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The heavy-fermion compound UPt3 is the first compelling example of a superconductor with an order
parameter of unconventional symmetry. To this day, it is the only unambiguous case of multiple
superconducting phases. Twenty years of experiment and theory on the superconductivity of UPt3 are
reviewed, with the aim of accounting for the multicomponent phase diagram and identifying the
superconducting phases. First, the state above the superconducting critical temperature at Tc

50.5 K is briefly described: de Haas–van Alphen and other measurements demonstrate that this state
is a Fermi liquid, with degeneracy fully achieved at Tc . This implies that the usual BCS theory of
superconductivity should hold, although the strong magnetic interactions suggest the possibility of an
unconventional superconducting order parameter. The role of the weak antiferromagnetic order
below TN55 K in causing phase multiplicity is examined. A comprehensive analysis of which
superconducting states are possible is given, and the theoretical basis for each of the main candidates
is considered. The behavior of various properties at low temperature (T!Tc) is reviewed. The
experiments clearly indicate the presence of nodes in the superconducting gap function of all three
phases. In particular, the low-temperature low-field phase has a gap with a line node in the basal plane
and point nodes along the hexagonal c axis. The phase diagram in the magnetic-field–temperature
plane has been determined in detail by ultrasound and thermodynamic measurements. Experiments
under pressure indicate a coupling between antiferromagnetism and superconductivity and provide
additional clues about the order parameter. Theoretically, Ginzburg-Landau theory is the tool that
elucidates the phase diagram, while calculations of the temperature and field dependence of physical
quantities have been used to compare different order parameters to experiment. On balance, the data
point to a two-component order parameter belonging to either the E1g or the E2u representation, with
degeneracy lifted by a coupling to the symmetry-breaking magnetic order. However, no single
theoretical scenario is completely consistent with all the data. The coupling of superconductivity and
magnetism may be the weakest link in the current picture of UPt3 , and full understanding depends on
the resolution of this issue.
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I. INTRODUCTION

A. History and basic facts

The superconductivity of the heavy-fermion com-
pound UPt3 presents a fascinating challenge for both
theoretical and experimental physicists. The normal
state of the material appears to be a Fermi liquid above
the critical temperature Tc50.5 K and there is an anti-
ferromagnetic transition at TN55 K. Since the discovery
of superconductivity in 1984 by Stewart et al. (1984), it
has been anticipated that the usual theory of Bardeen,
Cooper, and Schrieffer (1957) (BCS) holds, with one
very big exception: because of the momentum-
dependent inter-f-electron potential, we may need to
consider nontrivial forms for the Cooper-pair wave func-
tion. In contrast to the situation in elemental supercon-
ductors, the wave function may deviate in an essential
way from complete crystal symmetry. This leads to a gap
function that varies on the Fermi surface. The example
of superfluid 3He tells us to expect complex patterns of
symmetry breaking and a rich phase diagram. Discover-
ing the origin and consequences of this unconventional
superconductivity is the challenge for the theorist. De-
vising and carrying out critical experiments on a mate-
rial that is complex but that can be made in very pure
form is the challenge for the experimentalist.

Uranium-platinum compounds were studied in the
early 1980s to understand the effect of hybridization on
the nature of the U 5f wave functions (Schneider and
Laubschat, 1981). Valence-band photoemission, which
measures (roughly speaking) the occupied density of
states, was performed on UPtn , with n50,1,2,3,5, as well
as on pure platinum. This systematic study showed a
peak below the Fermi energy (EF) associated with U 5f
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electrons. The peak is quite pronounced in pure ura-
nium and gradually disappears as n is increased. The
peak is only a shoulder in UPt3 , suggesting that this
compound might be in an interesting intermediate hy-
bridization range.

