Two dimensional quantum memories

David Poulin

Département de Physique
Université de Sherbrooke

Collaborators H. Bombin, S. Bravyi, G. Duclos-Cianci, O. Landon-Cardinal, and B. Terhal

Theory Canada 8, Bishop’s University, May 2013
1. Check operators & local codes
2. Holographic Disentangling Lemma
3. Holographic Minimum Distance
4. Capacity-Stability Tradeoff
5. String-Like Logical Operators
Outline

1. Check operators & local codes
2. Holographic Disentangling Lemma
3. Holographic Minimum Distance
4. Capacity-Stability Tradeoff
5. String-Like Logical Operators
Classical codes

Noisy bit

At each time interval, the bit has a probability p of being flipped.

$$0 \rightarrow 1 \quad \& \quad 1 \rightarrow 0$$

Encoding:

- $0 \rightarrow 000$
- $1 \rightarrow 111$

Receive $001 \rightarrow 000$

Error probability $p \rightarrow 3p^2$ improvement provided $p < \frac{1}{3}$.

Quantum encoding:

- $|0\rangle \rightarrow |000\rangle$
- $|1\rangle \rightarrow |111\rangle$

But we can't look at the bits to see if there was an error!

$$\alpha|000\rangle + \beta|111\rangle \rightarrow \begin{cases} |000\rangle \quad \text{with prob. } |\alpha|^2 \\ |111\rangle \quad \text{with prob. } |\beta|^2 \end{cases}$$
Noisy bit

At each time interval, the bit has a probability p of being flipped.

$$0 \rightarrow 1 \quad \& \quad 1 \rightarrow 0$$

Encoding: $0 \rightarrow 000$
$1 \rightarrow 111$

Receive $001 \rightarrow 000$

Error probability $p \rightarrow 3p^2$ improvement provided $p < \frac{1}{3}$.

Quantum encoding: $|0\rangle \rightarrow |000\rangle$
$|1\rangle \rightarrow |111\rangle$

But we can’t look at the bits to see if there was an error!

$$\alpha|000\rangle + \beta|111\rangle \rightarrow \left\{ \begin{array}{ll} |000\rangle \quad \text{with prob. } |\alpha|^2 \\
|111\rangle \quad \text{with prob. } |\beta|^2 \end{array} \right.$$
At each time interval, the bit has a probability p of being flipped.

\[0 \rightarrow 1 \quad \& \quad 1 \rightarrow 0 \]

Encoding:
\[0 \rightarrow 000 \]
\[1 \rightarrow 111 \]

Receive 001 \rightarrow 000

Error probability $p \rightarrow 3p^2$ improvement provided $p < \frac{1}{3}$.

Quantum encoding:
\[|0\rangle \rightarrow |000\rangle \]
\[|1\rangle \rightarrow |111\rangle \]

But we can’t look at the bits to see if there was an error!

\[\alpha|000\rangle + \beta|111\rangle \rightarrow \begin{cases} |000\rangle \text{ with prob. } |\alpha|^2 \\ |111\rangle \text{ with prob. } |\beta|^2 \end{cases} \]
Classical codes

Noisy bit

At each time interval, the bit has a probability p of being flipped.

\[0 \rightarrow 1 \quad \& \quad 1 \rightarrow 0 \]

Encoding:

\[0 \rightarrow 000 \]
\[1 \rightarrow 111 \]

Receive $001 \rightarrow 000$

Error probability $p \rightarrow 3p^2$ improvement provided $p < \frac{1}{3}$.

Quantum encoding:

\[|0\rangle \rightarrow |000\rangle \]
\[|1\rangle \rightarrow |111\rangle \]

But we can’t look at the bits to see if there was an error!

\[\alpha|000\rangle + \beta|111\rangle \rightarrow \begin{cases} |000\rangle \text{ with prob. } |\alpha|^2 \\ |111\rangle \text{ with prob. } |\beta|^2 \end{cases} \]
Noisy bit

At each time interval, the bit has a probability p of being flipped.

\[
0 \rightarrow 1 \quad \& \quad 1 \rightarrow 0
\]

Encoding:

\[
\begin{align*}
0 &\rightarrow 000 \\
1 &\rightarrow 111
\end{align*}
\]

Receive $001 \rightarrow 000$

Error probability $p \rightarrow 3p^2$ improvement provided $p < \frac{1}{3}$.

Quantum encoding:

\[
\begin{align*}
|0\rangle &\rightarrow |000\rangle \\
|1\rangle &\rightarrow |111\rangle
\end{align*}
\]

But we can’t look at the bits to see if there was an error!

\[
\alpha|000\rangle + \beta|111\rangle \rightarrow \begin{cases}
|000\rangle \text{ with prob. } |\alpha|^2 \\
|111\rangle \text{ with prob. } |\beta|^2
\end{cases}
\]
We do not need to know the bit values for the classical code, only the parities.

The first two bits are the same, and the last two bits are different.

⇒ Flip the last one.

These are degenerate measurements: \{00, 11\} vs \{01, 10\}.

Quantum mechanics

\[
P_E = |00\rangle\langle 00| + |11\rangle\langle 11| \quad P_O = |01\rangle\langle 01| + |10\rangle\langle 10|
\]

⇒ Observable $\sigma_z \otimes \sigma_z$

Measure $\sigma_z \sigma_z = -1$ on first two qubits and -1 on last two qubits

⇒ apply σ_x to middle qubit.

This type of measurement requires interactions between qubits.
Syndrome measurement

- We do not need to know the bit values for the classical code, only the parities.
- The first two bits are the same, and the last two bits are different.
 ⇒ Flip the last one.
- These are degenerate measurements: \{00, 11\} vs \{01, 10\}.
- Quantum mechanics
 \[
 P_E = |00\rangle\langle 00| + |11\rangle\langle 11| \quad P_O = |01\rangle\langle 01| + |10\rangle\langle 10|
 \]
 ⇔ Observable \(\sigma_x \otimes \sigma_x\)
- Measure \(\sigma_z \sigma_z = -1\) on first two qubits and \(-1\) on last two qubits
 ⇒ apply \(\sigma_x\) to middle qubit.

This type of measurement requires interactions between qubits
Syndrome measurement

- We do not need to know the bit values for the classical code, only the parities.
- The first two bits are the same, and the last two bits are different. ⇒ Flip the last one.
- These are degenerate measurements: \{00, 11\} vs \{01, 10\}.
- Quantum mechanics
 \[P_E = |00\rangle\langle 00| + |11\rangle\langle 11| \quad P_O = |01\rangle\langle 01| + |10\rangle\langle 10| \]
 ⇒ Observable \(\sigma_z \otimes \sigma_z\)
- Measure \(\sigma_z \sigma_z = -1\) on first two qubits and \(-1\) on last two qubits ⇒ apply \(\sigma_x\) to middle qubit.

