preskill)

There exists a non-trivial logical operator supported on a string-like region.

- Well known for Kitaev’s toric code.
- Intuitive for known models that support anyons:
 - The ground state can be changed by dragging an anyon around a topologically non-trivial loop.
 - This process is realized on a string, and generated a logical operation.
- Relation to thermal instability?
String-like logical operators (Haah, Preskill)

There exists a non-trivial logical operator supported on a string-like region.

- Well known for Kitaev’s toric code.
- Intuitive for known models that support anyons:
 - The ground state can be changed by dragging an anyon around a topologically non-trivial loop.
 - This process is realized on a string, and generated a logical operation.

- Relation to thermal instability?
String-like logical operators (Haah, Preskill)

There exists a non-trivial logical operator supported on a string-like region.

- Well known for Kitaev’s toric code.
- Intuitive for known models that support anyons:
 - The ground state can be changed by dragging an anyon around a topologically non-trivial loop.
 - This process is realized on a string, and generated a logical operation.
- Relation to thermal instability?
Union of correctable regions

Let M_1 and M_2 be correctable distant regions and suppose that ∂M_1 is also correctable. Then, $M_1 \cup M_2$ is correctable.

- Trivial for syndrome-based error correction (e.g. stabilizer codes).
- We will prove the Knill-Laflamme condition $\Pi O_{M_1} \otimes O_{M_2} \Pi \propto \Pi$.
- The holographic disentangling lemma applied to M_1 implies that $\Pi = V_B V_C |\eta_{AB1}\rangle \langle \eta_{AB1}| \otimes |\nu_{B^2C^1}\rangle \langle \nu_{B^1C^1}| \otimes P_{C^2D} V^\dagger_B V^\dagger_C$.
- So $\Pi O_{M_1} \otimes O_{M_2} \Pi = f(O_{M_1}) \Pi O_{M_2} \Pi \propto \Pi$
- where $f(O_{M_1}) = \langle \eta_{AB1}| \langle \nu_{B^2C^1}| V^\dagger_B O_{M_1} V^B |\eta_{AB1}\rangle |\nu_{B^2C^1}\rangle$.
Let M_1 and M_2 be correctable distant regions and suppose that ∂M_1 is also correctable. Then, $M_1 \cup M_2$ is correctable.

- Trivial for syndrome-based error correction (e.g. stabilizer codes).
- We will prove the Knill-Laflamme condition $\Pi O_{M_1} \otimes O_{M_2} \Pi \propto \Pi$.
- The holographic disentangling lemma applied to M_1 implies that $\Pi = V_B V_C |\eta_{AB}^1\rangle \langle \eta_{AB}^1| \otimes |\nu_{B^2C^1}\rangle \langle \nu_{B^1C^1}| \otimes P_{C^2D} V_B^\dagger V_C^\dagger$.
- So $\Pi O_{M_1} \otimes O_{M_2} \Pi = f(O_{M_1}) \Pi O_{M_2} \Pi \propto \Pi$
 where $f(O_{M_1}) = \langle \eta_{AB}^1| \langle \nu_{B^2C^1}| V_B^\dagger O_{M_1} V_B |\eta_{AB}^1\rangle |\nu_{B^2C^1}\rangle$.
Let M_1 and M_2 be correctable distant regions and suppose that ∂M_1 is also correctable. Then, $M_1 \cup M_2$ is correctable.

- Trivial for syndrome-based error correction (e.g. stabilizer codes).
- We will prove the Knill-Laflamme condition $\Pi O_{M_1} \otimes O_{M_2} \Pi \propto \Pi$.
- The holographic disentangling lemma applied to M_1 implies that $\Pi = V_B V_C |\eta_{AB}^1 \rangle \langle \eta_{AB}^1| \otimes |\nu_{B^2C^1} \rangle \langle \nu_{B^2C^1}| \otimes P_{C^2D} V_B^\dagger V_C^\dagger$.
- So $\Pi O_{M_1} \otimes O_{M_2} \Pi = f(O_{M_1}) \Pi O_{M_2} \Pi \propto \Pi$

where $f(O_{M_1}) = \langle \eta_{AB}^1| \langle \nu_{B^2C^1}| V_B^\dagger O_{M_1} V_B |\eta_{AB}^1 \rangle |\nu_{B^2C^1} \rangle$.
Let M_1 and M_2 be correctable distant regions and suppose that ∂M_1 is also correctable. Then, $M_1 \cup M_2$ is correctable.