The specific heat CV of UPt3 was measured by several
groups in the 1980s. The measurements showed no sign
of magnetic or other ordering above Tc . They did show
an upturn in the curve of CV /T vs T2 as temperature
was reduced (see de Visser, Menovsky, and Franse,
1987). This is an anomalous behavior often associated
with spin fluctuations. Indeed, the data were later shown
to fit the law CV5gT1bT31dT3 ln(T/TSF) (Pethick
et al., 1986). The strong logarithmic term (d
'2 mJ/mol K4) was considered to be a measure of the
fluctuations, with a characteristic energy TSF . (Interest-
ingly, it is not present in other heavy-fermion systems.)
In addition, g was found to be very large: g
'440 mJ/K2 mol U, compared to 1.2 mJ/K2 mol for alu-
minum. The elementary formula

g5
VmkFkB

2

3\2 m* , (1)

where kF is the Fermi wave vector, Vm is the molar
volume, and m* is an effective mass, explains why UPt3
is called a ‘‘heavy-fermion’’ system. The heavy-fermion
family of materials is a rather loosely defined collection
of intermetallic compounds with f electrons at the Fermi
surface, typically made of Ce or U (4f or 5f electrons,
respectively) and other elements, with a strong degree of
electron correlations and narrow quasiparticle bands, as
reflected in a large g, typically in excess of
100 mJ/K2 mol.

Measurements of the resistivity, specific heat, and ac
susceptibility to lower temperatures established that
UPt3 is a bulk superconductor (Stewart et al., 1984). In
1984, UPt3 and UBe13 (Ott et al., 1984) joined CeCu2Si2
(Steglich et al., 1979) to make up the early trio of heavy-
fermion superconductors. Since then, other heavy-
fermion superconductors have been discovered:
UPd2Al3 (Geibel et al., 1991a) and UNi2Al3 (Geibel
et al., 1991b), both of which have coexisting antiferro-
magnetic and superconducting orders like UPt3 , and
compounds such as CeCu2Ge2 (Jaccard and Vargoz,
1998) and CePd2Si2 (Mathur et al., 1998). All of them
have Tc<2 K. Since the heavy mass was believed to be
due to magnetic fluctuations, reminiscent of 3He, UPt3
was speculated from the beginning to be an unconven-
tional superconductor. (‘‘Unconventional’’ will receive
its precise definition in the next section.) These suspi-
cions received confirmation from the absence of the
characteristic activated @;exp(2D0 /kBT)# temperature
dependence of thermodynamic and transport quantities
seen in standard superconductors at low temperature.

Great impetus was given to the field when it became
clear that there were not one but several superconduct-
ing phases in UPt3 . Reports of finite field anomalies in
ultrasound attenuation (Müller et al., 1987; Qian et al.,
1987; Schenstrom et al., 1989) and upper critical field
(Rauchschwalbe et al., 1985; Taillefer, Piquemal, and
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Flouquet, 1988) pointed to the possible presence of ad-
ditional transitions, and it was the resolution of a second
jump in the specific heat, first by Fisher et al. (1989) on
two polycrystals and soon after by Hasselbach, Taillefer,
and Flouquet (1989) on a single crystal, that brought
clear thermodynamic evidence for a multiphase super-
conducting regime. The phase diagram is shown in Fig.
1. The names of the three phases shown—A, B, and
C—have now become standard.

There is now little doubt that UPt3 is an unconven-
tional superconductor with a multicomponent supercon-
ducting order parameter. One should know that this is a
rare occurrence. With the possible exception of UBe13
when doped with Th impurities in the narrow concentra-
tion window of 2–6 % Th (see Heffner and Norman,
1996), UPt3 is the only compelling instance in nature of
a superconductor with multiple phases. Because it ex-
hibits this exciting new physical phenomenon and be-
cause it can be prepared in very pure single-crystalline
form, its physical properties are now probably the best
studied of any superconducting binary compound.

