Heat Transport in High-Temperature Superconductors

by L. Taillefer and R.W. Hill

INTRODUCTION

Understanding the cuprates is one of the most chal-
lenging problems facing physicists today because
the rich, complex and highly unusual behaviour
of electrons in these materials is forcing us to re-
examine the cornerstones of solid state theory. A re-
markable property of the materials is the fact that a
simple tuning of their chemistry can take any given
compound all the way from insulator to supercon-
ductor, by doping electrons or holes into the CuO,
planes which stack up to form the crystal struc-
ture. In attempting to unravel the mysterious ways
of these doped carriers, scientists may be witness-
ing the breakdown of two hugely successful theo-
ries of 20th century physics: the Fermi-liquid the-
ory of electrons in metals and the Bardeen-Cooper-
Schrieffer (BCS) theory of electron pairing and con-
densation in superconductors. The concept of an
electron as the basic particle carrying both spin
and charge in the metallic state is being threa-
thened. The notion of superconductivity as a phase
transition at which both electron pairing and long-
range phase coherence occur simultaneously is un-
der siege. “Spin-charge separation” and “preformed
pairs” are only two amongst several hotly debated
issues. Others include the unification of magnetism
and superconductivity and the microscopic nature
of the vortex state produced in the presence of a
magnetic field. Numerous experimental techniques
have been brought to bear on this vast subject [1].
In this article, we outline what has been learnt from
studies of heat transport. The most powerful appli-
cations of this technique — the thermal Hall effect
and conduction at very low temperature — have only
recently been developed to the point where they
can lead to penetrating insights, and the first find-
ings are the subject of this article. As we shall see,

nothing in this will force us to go outside the frame-
work of Fermi-liquid or BCS theory in their general
form. However, note that much of the territory still
lies ahead unexplored — for example, little has been
done yet on the fascinating (“underdoped”) regime
between the superconducting state and the antifer-
romagnetic (insulating) state.

HEAT TRANSPORT

Superconductors are perfect conductors of electric
charge but very bad conductors of heat. This is be-
cause electric currents are carried by the Cooper
pairs that form the superconducting condensate,
which has zero entropy, while heat (or entropy) is
only carried by the elementary excitations out of
that ground state, or quasiparticles. A measure-
ment of heat transport therefore probes the nature
of the superconducting state via its quasiparticle en-
ergy spectrum, by giving access to the gap function,
its defining characteristic.

The measurement involves passing a heat current
through a sample and detecting the temperature
gradient that develops along it. The ratio of power
@ generated by a heater fixed at one end over the
temperature difference AT between two points sep-
arated by a distance L is the thermal conductivity:

K = Q £ (1)
AT A

where A is the sample cross-section. The technique
is straightforward as long as one has good control
over the thermometry and ensures that no heat
flows through secondary channels. Fig. 1 shows the
thermal conductivity of YBayCuzO7, for a carrier
concentration slightly higher than “optimal” dop-
ing (i.e. maximal T, ~ 93 K). The large peak be-
low 7., whose magnitude increases with increasing
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Figure 1: Temperature dependence of the thermal con-
ductivity of YBagCusOg.99, for a heat current along the
a axis of the orthorhombic crystal. The arrow marks
the transition temperature observed in resistivity. [2]

sample purity, is due to the tremendous growth of
the electronic mean free path as the temperature is
decreased below T, a result of the precipitous sup-
pression of the strong electron-electron scattering
present in the normal state as electrons condense
into Cooper pairs. This understanding first came
from electrodynamic studies at microwave frequen-
cies (see article by Bonn and Hardy).

ELECTRONS AND PHONONS

The main difficulty with the interpretation of ther-
mal conductivity data is that both electrons and
phonons carry heat. For example in the data of
Fig. 1, the conductivity above T is predominantly
due to phonons. Two ways have been devised to
accurately isolate the electronic contribution. The
first is the thermal analog of the Hall effect, whereby
a transverse magnetic field (normal to the CuO,
planes) deflects the electrons but not the phonons.
Measurements of the purely electronic thermal Hall
conductivity kg, (7)) have been used to show that
electrons are in large part responsible for the peak
below T., while accounting for only 10% or so of
the longitudinal x,, in the normal state [3]. As this
novel technique further develops, a detailed com-
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Figure 2: Thermal conductivity of optimally-doped
BiQSI‘QCaCUQOg, YB&QCUgOG_g and L&1.83SI‘0_17CUO4
at very low temperature. Insulating (deoxygenated)
YBayCu3Og is also shown for comparison. The lines
are linear fits to the data below 130 mK. [6]

parison of kg, and o; measured at microwave fre-
quencies is expected to yield insight into the nature
of electronic carriers and their mutual interaction.