This type of measurement requires interactions between qubits
Syndrome measurement

- We do not need to know the bit values for the classical code, only the parities.
- The first two bits are the same, and the last two bits are different. ⇒ Flip the last one.
- These are degenerate measurements: \{00, 11\} vs \{01, 10\}.

Quantum mechanics

\[
P_E = |00\rangle\langle 00| + |11\rangle\langle 11| \quad P_O = |01\rangle\langle 01| + |10\rangle\langle 10|
\]

⇔ Observable $\sigma_z \otimes \sigma_z$

- Measure $\sigma_z \sigma_z = -1$ on first two qubits and -1 on last two qubits
 ⇒ apply σ_x to middle qubit.

This type of measurement requires interactions between qubits
Syndrome measurement

- We do not need to know the bit values for the classical code, only the parities.
- The first two bits are the same, and the last two bits are different. ⇒ Flip the last one.
- These are degenerate measurements: \{00, 11\} vs \{01, 10\}.
- Quantum mechanics

\[
P_E = |00\rangle\langle 00| + |11\rangle\langle 11| \quad P_O = |01\rangle\langle 01| + |10\rangle\langle 10|
\]

⇔ Observable \(\sigma_Z \otimes \sigma_Z\)

- Measure \(\sigma_Z \sigma_Z = -1\) on first two qubits and \(-1\) on last two qubits
 ⇒ apply \(\sigma_X\) to middle qubit.

This type of measurement requires interactions between qubits
Syndrome measurement

- We do not need to know the bit values for the classical code, only the parities.
- The first two bits are the same, and the last two bits are different. ⇒ Flip the last one.
- These are degenerate measurements: \{00, 11\} vs \{01, 10\}.
- Quantum mechanics

\[P_E = \left|00\right>\left<00\right| + \left|11\right>\left<11\right| \quad P_O = \left|01\right>\left<01\right| + \left|10\right>\left<10\right| \]

⇔ Observable \(\sigma_z \otimes \sigma_z\)

- Measure \(\sigma_z \sigma_z = -1\) on first two qubits and \(-1\) on last two qubits
 ⇒ apply \(\sigma_x\) to middle qubit.

This type of measurement requires interactions between qubits
Syndrome measurement

- We do not need to know the bit values for the classical code, only the parities.
- The first two bits are the same, and the last two bits are different. ⇒ Flip the last one.
- These are degenerate measurements: \{00, 11\} vs \{01, 10\}.
- Quantum mechanics

\[
P_E = |00\rangle\langle 00| + |11\rangle\langle 11| \quad P_O = |01\rangle\langle 01| + |10\rangle\langle 10|
\]

⇔ Observable \(\sigma_z \otimes \sigma_z\)

Measure \(\sigma_z \sigma_z = -1\) on first two qubits and \(-1\) on last two qubits
⇒ apply \(\sigma_x\) to middle qubit.
Syndrome measurement

- We do not need to know the bit values for the classical code, only the parities.
- The first two bits are the same, and the last two bits are different. ⇒ Flip the last one.
- These are degenerate measurements: \{00, 11\} vs \{01, 10\}.
- Quantum mechanics

\[
P_E = |00\rangle\langle 00| + |11\rangle\langle 11| \quad P_O = |01\rangle\langle 01| + |10\rangle\langle 10|
\]

⇔ Observable \(\sigma_Z \otimes \sigma_Z\)

- Measure \(\sigma_Z \sigma_Z = -1\) on first two qubits and \(-1\) on last two qubits ⇒ apply \(\sigma_X\) to middle qubit.
Syndrome measurement

- We do not need to know the bit values for the classical code, only the parities.
- The first two bits are the same, and the last two bits are different. ⇒ Flip the last one.
- These are degenerate measurements: \{00, 11\} vs \{01, 10\}.
- Quantum mechanics

\[
P_E = |00⟩⟨00| + |11⟩⟨11| \quad P_O = |01⟩⟨01| + |10⟩⟨10|\]

⇔ Observable \(σ_z \otimes σ_z\)
- Measure \(σ_zσ_z = −1\) on first two qubits and \(−1\) on last two qubits ⇒ apply \(σ_x\) to middle qubit.

This type of measurement requires interactions between qubits
Quantum codes

- Set of states that obey a bunch of check conditions
 \[C = \{ |\psi\rangle : P_j |\psi\rangle = |\psi\rangle, \forall j \} \]
- There must be more than one state in \(C \) for the code to be interesting.
- We measure the check operators, eigenvalue \(\neq +1 \) indicates an error.

Locality

- Because coherent measurement of checks requires coupling the qubits, we restrict the \(P_j \) to couple only neighbouring qubits in some geometry.
- In 2D, this leads to topological codes.

\[C = \text{degenerate ground space of Hamiltonian } H = - \sum_j P_j. \]
Quantum codes

- Set of states that obey a bunch of check conditions
 \[\mathcal{C} = \{ |\psi\rangle : P_j|\psi\rangle = |\psi\rangle, \forall j \} \]
- There must be more than one state in \(\mathcal{C} \) for the code to be interesting.
- We measure the check operators, eigenvalue \(\neq +1 \) indicates an error.

Locality

- Because coherent measurement of checks requires coupling the qubits, we restrict the \(P_j \) to couple only neighbouring qubits in some geometry.
- In 2D, this leads to topological codes.

- \(\mathcal{C} = \) degenerate ground space of Hamiltonian \(H = - \sum_j P_j \).
Quantum codes

- Set of states that obey a bunch of check conditions
 \[C = \{ |\psi\rangle : P_j |\psi\rangle = |\psi\rangle, \forall j \} \]

- There must be more than one state in \(C \) for the code to be interesting.

- We measure the check operators, eigenvalue \(\neq +1 \) indicates an error.

Locality

- Because coherent measurement of checks requires coupling the qubits, we restrict the \(P_j \) to couple only neighbouring qubits in some geometry.

- In 2D, this leads to topological codes.

\[C = \text{degenerate ground space of Hamiltonian } H = - \sum_j P_j. \]
Quantum codes

- Set of states that obey a bunch of check conditions
 \[\mathcal{C} = \{ |\psi\rangle : P_j |\psi\rangle = |\psi\rangle, \forall j \} \]
- There must be more than one state in \(\mathcal{C} \) for the code to be interesting.
- We measure the check operators, eigenvalue \(\neq +1 \) indicates an error.