- Trivial for syndrome-based error correction (e.g. stabilizer codes).
- We will prove the Knill-Laflamme condition $\Pi O_{M_1} \otimes O_{M_2} \Pi \propto \Pi$.
- The holographic disentangling lemma applied to M_1 implies that $\Pi = V_B V_C |\eta_{AB}^1 \rangle \langle \eta_{AB}^1| \otimes |\nu_{B^2 C^1} \rangle \langle \nu_{B^1 C^1}| \otimes P_{C^2 D} V_B^\dagger V_C^\dagger$.
- So $\Pi O_{M_1} \otimes O_{M_2} \Pi = f(O_{M_1}) \Pi O_{M_2} \Pi \propto \Pi$
 where $f(O_{M_1}) = \langle \eta_{AB}^1 | \langle \nu_{B^2 C^1}| V_B^\dagger O_{M_1} V_B |\eta_{AB}^1 \rangle |\nu_{B^2 C^1}\rangle$.

![Diagram of correctable regions](image-url)
Let M_1 and M_2 be correctable distant regions and suppose that ∂M_1 is also correctable. Then, $M_1 \cup M_2$ is correctable.

- Trivial for syndrome-based error correction (e.g. stabilizer codes).
- We will prove the Knill-Laflamme condition $\Pi O_{M_1} \otimes O_{M_2} \Pi \propto \Pi$.
- The holographic disentangling lemma applied to M_1 implies that $\Pi = V_B V_C |\eta_{AB}^1\rangle |\eta_{AB}^1\rangle \otimes |\nu_{B^2C^1}\rangle |\nu_{B^1C^1}\rangle \otimes P_{C^2D} V_B^\dagger V_C^\dagger$.
- So $\Pi O_{M_1} \otimes O_{M_2} \Pi = f(O_{M_1}) \Pi O_{M_2} \Pi \propto \Pi$
- where $f(O_{M_1}) = \langle \eta_{AB}^1 | \langle \nu_{B^2C^1} | V_B^\dagger O_{M_1} V^B | \eta_{AB}^1 \rangle | \nu_{B^2C^1} \rangle$.

![Diagram of correctable regions](image-url)
There exists a string-like region that is not-correctable.

- Let M be a string-like region.
- Suppose M is correctable.
- Consider its boundary $\partial M = \partial M_L \cup \partial M_R$.
- If either ∂M_L or ∂M_R are not correctable, we are done.
- Otherwise $\partial M = \partial M_L \cup \partial M_R$ is correctable, and therefore $M \cup \partial M$ is correctable.
- Continue until we arrive at Λ is correctable, which is impossible.
There exists a string-like region that is not-correctable.

- Let M be a string-like region.
 - Suppose M is correctable.
 - Consider its boundary $\partial M = \partial M_L \cup \partial M_R$.
 - If either ∂M_L or ∂M_R are not correctable, we are done.
 - Otherwise $\partial M = \partial M_L \cup \partial M_R$ is correctable, and therefore $M \cup \partial M$ is correctable.
 - Continue until we arrive at Λ is correctable, which is impossible.
There exists a string-like region that is not-correctable.

- Let M be a string-like region.
- Suppose M is correctable.
 - Consider its boundary $\partial M = \partial M_L \cup \partial M_R$.
 - If either ∂M_L or ∂M_R are not correctable, we are done.
 - Otherwise $\partial M = \partial M_L \cup \partial M_R$ is correctable, and therefore $M \cup \partial M$ is correctable.
 - Continue until we arrive at Λ is correctable, which is impossible.
Proof, part 1

There exists a string-like region that is not-correctable.

- Let M be a string-like region.
- Suppose M is correctable.
- Consider its boundary $\partial M = \partial M_L \cup \partial M_R$.
 - If either ∂M_L or ∂M_R are not correctable, we are done.
 - Otherwise $\partial M = \partial M_L \cup \partial M_R$ is correctable, and therefore $M \cup \partial M$ is correctable.
- Continue until we arrive at Λ is correctable, which is impossible.
Proof, part 1

There exists a string-like region that is not-correctable.

Let M be a string-like region.

Suppose M is correctable.

Consider its boundary $\partial M = \partial M_L \cup \partial M_R$.

If either ∂M_L or ∂M_R are not correctable, we are done.

Otherwise $\partial M = \partial M_L \cup \partial M_R$ is correctable, and therefore $M \cup \partial M$ is correctable.

Continue until we arrive at Λ is correctable, which is impossible.
There exists a string-like region that is not-correctable.

- Let M be a string-like region.
- Suppose M is correctable.
- Consider its boundary $\partial M = \partial M_L \cup \partial M_R$.
- If either ∂M_L or ∂M_R are not correctable, we are done.
- Otherwise $\partial M = \partial M_L \cup \partial M_R$ is correctable, and therefore $M \cup \partial M$ is correctable.
- Continue until we arrive at Λ is correctable, which is impossible.
Proof, part 1

There exists a string-like region that is not-correctable.

