
PHYSICAL REVIEW B 99, 094408 (2019)

Magnetoelastic coupling and the magnetization plateau in Ba3CoSb2O9
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High-precision ultrasonic measurements are used to study magnetoelastic coupling as a function of the in-
plane magnetic field orientation in the spin-1/2 triangular lattice antiferromagnet Ba3CoSb2O9. The relevance
of this coupling in stabilizing the 1/3 magnetization plateau is explored. The analysis indicates that, while the
magnetoelastic coupling in Ba3CoSb2O9 is large in comparison to other triangular lattice antiferromagnets, the
strength of this coupling is still too small to fully account for the magnetization plateau width in Ba3CoSb2O9.
Spin fluctuations are therefore the dominant mechanism inducing and stabilizing the magnetization plateau. Our
results also show that the amplitude of the spin fluctuations suddenly drop as the V phase is induced at higher
field.
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I. INTRODUCTION

Geometrically frustrated triangular lattice antiferromag-
nets (TLAFs) have been widely studied in recent decades,
as they show an impressive variety of exotic magnetic states
[1–3]. The discovery of a magnetization plateau in a number
of TLAFs with easy-plane anisotropy makes these systems
even more fascinating [4–8]. The magnetization plateau is
observed at a value of 1/3 of the magnetization saturation
(ms) for a magnetic field applied in the triangular plane [4–11].
This plateau is known to be associated with the collinear up-
up-down (uud) state with two spins parallel to the field while
the third one is antiparallel. The magnetic field–temperature
phase diagrams of TLAFs have also been the object of
multiple theoretical and numerical studies [12–17]. For ex-
ample, the magnetic phase diagram by M. V. Gvozdikova
et al. [12], determined from Monte Carlo simulations us-
ing a classical Heisenberg model for two-dimensional (2D)
TLAFs, is shown in Fig. 1(a). According to these simulations
and other numerical works [13,15–17], the anticipated spin
configurations correspond to the 120◦ order at zero field,
Y state, uud state, and V state, as illustrated in Fig. 1(a).
As shown in Fig. 1(b), these predictions compare well with
recent experimental results obtained for the spin-1/2 easy-
plane quasi-2D TLAF Ba3CoSb2O9 where TN = 3.8 K [18].
While this simple classical model accounts well for the ob-
served phase sequence as a function of the field, as well as a
magnetization plateau associated with the collinear uud state
for T > 0 K [12], it fails considerably at T = 0 K where the
width of the magnetization plateau collapses, in contradiction
with the experimental observations (Fig. 1(b) [18]).

Considering that thermal fluctuations generally favor
collinear states [12,16], it has been proposed and shown
that quantum fluctuations can be the mechanism for lifting
the classical degeneracy in favor of the uud state at T =
0 K [14,16,19]. This is also supported by real-space pertur-
bation theory [20,21] which shows that the effects of spin

fluctuations in TLAFs can be taken into account by consid-
ering a classical model with a biquadratic exchange coupling
term between nearest neighboring magnetic ions. The 2D
Heisenberg model, with biquadratic exchange coupling, can
then be expressed as

E = J
∑
i �= j

si · s j − γ
∑
i �= j

(si · s j )
2 − H ·

∑
i

si. (1)

where J > 0 and γ are the nearest-neighbor exchange and
the biquadratic exchange constants, respectively. In this ef-
fective classical model, it is then straightforward to show that
the magnetization plateau width is directly determined by the
strength of the biquadratic coefficient γ . For the quasi-2D
TLAF Ba3CoSb2O9, using the experimental values J/kB =
18.5 K, g = 3.84 [8], |si| = 1/2 [7], and setting γ /J = 0.2,
we obtain the model magnetization at T = 0 K shown in
Fig. 2 (blue dashed line) which agrees well with the mag-
netization curve measured at T = 1.3 K (black continuous
line) [8]. Furthermore, the spin configurations derived from
Eq. (1) at T = 0 K are consistent with those obtained from
Monte Carlo simulations [12] (see Fig. 1).