Locality

- Because coherent measurement of checks requires coupling the qubits, we restrict the \(P_j \) to couple only neighbouring qubits in some geometry.
- In 2D, this leads to topological codes.

\[\mathcal{C} = \text{degenerate ground space of Hamiltonian } H = - \sum_j P_j. \]
Quantum codes

- Set of states that obey a bunch of check conditions
 \[\mathcal{C} = \{ |\psi\rangle : P_j |\psi\rangle = |\psi\rangle, \forall j \} \]
- There must be more than one state in \(\mathcal{C} \) for the code to be interesting.
- We measure the check operators, eigenvalue \(\neq +1 \) indicates an error.

Locality

- Because coherent measurement of checks requires coupling the qubits, we restrict the \(P_j \) to couple only neighbouring qubits in some geometry.
- In 2D, this leads to topological codes.

\[\mathcal{C} = \text{degenerate ground space of Hamiltonian } H = - \sum_j P_j. \]
Quantum codes

- Set of states that obey a bunch of check conditions
 \[C = \{ |\psi\rangle : P_j |\psi\rangle = |\psi\rangle, \forall j \} \]
- There must be more than one state in \(C \) for the code to be interesting.
- We measure the check operators, eigenvalue \(\neq +1 \) indicates an error.

Locality

- Because coherent measurement of checks requires coupling the qubits, we restrict the \(P_j \) to couple only neighbouring qubits in some geometry.
- In 2D, this leads to topological codes.

\[C = \text{degenerate ground space of Hamiltonian } H = - \sum_j P_j. \]
Definitions

- Λ is a 2D lattice.
- Each vertex occupied by d-level quantum particle.
- Hamiltonian $H = -\sum_{X \subseteq \Lambda} P_X$ with
 - $P_X = 0$ if $\text{radius}(X) \geq w$.
 - $[P_X, P_Y] = 0$.
 - P_X are projectors (optional).
- Code $C = \{\psi : P_X |\psi\rangle = |\psi\rangle\}$
 = ground space of H
 = image of code projector $\Pi = \prod_X P_X$
- With proper coarse graining, we can assume that
 - Λ is a regular square lattice.
 - Each P_X acts on 2×2 cell.
Definitions

- Λ is a 2D lattice.
- Each vertex occupied by d-level quantum particle.
- Hamiltonian $H = -\sum_{X \subset \Lambda} P_X$ with
 - $P_X = 0$ if radius$(X) \geq w$.
 - $[P_X, P_Y] = 0$.
 - P_X are projectors (optional).
- Code $\mathcal{C} = \{\psi : P_X|\psi\rangle = |\psi\rangle\}$
 = ground space of H
 = image of code projector $\Pi = \prod_X P_X$
- With proper coarse graining, we can assume that
 - Λ is a regular square lattice.
 - Each P_X acts on 2×2 cell.
Definitions

- Λ is a 2D lattice.
- Each vertex occupied by d-level quantum particle.
- Hamiltonian $H = - \sum_{X \subset \Lambda} P_X$ with
 - $P_X = 0$ if radius(X) ≥ w.
 - $[P_X, P_Y] = 0$.
 - P_X are projectors (optional).
- Code $C = \{ \psi : P_X |\psi\rangle = |\psi\rangle \}$
 - = ground space of H
 - = image of code projector $\Pi = \prod_X P_X$
- With proper coarse graining, we can assume that
 - Λ is a regular square lattice.
 - Each P_X acts on 2×2 cell.
Definitions

- Λ is a 2D lattice.
- Each vertex occupied by d-level quantum particle.
- Hamiltonian $H = -\sum_{X \subset \Lambda} P_X$ with
 - $P_X = 0$ if $\text{radius}(X) \geq w$.
 - $[P_X, P_Y] = 0$.
 - P_X are projectors (optional).
- Code $C = \{ \psi : P_X |\psi\rangle = |\psi\rangle \}$
 - = ground space of H
 - = image of code projector $\Pi = \prod_X P_X$
- With proper coarse graining, we can assume that
 - Λ is a regular square lattice.
 - Each P_X acts on 2×2 cell.
\(\Lambda \) is a 2D lattice.

Each vertex occupied by \(d \)-level quantum particle.

Hamiltonian \(H = - \sum_{X \subset \Lambda} P_X \) with
- \(P_X = 0 \) if radius\((X) \geq w \).
- \([P_X, P_Y] = 0\).
- \(P_X \) are projectors (optional).

Code \(\mathcal{C} = \{ \psi : P_X |\psi\rangle = |\psi\rangle \}\)
- = ground space of \(H \)
- = image of code projector \(\Pi = \prod_X P_X \)

With proper coarse graining, we can assume that
- \(\Lambda \) is a regular square lattice.
- Each \(P_X \) acts on \(2 \times 2 \) cell.
Definitions

- \(\Lambda \) is a 2D lattice.
- Each vertex occupied by \(d \)-level quantum particle.
- Hamiltonian \(H = -\sum_{X \subset \Lambda} P_X \) with
 - \(P_X = 0 \) if \(\text{radius}(X) \geq w \).
 - \([P_X, P_Y] = 0\).
 - \(P_X \) are projectors (optional).
- Code \(\mathcal{C} = \{ \psi : P_X |\psi\rangle = |\psi\rangle \} \)
 - = ground space of \(H \)
 - = image of code projector \(\Pi = \mathop{\prod}_X P_X \)
- With proper coarse graining, we can assume that
 - \(\Lambda \) is a regular square lattice.
 - Each \(P_X \) acts on \(2 \times 2 \) cell.
Definitions

- Λ is a 2D lattice.
- Each vertex occupied by d-level quantum particle.
- Hamiltonian $H = -\sum_{X \subset \Lambda} P_X$ with
 - $P_X = 0$ if \text{radius}(X) \geq w$.
 - $[P_X, P_Y] = 0$.
 - P_X are projectors (optional).
- Code $C = \{ \psi : P_X |\psi\rangle = |\psi\rangle \}$
 - = ground space of H
 - = image of code projector $\Pi = \prod_X P_X$
- With proper coarse graining, we can assume that
 - Λ is a regular square lattice.
 - Each P_X acts on 2×2 cell.
Definitions

