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Field-angle dependence of sound velocity in the Weyl semimetal TaAs

F. Laliberté,1 F. Bélanger ,1 N. L. Nair,2 J. G. Analytis,2,3 M.-E. Boulanger ,1 M. Dion ,1 L. Taillefer ,1,3

and J. A. Quilliam 1,*

1Institut Quantique, Département de physique, and RQMP, Université de Sherbrooke, Sherbrooke, Québec J1K 2R1, Canada
2Department of Physics, University of California Berkeley, Berkeley, California 94720, USA

3Canadian Institute for Advanced Research, Toronto, Canada M5G 1Z8

(Received 11 October 2019; revised 23 June 2020; accepted 19 August 2020; published 3 September 2020)

The elastic modulus c44 of a single crystal of the Weyl semimetal TaAs was investigated by measuring relative
changes in the sound velocity under application of a magnetic field up to 10 T. Using an ultrasonic pulsed-echo
technique, we studied the shear response of the crystal when the angle between the sound wave propagation and
the magnetic field is changed. We observe a broken tetragonal symmetry at fields above 6 T, an anisotropy that
is likely related to a longitudinal negative magnetoresistance and therefore might provide evidence of the chiral
anomaly, one of the main topological signatures of this class of materials. We also observe quantum oscillations
in the sound velocity whose frequencies vary with magnetic field orientation. A fan diagram of Landau level
indices reveals topological and trivial Berry phases, depending on the field orientation, indicating a sensitivity to
different Fermi surface pockets that do or do not enclose Weyl nodes, respectively.
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I. INTRODUCTION

In recent years, numerous experiments have attempted to
show the existence of the chiral anomaly in Weyl semimetals.
One of the most cited pieces of evidence of the anomalous
Adler-Bell-Jackiw contribution is undoubtedly the longitudi-
nal negative magnetoresistance (LNMR) [1–6] predicted to
occur when electric and magnetic fields are parallel, creat-
ing a charge transfer between two Weyl nodes of opposite
chirality [7,8]. While observations of LNMR could indeed
be signatures of the chiral anomaly, some doubts have been
raised with the suggestion that they could also be the effect
of a nonuniform current distribution [9,10]. Other claims
of nontrivial topological effects in Weyl semimetals include
high magnetic field studies in the quantum limit of transport
and thermodynamic properties [10,11], optical conductivity
measurements [12], Fermi surface topology studies via quan-
tum oscillations [13–15], and angle-resolved photoemission
spectroscopy (ARPES) [16–18]. In many cases, the electronic
properties associated with the chiral anomaly are diluted with
those of the topologically trivial quasiparticles, making the
analysis more complex.

Here, we report an alternative approach to revealing the
chiral anomaly in the canonic Weyl semimetal TaAs. Given
the coupling between the lattice and the conduction electrons,
we have measured the sound velocity in the presence of a
magnetic field for a transverse acoustic mode. Considering
that phonons are generally insensitive to magnetic field and
in the absence of any field-induced phase transitions, the
observation of a dependence of sound velocity or attenuation
on field strength or orientation may be attributed to a coupling
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between acoustic phonons and conduction electrons. More
precisely, the shear strain waves propagating in this material
give rise to an oscillating electric field oriented along the
direction of propagation, q, via piezoelectricity. The discovery
of a field-induced anisotropy, for example a change in sound
velocity related to q · B ∝ E · B, may provide a promising
measure of the chiral anomaly. Indeed an increase in sound
attenuation �� ∝ |B| cos2 ϕ, where ϕ is the angle between
sound wave propagation q and B, was predicted independently
in two theoretical papers [19,20]. More recently, Rinkel et al.
also predicted a decrease in sound velocity as the magnetic
field is increased in the quantum limit where only the chiral
Landau level (LL) remains active [21]. However, the pre-
dicted angular dependence is rather nontrivial, with a constant
decrease in velocity for all angles except a narrow window
around ϕ = π/2. While this effect is directly related to the
LNMR that is expected in transport measurements, here it is
the dynamical conductivity at the sound-wave frequency that
is relevant. Effects of the chiral anomaly on optical phonons
have also been considered theoretically [22,23], and while one
might expect stronger effects where optical phonon and plas-
mon frequencies are matched, sound velocity measurements
can be performed to extremely high resolution (<1 ppm)
permitting the detection of rather subtle effects on acoustic
phonons.