The primary aim of this extensive research has been
to determine the form of the superconducting order pa-
rameter, in particular its momentum dependence. In
having such a dependence, unconventional supercon-
ductivity is to conventional superconductivity as antifer-
romagnetism is to ferromagnetism. However, the stu-
dent of magnetism has the luxury of being able to
consult neutron diffraction data from which the mag-
netic structure can be read off. In superconductivity, the
order parameter sets up no measurable field and there is
no experimental probe which couples directly to it. Pre-
cisely for the reason that experiments to determine the
order parameter structure are so indirect, a very close
connection between experiment and theory is essential.
This connection has indeed marked the nearly 20-year
history of UPt3 studies. We hope it marks this review as
well.

B. Unconventional superconductors and superfluids

Superconductivity is defined as a state in which the
order parameter spontaneously breaks gauge symmetry.

FIG. 1. Schematic superconducting phase diagram of UPt3 in
the magnetic field-temperature plane. Note the three distinct
superconducting phases, labeled A, B, and C, which exist be-
low an upper critical field line Hc2(T) that separates them
from the normal state. Note also that these phases all meet at
a tetracritical point (T!, H!).
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Unconventional superconductivity is defined as a super-
conducting state in which the order parameter also
breaks the crystal symmetry. The order parameter of an
unconventional superconductor may also have more
than one component, but this is not part of the defini-
tion.

The superfluidity of 3He is both unconventional (the
order parameter breaks rotation symmetry) and multi-
component (for a review, see Leggett, 1975). As a result,
it became a paradigm for research in heavy-fermion su-
perconductivity, so we briefly summarize the comparison
to UPt3 . 3He is a strongly interacting system. The en-
hancement of its specific heat over the free-particle
value depends on pressure, but is generally in the range
of 4–5. This is less than in UPt3 , where the enhance-
ment over the value given by band calculations is about
20. There are strong magnetic fluctuations in 3He but
these are concentrated near zero momentum, i.e., ferro-
magnetic fluctuations. By contrast, in UPt3 , antiferro-
magnetic fluctuations and ordering are predominant.
Magnetic interactions are surely the most important part
of the pairing interaction in 3He and almost certainly
also in UPt3 . But the difference in the momentum-space
weighting of the magnetic fluctuation spectrum in the
two means that the symmetry of the ordering in the two
systems is also likely to be different.

The electrons in UPt3 move on a lattice of consider-
able complexity; this feature is not present in 3He. Spin-
orbit coupling, a tiny (but important) force in 3He, is
very strong in UPt3 . This complicates the band structure
of UPt3 , but in some respects it simplifies the phenom-
enological theory of the superconducting state. This
paradox comes about in the following way. 3He is a spin-
triplet superfluid—the Cooper pairs are in an S51 spin
state. The orbital wave function in this rotationally in-
variant system belongs to the l 51 representation. Due
to the weakness of the spin-orbit force, this gives a nine-
fold degeneracy before nonlinear effects are considered.
This multiplicity of low-lying degrees of freedom gives
rise to great complexity (or richness, according to your
taste) when calculating the collective modes or vortex
structures. In UPt3 , on the other hand, the spin-orbit
coupling locks the spin and orbital angular momenta,
reducing the degeneracy from 9 to 3 in the triplet case.
The absence of complete rotational symmetry reduces
this further, to two or one, which are the possible dimen-
sions of the representations of the point group. In the
spin-singlet case, there is no spin degeneracy to start
with: we end up again with a degeneracy of two or one
for the pair state.

3He exhibits two superfluid phases as a function of
temperature and pressure, the A and B phases. UPt3 has
three phases as a function of temperature and applied
magnetic field: the A, B, and C phases. However, it is
unlikely that the transitions between different superfluid
states in the two systems are caused by similar factors.
The interaction strength, as measured by the dimension-
less parameters of Fermi-liquid theory, is a very strong
function of pressure in 3He. The A-B transition is asso-
ciated with this dependence. There is no analogous de-
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pendence of these numbers on field in UPt3 . Further-
more, the applied field in UPt3 breaks the point-group
symmetry and can lift the degeneracy of the two compo-
nents in linear order. Pressure can have no such effect.
The transitions in UPt3 are more analogous to the A-A8
transition in 3He, where A8 is a phase which exists only
at finite magnetic field.