The second way of separating electron and phonon
contributions is from their temperature depen-
dences as T" — 0. Heat conduction is the product of
specific heat, carrier velocity and mean free path:

1

K=gcu 14 (2)
At very low temperatures the mean free paths of
electrons and phonons are independent of temper-
ature; the electrons limited by impurity scattering
and the phonons by the boundaries of the sample.
In this case, temperature dependence is given en-
tirely by the specific heat, which is linear in 7" for
electrons and cubic in 1" for phonons. Therefore,

K
~ — A+ BT
T=A+ (3)

In the remainder of this article, we concentrate on
the residual linear term A, the magnitude of which
is directly related to the quasiparticle energy spec-
trum. The ability to probe the electron system at
T — 0 has two advantages: the strongly correlated
electrons have settled into their simplest configura-
tion, free from much of the complexity that devel-
ops at higher temperature, and theoretical results

T—0 :



are more accurate and robust at 7' = 0.
LOW-ENERGY QUASIPARTICLES

The thermal conductivity of YBayCuzO, (YBCO)
at temperatures below 200 mK is shown in Fig. 2,
for the two extreme states of carrier concentration:
1) the insulating state (z = 6.0), with no mobile
holes, and 2) the superconducting state near op-
timal doping (z = 6.9), with mobile holes in the
CuOs planes. In the insulator, A = 0 in Eq. 3
and all conduction is due to phonons. Exactly
the same result is found for a standard supercon-
ductor, characterised by a finite gap for all direc-
tions of electron motion (s-wave symmetry): the
number of thermally excited quasiparticles below
T./10 is exponentially small. As holes are added to
the CuO, planes in YBCO via oxygenation, a siz-
able linear term is seen to develop, with a value
A = 014+ 0.03 mW K2 em™ [4]. A similar
behaviour is found for the other two holed-doped
cuprate superconductors BisSroCaCusOg (BSCCO)
[5, 6] and La1.83Sr0,17CuO4 (LSCO) [6] The obser-
vation of electronic conduction in a superconductor
down to 7./1000 is unprecedented, and it points
unequivocally to the presence of itinerant fermionic
excitations of zero energy. We now show that this
“residual normal fluid” is due to quasiparticles in a
gapped spectrum with d-wave symmetry.

In BCS theory, the excitation spectrum in the su-
perconducting state is given by

E(k) = \/ e(k) + A%(k) (4)

where k is the momentum vector, €(k) is the elec-
tronic energy in the metallic state (relative to the
Fermi energy) and A(k) is the gap function. In a
pairing state with d,»_,» symmetry, the quasiparti-
cles are distinct from those in conventional super-
conductors in that they have a unique energy versus
momentum relation as a result of their unconven-
tional gap structure. This takes the approximate
form Ay(k) = Agcos(2¢), where ¢ is the azimuthal
angle in the (k;, k,) plane measured relative to the
k, axis. In comparison, a standard superconduc-
tor with isotropic gap has Ay(k) = Ap. Note that

Aq4(k) vanishes along the lines ¢ = +% and +£27

Figure 3: TOP PANEL: Planar section of the Fermi
surface of a typical cuprate, made of cylinders centered
on the corners of the Brillouin zone. The two diagonal
lines correspond to directions along which A(k) van-
ishes for dj2_,» symmetry. Nodes in the energy spec-
trum are found where these lines cross the Fermi sur-
face, shown as four dots. BOTTOM PANEL: Energy
vs momentum relation for the nodal quasiparticles.

(or k; = %k,). As shown schematically in Fig. 3,
this gives rise to four nodes on the Fermi surface
of hole-doped cuprates, which in essence consists of
a cylinder centered on each corner of the Brillouin
zone at (%, £%), where a is the lattice constant.
Near each node, the energy is given by

E(k) = h \/ 02 k2 + 03k2 (5)

where vy = (dAy/d¢)/(hky) is the slope of the gap
at the node, vr and kp are the Fermi velocity and
momentum, and k; and k, are the components of
k normal and parallel to the local Fermi surface.
Eq. 5 describes a conelike spectrum (see Fig. 3),
with a dispersion perpendicular and parallel to the
Fermi surface given respectively by vy and v,. The
density of states of “nodal” quasiparticles grows lin-
early with energy at low energy, a property which
governs all low-temperature properties, for example
the linear temperature dependence of the penetra-



tion depth (see article by Bonn and Hardy). In the
next section, we will show how the heat conduc-
tion measured at T — 0 is clear evidence for these
d-wave nodal quasiparticles and how it provides a
direct measure of their dispersion.