The microscopic origin of the biquadratic exchange cou-
pling term [Eq. (1)] can also be associated with the spin-lattice
coupling (magnetoelastic coupling) [22–25], in addition to
quantum and thermal fluctuations. This scenario is especially
pertinent in the case of Ba3CoSb2O9, since large sound veloc-
ity variations (�v/v � 7%) are observed as a function of the
magnetic field, reflecting strong magnetoelastic coupling [18].
In the present work, we therefore study the relevance of the
magnetoelastic coupling relative to quantum fluctuations in
stabilizing the magnetization plateau in this archetype spin-
1/2 quantum TLAF material [7,8,26,27]. Our goal is achieved
using an experimental approach based on ultrasound velocity
measurements [28]. It consists in measuring the relative ve-
locity variation of an acoustic mode at constant temperatures
and fields as the in-plane field direction is changed relative to
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FIG. 1. (a) Reproduction of the H -T phase diagram of TLAFs
determined using Monte Carlo simulations by Gvozdikova et al. [12].
(b) Experimental H -T phase diagram of Ba3CoSb2O9 obtained by
ultrasonic measurements [18] for the field parallel to the basal plane.

the a axis. The measured field angular dependence, �v(φ)/v,
is then analyzed within the framework of a mean-field model
in order to determine the magnetoelastic coupling constants
which account for the lattice distortions. Based on the field
dependence of the magnetoelastic coupling determined at
2.5 K, the strength of the magnetoelastic coupling is too small
to account for the magnetization plateau in Ba3CoSb2O9. The
results rather show the the field dependence of the velocity is
dominated by spin fluctuations which increase as a function of
the field. The results also indicate that the amplitude of these
spin fluctuations suddenly drops as the V phase is stabilized.

The remainder of the paper is organized as follows. We
briefly describe the experimental methods in Sec. II, while the
experimental results are presented and described in Sec. III.
In order to analyze the field angular dependence of relative
velocity variation, �v(φ)/v, measured at constant tempera-
tures and fields, a mean-field model which explicitly takes
into account the magnetoelastic coupling for a hexagonal
lattice structure is used. This approach, presented in Sec. IV,
conveniently leads to analytical solutions for the field angular
dependence �v(φ)/v and the elastic deformations (strains).

FIG. 2. Black continuous line representing the experimental field
dependence of magnetization of Ba3CoSb2O9 measured at 1.3 K
for the H ‖ ab plane, obtained by Susuki et al. [8], is compared to
numerical calculation based on the biquadratic model, Eq. (1) (blue
dashed line).

These solutions are used to fit the experimental data in order to
determine the strength of magnetoelastic coupling in the para-
magnetic state (Sec. V A) and the ordered states (Sec. V B).
This allows us to identify the contributions associated with
the uniform magnetization m relative to the antiferromagnetic
spin modulation S. Finally, Sec. VI contains a summary
and conclusion regarding the most significant findings and
observations.

II. EXPERIMENT

Sound velocity measurements were carried out using lon-
gitudinal acoustic modes generated and detected with two
30 MHz LiNbO3 transducers mounted on opposite polished
faces (transmission configuration). For this investigation, the
longitudinal modes propagating along the a axis of a single
crystal with a length of 2.57 mm were used to determine
the ultrasound velocity vL[100]. The relative velocity variation
�v(φ)/v, measured at constant temperatures and magnetic
fields using a pulsed acoustic interferometer operating around
100 MHz for higher resolution [29], was then recorded as
the Ba3CoSb2O9 crystal was rotated about c axis by an angle
φ, changing the field direction in the ab plane. Here, φ = 0◦
corresponds to the magnetic field parallel to the direction of
propagation of the acoustic mode vL[100] (a axis).

III. EXPERIM ENTAL RESULTS

In Fig. 3, we present the field angular (φ) dependence of the
relative variation of sound velocity (�vL[100]/v) measured at
different field values: in the paramagnetic state at T = 10 K
and in the ordered states at T = 2.5 K. In the paramagnetic
state, a well defined angular period of 180◦ is observed
with a maximum at φ ∼ 0 (corresponding to H ‖ a axis) and
a minimum close to φ = −90◦. In the Y state, additional
extrema emerge around φ = −40◦ and −130◦ while the local
minimum observed at −90◦ suddenly changes into a local
maximum as we enter the uud state. Finally, although the
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FIG. 3. Field angular (φ) dependence of �vL[100]/v for different magnetic field strengths in the basal plane of Ba3CoSb2O9, with 0◦

corresponding to H ‖ a axis; (a) T = 10 K is chosen for paramagnetic state; (b), (c), (d) show results obtained at T = 2.5 K in the ordered
states (Y, uud, V), respectively.

amplitude of the relative variations generally increases as
a function of the field, it suddenly drops by an order of
magnitude in the V state (Hab = 16.5 T). While the evolution
of the angular dependence shown in Fig. 3 is surprisingly
complex, we present in Sec. IV a magnetoelestic model which
accounts very well for these experimental observations.