Our measurements of the c44 elastic constant reveal rich
behavior as a function of magnetic field amplitude and ori-
entation. Two important results can be extracted from our
measurements. First, we discover quantum oscillations (QOs)
originating from small Fermi surfaces, in agreement with
previous Shubnikov-de Haas (SdH) and de Haas-van Alphen
(dHvA) measurements [24]. We will show that these oscil-
lations can be used to determine the Berry phase of the
various Fermi pockets of TaAs and thereby identify those
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FIG. 1. (a) Schematic of the sample showing the definition of the azimuthal angle ϕ and polar angle θ of the magnetic field B with respect
to the sound propagation direction q. (b) A sketch of a part of the Fermi surface reported in Ref. [24] showing two types of Weyl pockets (W1
and W2) and trivial hole pockets (H1). Green and red dots indicate opposite chiralities of the Weyl nodes. Here we show just the part of the
Fermi surface oriented along [100]. There are also equivalent sections of the Fermi surface oriented along [010], [1̄00], and [01̄0], thereby
respecting the tetragonal symmetry of the lattice. (c) The unstrained (left) and strained (right) unit cell. With propagation vector q||[110] and
displacement u||[001], equal S4 and S5 components of the strain tensor are generated. The d15 = d24 components of the piezoelectric tensor
then result in a polarization P||q.

of a topological nature (containing a Weyl node) and those
that are topologically trivial. Second, we show a breaking
of tetragonal symmetry for magnetic fields above ∼5 T as
we tune the angle between sound-wave propagation and the
magnetic field within the ab plane, an effect that we suggest,
given theoretical predictions [21], may be a consequence of
the chiral anomaly.

II. EXPERIMENTAL METHOD

TaAs single crystals were grown by chemical vapor trans-
port. Polycrystalline precursors were first synthesized using
high purity Ta and As, ground and mixed with a 1:1 ratio.
This material has a tetragonal structure with lattice parameters
a = b = 3.44 Å and c = 11.64 Å. The crystal was polished in
order to obtain two opposite and parallel faces with mirrorlike
aspect, separated by L = 1.4 mm in the [110] direction.
Directions and angles are defined on the schematic drawing
of the sample in Fig. 1(a).

A pulsed-echo ultrasonic interferometer was used to mea-
sure the velocity and amplitude of transverse acoustic waves
propagating along the q ‖ [110] direction, with polarization
along u ‖ [001]. In Voigt notation, the measured velocity is
related to the c44 element of the stiffness tensor via v44 =√

c44/ρ, where ρ is the density of the material. Acoustic
waves were generated with a LiNbO3 piezoelectric transducer
with fundamental frequency of ∼30 MHz. The measurement
technique consists of adjusting the frequency in order to
maintain a constant phase of a given echo. Relative variations
of velocity �v44/v44 are then equal to relative changes in fre-
quency, � f / f . A rough absolute value of the velocity v44 �
2.8 km/s was obtained from the transit time between reflected
echoes, in good agreement with calculations in Ref. [25].

This mode was chosen for several reasons. First, we have
chosen the direction of sound wave propagation along [110]
to minimize trivial sources of anisotropy, as will be further
discussed below. Second we have selected a mode that is
piezoelectrically active and induces a dielectric polarization
along the direction of sound wave propagation, allowing us to
probe transport in the ab plane. The longitudinal mode with
q ‖ [110] would induce a dielectric polarization along [001].

Finally, we have selected a mode that probes a single element
of the stiffness tensor, that is C44 [26].