- Let M be a string-like region.
- Suppose M is correctable.
- Consider its boundary $\partial M = \partial M_L \cup \partial M_R$.
- If either ∂M_L or ∂M_R are not correctable, we are done.
- Otherwise $\partial M = \partial M_L \cup \partial M_R$ is correctable, and therefore $M \cup \partial M$ is correctable.
- Continue until we arrive at Λ is correctable, which is impossible.
Let M be a non-correctable string-like region.

There exists O_M such that $\Pi O_M \Pi \not\propto \Pi$.

Let $\Pi_M = \prod_{X \cap M \neq \emptyset} P_X$

Then $X = \Pi_M O_M \Pi_M$ is a non-trivial logical operator supported on $M \cup \partial M$.

Any function of X, e.g. $\exp(-iX\theta)$, is also a logical operator with the same support.
Proof, part 2

- Let M be a non-correctable string-like region.
- There exists O_M such that $\Pi O_M \Pi \propto \Pi$.
- Let $\Pi_M = \prod_{X \cap M \neq \emptyset} P_X$.
- Then $X = \Pi_M O_M \Pi_M$ is a non-trivial logical operator supported on $M \cup \partial M$.
- Any function of X, e.g. $\exp(-iX\theta)$, is also a logical operator with the same support.
Let M be a non-correctable string-like region.

There exists O_M such that $\Pi O_M \Pi \not\propto \Pi$.

Let $\Pi_M = \prod_{X \cap M \neq \emptyset} P_X$

Then $X = \Pi_M O_M \Pi_M$ is a non-trivial logical operator supported on $M \cup \partial M$.

Any function of X, e.g. $\exp(-iX\theta)$, is also a logical operator with the same support.
Proof, part 2

Let M be a non-correctable string-like region.

There exists O_M such that $\Pi O_M \Pi \propto \Pi$.

Let $\Pi_M = \prod_{X \cap M \neq \emptyset} P_X$

Then $X = \Pi_M O_M \Pi_M$ is a non-trivial logical operator supported on $M \cup \partial M$.

Any function of X, e.g. $\exp(-iX\theta)$, is also a logical operator with the same support.
Let M be a non-correctable string-like region.

There exists O_M such that $\Pi O_M \Pi \not\propto \Pi$.

Let $\Pi_M = \prod_{X \cap M \neq \emptyset} P_X$

Then $X = \Pi_M O_M \Pi_M$ is a non-trivial logical operator supported on $M \cup \partial M$.

Any function of X, e.g. $\exp(-iX\theta)$, is also a logical operator with the same support.
Outline

1. 2D Commuting Projector Codes
2. Holographic Disentangling Lemma
3. Holographic Minimum Distance
4. String-Like Logical Operators
5. Thermal instability
6. Open Questions
Noise model

1. Apply random unitary on sites 1 & 2.
2. Measure P_{12}
 - If $P_{12} = 0$ go to 1.
3. Apply random unitary on site 3.
4. Measure P_{23}
 - If $P_{23} = 0$ go to 3.

- Only a constant amount of energy at any given time.
- No need to backtrack.
- Number of steps \propto lattice linear size.
- If successful, final state is corrupted. (not trivial)

David Poulin (Sherbrooke) 2D Quantum Memories Q+’13
Apply random unitary on sites 1 & 2.

1. Measure P_{12}
 - If $P_{12} = 0$ go to 1.

2. Apply random unitary on site 3.
3. Measure P_{23}
 - If $P_{23} = 0$ go to 3.

Only a constant amount of energy at any given time.

No need to backtrack.

Number of steps \propto lattice linear size.

If successful, final state is corrupted. (not trivial)
Apply random unitary on sites 1 & 2.

Measure P_{12}
- If $P_{12} = 0$ go to 1.

Apply random unitary on site 3.

Measure P_{23}
- If $P_{23} = 0$ go to 3.

- Only a constant amount of energy at any given time.
- No need to backtrack.
- Number of steps \propto lattice linear size.
- If successful, final state is corrupted. (not trivial)
Thermal instability

Noise model

Apply random unitary on sites 1 & 2.

1. Measure P_{12}
 - If $P_{12} = 0$ go to 1.

2. Apply random unitary on site 3.
3. Measure P_{23}
 - If $P_{23} = 0$ go to 3.

Only a constant amount of energy at any given time.

No need to backtrack.

Number of steps \propto lattice linear size.

If successful, final state is corrupted. (not trivial)
Apply random unitary on sites 1 & 2.
Measure P_{12}
- If $P_{12} = 0$ go to 1.

Apply random unitary on site 3.
Measure P_{23}
- If $P_{23} = 0$ go to 3.

- Only a constant amount of energy at any given time.
- No need to backtrack.
- Number of steps \propto lattice linear size.
- If successful, final state is corrupted. (not trivial)
Apply random unitary on sites 1 & 2.