- \(\Lambda \) is a 2D lattice.
- Each vertex occupied by \(d \)-level quantum particle.
- Hamiltonian \(H = -\sum_{X \subseteq \Lambda} P_X \) with
 - \(P_X = 0 \) if \(\text{radius}(X) \geq w \).
 - \([P_X, P_Y] = 0 \).
 - \(P_X \) are projectors (optional).
- Code \(\mathcal{C} = \{\psi : P_X|\psi\rangle = |\psi\rangle\} \)
 - = ground space of \(H \)
 - = image of code projector \(\Pi = \prod_X P_X \)
- With proper coarse graining, we can assume that
 - \(\Lambda \) is a regular square lattice.
 - Each \(P_X \) acts on \(2 \times 2 \) cell.
Definitions

- Λ is a 2D lattice.
- Each vertex occupied by d-level quantum particle.
- Hamiltonian $H = -\sum_{X \subset \Lambda} P_X$ with
 - $P_X = 0$ if radius$(X) \geq w$.
 - $[P_X, P_Y] = 0$.
 - P_X are projectors (optional).
- Code $C = \{ \psi : P_X |\psi\rangle = |\psi\rangle \}$
 - Λ is a regular square lattice.
 - Each P_X acts on 2×2 cell.
Definitions

- Λ is a 2D lattice.
- Each vertex occupied by d-level quantum particle.
- Hamiltonian $H = -\sum_{X \subseteq \Lambda} P_X$ with
 - $P_X = 0$ if radius(X) $\geq w$.
 - $[P_X, P_Y] = 0$.
 - P_X are projectors (optional).
- Code $C = \{ \psi : P_X |\psi\rangle = |\psi\rangle \}$
 - = ground space of H
 - = image of code projector $\Pi = \prod_X P_X$
- With proper coarse graining, we can assume that
 - Λ is a regular square lattice.
 - Each P_X acts on 2×2 cell.
Well known examples

- Kitaev’s toric code
- Bombin’s topological color codes
- Levin & Wen’s string-net models
- Turaev-Viro models
- Kitaev’s quantum double models
- Most known models with topological quantum order
Well known examples

- Kitaev’s toric code
- Bombin’s topological color codes
- Levin & Wen’s string-net models
- Turaev-Viro models
- Kitaev’s quantum double models
- Most known models with topological quantum order
Well known examples

- Kitaev’s toric code
- Bombin’s topological color codes
- Levin & Wen’s string-net models
 - Turaev-Viro models
 - Kitaev’s quantum double models
- Most known models with topological quantum order
Well known examples

- Kitaev’s toric code
- Bombin’s topological color codes
- Levin & Wen’s string-net models
- Turaev-Viro models
 - Kitaev’s quantum double models
 - Most known models with topological quantum order
Well known examples

- Kitaev’s toric code
- Bombin’s topological color codes
- Levin & Wen’s string-net models
- Turaev-Viro models
- Kitaev’s quantum double models

Most known models with topological quantum order
Well known examples

- Kitaev’s toric code
- Bombin’s topological color codes
- Levin & Wen’s string-net models
- Turaev-Viro models
- Kitaev’s quantum double models
- Most known models with topological quantum order
Lattice

- Two-dimensional square lattice
- Periodic boundary conditions
Kitaev’s code

Site operator:
\[A_s = \prod_{i \in v(s)} \sigma_x^i \]

Plaquette operator:
\[B_p = \prod_{i \in v(p)} \sigma_z^i \]

Hamiltonian:
\[H = - \left(\sum_s A_s + \sum_p B_p \right) \]
Kitaev’s code

- **Site operator:**
 \[A_s = \prod_{i \in v(s)} \sigma^i_x \]

- **Plaquette operator:**
 \[B_p = \prod_{i \in v(p)} \sigma^i_z \]

- **Hamiltonian:**
 \[H = -\left(\sum_s A_s + \sum_p B_p \right) \]
Kitaev’s code

Site operator:
\[A_s = \prod_{i \in v(s)} \sigma_x^i \]

Plaquette operator:
\[B_p = \prod_{i \in v(p)} \sigma_z^i \]

Hamiltonian:
\[H = -\left(\sum_s A_s + \sum_p B_p \right) \]
Threshold $\approx 15\%$.

- Order-disorder phase transition.
Threshold $\approx 15\%$.

Order-disorder phase transition.
Desirable features

- Let $|\psi_1\rangle$ and $|\psi_2\rangle$ be two code states (ground states).
- Suppose there exists a local (e.g. single spin) measurement σ that distinguishes them.
- Then the environment can also learn which state is encoded by “looking” at a single spin.

$$\alpha |\psi_1\rangle + \beta |\psi_2\rangle \rightarrow \begin{cases}
|\psi_1\rangle \text{ with prob. } |\alpha|^2 \\
|\psi_2\rangle \text{ with prob. } |\beta|^2
\end{cases}$$

- So a code should not have such local “order parameter” : all codes states should look identical locally.
Desirable features

- Let $|\psi_1\rangle$ and $|\psi_2\rangle$ be two code states (ground states).
- Suppose there exists a local (e.g. single spin) measurement σ that distinguishes them.
- Then the environment can also learn which state is encoded by "looking" at a single spin.

$$\alpha|\psi_1\rangle + \beta|\psi_2\rangle \rightarrow \begin{cases} |\psi_1\rangle \text{ with prob. } |\alpha|^2 \\ |\psi_2\rangle \text{ with prob. } |\beta|^2 \end{cases}$$

- So a code should not have such local "order parameter": all codes states should look identical locally.
Let $|\psi_1\rangle$ and $|\psi_2\rangle$ be two code states (ground states).

Suppose there exists a local (e.g. single spin) measurement σ that distinguishes them.

Then the environment can also learn which state is encoded by “looking” at a single spin.

$$\alpha |\psi_1\rangle + \beta |\psi_2\rangle \rightarrow \begin{cases} |\psi_1\rangle & \text{with prob. } |\alpha|^2 \\ |\psi_2\rangle & \text{with prob. } |\beta|^2 \end{cases}$$

So a code should not have such local “order parameter” : all codes states should look identical locally.
Desirable features

- Let $|\psi_1\rangle$ and $|\psi_2\rangle$ be two code states (ground states).
- Suppose there exists a local (e.g. single spin) measurement σ that distinguishes them.
- Then the environment can also learn which state is encoded by “looking" at a single spin.

$$\alpha |\psi_1\rangle + \beta |\psi_2\rangle \rightarrow \begin{cases} |\psi_1\rangle \quad \text{with prob. } |\alpha|^2 \\ |\psi_2\rangle \quad \text{with prob. } |\beta|^2 \end{cases}$$

- So a code should not have such local “order parameter":
 all codes states should look identical locally.
Correctable region

A region $M \subset \Lambda$ is *correctable* if there exists a recovery operation \mathcal{R} such that $\mathcal{R}(\text{Tr}_M \rho) = \rho$ for all code states ρ.