High-Tc materials are likely to be the most familiar
unconventional superconductors to the modern reader
(for recent reviews, see Orenstein and Millis, 2000 and
Tsuei and Kirtley, 2000). The analogy between UPt3 and
high-Tc superconductors is in some ways close. In both
cases, the role of antiferromagnetic correlations (and or-
dering) is likely to be of central importance. Although
the energy scales are two orders of magnitude higher in
the cuprates, the ratio of magnetic to superconducting
temperatures is similar: 5–10 in the cuprates and 10 in
UPt3 . However, the nature of magnetism and its inter-
play with superconductivity are quite different. The
strength of the intersite coupling is greater in the cu-
prates, which may account for some part of the differ-
ence in the superconducting critical temperatures. Scal-
ing of the energies from one class of materials to the
other is not likely to work, however, as there are a num-
ber of clear qualitative differences: high-Tc materials are
quasi-two-dimensional, spin-orbit coupling is quite
weak, the Fermi surfaces are rather simple (or at least
have few sheets), and these materials are doped Mott
insulators. None of these properties describe UPt3 . One
of the most fundamental differences may lie in the na-
ture of the normal (nonsuperconducting) state: while it
is a Fermi liquid in UPt3 , albeit with strong mass renor-
malization, it is widely believed not to be a Fermi liquid
in the cuprates.

There is a consensus that the order parameter in high
Tc is predominantly one-component d wave (singlet;
Tsuei and Kirtley, 2000). This is consistent with the fact
that there appears to be no phase transition in the order-
parameter structure in high-Tc cuprates. Thus the anal-
ogy is probably of little use in understanding the phase
diagram of UPt3 . Nonetheless, the properties of the su-
perconducting state will be seen to have many similari-
ties and the theories developed to explain them are typi-
cally applicable to both cases. It is interesting that
experimental breakthroughs in the two fields have come
from very different measurements. Photoemission spec-
troscopy, microwave absorption, and phase-sensitive
measurements have proven enormously fruitful in inves-
tigating cuprate superconductivity, but not in UPt3 .
Pressure studies and sound attenuation have played a
key role in our understanding of UPt3 , but they have
not been very important in high Tc .

A number of review articles on particular aspects of
UPt3 have already appeared. General reviews of heavy-
fermion systems which include discussion of UPt3 are
those by Stewart (1984) and Ott and Fisk (1987), who
discuss early work, and later on by Grewe and Steglich
(1991), Lawrence and Mills (1991), and Hess, Risebor-
ough, and Smith (1993). Reviews on the general topic of
superconductivity in heavy-fermion systems are those of
Rev. Mod. Phys., Vol. 74, No. 1, January 2002
Lee et al. (1986), Gor’kov (1987), and Taillefer, Flou-
quet, and Lonzarich (1991). Two comprehensive and
useful reviews of unconventional superconductivity in
general are those by Sigrist and Ueda (1991) and Volo-
vik and Gorkov (1985). The theoretical background pre-
sented by Sigrist and Ueda is detailed enough that it
makes sense to follow the notation established by their
paper. We shall do this as far as possible. The most re-
cent, and very useful, review in the area of heavy-
fermion superconductivity is that of Heffner and Nor-
man (1996). Reviews more specifically covering UPt3
are those of Joynt (1992), which is a comparison of ex-
periment with various theories, Taillefer (1994), and
Löhneysen (1994), fairly comprehensive summaries of
experimental data, and Sauls (1994), which is particu-
larly good on the E2u theory.

C. Outline and summary

In what follows, we cover experiments and theories
that shed light directly on the superconducting phases of
UPt3 . This is the central problem in this material. We
shall attempt to give enough introductory material in
each section that the article can be read by newcomers
to the area, but go deep enough that that it should also
be useful to experienced researchers. We limit the
choice of topics to those in which meaningful compari-
son of theory and experiment can be made. This has led
us to largely or partially omit certain topics, most impor-
tantly a large number of experiments on the effects of
various impurities. Theories of vortices and vortex lat-
tices are discussed only briefly, and theories of surface
effects, Andreev scattering, and collective modes not at
all. We discuss the pairing mechanism only very briefly.
This is an issue of central interest but on which little can
be said with any certainty at this stage.