IV. MEAN-FIELD MODEL

In order to analyze the experimental data (Fig. 3), a nonlo-
cal Landau free energy approach [30,31] with magnetoelastic
couplings is used. This approach is useful as it links the sound
velocity directly to the sample magnetization and the antifer-
romagnetic spin modulations, which are known in general. In
that context, the total free energy per unit cell of volume V (at
T = 0) with nearest-neighbor interaction is written as

F = Fs + Fse + Fe, (2)

Fs = J

V

∑
i �= j

s(ri ) · s(r j ) − gμB

V
H ·

∑
i

s(ri ), (3)

Fse =
∑
i �= j

Kp(ri − r j )s(ri) · s(r j )(e1 + e2)

+
∑
i �= j

Km(ri − r j ){[sx(ri )sx(r j )

− sy(ri )sy(r j )](e1 − e2) + 2sx(ri )sy(r j )e6}, (4)

Fe = C0
11

2
(e1 + e2)2 + C0

66

2

(
e2

6 − 4e1e2
)
. (5)

Here, Fs and Fe are the energy associated with the local
spin density s(ri ) and the elastic energy, while Fse represents
the linear-quadratic coupling energy (lowest-order coupling
invariants) between the strain components eα (Voigt notation)
and sα (ri ). Higher-order terms at sixth order that would
involve in-plane triangular anisotropy are omitted from the
present analysis as they appear to be unnecessary to ex-
plain the main features of the experimental results. Due to
the quasi-2D character of Ba3CoSb2O9 [8] with an easy-
plane anisotropy [8], only the energy within the plane which
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includes the nearest neighbor exchange energy J , the elastic
energy, and the magnetoelastic energy are considered, with the
spins being confined to the ab plane due to the large exchange
anisotropy Jc/J1 = 0.026 [8]. In that case, the 2D invariants
depend exclusively on the bare elastic constants C0

11 and C0
66

and two independent magnetoelastic coupling constants Kp/m.
Representing the local spin s(r) as

s(r) = m + 1
2 (SeiQ·r + S∗e−iQ·r ), (6)

where m is the magnetization per spin, while the second term
represents the antiferromagnetic spin modulation with a wave
vector Q = (1/3, 1/3, 1), as determined experimentally for
Ba3CoSb2O9 [32]. To account for noncollinear spin config-
urations, the complex polarization vector S [in Eq. (6)] is
written as

S = S1 + S2, (7)

S1 = S (− cos β cos θ + i sin β sin θ ) x̂(φ), (8)

S2 = S (− cos β sin θ − i sin β cos θ ) ŷ(φ), (9)

where the angles β and θ take the values (β = π/4, θ =
0) for the 120◦ state, (0 < β < π/4, θ = 0) in the Y state,
(β = 0, θ = 0) in the uud state, and (β = 0, 0 < θ < π/2)
in the V state. As the magnetic properties of an equilateral
triangular lattice are isotropic, the complex polarization vector
S [Eq. (7)] must be allowed to rotate with the field direction
(x̂(φ), ŷ(φ)),

x̂(φ) = cos φ x̂ + sin φ ŷ, (10)

ŷ(φ) = − sin φ x̂ + cos φ ŷ, (11)

defined relative to a crystallographic direction imposed by the
experimental configuration. For this study, φ corresponds to
the angle between the field orientation B and the direction of
propagation of the acoustic wave, set to coincide with x̂(0) ‖
a axis. Summing over the nearest-neighbor spins, the energy
expressed as a function of the dimensionless magnetization
gm and the antiferromagnetic modulation S reduces to

Fs = −3JS2

4V
+ 3Jm2

V
− gμBmH

V
,

Fme = K (m)
+ g2m2(e1 + e2)

+ K (m)
− g2m2[(e1 − e2) cos 2φ + e6 sin 2φ],

FSe = K (S)
+ S2(e1 + e2) + K (S)

− S2(e1 − e2) cos 2β

× (cos 2θ cos 2φ − sin 2θ sin 2φ)

+ K (S)
− S2 e6 cos 2β(cos 2φ sin 2θ + cos 2θ sin 2φ).

(12)

The field induced phases are then determined by minimizing
Fs with the constrains, |s(ri )| = 1/2, imposed by the local spin
magnitude. The phase sequence obtained then agrees very
well with the experimental phase diagram of Ba3CoSb2O9 at
low temperatures [18] shown in Fig. 1.