Here we assume that the coupling between this acoustic
mode and conduction electrons is dominated by piezoelectric-
ity, although coupling via a deformation potential could also
contribute. With q ‖ [110] and u ‖ [001], sound waves gener-
ate equal S4 and S5 components of the strain tensor, as shown
in Fig. 1(c). For the 4 mm point group of TaAs, the d24 = d15

components of the piezoelectric tensor are nonzero [25,27],
thus through the relation Pi = di jSi, a dielectric polarization is
generated parallel to q. In the absence of conduction electrons,
this leads to an additional restoring force which increases
the sound velocity relative to the bare sound velocity v0 in
the absence of piezoelectricity. However, conduction electrons
can screen this dielectric polarization, reducing the effect. As
discussed in Refs. [21,28] for example, one can obtain, for this
particular mode, the relation

ω2 = q2

[
v2

0 + d2
15

ρ(ε∞ + iq jσ jkqk/ω|q|2)

]
. (1)

The sound velocity is then determined with v44 = ω/R(|q|).
While in principle this provides us with a quantitative relation-
ship between sound velocity and conductivity σ, in practice it
is difficult to obtain precise values of the parameters used in
Eq. (1). Qualitatively speaking, an increase in conductivity
along the direction of sound wave propagation will lead to a
decrease in sound velocity.

The measurements were carried out using a single axis
rotator to change the orientation of the magnetic field with
respect to the crystalline axes and therefore the sound prop-
agation direction q. We define θ as the angle between the
field and the c-axis direction [see Fig. 1(a)] and ϕ as the
angle between the field and the sound propagation direction
q ‖ [110] in the θ = 90◦ plane. Since the crystal structure is
tetragonal, we expect fairly significant anisotropy as we turn
the field from θ = 90◦ to 0◦. However, if there are anisotropies
as a function of ϕ in the θ = 90◦ plane (i.e., a breaking of
the C4 symmetry by magnetic field), they may originate from
the chiral anomaly. For instance, in the absence of the chiral
anomaly we would expect very little difference between ϕ =
0◦ (that is B ‖ q ‖ [110]) and ϕ = 90◦ (that is B ‖ [11̄0] ⊥ q).
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FIG. 2. (Top) Field dependence of the sound velocity at T = 2 K
for various orientations of the magnetic field with respect to the ultra-
sound propagation, from θ = 0, (B ‖ [001], which is perpendicular
to q) to θ = 90◦ (B ‖ [110], which is parallel with q), plotted as a
function of 1/B. (Bottom) Same plot for the amplitude. For all of the
curves, ϕ = 0. The curves were shifted vertically for clarity.

Both of these directions are crystallographically equivalent
and, moreover, the projection of all of the various Fermi
surfaces [a quarter of which are shown in Fig. 1(b)] along
the magnetic field is identical. This would not be the case for
sound wave propagation along [100] for example. That said,
the application of magnetic field within the ab plane could
break the C4 symmetry of the system in other ways and defini-
tive proof of a topologically nontrivial effect will ultimately
depend on a connection between realistic theory and exper-
iment. Presumably the same dilemma applies to most other
experimental techniques, including transport measurements.

III. RESULTS

The presentation of our results is organized into two sec-
tions. First we discuss the observed QOs and their implica-
tions for the topological nature of the Fermi surfaces of TaAs
shown in Fig. 1(b). Next we discuss the in-plane anisotropy
(as a function of ϕ) as a possible demonstration of the chiral
anomaly.

A. Quantum oscillations

While the quantum oscillations (QOs) observed in our
measurements (see Fig. 2) create a complicated background
signal for possible signatures of the chiral anomaly, they also
provide an opportunity to study the various Fermi surfaces
that are coupled to the lattice. The Fermi surface topology
in TaAs [see Fig. 1(b)] has previously been investigated by
Arnold et al. [24] by means of angle-dependent measurements
of quantum oscillations in magnetization, magnetic torque,
and magnetoresistance, providing a useful point of compari-
son for our results. The ultrasound measurements presented

here similarly show clear oscillations periodic in 1/B, as
shown in Fig. 2, for both the velocity and the echo amplitude
(which is related to the inverse of attenuation).