Measure P_{12}
- If $P_{12} = 0$ go to 1.

Apply random unitary on site 3.

Measure P_{23}
- If $P_{23} = 0$ go to 3.

Only a constant amount of energy at any given time.

No need to backtrack.

Number of steps \propto lattice linear size.

If successful, final state is corrupted. (not trivial)
Apply random unitary on sites 1 & 2.

Measure P_{12}
- If $P_{12} = 0$ go to 1.

Apply random unitary on site 3.

Measure P_{23}
- If $P_{23} = 0$ go to 3.

- Only a constant amount of energy at any given time.
- No need to backtrack.
- Number of steps \propto lattice linear size.
- If successful, final state is corrupted. (not trivial)
Apply random unitary on sites 1 & 2.

2

Measure P_{12}

- If $P_{12} = 0$ go to 1.

3

Apply random unitary on site 3.

4

Measure P_{23}

- If $P_{23} = 0$ go to 3.

- Only a constant amount of energy at any given time.
- No need to backtrack.
- Number of steps \propto lattice linear size.
- If successful, final state is corrupted. (not trivial)
Apply random unitary on sites 1 & 2.
Measure P_{12}
 - If $P_{12} = 0$ go to 1.

Apply random unitary on site 3.
Measure P_{23}
 - If $P_{23} = 0$ go to 3.

Only a constant amount of energy at any given time.
No need to backtrack.
Number of steps \propto lattice linear size.
If successful, final state is corrupted. (not trivial)
Thermal instability

Noise model

1. Apply random unitary on sites 1 & 2.
2. Measure P_{12}
 - If $P_{12} = 0$ go to 1.
3. Apply random unitary on site 3.
4. Measure P_{23}
 - If $P_{23} = 0$ go to 3.

- Only a constant amount of energy at any given time.
- No need to backtrack.
- Number of steps \propto lattice linear size.
- If successful, final state is corrupted. (not trivial)

David Poulin (Sherbrooke)
Thermal instability

Noise model

1. Apply random unitary on sites 1 & 2.
2. Measure P_{12}
 - If $P_{12} = 0$ go to 1.
3. Apply random unitary on site 3.
4. Measure P_{23}
 - If $P_{23} = 0$ go to 3.

- Only a constant amount of energy at any given time.
- No need to backtrack.
- Number of steps \propto lattice linear size.
- If successful, final state is corrupted. (not trivial)
Apply random unitary on sites 1 & 2.

Measure P_{12}
- If $P_{12} = 0$ go to 1.

Apply random unitary on site 3.

Measure P_{23}
- If $P_{23} = 0$ go to 3.

- Only a constant amount of energy at any given time.
- No need to backtrack.
- Number of steps \propto lattice linear size.
- If successful, final state is corrupted. (not trivial)
1. Apply random unitary on sites 1 & 2.
2. Measure P_{12}
 - If $P_{12} = 0$ go to 1.
3. Apply random unitary on site 3.
4. Measure P_{23}
 - If $P_{23} = 0$ go to 3.

- Only a constant amount of energy at any given time.
- No need to backtrack.
- Number of steps \propto lattice linear size.
- If successful, final state is corrupted. (not trivial)
Thermal instability

Noise model

1. Apply random unitary on sites 1 & 2.
2. Measure P_{12}
 - If $P_{12} = 0$ go to 1.
3. Apply random unitary on site 3.
4. Measure P_{23}
 - If $P_{23} = 0$ go to 3.

- Only a constant amount of energy at any given time.
- No need to backtrack.
- Number of steps \propto lattice linear size.
- If successful, final state is corrupted. (not trivial)
Thermal instability

Analysis, part I

Define

\[P_k = P_{k-1,k} \cdot P_{k-1,k} \]

\[Q_k = (I - P_{k-1,k}) \cdot (I - P_{k-1,k}) \]

\[D_k = \text{Depolarizing channel on } k \]

A typical step of the noise is \(P_k D_k Q_k D_k Q_k D_k Q_k D_k \).

Using the equalities

\[D_k^2 = D_k \]

Average time

\[
\sum_{m=0}^{\infty} (m + 1) \text{Tr} \left[P_k D_k (Q_k D_k)^m \rho \right]
\]

\[
= \sum_{m=0}^{\infty} (m + 1) \text{Tr} \left[P_k B_k^m \otimes D_k \rho \right]
\]

\[
= \text{Tr} \left[P_k (I - B_k)^{-2} \otimes D_k \rho \right]
\]

Average duration of an step depends only on the spectrum of a local operation \(B_k \), not on the lattice size.
Thermal instability Analysis, part I

\[P_k = P_{k-1,k} \cdot P_{k-1,k} \]

- Define

\[Q_k = (I - P_{k-1,k}) \cdot (I - P_{k-1,k}) \]

\[D_k = \text{Depolarizing channel on } k \]

- A typical step of the noise is \(P_k D_k Q_k D_k Q_k D_k Q_k D_k Q_k D_k \).