The field angular dependence of the elastic constant C11(φ)
is obtained using [31]

C11(φ) = ∂2F

∂e2
1

− χm

(
∂2F

∂m∂e1

)2

− χS

(
∂2F

∂S∂e1

)2

, (13)

where χm and χS are given by

χm =
(

∂2F

∂m2

)−1

, χS =
(

∂2F

∂S2

)−1

, (14)

which represent the uniform magnetic and the antiferro-
magnetic spin polarization susceptibilities, respectively. For
a hexagonal crystal structure, knowing that the velocity of
a longitudinal mode propagating along the a axis is given
by vL[100] = √

C11/ρ [33], where ρ is the mass density, the
relative velocity variation as a function of φ simplifies to

�vL[100]

vL[100]
� �C11(φ)

2C0
11

� C11(φ) − C11(0)

2C0
11

,

= A sin2(φ) + B sin2(φ) cos2(φ), (15)

where, for the Y and plateau states, the angular magnetoelastic
coefficients A and B correspond to

A = 8g4K (m)
+ K (m)

−
C0

11

χmm2 + 8K (S)
+ K (S)

−
C0

11

cos(2β )χSS2,

B = 8g4K (m)
−

2

C0
11

χmm2 + 8K (S)
−

2

C0
11

cos2(2β )χSS2. (16)

Inspection of Eq. (15) immediately reveals that the 180◦
period is determined by A while B is responsible for a 90◦
modulation. As shown in Fig. 4, where we present only
one experimental curve per magnetic state for clarity, this
analytical solution [continuous red lines, Eq. (15)] accounts
very well for the observed angular dependence. Thus, all
experimental data have been fitted using Eq. (15) in terms
of the adjustable parameters A and B. These values are then
used to evaluate the magnetoelastic coupling constants K (m/S)

±
which determine the spin induced lattice distortions (strains)
obtained by minimizing Eq. (12) (∂F/∂eα = 0), so that

e1 + e2 = K (m)
+ m2 + K (S)

+ S2(
C0

66 − C0
11

) ,

e1 − e2 = −K (m)
− m2 + K (S)

− S2 cos(2β )

C0
66

cos(2φ),

e6 = −K (m)
− m2 + K (S)

− S2 cos(2β )

C0
66

sin(2φ). (17)

Here, the isotropic term e1 + e2 corresponds to the relative
area variation of the basal plane due to the uniform magne-
tization m and the antiferromagnetic modulation S. However,
e1 − e2 and e6 correspond to longitudinal and shear distortions
leading to a reduction of the crystal symmetry as the magnetic
field is rotated away from the direction of propagation of the
acoustic wave [x̂(φ = 0) ‖ a axis]. These solutions also indi-
cate that the lattice distortions (e1 − e2 and e6) are exclusively
related to the magnetoelastic coupling coefficients K (m/S)

− .
In other words, the magnitude of B provides information
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FIG. 4. The red curves illustrate typical fits of �vL[100]/v using Eq. (15) for the data obtained in the paramagnetic state and the different
ordered states.

regarding the significance of the spin-induced distortions in
triangular lattice antiferromagnets such as Ba3CoSb2O9.

V. DATA ANALYSIS

A. Paramagnetic state

First, we analyze the results by fitting the data (using
Eq. (15) obtained in the paramagnetic state [Fig. 3(a)]. Con-
sidering that for the paramagnetic state the A and B coef-
ficients [Eqs. (16)] depends uniquely on the magnetization,
m = χmH, we present in Fig. 5 the values of A and B as
a function of H2. Using the experimental data presented in
Fig. 5, with χm = 6.5 × 10−2 μB/Co2+ [11], C0

11 = (17.3 ±
0.4) × 1010 N/m2, and C0

66 = (5.3 ± 0.1) × 1010 N/m2 [18],
we report in Table I the value of magnetoelastic coupling
constants K (m)

−/+. These values are used to estimate for the field-
induced deformations at 3 and 8 T [Eq. (17)]. The magnitude
of the deformations reported in Table I for Ba3CoSb2O9 are
comparable to magnetostriction data obtained for other trian-
gular antiferromagnets such as CsNiCl3 and RbNiCl3 [34].