M correctable \iff No order parameter on M \iff $\Pi O_M \Pi \propto \Pi$.

Minimum distance

The minimum distance d is the size of the smallest non-correctable region.

Logical operator

Operator L such that $L|\psi\rangle$ is a code state for any code state $|\psi\rangle$.

David Poulin (Sherbrooke) 2D quantum memories Theory Canada 8 13 / 24
Correctable region

A region $M \subset \Lambda$ is *correctable* if there exists a recovery operation \mathcal{R} such that $\mathcal{R}(\text{Tr}_M \rho) = \rho$ for all code states ρ.

M correctable \iff No order parameter on $M \iff \Pi O_M \Pi \propto \Pi$.

Minimum distance

The minimum distance d is the size of the smallest non-correctable region.

Logical operator

Operator L such that $L|\psi\rangle$ is a code state for any code state $|\psi\rangle$.

David Poulin (Sherbrooke)
2D quantum memories
Theory Canada 8
Correctable region

A region $M \subset \Lambda$ is correctable if there exists a recovery operation \mathcal{R} such that $\mathcal{R}(\text{Tr}_M \rho) = \rho$ for all code states ρ. M correctable \iff No order parameter on $M \iff \Pi O_M \Pi \propto \Pi$.

Minimum distance

The minimum distance d is the size of the smallest non-correctable region.

Logical operator

Operator L such that $L |\psi\rangle$ is a code state for any code state $|\psi\rangle$.
Outline

1. Check operators & local codes
2. Holographic Disentangling Lemma
3. Holographic Minimum Distance
4. Capacity-Stability Tradeoff
5. String-Like Logical Operators
Holographic disentangling lemma (Bravyi, DP, Terhal)

Let \(M \subseteq \Lambda \) be a correctable region and suppose that its boundary \(\partial M \) is also correctable. Then, there exists a unitary operator \(U_{\partial M} \) acting only on the boundary of \(M \) such that, for any code state \(|\psi\rangle \),

\[
U_{\partial M}|\psi\rangle = |\phi_M\rangle \otimes |\psi'_{\overline{M}}\rangle
\]

for some fixed state \(|\phi_M\rangle \) on \(M \).
Let M be correctable.

Assume ∂M is correctable.

Let $M = A \cup B, \overline{M} = C \cup D$, and $\partial M = B \cup C$.

There exists a unitary transformation $U_{\partial M}$ such that, for any $|\psi\rangle \in C$,

$$U_{\partial M}|\psi\rangle = |\phi_M\rangle \otimes |\psi_M^{\prime}\rangle$$

where $|\phi_M\rangle$ is the same for all $|\psi\rangle$.

Remark

For a trivial code $\text{Tr}\Pi = 1$, every region is correctable, so we recover the area law $S(M) \leq |\partial M|$ for commuting Hamiltonians of Wolf, Verstraete, Hastings, and Cirac.
Let M be correctable.

Assume ∂M is correctable.

Let $M = A \cup B$, $\overline{M} = C \cup D$, and $\partial M = B \cup C$.

There exists a unitary transformation $U_{\partial M}$ such that, for any $|\psi\rangle \in C$

$$U_{\partial M}|\psi\rangle = |\phi_{\overline{M}}\rangle \otimes |\psi_{M}'\rangle$$

where $|\phi_{\overline{M}}\rangle$ is the same for all $|\psi\rangle$.

Remark

For a trivial code $\text{Tr} \Pi = 1$, every region is correctable, so we recover the area law $S(M) \leq |\partial M|$ for commuting Hamiltonians of Wolf, Verstraete, Hastings, and Cirac.
Let M be correctable.

Assume ∂M is correctable.

Let $M = A \cup B$, $\overline{M} = C \cup D$, and $\partial M = B \cup C$.

There exists a unitary transformation $U_{\partial M}$ such that, for any $|\psi\rangle \in C$

$$U_{\partial M}|\psi\rangle = |\phi_M\rangle \otimes |\psi'_M\rangle$$

where $|\phi_M\rangle$ is the same for all $|\psi\rangle$.

Remark

For a trivial code $\text{Tr}\Pi = 1$, every region is correctable, so we recover the area law $S(M) \leq |\partial M|$ for commuting Hamiltonians of Wolf, Verstraete, Hastings, and Cirac.
Let M be correctable.

Assume ∂M is correctable.

Let $M = A \cup B$, $\overline{M} = C \cup D$, and $\partial M = B \cup C$.

There exists a unitary transformation $U_{\partial M}$ such that, for any $|\psi\rangle \in C$

$$U_{\partial M} |\psi\rangle = |\phi_M\rangle \otimes |\psi'_M\rangle$$

where $|\phi_M\rangle$ is the same for all $|\psi\rangle$.

Remark

For a trivial code $\text{Tr}\Pi = 1$, every region is correctable, so we recover the area law $S(M) \leq |\partial M|$ for commuting Hamiltonians of Wolf, Verstraete, Hastings, and Cirac.
Let M be correctable.
Assume ∂M is correctable.
Let $M = A \cup B$, $\overline{M} = C \cup D$, and $\partial M = B \cup C$.

There exists a unitary transformation $U_{\partial M}$ such that, for any $|\psi\rangle \in C$

$$U_{\partial M}|\psi\rangle = |\phi_M\rangle \otimes |\psi_M'\rangle$$

where $|\phi_M\rangle$ is the same for all $|\psi\rangle$.

Remark

For a trivial code $\text{Tr}{\Pi} = 1$, every region is correctable, so we recover the area law $S(M) \leq |\partial M|$ for commuting Hamiltonians of Wolf, Verstraete, Hastings, and Cirac.
Holographic Disentangling Lemma

Let M be correctable.
Assume ∂M is correctable.
Let $M = A \cup B$, $\overline{M} = C \cup D$, and $\partial M = B \cup C$.

There exists a unitary transformation $U_{\partial M}$ such that, for any $|\psi\rangle \in C$

$$U_{\partial M}|\psi\rangle = |\phi_M\rangle \otimes |\psi'_M\rangle$$

where $|\phi_M\rangle$ is the same for all $|\psi\rangle$.