Our strategy for the comparison of theory and experi-
ment is to classify theories and experiments into groups.
Within a class of theories, the predictions for experiment
are rather similar. Within a class of experiments, the
constraints on theories also resemble each other to some
extent.

The theories are divided into three groups:
(a) two-dimensional representations, mainly E1g and

E2u ;
(b) three-dimensional representations or spin-triplet

theories;
(c) mixed-representation theories.
Other theories are mentioned, but space prevents us

from investigating them in detail.
The experiments are also divided into three groups:
(a) phase diagram;
(b) nodal structure of the gap;
(c) Cooper-pair spin structure and spectroscopy.
The theories in one section of course do not all give

precisely the same predictions, nor do all the experi-
ments in one section point to the same theory. Neverthe-
less, there is enough commonality that comparison of
classes of theories to classes of experiments often makes
sense.
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We begin in Sec. II with a brief description of the
normal state. Section III contains the background for
understanding the three classes of theories of the super-
conducting state. The peculiar phase diagram of the su-
perconductor is the topic of Sec. IV. The physical prop-
erties of the material in each of the superconducting
phases, particularly in phase B, are discussed in detail in
Sec. V, which is thus devoted to experiments in classes
(b) and (c). In Sec. VI, we summarize the current status
of our understanding of UPt3 and suggest ways to fur-
ther that understanding.

II. NORMAL STATE

A. Crystal lattice

UPt3 crystallizes in the MgCd3-type structure shown
in Fig. 2. The uranium atoms form a closed-packed hex-
agonal structure with the platinum atoms bisecting the
planar bonds. There are two formula units per unit cell.
The compound belongs to the space group P63 /mmc
and the point group D6h . The lattice parameters are
a55.764 Å and c̃54.899 Å, so that c̃/a50.845, not too
far from the hard-sphere value of 0.816. Here c̃ is the
distance between neighboring planes, not the length of
the unit cell. When discussing transport properties, the b
axis is usually defined to be perpendicular to the a axis

FIG. 2. Crystal structure of UPt3 (a) and its first Brillouin zone
(b).
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(i.e., parallel to the a* axis). In terms of reciprocal
space, we have aiGK and biGM . The nearest U-U dis-
tance is between atoms in adjacent layers, equal to 4.132
Å. Correspondingly, as we shall see in Sec. II.C, the con-
ductivity is greatest along the c axis. The volume of the
unit cell is 140.96 Å3, the molar volume Vm542.43
31026 m3/mol U, the mass density 1.9403104 kg/m3,
and molar weight 823.3 g. The mean atomic volume is
17.62 Å3.

In 1993, a study of the crystal structure of UPt3 using
transmission electron microscopy (TEM) discovered a
complex set of incommensurate structural modulations
at room temperature, corresponding to several qW vectors
of magnitude around 0.1p/a (Midgley et al., 1993). A
similar TEM study performed on a whisker of UPt3
found a well-developed incommensurate modulation
with a single qW 5(0.1,20.1,20.1), i.e., of the same mag-
nitude, corresponding to a modulation of wavelength
'70 Å, coherent over microns (Ellman, Zaluska, and
Taillefer, 1995). However, a subsequent x-ray investiga-
tion of the structure of a whisker by Ellman et al. (1997)
found no trace of any incommensurate modulation, at
the level of one part in 105 (see also Walko et al., 2001).
This suggests that the structural distortions seen with
TEM may be the result of the rather violent surface
preparation techniques used to thin the samples (e.g.,
ion milling). We conclude that the intrinsic crystal struc-
ture of UPt3 is perfectly hexagonal. (Note, however, a
recent x-ray study which reports the observation of a
slight trigonal distortion; Walko et al., 2001.) Deviations
from this correspond to extrinsic lattice defects (such as
stacking faults), which of course are present to a varying
degree in different samples, as discussed in Sec. II.E.