B. Ordered states

In Fig. 6 we present the evolution of the A and B co-
efficients determined at 2.5 K in the different magnetically
ordered states. These values are compared to results obtained
in the paramagnetic state at 10 K (shown as dashed lines in
the inset of Fig. 6). The enhanced values of B in the ordered
states suggest that the lattice distortions are mainly associated
with the antiferromagnetic spin modulation S. Within the
framework of the mean-field model presented here [Eq. (16)],
considering that there is no microscopic model for χS , we
simply use that χS = (∂2F/∂S2)−1 for the evaluation of the
magnetoelastic coupling coefficient KS

− presented in Fig. 7.
What is unexpected regarding the field dependence of KS

−
is that its value increases the most in the plateau state and
suddenly drops in the V state. This tendency goes against the
mean-field numerical predictions as m, S, and β are found
to be field independent in the plateau phase. Since all static
thermodynamic variables are constant in the plateau state, we
can only account for the observed field dependence of KS

−
by considering the possible contribution of spin fluctuations.
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TABLE I. Values of magnetoelastic coupling coefficients and
magnetostriction effects induced by the magnetic field aligned in the
basal plane for Ba3CoSb2O9.

|K (m)
+ | (51 ± 1) × 104 (N/m2)

|K (m)
− | (5.9 ± 0.2) × 104 (N/m2)

T H = 3 T H = 8 T

10 K |e1 − e2| ∼6.2 × 10−7 ∼4.4 × 10−6

|e1 + e2| ∼2.5 × 10−6 ∼1.7 × 10−5

So far we assume that the sound velocity measurements,
presented in Fig. 3, are only affected by a mean-field coupling
term such as 〈Si〉 · 〈S j〉. However, there exist numerous ex-
perimental results that the sound velocity in magnetic systems
is also sensitive to spin fluctuations. For example, at the
approach of a magnetic state, the velocity generally decreases
due to precursor effects associated with spin fluctuations. In
that case, the results of KS

− presented in Fig. 7 could then
reflect the field dependence of the spin fluctuations via the
dynamic coupling term 〈Si · S j〉.

VI. SUMMARY AND CONCLUSIONS

In this work, we determined the strength of the magne-
toelastic coupling in the quasi-2D frustrated quantum TLAF
Ba3CoSb2O9. For that purpose, we developed an experimental
approach which does not rely on traditional magnetostriction
measurements. It consists of measuring the variation of the
sound velocity vL[100] as the magnetic field is rotated in the
basal plane at constant temperature. The field angular depen-
dence of the relative velocity variation �v(φ)/v measured at
different fields was then fitted using an analytical solution de-
rived from a Landau model based on symmetry requirements
imposed for hexagonal crystal structure. As shown in Fig. 4,

FIG. 5. The blue triangles and red squares represent the field
dependence of parameters A and B determined in the paramagnetic
phase (10 K) and fitted using Eq. (16) (continuous lines).

FIG. 6. Angular magnetoelastic coefficients A and B determined
at T = 2.5 K using Eq. (15). The blue triangles and red squares
represent the values of A and B in the different ordered states, which
are compared with the values determined in the paramagnetic state
(the dashed lines).

the analytical solution [Eq. (15)] accounts very well for the
observed angular dependence measured at all temperatures
and fields. The adjustable parameters A and B were then used
to evaluate the value of magnetoelastic coefficients K (m/S)

± .
While the observed magnetoelastic coupling in

Ba3CoSb2O9 is large in comparison to other triangular
lattice antiferromagnets, it is still too weak in order to fully
account for the observed magnetization plateau width. Based
on our numerical analysis, the magnetoelastic mechanism
would lead to a plateau width of 0.1 T in comparison with
the experimental value of 6 T. We estimate that lattice
distortions of the order of e1 − e2 ∼ 10−3 would be required
in order to account for the full width of the magnetization
plateau in Ba3CoSb2O9. To our knowledge, no such large
distortions have been observed in Ba3CoSb2O9. While we can
probably rule out that the magnetization plateau is stabilized
by magnetoelastic coupling in the case of Ba3CoSb2O9,
we attribute the field dependence of the magnetoelastic

FIG. 7. Field dependence of the magnetoelastic constant KS
−.
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coefficient KS
− (Fig. 7) to the effect of spin fluctuations

increasing in order to induce and stabilize the magnetization
plateau. Another remarkable observation is that our results
indicate that these fluctuations are suddenly suppressed
or reduced as the V phase is stabilized at higher fields.
Thus, to fully account for the experimental results presented
in contribution, models including magnetoelastic couplings
influenced by spin fluctuations are clearly required. Moreover,
as shown by recent experimental work on spin fluctuations
on Ba3CoSb2O9 [35–37], new theoretical approaches are

needed to describe the dynamic magnetic properties of
low-dimensional frustrated magnets.
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