Remark
For a trivial code $\text{Tr} \Pi = 1$, every region is correctable, so we recover the area law $S(M) \leq |\partial M|$ for commuting Hamiltonians of Wolf, Verstraete, Hastings, and Cirac.
Let M be correctable.
Assume ∂M is correctable.
Let $M = A \cup B$, $\overline{M} = C \cup D$, and $\partial M = B \cup C$.

There exists a unitary transformation $U_{\partial M}$ such that, for any $|\psi\rangle \in C$

$$U_{\partial M}|\psi\rangle = |\phi_M\rangle \otimes |\psi'_M\rangle$$

where $|\phi_M\rangle$ is the same for all $|\psi\rangle$.

Remark

For a trivial code $\text{Tr}\Pi = 1$, every region is correctable, so we recover the area law $S(M) \leq |\partial M|$ for commuting Hamiltonians of Wolf, Verstraete, Hastings, and Cirac.
Outline

1. Check operators & local codes
2. Holographic Disentangling Lemma
3. Holographic Minimum Distance
4. Capacity-Stability Tradeoff
5. String-Like Logical Operators
Holographic minimum distance (Bravyi, DP, Terhal)

Region $M \subset \Lambda$ is correctable if its boundary is smaller than the minimum distance $|\partial M| \leq cd$.

- Bulky errors are not problematic: it’s the skinny ones we need to worry about.
- This hints at our next result: string-like logical operators.
Holographic minimum distance (Bravyi, DP, Terhal)

Region $M \subseteq \Lambda$ is correctable if its boundary is smaller than the minimum distance $|\partial M| \leq cd$.

- Bulky errors are not problematic: it’s the skinny ones we need to worry about.
- This hints at our next result: string-like logical operators.
Holographic minimum distance (Bravyi, DP, Terhal)

Region $M \subset \Lambda$ is correctable if its boundary is smaller than the minimum distance $|\partial M| \leq cd$.

- Bulky errors are not problematic: it’s the skinny ones we need to worry about.
- This hints at our next result: string-like logical operators.
Let $M \subset \Lambda$ be a correctable region.

- If $|\partial M| \leq d$, then ∂M is also correctable.
- Thus, we can reconstruct any code state ρ from $\rho_{AD} = \text{Tr}_{\partial M} \rho$.
- But from the Holographic disentangling lemma, $\rho_{AD} = \eta_A \otimes \rho_D$ with η_A independent of the encoded state ρ.
- Thus, we can reconstruct ρ from $\rho_D = \text{Tr}_{M \cup \partial M} \rho$, so $M \cup \partial M$ is correctable.
- We can continue to grow M this way until $|\partial M| \geq d$.
Proof

- Let $M \subseteq \Lambda$ be a correctable region.
- If $|\partial M| \leq d$, then ∂M is also correctable.
- Thus, we can reconstruct any code state ρ from $\rho_{AD} = \text{Tr}_{\partial M} \rho$.
- But from the Holographic disentangling lemma, $\rho_{AD} = \eta_A \otimes \rho_D$ with η_A independent of the encoded state ρ.
- Thus, we can reconstruct ρ from $\rho_D = \text{Tr}_{M \cup \partial M} \rho$, so $M \cup \partial M$ is correctable.
- We can continue to grow M this way until $|\partial M| \geq d$.

$M \subseteq \Lambda \setminus \bar{M}$
Proof

- Let $M \subseteq \Lambda$ be a correctable region.
- If $|\partial M| \leq d$, then ∂M is also correctable.
- Thus, we can reconstruct any code state ρ from $\rho_{AD} = \text{Tr}_{\partial M} \rho$.
- But from the Holographic disentangling lemma, $\rho_{AD} = \eta_A \otimes \rho_D$ with η_A independent of the encoded state ρ.
- Thus, we can reconstruct ρ from $\rho_D = \text{Tr}_{M \cup \partial M} \rho$, so $M \cup \partial M$ is correctable.
- We can continue to grow M this way until $|\partial M| \geq d$.
Proof

- Let $M \subset \Lambda$ be a correctable region.
- If $|\partial M| \leq d$, then ∂M is also correctable.
- Thus, we can reconstruct any code state ρ from $\rho_{AD} = \text{Tr}_{\partial M} \rho$.
- But from the Holographic disentangling lemma, $\rho_{AD} = \eta_A \otimes \rho_D$ with η_A independent of the encoded state ρ.
- Thus, we can reconstruct ρ from $\rho_D = \text{Tr}_{M \cup \partial M} \rho$, so $M \cup \partial M$ is correctable.
- We can continue to grow M this way until $|\partial M| \geq d$.

\[M = \Lambda \setminus \bar{M} \]
Proof

- Let $M \subset \Lambda$ be a correctable region.
- If $|\partial M| \leq d$, then ∂M is also correctable.
- Thus, we can reconstruct any code state ρ from $\rho_{AD} = \text{Tr}_{\partial M} \rho$.
- But from the Holographic disentangling lemma, $\rho_{AD} = \eta_A \otimes \rho_D$ with η_A independent of the encoded state ρ.
- Thus, we can reconstruct ρ from $\rho_D = \text{Tr}_{M \cup \partial M} \rho$, so $M \cup \partial M$ is correctable.
- We can continue to grow M this way until $|\partial M| \geq d$.

David Poulin (Sherbrooke)
Proof

- Let $M \subset \Lambda$ be a correctable region.
- If $|\partial M| \leq d$, then ∂M is also correctable.
- Thus, we can reconstruct any code state ρ from $\rho_{AD} = \text{Tr}_{\partial M}\rho$.
- But from the Holographic disentangling lemma, $\rho_{AD} = \eta_A \otimes \rho_D$ with η_A independent of the encoded state ρ.
- Thus, we can reconstruct ρ from $\rho_D = \text{Tr}_{M \cup \partial M}\rho$, so $M \cup \partial M$ is correctable.
- We can continue to grow M this way until $|\partial M| \geq d$.