The basic elastic properties of UPt3 are well described
by de Visser, Menovsky, and Franse (1987). Longitudinal
acoustic waves travel at a speed of 3860 and 3993 m/s
parallel and perpendicular to the c axis, respectively.
The two transverse acoustic modes propagate at 1385
m/s along the c axis and 1388 m/s (2076 m/s) along the b
axis with polarization parallel (perpendicular) to the c
axis. The Debye temperature is found to be 217 K, in
agreement with an estimate from specific heat (Sec.
II.C.1). The compressibilities are calculated by de Visser,
Menovsky, and Franse (1987):

ka52
1
a

da

dP
50.164, kc52

1
c

dc

dP
50.151,

kV52ka1kc50.479 Mbar21. (2)

B. Quasiparticle spectrum

1. Band structure

UPt3 is the archetype of a heavy-fermion system. It
has the qualitative properties of a Fermi liquid, but the
magnitude of the effective masses, reflected in the spe-
cific heat and magnetic susceptibility, is very much larger
than the free-electron value. The heaviness of the elec-
trons is generally attributed to electron correlations
which come from the strong repulsions on the U sites.
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Models of this phenomenon are usually based on simpli-
fied Hamiltonians such as the Anderson lattice model.
Approximate solutions of this model show an enhanced
specific heat and high magnetic susceptibility combined
with (elastic) transport properties which do not show
strong renormalizations. This is the pattern observed in
UPt3 , so we may be said to have a reasonable qualita-
tive understanding of the ground state and the low-
energy excitations. Details of the theories may be found
in Fulde, Keller, and Zwicknagl (1988) and Hewson
(1993). These theories are usually based on models that
greatly oversimplify the uranium atom. There has been
some progress in models with more realistic atomic
physics, and mass renormalization appears to take place
in a fashion similar to that in the simplified models (Ra-
sul and Harrington, 1987; Evans and Gehring, 1989).

In the theories, correlations give a strong frequency
dependence to the self-energies of the electrons, but
very little wave-vector dependence. Thus one may hope
to calculate accurately the position of the Fermi surface
using density-functional theory. We would not expect
that such calculations would yield the mass enhance-
ment. In fact, UPt3 has attracted a great deal of interest
from band-structure theorists, particularly when it be-
came clear that reliable experimental information on the
Fermi surface could be obtained by measurements of
the de Haas–van Alphen (dHvA) effect. The calcula-
tions are based on the local-density approximation to
the exchange-correlation potential taking the U 5f elec-
trons to be itinerant, as opposed to localized in the core
(Oguchi and Freeman, 1985; Sticht and Kübler, 1985;
Strange and Gyorffy, 1985; Albers, Boring, and Chris-
tensen, 1986; Oguchi, Freeman, and Crabtree, 1987;
Wang et al., 1987; Norman et al., 1988). All calculations
lead to similar results, confirmed again in more recent
calculations (Kimura et al., 1995; Julian et al., 2000). The
band structure of UPt3 thus calculated consists of five
separate bands crossing the Fermi level, all with strong f
character, giving rise to five (or six) Fermi surface
sheets. For a brief review of the calculations and a com-
parison with experimentally determined surfaces, see

FIG. 3. The band structure of UPt3 calculated using density-
functional theory within a linearized augmented plane-wave
basis. The nature of each band is described in the text. From
Wang et al., 1987.
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Norman and Koelling (1993). In Fig. 3 we plot disper-
sion curves taken from Wang et al. (1987), who used the
method of ‘‘linearized augmented plane waves,’’ gener-
ally regarded as the most accurate of those applied to
UPt3 . These calculations are relativistic so that spin-
orbit coupling is properly treated.