A fast Fourier transform (FFT) performed for θ = 0 gives
a dominant frequency of 6.9 T, in good agreement with that
found in Ref. [24] for B ‖ [001], which was attributed to
a set of electron pockets (W1, orbit α) each containing a
Weyl node. The temperature evolution of the FFT amplitude
confirms the very light effective mass (of order 1% of the free
electron mass) expected in such a material. As the angle θ is
moved away from 0, the frequency increases as 1/ cos θ , again
in agreement with Ref. [24]. For θ = 90◦, the amplitude of
oscillations from the W1 pocket is negligible and a smaller
frequency of 2.1 T is dominant. This is close to the value
obtained by Arnold et al. for B ‖ [110] which was attributed
to a topologically trivial hole pocket (H1, orbit β).

In order to confirm these Fermi surface assignments, we
consider the relative Berry phase between the two distinct
pockets to which we are coupled. In Fig. 3(a) and Fig. 3(b),
we focus on the data at θ = 0 which most clearly show
oscillations from the W1 pocket. In Fig. 3(c), we present data
for θ = 90◦ and ϕ = 0 highlighting the oscillations from the
H1 pocket. Each QO extremum is the result of the crossing
of a LL and the chemical potential. As explained in Ref. [29],
the conductivity σxx is minimal when an integer number n of
LLs is filled. The field positions of these minima, Bn, are then
described by the following equation

F

Bn
− δ + �B

2π
= n − 1

2
. (2)

The left-hand side contains the frequency F , the Maslov index
δ = 1/2 + γ (with γ = 0 in two dimensions and γ = ±1/8
in three dimensions, where the sign is given by the maximal
or minimal cross section of the Fermi surface [30]), and the
Berry phase �B. No additional phase difference is expected
from the holelike and electronlike nature of the pockets for
the SdH effect [30]. Neglecting temporarily γ in Eq. (2),
this reduces to F/B + �B/2π = n. Hence a plot of n as a
function of 1/B (known as an Onsager plot) directly gives the
frequency F as the slope and the Berry phase �B/2π as the
intercept. Similarly, in the lower panels of Fig. 3, we have
plotted n − F/B vs 1/B, using the fitted value of F , revealing
a constant value equal to �B/2π .

In order to properly identify the extrema, we first compare
the QOs obtained in the conductivity σxx [Figs. 3(a) and 3(d)]
and ultrasound measurements [Figs. 3(b) and 3(e)] for the
same field orientation, that is with θ = 0. The conductivity
was measured on a different sample from the same growth.
An Onsager plot of conductivity (minima as integer indices)
for this configuration yields a slope of 7 T and an intercept
of 0.5, implying �B = π (again as long as we take γ = 0).
A direct comparison of the extrema shows that minima of
conductivity correspond roughly to maxima in sound velocity.
Therefore, integer indices are attributed to maxima and used
in the Onsager plot in Fig. 3(e) (blue circles). More precisely,
the intercept in Fig. 3(e) for the sound velocity is 0.58 ± 0.03.
Again, this likely implies �B = π and would allow for a
nonzero value of γ . Oscillations in signal amplitude [shown in
Fig. 3(b)] are phase shifted by roughly π/2 with respect to the
sound velocity, as can be seen from the change in intercept in
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FIG. 3. Upper panels: QOs for three measured quantities at T = 2 K and for two distinct directions of the magnetic field, revealing two
QO frequencies (2 and 7 T). (a) SdH effect form the W1 pocket at θ = 0 on a similar sample to the one used for ultrasound measurements. The
irregular shapes of maxima at low 1/B arise from the second harmonic. (b) Oscillations from the W1 pocket in ultrasound amplitude at θ = 0
(blue curve), compared with the SdH oscillations (dashed green curve). (c) Oscillations in sound velocity, �v/v, from the H1 pocket at ϕ = 0
and θ = 90◦. Lower panels: LL indices as a function of 1/B, from the values identified in the upper panels, plotted as n − F/B where F is the
main QO frequency obtained from a linear fit of n vs 1/B. (d) For this pocket, the intercept is compatible with �B = π . (e) LL indices from
sound amplitude (triangles) and sound velocity (circles) give a nontrivial Berry phase as in (d) provided we identify maxima as integer indices.
There is an approximate π/2 phase shift between sound velocity and amplitude oscillations, as expected. (f) Keeping the same convention
for minima and maxima, we find an intercept of 0.135 for the 2 T oscillations in velocity. This is roughly a π phase shift with respect to the
velocity oscillations arising from the Weyl pocket and is therefore compatible with a trivial Berry phase for this pocket.