$\bar{M} = \Lambda \setminus M$
Proof

- Let $M \subset \Lambda$ be a correctable region.
- If $|\partial M| \leq d$, then ∂M is also correctable.
- Thus, we can reconstruct any code state ρ from $\rho_{AD} = \text{Tr}_{\partial M}\rho$.
- But from the Holographic disentangling lemma, $\rho_{AD} = \eta_A \otimes \rho_D$ with η_A independent of the encoded state ρ.
- Thus, we can reconstruct ρ from $\rho_D = \text{Tr}_{M \cup \partial M}\rho$, so $M \cup \partial M$ is correctable.
- We can continue to grow M this way until $|\partial M| \geq d$.
Proof

- Let $M \subset \Lambda$ be a correctable region.
- If $|\partial M| \leq d$, then ∂M is also correctable.
- Thus, we can reconstruct any code state ρ from $\rho_{AD} = \text{Tr}_{\partial M} \rho$.
- But from the Holographic disentangling lemma, $\rho_{AD} = \eta_A \otimes \rho_D$ with η_A independent of the encoded state ρ.
- Thus, we can reconstruct ρ from $\rho_D = \text{Tr}_{M \cup \partial M} \rho$, so $M \cup \partial M$ is correctable.
- We can continue to grow M this way until $|\partial M| \geq d$.
Outline

1. Check operators & local codes
2. Holographic Disentangling Lemma
3. Holographic Minimum Distance
4. Capacity-Stability Tradeoff
5. String-Like Logical Operators
Statement of the result

- $n =$ number of qubits
- $k =$ number of encoded qubits
- $d =$ minimum distance

Capacity-Stability Tradeoff

\[k \leq c \frac{n}{d^2} \]

- Singleton’s bound: $k \leq n - 2(d - 1)$.
- Hamming bound: $k \leq n \left[1 - \frac{d}{2n} \log 3 - H\left(\frac{d}{2n} \right) \right]$.
- Kitaev’s codes (with punctures) saturate this bound, so it is tight.
- No “good codes” in 2D, i.e. $k \propto n$ and $d \propto n$.
- For 2D classical codes, $k \leq c \frac{n}{\sqrt{d}}$.
Statement of the result

- \(n \) = number of qubits
- \(k \) = number of encoded qubits
- \(d \) = minimum distance

Capacity-Stability Tradeoff

\[k \leq c \frac{n}{d^2} \]

- Singleton's bound: \(k \leq n - 2(d - 1) \).
- Hamming bound: \(k \leq n \left[1 - \frac{d}{2n} \log 3 - H\left(\frac{d}{2n}\right) \right] \).
- Kitaev's codes (with punctures) saturate this bound, so it is tight.
- No "good codes" in 2D, i.e. \(k \propto n \) and \(d \propto n \).
- For 2D classical codes, \(k \leq c \frac{n}{\sqrt{d}} \).
Statement of the result

- $n =$ number of qubits
- $k =$ number of encoded qubits
- $d =$ minimum distance

Capacity-Stability Tradeoff

$$k \leq c \frac{n}{d^2}$$

- Singleton's bound: $k \leq n - 2(d - 1)$.
- Hamming bound: $k \leq n \left[1 - \frac{d}{2n} \log 3 - H\left(\frac{d}{2n}\right)\right]$.
- Kitaev's codes (with punctures) saturate this bound, so it is tight.
- No "good codes" in 2D, i.e. $k \propto n$ and $d \propto n$.
- For 2D classical codes, $k \leq c \frac{n}{\sqrt{d}}$.
Statement of the result

- $n =$ number of qubits
- $k =$ number of encoded qubits
- $d =$ minimum distance

Capacity-Stability Tradeoff

$$k \leq c \frac{n}{d^2}$$

- Singleton’s bound: $k \leq n - 2(d - 1)$.
- Hamming bound: $k \leq n \left[1 - \frac{d}{2n} \log 3 - H\left(\frac{d}{2n}\right)\right]$.
- Kitaev’s codes (with punctures) saturate this bound, so it is tight.
- No “good codes” in 2D, i.e. $k \propto n$ and $d \propto n$.
- For 2D classical codes, $k \leq c \frac{n}{\sqrt{d}}$.
Statement of the result

- $n =$ number of qubits
- $k =$ number of encoded qubits
- $d =$ minimum distance

Capacity-Stability Tradeoff

$$k \leq c \frac{n}{d^2}$$

Singleton’s bound: $k \leq n - 2(d - 1)$.

Hamming bound: $k \leq n \left[1 - \frac{d}{2n} \log 3 - H\left(\frac{d}{2n}\right) \right]$.

Kitaev’s codes (with punctures) saturate this bound, so it is tight.

No “good codes” in 2D, i.e. $k \propto n$ and $d \propto n$.

For 2D classical codes, $k \leq c \frac{n}{\sqrt{d}}$.
Capacity-Stability Tradeoff

Statement of the result

- \(n = \) number of qubits
- \(k = \) number of encoded qubits
- \(d = \) minimum distance

\[k \leq c \frac{n}{d^2} \]

- Singleton’s bound: \(k \leq n - 2(d - 1) \).
- Hamming bound: \(k \leq n \left[1 - \frac{d}{2n} \log 3 - H\left(\frac{d}{2n}\right) \right] \).
- Kitaev’s codes (with punctures) saturate this bound, so it is tight.
- No “good codes” in 2D, i.e. \(k \propto n \) and \(d \propto n \).
- For 2D classical codes, \(k \leq c \frac{n}{\sqrt{d}} \).
Statement of the result

- $n =$ number of qubits
- $k =$ number of encoded qubits
- $d =$ minimum distance

Capacity-Stability Tradeoff

$$k \leq c \frac{n}{d^2}$$

- Singleton’s bound: $k \leq n - 2(d - 1)$.
- Hamming bound: $k \leq n \left[1 - \frac{d}{2n} \log 3 - H\left(\frac{d}{2n}\right)\right]$.
- Kitaev’s codes (with punctures) saturate this bound, so it is tight.
 - No “good codes” in 2D, i.e. $k \propto n$ and $d \propto n$.
 - For 2D classical codes, $k \leq c \frac{n}{\sqrt{d}}$.
Statement of the result

- \(n \) = number of qubits
- \(k \) = number of encoded qubits
- \(d \) = minimum distance

Capacity-Stability Tradeoff

\[
k \leq c \frac{n}{d^2}
\]

Singleton’s bound: \(k \leq n - 2(d - 1) \).

Hamming bound: \(k \leq n \left[1 - \frac{d}{2n} \log 3 - H\left(\frac{d}{2n}\right) \right] \).

Kitaev’s codes (with punctures) saturate this bound, so it is tight.

No “good codes” in 2D, i.e. \(k \propto n \) and \(d \propto n \).