- Using the equalities and \(D_k^2 = D_k \)

Average time

\[
\sum_{m=0}^{\infty} (m + 1) \text{Tr} \left[P_k D_k (Q_k D_k)^m \rho \right]
\]

\[
= \sum_{m=0}^{\infty} (m + 1) \text{Tr} \left[P_k B_k^m \otimes D_k \rho \right]
\]

\[
= \text{Tr} \left[P_k (I - B_k)^{-2} \otimes D_k \rho \right]
\]

Average duration of an step depends only on the spectrum of a local operation \(B_k \), not on the lattice size.
Thermal instability

Analysis, part I

\[P_k = P_{k-1,k} \cdot P_{k-1,k} \]

Define

\[Q_k = (I - P_{k-1,k}) \cdot (I - P_{k-1,k}) \]

\[D_k = \text{Depolarizing channel on } k \]

A typical step of the noise is \(P_k D_k Q_k D_k Q_k D_k Q_k D_k \).

Using the equalities

\[D_k^2 = D_k \]

Average time

\[\sum_{m=0}^{\infty} (m+1) \text{Tr} \left[P_k D_k (Q_k D_k)^m \rho \right] \]

\[= \sum_{m=0}^{\infty} (m+1) \text{Tr} \left[P_k B_k^m \otimes D_k \rho \right] \]

\[= \text{Tr} \left[P_k (I - B_k)^{-2} \otimes D_k \rho \right] \]

Average duration of an step depends only on the spectrum of a local operation \(B_k \), not on the lattice size.
Thermal instability

Analysis, part I

\[\mathcal{P}_k = P_{k-1,k} \cdot P_{k-1,k} \]

Define

\[Q_k = (I - P_{k-1,k}) \cdot (I - P_{k-1,k}) \]

\[\mathcal{D}_k = \text{Depolarizing channel on } k \]

A typical step of the noise is \(\mathcal{P}_k \mathcal{D}_k Q_k \mathcal{D}_k Q_k \mathcal{D}_k Q_k \).

Using the equalities

\[\mathcal{D}_{k-1} Q_k \mathcal{D}_k = \mathcal{D}_k \]

and \(\mathcal{D}^2_k = \mathcal{D}_k \)

Average time

\[
\sum_{m=0}^{\infty} (m + 1) \text{Tr} \left[\mathcal{P}_k \mathcal{D}_k (Q_k \mathcal{D}_k)^m \rho \right]
\]

\[
= \sum_{m=0}^{\infty} (m + 1) \text{Tr} \left[\mathcal{P}_k B_k^m \otimes D_k \rho \right]
\]

\[
= \text{Tr} \left[\mathcal{P}_k (I - B_k)^{-2} \otimes D_k \rho \right]
\]

Average duration of an step depends only on the spectrum of a local operation \(B_k \), not on the lattice size.
Analysis, part I

\[\mathcal{P}_k = P_{k-1,k} \cdot P_{k-1,k} \]

- Define
 \[Q_k = (I - P_{k-1,k}) \cdot (I - P_{k-1,k}) \]
 \[\mathcal{D}_k = \textit{Depolarizing channel on } k \]

- A typical step of the noise is \(\mathcal{P}_k \mathcal{D}_k Q_k \mathcal{D}_k Q_k \mathcal{D}_k Q_k \mathcal{D}_k \).

- Using the equalities
 \[\mathcal{D}^{k-1} = \mathcal{D}_k \]
 \[and \quad \mathcal{D}^2_k = \mathcal{D}_k \]

- Average time
 \[\sum_{m=0}^{\infty} (m + 1) \text{Tr} \left[\mathcal{P}_k \mathcal{D}_k (Q_k \mathcal{D}_k)^m \rho \right] \]
 \[= \sum_{m=0}^{\infty} (m + 1) \text{Tr} \left[\mathcal{P}_k B_k^m \otimes \mathcal{D}_k \rho \right] \]
 \[= \text{Tr} \left[\mathcal{P}_k (I - B_k)^{-2} \otimes \mathcal{D}_k \rho \right] \]

Average duration of an step depends only on the spectrum of a local operation \(B_k \), not on the lattice size.
Thermal instability

Analysis, part I

\[\mathcal{P}_k = P_{k-1,k} \cdot P_{k-1,k} \]

- Define

\[Q_k = (I - P_{k-1,k}) \cdot (I - P_{k-1,k}) \]

\[\mathcal{D}_k = \text{Depolarizing channel on } k \]

- A typical step of the noise is \(\mathcal{P}_k \mathcal{D}_k Q_k \mathcal{D}_k Q_k \mathcal{D}_k Q_k \mathcal{D}_k \).