UNIVERSAL CONDUCTION

In a crystal of YBayCu3zOgg, the replacement by a
Zn atom of 1 or 2 out of every 100 Cu atoms in
the CuO, plane causes a major change in the trans-
port properties. The electrical resistivity acquires a
sizable constant term and the peak in the thermal
and microwave conductivities below 7T, disappears
almost entirely, as the elastic scattering rate is in-
creased by a factor of 10 to 100. Remarkably, such
an increase in scattering rate was found to have no
impact on the ability of the residual normal fluid
to conduct heat [7]. This can arise in an unconven-
tional superconductor because of the two-fold effect
of impurity scattering: not only does it limit the
mean-free path, it also generates a finite density of
quasiparticles at zero energy, roughly speaking by
broadening the apex of the cone in Fig. 3. In the
case of a d-wave gap, those two effects compensate
exactly at T" = 0, resulting in a universal conduc-
tivity, independent of impurity concentration [8]:

Kk kp (vp Vs

T—0: =

T= 3 o) (6)

where n is the number of CuO, planes per meter
stacked along the c-axis. A measurement of the
residual linear term in x(7") is thus seen to be a di-
rect measure of the ratio of quasiparticle velocities,
vp and vo. Using the data in Fig. 2 one gets *& = 14,
19 and 12 for YBCO [4], BSCCO [5] and LSCO re-
spectively. In the case of BSCCO, the dispersion at
the node was measured spectroscopically by angle-
resolved photoemission, giving ’j}—j = 20 for optimal
doping [9]. This excellent agreement shows that the
residual linear term in the heat transport is entirely
due to d-wave quasiparticles, paving the way to a
systematic study of the ground states of cuprates.
Its observation in YBCO and LSCO, where the gap
function has not been resolved via photoemission,
confirms d-wave symmetry in these materials and

gives us the dispersion.

Once a value for vy /vy is obtained, it can be used to
compute various properties within the Fermi-liquid
framework. For example, it is of fundamental in-
terest to understand by what mechanism the su-
perfluid density ng(T") is suppressed with increas-
ing temperature (see Fig. 4 in article by Bonn and
Hardy). Is the suppression due to fluctuations in
the amplitude of the order parameter (i.e. ther-
mally excited quasiparticles) or fluctuations in the
phase? The quasiparticle contribution to ng(7) is
proportional to v /v, [8], and a comparison of heat
transport and penetration depth data for YBCO
and BSCCO reveals that there are enough quasi-
particles at low temperatures to fully account for
the drop in superfluid density, showing that phase
fluctuations need not be invoked [5].

THE VORTEX STATE

An applied magnetic field H penetrates a supercon-
ductor in the form of vortices, i.e. lines at the centre
of a rotating superfluid flow field. In the presence
of this superfluid moving at velocity v, the quasi-
particle energy is modified according to

Ek) = BE(k) +hk- v, (7)

where vy = v4(r) varies in magnitude and direction
throughout the material, being largest close to the
vortex centre. Therefore, depending on the local di-
rection of vg, the cone of excitation shown in Fig. 3
will either move up or down in energy. On aver-
age, this will induce a finite density of states at the
Fermi energy proportional to v/ H, corresponding to
those cones of excitation that have moved down in
energy. The ideal way of probing these field-induced
excitations is to look at the heat transport.

This is done in Fig. 4 for YBCO. The application
of a modest magnetic field (compared to the field
needed to destroy superconductivity) clearly leads
to an increase in the electronic conduction [4, 10].
The field dependence of the residual linear term was
reproduced quantitatively by semi-classical calcula-
tions based on the Doppler shift defined in Eq. 7
[11], assuming reasonable values for vp, ve and the
impurity scattering rate. It is far from obvious why



such calculations should work, as the usual basis for
the description of electron states in a magnetic field
may not hold for d-wave quasiparticles in the vor-
tex state. Several issues need be explored, including
field-induced phase transitions [12] and the absence
of Landau quantization.

In conclusion, the picture that emerges from studies
of heat transport in cuprates at 7' = 0 and optimal
doping is completely in agreement with Fermi-liquid
and BCS theory (generalized for d-wave symmetry).
The question is: does this continue to hold true
at high temperatures or in the underdoped regime,
where other evidence of breakdown is rife and dra-
matic? The future will reveal whether we have a
revolution on our hands or if the old guard of Lan-
dau and Fermi will hold their ground.
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