For 2D classical codes, \(k \leq c \frac{n}{\sqrt{d}} \).
Capacity-Stability Tradeoff

Statement of the result

- \(n \) = number of qubits
- \(k \) = number of encoded qubits
- \(d \) = minimum distance

Capacity-Stability Tradeoff

\[k \leq c \frac{n}{d^2} \]

Singleton’s bound: \(k \leq n - 2(d - 1) \).
Hamming bound: \(k \leq n \left[1 - \frac{d}{2n} \log 3 - H\left(\frac{d}{2n}\right) \right] \).
Kitaev’s codes (with punctures) saturate this bound, so it is tight.
No “good codes” in 2D, i.e. \(k \propto n \) and \(d \propto n \).
For 2D classical codes, \(k \leq c \frac{n}{\sqrt{d}} \).
Outline

1. Check operators & local codes
2. Holographic Disentangling Lemma
3. Holographic Minimum Distance
4. Capacity-Stability Tradeoff
5. String-Like Logical Operators
String-like logical operators (Haah, Preskill)

There exists a non-trivial logical operator supported on a string-like region.

- Exists U_M such that $U_M|\psi\rangle = |\psi'\rangle$.
 - $|\psi\rangle \neq |\psi'\rangle$.
 - $|\psi\rangle, |\psi'\rangle \in \mathcal{C}$.

- Well known for Kitaev’s toric code.
- Intuitive for known models that support anyons:
 - The ground state can be changed by dragging an anyon around a topologically non-trivial loop.
 - This process is realized on a string, and generated a logical operation.
String-like logical operators (Haah, Preskill)

There exists a non-trivial logical operator supported on a string-like region.

- Exists U_M such that $U_M|\psi\rangle = |\psi'\rangle$.
 - $|\psi\rangle \neq |\psi'\rangle$.
 - $|\psi\rangle, |\psi'\rangle \in \mathcal{C}$.

- Well known for Kitaev’s toric code.
- Intuitive for known models that support anyons:
 - The ground state can be changed by dragging an anyon around a topologically non-trivial loop.
 - This process is realized on a string, and generated a logical operation.
String-like logical operators (Haah, Preskill)

There exists a non-trivial logical operator supported on a string-like region.

- Exists U_M such that $U_M |\psi\rangle = |\psi'\rangle$.
 - $|\psi\rangle \neq |\psi'\rangle$.
 - $|\psi\rangle, |\psi'\rangle \in \mathcal{C}$.

- Well known for Kitaev’s toric code.
- Intuitive for known models that support anyons:
 - The ground state can be changed by dragging an anyon around a topologically non-trivial loop.
 - This process is realized on a string, and generated a logical operation.
String-like logical operators (Haah, Preskill)

There exists a non-trivial logical operator supported on a string-like region.

 Exists U_M such that $U_M |\psi\rangle = |\psi'\rangle$.
 - $|\psi\rangle \neq |\psi'\rangle$.
 - $|\psi\rangle, |\psi'\rangle \in \mathcal{C}$.

Well known for Kitaev’s toric code.
 - Intuitive for known models that support anyons:
 - The ground state can be changed by dragging an anyon around a topologically non-trivial loop.
 - This process is realized on a string, and generated a logical operation.
String-like logical operators (Haah, Preskill)

There exists a non-trivial logical operator supported on a string-like region.

- Exists U_M such that $U_M |\psi\rangle = |\psi'\rangle$.
 - $|\psi\rangle \neq |\psi'\rangle$.
 - $|\psi\rangle, |\psi'\rangle \in \mathcal{C}$.

- Well known for Kitaev’s toric code.
- Intuitive for known models that support anyons:
 - The ground state can be changed by dragging an anyon around a topologically non-trivial loop.
 - This process is realized on a string, and generated a logical operation.
There exists a non-trivial logical operator supported on a string-like region.

- Exists U_M such that $U_M|\psi\rangle = |\psi'\rangle$.
 - $|\psi\rangle \neq |\psi'\rangle$.
 - $|\psi\rangle, |\psi'\rangle \in \mathcal{C}$.

- Well known for Kitaev’s toric code.
- Intuitive for known models that support anyons:
 - The ground state can be changed by dragging an anyon around a topologically non-trivial loop.
 - This process is realized on a string, and generated a logical operation.
String-like logical operators (Haah, Preskill)

There exists a non-trivial logical operator supported on a string-like region.

- Exists U_M such that $U_M |\psi\rangle = |\psi'\rangle$.
 - $|\psi\rangle \neq |\psi'\rangle$.
 - $|\psi\rangle, |\psi'\rangle \in \mathcal{C}$.

- Well known for Kitaev’s toric code.
- Intuitive for known models that support anyons:
 - The ground state can be changed by dragging an anyon around a topologically non-trivial loop.
 - This process is realized on a string, and generated a logical operation.
Quantum error correction requires joint qubit measurements.
- Local check operators in 2D \Rightarrow topological codes.

Natural relation between codes and quantum many-body physics.
- Large minimum distance \Leftrightarrow Topological quantum order (order with no local order parameter).
- Disentangling lemma \Leftrightarrow Area law.
- Fault tolerant threshold \Leftrightarrow phase transition.
Quantum error correction requires joint qubit measurements.

- Local check operators in 2D \Rightarrow topological codes.

Natural relation between codes and quantum many-body physics.

- Large minimum distance \leftrightarrow Topological quantum order (order with no local order parameter).
- Disentangling lemma \leftrightarrow Area law.
- Fault tolerant threshold \leftrightarrow phase transition.
Take home messages

- Quantum error correction requires joint qubit measurements.
 - Local check operators in 2D \Rightarrow topological codes.
- Natural relation between codes and quantum many-body physics.
 - Large minimum distance \Leftrightarrow Topological quantum order (order with no local order parameter).
 - Disentangling lemma \Leftrightarrow Area law.
 - Fault tolerant threshold \Leftrightarrow phase transition.
Quantum error correction requires joint qubit measurements.
- Local check operators in 2D \Rightarrow topological codes.

Natural relation between codes and quantum many-body physics.
- Large minimum distance \iff Topological quantum order (order with no local order parameter).
 - Disentangling lemma \iff Area law.
 - Fault tolerant threshold \iff phase transition.
Quantum error correction requires joint qubit measurements.
 - Local check operators in 2D ⇒ topological codes.
Natural relation between codes and quantum many-body physics.
 - Large minimum distance ⇔ Topological quantum order (order with no local order parameter).
 - Disentangling lemma ⇔ Area law.
 - Fault tolerant threshold ⇔ phase transition.
Quantum error correction requires joint qubit measurements.
- Local check operators in 2D \Rightarrow topological codes.

Natural relation between codes and quantum many-body physics.
- Large minimum distance \Leftrightarrow Topological quantum order (order with no local order parameter).
- Disentangling lemma \Leftrightarrow Area law.
- Fault tolerant threshold \Leftrightarrow phase transition.