- Using the equalities

\[\begin{array}{c}
\mathcal{D}_{k-1} \\
\mathcal{D}_k
\end{array}
\begin{array}{c}
Q_k \\
\mathcal{D}_k
\end{array}
= \begin{array}{c}
B_k \\
\mathcal{D}_k
\end{array}
\quad \text{and } \mathcal{D}_k^2 = \mathcal{D}_k
\]

- Average time

\[\sum_{m=0}^{\infty} (m + 1) \text{Tr} \left[\mathcal{P}_k \mathcal{D}_k (Q_k \mathcal{D}_k)^m \rho \right] \]

\[= \sum_{m=0}^{\infty} (m + 1) \text{Tr} \left[\mathcal{P}_k B_k^m \otimes \mathcal{D}_k \rho \right] \]

\[= \text{Tr} \left[\mathcal{P}_k (I - B_k)^{-2} \otimes \mathcal{D}_k \rho \right] \]

Average duration of an step depends only on the spectrum of a local operation \(B_k \), not on the lattice size.
Thermal instability

Analysis, part I

\[\mathcal{P}_k = P_{k-1,k} \cdot P_{k-1,k} \]

- Define

\[Q_k = (I - P_{k-1,k}) \cdot (I - P_{k-1,k}) \]

\[D_k = \text{Depolarizing channel on } k \]

- A typical step of the noise is \(\mathcal{P}_k D_k Q_k D_k Q_k D_k Q_k D_k \).

- Using the equalities

\[k-1 \quad \begin{array}{c} Q_k \end{array} \quad \begin{array}{c} D_k \end{array} = \begin{array}{c} B_k \end{array} \quad \begin{array}{c} D_k \end{array} \]

and \(D_k^2 = D_k \)

- Average time

\[\sum_{m=0}^{\infty} (m + 1) \text{Tr} \left[\mathcal{P}_k D_k (Q_k D_k)^m \rho \right] \]

\[= \sum_{m=0}^{\infty} (m + 1) \text{Tr} \left[\mathcal{P}_k B_k^m \otimes D_k \rho \right] \]

\[= \text{Tr} \left[\mathcal{P}_k (I - B_k)^{-2} \otimes D_k \rho \right] \]

Average duration of an step depends only on the spectrum of a local operation \(B_k \), not on the lattice size.
Average time per step scales with \((I - B_k)^{-2}\).

Unbounded if \(B_k\) has an eigenvalue 1: dead ends.

\[\exists \rho \text{ obtained at step } k \text{ supported on the subspace where } B_k = 1 \iff \text{Condition TQO2 is violated.}\]

Main result (Landon-Cardinal & DP)

The minimum set of conditions required to prove spectral stability imply the existence of a sequence of local maps that corrupt the system at an energy cost bounded by a constant.
Average time per step scales with \((I - B_k)^{-2}\).

Unbounded if \(B_k\) has an eigenvalue 1: dead ends.

\exists \rho \text{ obtained at step } k \text{ supported on the subspace where } B_k = 1 \iff \text{Condition TQO2 is violated.}

Main result (Landon-Cardinal & DP)
The minimum set of conditions required to prove spectral stability imply the existence of a sequence of local maps that corrupt the system at an energy cost bounded by a constant.
Average time per step scales with \((I - B_k)^{-2}\).

Unbounded if \(B_k\) has an eigenvalue 1: dead ends.

\[\exists \rho \text{ obtained at step } k \text{ supported on the subspace where } B_k = 1 \iff \text{Condition TQO2 is violated.} \]

Main result (Landon-Cardinal & DP)

The minimum set of conditions required to prove spectral stability imply the existence of a sequence of local maps that corrupt the system at an energy cost bounded by a constant.
Average time per step scales with \((I - B_k)^{-2}\).

Unbounded if \(B_k\) has an eigenvalue 1: dead ends.

\[\exists \rho\] obtained at step \(k\) supported on the subspace where \(B_k = 1\)
\[\iff\]
Condition TQO2 is violated.

Main result (Landon-Cardinal & DP)

The minimum set of conditions required to prove spectral stability imply the existence of a sequence of local maps that corrupt the system at an energy cost bounded by a constant.
Outline

1. 2D Commuting Projector Codes
2. Holographic Disentangling Lemma
3. Holographic Minimum Distance
4. String-Like Logical Operators
5. Thermal instability
6. Open Questions
Open Questions

- **String-like logical operators +TQO ⇒ constant energy barrier.**
 - This is not directly related to thermal instability.
 - 2D Ising model has an energy barrier $\propto \sqrt{n}$, but an energy $\propto n$ at finite temperature.
 - What matters is entropy (for a given energy, many more configurations many with small error droplets than with a large one).
 - Can we characterize all string-like logical operators?
 - We have shown information corruption in time $\propto \sqrt{n}$. Can it be parallelized? (Percolation)
 - Relation between commuting projector codes and anyon models.