Fig. 3(e) (blue triangles). This is expected given that the sound
velocity and attenuation represent the real and imaginary parts
of the acoustic phonon dispersion relation, respectively.

Moving on to the sound velocity of the H1 pocket (β orbit)
measured at θ = 90◦, shown in Fig. 3(c), and applying the
same identification of maxima with integer values of n, we
see that the intercept in Fig. 3(f) is roughly 0.135. We can
see that the difference in �B/2π between the H1 and W1
pockets is 0.465, that is very close to 1/2. Hence, our quantum
oscillation measurements confirm the conclusions of Arnold
et al. [24], showing that the 7 T QO frequency (from the W1
pocket) is topological in nature whereas the 2 T QO frequency
(from the H1 pocket) originates from a trivial hole pocket.
The 0.135 value of the offset in Fig. 3(f) may imply γ = 1/8,
as expected for a three-dimensional band structure though it
remains unclear why this additional offset does not appear in
the conductivity measurements.

It is worth emphasizing that, for the H1 trivial hole pocket,
the last LL crosses the chemical potential around 6 T, leaving
the electronic structure in the quantum limit, which means
that all electrons in this pocket are confined to the highly
degenerate n = 0 LL. The magnetic fields employed here are
not, however, sufficient to reach the final chiral LL of the Weyl
pockets.

B. High-field anisotropy

In order to get beyond the complicated angle-dependent
QO background and search for signs of the chiral anomaly,
we focus here on measurements performed with the field
in the ab plane where the oscillations are not as strongly
angle dependent. Our main results are shown in Fig. 4 in

two contrasting ways. First, in Fig. 4(a), we plot the rela-
tive change in sound velocity (v44(B) − v44(0))/v44(0) as a
function of magnetic field up to 10 T, at T = 2 K, and for
different values of the angle ϕ between the sound propagation
direction and the applied magnetic field. Above a threshold
field that happens to be close to the last minimum at ∼5 T, a
significant anisotropy appears. The difference between ϕ = 0
and 90◦ curves is particularly informative as these are crys-
tallographically equivalent field orientations and one would
naively expect identical results. This appears to be the case
for the low-field QOs as seen in the polar plot of Fig. 4(c),
where the QO frequency respects the tetragonal symmetry of
the lattice. However, the difference between ϕ = 0 and 90◦
curves grows rapidly from 5 to 6 T before slightly decreasing
to remain at a constant value above roughly 8 T.

In Fig. 4(b), the sound velocity is measured as a function
of the angle ϕ for various values of B from 0 to 10 T at
T = 5 K, again revealing anisotropy with respect to field
direction. A polar plot in Fig. 4(d) of the field value at which
the sound velocity is minimal, Bmin, shows a clear breaking of
the C4 symmetry of the ab plane, again contrasting with the
QO frequency [Fig. 4(c)]. Note that a slight misalignment of
the sample away from θ = 90◦ cannot explain this behavior
and would instead result in an observable change in the QO
frequency.

A well-known mechanism for field-induced anisotropy
in sound velocity is the Alpher-Rubin effect, whereby the
Lorentz force on electronic currents generated by the oscillat-
ing ionic charges leads to an increase in the velocity of trans-
verse sound waves when B is parallel with q [31,32]. However
this effect is found (based on our sample’s conductivity of
σxx � 1 × 104 �−1m−1 at 10 T) to contribute a negligible
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FIG. 4. (a) Field dependence of the sound velocity at T = 2 K for various orientations of the magnetic field with respect to the ultrasound
propagation, from ϕ = 0 (q ‖ B ‖ 110) to ϕ = 90◦ (q ⊥ B ‖ 11̄0). The curves were shifted vertically for clarity. (b) Angle dependence of the
sound velocity at T = 5 K for different values of the magnetic field. The field is rotated within the (001) plane, where lies the propagation of
the sound waves. The curves are plotted with respect to their values at ϕ = 45◦. (c) Angular variation of the quantum oscillation frequency
F , showing C4 symmetry. (d) Angular variation of the field value at which the sound velocity is minimal, Bmin, showing a breaking of the C4

symmetry.

change in velocity (�v/v ∼ 10−10) and, moreover, is at odds
with the observed decrease in sound velocity when B ‖ q.