- Can we engineer dead ends?
 - Memory that is stabilized by complexity.

- Extension to subsystem codes?
 - With local stabilizer (Bombin) and without (Bacon-Shor).

- Extend to frustration-free Hamiltonians (and therefore to all gapped Hamiltonians, i.e. Hastings).
String-like logical operators +TQO \Rightarrow constant energy barrier.

- This is not directly related to thermal instability.
- 2D Ising model has an energy barrier $\propto \sqrt{n}$, but an energy $\propto n$ at finite temperature.
- What matters is entropy (for a given energy, many more configurations many with small error droplets than with a large one).
- Can we characterize all string-like logical operators?
- We have shown information corruption in time $\propto \sqrt{n}$. Can it be parallelized? (Percolation)
- Relation between commuting projector codes and anyon models.

Can we engineer dead ends?

- Memory that is stabilized by complexity.

Extension to subsystem codes?

- With local stabilizer (Bombin) and without (Bacon-Shor).

Extend to frustration-free Hamiltonians (and therefore to all gapped Hamiltonians, i.e. Hastings).
String-like logical operators $+TQO \Rightarrow$ constant energy barrier.

- This is not directly related to thermal instability.
- 2D Ising model has an energy barrier $\propto \sqrt{n}$, but an energy $\propto n$ at finite temperature.
- What matters is entropy (for a given energy, many more configurations many with small error droplets than with a large one).
- Can we characterize all string-like logical operators?
- We have shown information corruption in time $\propto \sqrt{n}$. Can it be parallelized? (Percolation)
- Relation between commuting projector codes and anyon models.

Can we engineer dead ends?

- Memory that is stabilized by complexity.

Extension to subsystem codes?

- With local stabilizer (Bombin) and without (Bacon-Shor).

Extend to frustration-free Hamiltonians (and therefore to all gapped Hamiltonians, i.e. Hastings).
String-like logical operators +TQO \Rightarrow constant energy barrier.
- This is not directly related to thermal instability.
- 2D Ising model has an energy barrier $\propto \sqrt{n}$, but an energy $\propto n$ at finite temperature.
- What matters is entropy (for a given energy, many more configurations many with small error droplets than with a large one).
- Can we characterize all string-like logical operators?
- We have shown information corruption in time $\propto \sqrt{n}$. Can it be parallelized? (Percolation)
- Relation between commuting projector codes and anyon models.

Can we engineer dead ends?
- Memory that is stabilized by complexity.

Extension to subsystem codes?
- With local stabilizer (Bombin) and without (Bacon-Shor).

Extend to frustration-free Hamiltonians (and therefore to all gapped Hamiltonians, i.e. Hastings).
String-like logical operators \(+\text{TQO} \Rightarrow \) constant energy barrier.
- This is not directly related to thermal instability.
- 2D Ising model has an energy barrier \(\propto \sqrt{n} \), but an energy \(\propto n \) at finite temperature.
- What matters is entropy (for a given energy, many more configurations many with small error droplets than with a large one).
- Can we characterize all string-like logical operators?
 - We have shown information corruption in time \(\propto \sqrt{n} \). Can it be parallelized? (Percolation)
 - Relation between commuting projector codes and anyon models.

Can we engineer dead ends?
- Memory that is stabilized by complexity.

Extension to subsystem codes?
- With local stabilizer (Bombin) and without (Bacon-Shor).

Extend to frustration-free Hamiltonians (and therefore to all gapped Hamiltonians, i.e. Hastings).
String-like logical operators \(+\text{TQO} \Rightarrow\) constant energy barrier.

- This is not directly related to thermal instability.
- 2D Ising model has an energy barrier \(\propto \sqrt{n}\), but an energy \(\propto n\) at finite temperature.
- What matters is entropy (for a given energy, many more configurations many with small error droplets than with a large one).
- Can we characterize all string-like logical operators?
- We have shown information corruption in time \(\propto \sqrt{n}\). Can it be parallelized? (Percolation)
 - Relation between commuting projector codes and anyon models.

Can we engineer dead ends?

- Memory that is stabilized by complexity.

Extension to subsystem codes?

- With local stabilizer (Bombin) and without (Bacon-Shor).

Extend to frustration-free Hamiltonians (and therefore to all gapped Hamiltonians, i.e. Hastings).
String-like logical operators $+\text{TQO} \Rightarrow$ constant energy barrier.
- This is not directly related to thermal instability.
- 2D Ising model has an energy barrier $\propto \sqrt{n}$, but an energy $\propto n$ at finite temperature.
- What matters is entropy (for a given energy, many more configurations many with small error droplets than with a large one).
- Can we characterize all string-like logical operators?
- We have shown information corruption in time $\propto \sqrt{n}$. Can it be parallelized? (Percolation)
- Relation between commuting projector codes and anyon models.

Can we engineer dead ends?
- Memory that is stabilized by complexity.

Extension to subsystem codes?
- With local stabilizer (Bombin) and without (Bacon-Shor).

Extend to frustration-free Hamiltonians (and therefore to all gapped Hamiltonians, i.e. Hastings).
String-like logical operators $+TQO \Rightarrow$ constant energy barrier.

- This is not directly related to thermal instability.
- 2D Ising model has an energy barrier $\propto \sqrt{n}$, but an energy $\propto n$ at finite temperature.
- What matters is entropy (for a given energy, many more configurations many with small error droplets than with a large one).
- Can we characterize all string-like logical operators?
- We have shown information corruption in time $\propto \sqrt{n}$. Can it be parallelized? (Percolation)
- Relation between commuting projector codes and anyon models.

Can we engineer dead ends?

- Memory that is stabilized by complexity.

Extension to subsystem codes?

- With local stabilizer (Bombin) and without (Bacon-Shor).

- Extend to frustration-free Hamiltonians (and therefore to all gapped Hamiltonians, i.e. Hastings).
String-like logical operators $+TQO \Rightarrow$ constant energy barrier.
- This is not directly related to thermal instability.
- 2D Ising model has an energy barrier $\propto \sqrt{n}$, but an energy $\propto n$ at finite temperature.
- What matters is entropy (for a given energy, many more configurations many with small error droplets than with a large one).
- Can we characterize all string-like logical operators?
- We have shown information corruption in time $\propto \sqrt{n}$. Can it be parallelized? (Percolation)
- Relation between commuting projector codes and anyon models.

Can we engineer dead ends?
- Memory that is stabilized by complexity.
- Extension to subsystem codes?
 - With local stabilizer (Bombin) and without (Bacon-Shor).
- Extend to frustration-free Hamiltonians (and therefore to all gapped Hamiltonians, i.e. Hastings).
String-like logical operators plus TQO imply a constant energy barrier.

- This is not directly related to thermal instability.
- 2D Ising model has an energy barrier $\propto \sqrt{n}$, but an energy $\propto n$ at finite temperature.
- What matters is entropy (for a given energy, many more configurations many with small error droplets than with a large one).
- Can we characterize all string-like logical operators?
- We have shown information corruption in time $\propto \sqrt{n}$. Can it be parallelized? (Percolation)
- Relation between commuting projector codes and anyon models.

Can we engineer dead ends?

- Memory that is stabilized by complexity.

Extension to subsystem codes?

- With local stabilizer (Bombin) and without (Bacon-Shor).
- Extend to frustration-free Hamiltonians (and therefore to all gapped Hamiltonians, i.e. Hastings).
String-like logical operators \(+ \text{TQO} \Rightarrow \text{constant energy barrier.} \)
- This is not directly related to thermal instability.
- 2D Ising model has an energy barrier \(\propto \sqrt{n} \), but an energy \(\propto n \) at finite temperature.
- What matters is entropy (for a given energy, many more configurations many with small error droplets than with a large one).
- Can we characterize all string-like logical operators?
- We have shown information corruption in time \(\propto \sqrt{n} \). Can it be parallelized? (Percolation)
- Relation between commuting projector codes and anyon models.

Can we engineer dead ends?
- Memory that is stabilized by complexity.

Extension to subsystem codes?
- With local stabilizer (Bombin) and without (Bacon-Shor).

Extend to frustration-free Hamiltonians (and therefore to all gapped Hamiltonians, i.e. Hastings).
Open Questions

- String-like logical operators +TQO ⇒ constant energy barrier.
 - This is not directly related to thermal instability.
 - 2D Ising model has an energy barrier $\propto \sqrt{n}$, but an energy $\propto n$ at finite temperature.
 - What matters is entropy (for a given energy, many more configurations many with small error droplets than with a large one).
 - Can we characterize all string-like logical operators?
 - We have shown information corruption in time $\propto \sqrt{n}$. Can it be parallelized? (Percolation)
 - Relation between commuting projector codes and anyon models.

- Can we engineer dead ends?
 - Memory that is stabilized by complexity.

- Extension to subsystem codes?
 - With local stabilizer (Bombin) and without (Bacon-Shor).

- Extend to frustration-free Hamiltonians (and therefore to all gapped Hamiltonians, i.e. Hastings).