Hence, we attribute this roughly 50 ppm breaking of tetrag-
onal symmetry in the sound velocity at high magnetic fields to
an anisotropy in the screening of the strain-induced dielectric
polarization resulting from an anisotropy in conductivity. In
this regime we are in the quantum limit of the topologically
trivial hole pockets and the Weyl nodes may provide the
most important contribution to changes in sound velocity.
We propose that since sound waves generate an oscillating
polarization parallel to q along with screening currents which
are more effective when B ‖ q, the observed anisotropy is
likely a demonstration of LNMR which could be caused by
the chiral anomaly.

As predicted by Rinkel et al. [21], the difference in velocity
(between ϕ = 0◦ and ϕ = 90◦) reaches a constant value at
high field, and the velocity is found to be reduced for ϕ =
0◦ [see Fig. 4(a)]. This is explained by the fact that, in
the absence of conduction electrons, piezoelectric coupling
leads to an increased velocity. Higher conductivity leads to
better screening of the dielectric polarization and therefore a
drop in sound velocity toward the value it would take in the
absence of piezoelectricity. Hence, the drop in sound velocity
here could possibly be attributed to LNMR. Reference [21]
predicts such a drop in velocity to occur for all angles of the
magnetic field, except for a narrow window around ϕ = 90◦.
However, it is also noted that this window of increased sound
velocity would become broader and more easily observable
once sample disorder is considered. We cannot carefully study
the angular dependence of this difference in velocity given the
complexity of the underlying QOs and their dependence on ϕ.
In principle, a better approach would be to maintain a fixed
field angle and vary the angle of sound-wave propagation, but
this would be prohibitively difficult.

It should also be noted that there is a considerable discrep-
ancy (well beyond the measurement uncertainty) between the
measured anisotropy (50 ppm) and the theory of Ref. [21]
(nearly 40%). The calculation of Ref. [21] is based on realistic

parameters for TaAs, determined from experiment or ab initio
calculations [25], but does consider only the contribution from
the Weyl fermions, which are modelled through a spherically
symmetric Hamiltonian. Furthermore, since the predicted an-
gular variation of sound velocity comes only from the lowest
energy chiral LL, the effect may be heavily diluted by other
LLs when not in the quantum limit of the Weyl nodes, as is
the case in our experiments.

Evidently more detailed theoretical calculations would be
valuable for understanding whether the measured effect can
be entirely attributed to the topological nature of the Weyl
nodes. Since the application of a magnetic field in the ab
plane necessarily breaks the C4 symmetry of the lattice in any
tetragonal system, and therefore could generate an anisotropic
sound velocity through a different mechanism, it is crucial
to quantify the effect of the chiral anomaly. Similarly, a
more robust understanding of this phenomenon could also be
achieved with a campaign of similar experiments on a variety
of topological and trivial semimetallic systems. A study of
NbAs could be particularly beneficial. While it has similar
structure and band structure to TaAs, ab initio simulations
conclude that the Weyl nodes are well below the Fermi energy
and nodes of opposing chirality are contained within the same
Fermi surface pockets meaning that the chiral anomaly should
not be present [33].

IV. CONCLUSION

To summarize, we have carried out sound velocity mea-
surements on the Weyl semimetal TaAs, as a function of
magnetic field and field angle with respect to the sound
propagation direction. The observed quantum oscillations are
found to be consistent with the dHvA and SdH measurements
of Arnold et al. [24] and the phase of these oscillations
have allowed us to identify a nonzero Berry phase for one
of the topological Weyl pockets. With the field angle varied
in the ab plane, a significant anisotropy that breaks the C4

symmetry of the structure is observed at relatively high field
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(above ∼5 T). This anisotropy is qualitatively consistent with
theoretical predictions [21] and might, therefore, be attributed
to the chiral anomaly, essentially providing a measurement of
the negative longitudinal magnetoresistance without electrical
contacts and the extrinsic current-jetting effects that result.
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