The corresponding Fermi surface is shown in Fig. 4 in
a 3D representation (Julian et al., 2000). It is seen to
consist of five or six separate sheets: two hole sheets
centered on A , which we call the ‘‘starfish’’ and the ‘‘oc-
topus,’’ and three electron sheets centered on G which
we call the ‘‘oyster,’’ the ‘‘mussel,’’ and the ‘‘pearl.’’ In
addition, there may be a set of six ‘‘urchins’’ surrounding
the oyster, each centered on K .

These curves are the eigenvalues of the Kohn-Sham
equations and represent the single-particle states. The
differences in atomic configuration energies thus appear
only in an average way. This being given, however, the
bands are not difficult to understand. Since uranium
is near the beginning of the actinide row, Hund’s rules
imply that the single-particle states near the Fermi
energy are the l 53, s51/2, and j55/2 states. At the G
point, these six states transform according to the repre-

FIG. 4. Three-dimensional Fermi surfaces calculated under
the assumption that the 5f electrons are included in the Fermi
volume (Julian, 2000). For convenience, we label these as fol-
lows: (a) the starfish, (b) the octopus (both centered on point
A), (c) the G-centered oyster surrounded by six K-centered
urchins, and (d) the mussel and (e) the pearl (both centered on
G).
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sentations of the full hexagonal point group, and are
therefore split into three doublets by the crystal field.
These may be labeled by their values of jz : jz561/2,
jz563/2, and jz565/2. The splitting between the 65/2
states and the 63/2 states is seen to be roughly twice
that between the 63/2 and 61/2 states. The situation in
UPt3 is further complicated by having two uranium at-
oms in the unit cell. There is a bonding and antibonding
combination for each momentum state. The total num-
ber of bands is thereby doubled, yielding the six bands
that one sees in the vicinity of the Fermi level. The
bonding-antibonding (even-odd) splitting in the unit cell
may be seen from form-factor arguments to be very
small on the zone faces kz56p/c , particularly at the A
and L points. This is convenient since it allows us to
estimate the crystal field and bonding-antibonding ener-
gies separately.

At the G point, the identification of the states as being
derived from a given jz is reasonable if crystal fields are
not too strong. Following the bands to the zone face
allows us to distinguish between even and odd as well.
This procedure leads to the conclusion that the even-
odd splitting potential matrix element ranges from a few
mRy to about 10 mRy, or roughly 10–100 meV. The
splittings between pairs at the G point may be attributed
to the crystal field. These splittings are of order 5 mRy,
comparable to the even-odd splitting.

The dispersion of the bands comes from hybridization
of the U 5f shell with the Pt 5d shell. Direct overlap of
the U atoms is negligible since the minimum U-U dis-
tance is 4.13 Å, well beyond the Hill limit of 3.4 Å at
which 5f orbitals cease to overlap. The bandwidth varies
a bit from band to band, but is generally about 20 mRy,
roughly 1

4 eV.
The fact that the bandwidth is greater than the crystal-

field splitting means that orbitals of different jz will mix
over most of the Brillouin zone and we may not classify
states in this way, except near the G point.

The band calculations, combined with experiment,
can help to estimate the on-site interaction U and over-
lap parameter V in model Hamiltonians such as the pe-
riodic Anderson model (for details of the model, see
Hewson, 1993). Spectroscopic experiments on free neu-
tral uranium atoms give values for U ranging from 2.3 to
2.6 eV, which is probably reduced to something like 1.5
eV in the metallic ion (see Norman, 1995a for refer-
ences). Putting in a bandwidth B ('2zV , z being the
coordination number) of about 0.25 eV then leads to a
sizable dimensionless interaction strength U/B'6, and
substantial mass renormalization is to be expected.

By evaluating the Fermi velocity vW F5\21¹kW E(kW ) at
all points on each surface one can evaluate the average
velocity ^vF& i in the i direction, and obtain the cyclotron
mass for a particular orbit:

mc5
\

2p
E

orbit

dkW

uvW F~kW !u
. (3)

The thermodynamic mass, or equivalently the density
of states at the Fermi energy for each surface, is given by
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NFS sheet~EF!5
1

8p3 EFS sheet

dS

uvW F~kW !u
. (4)

2. de Haas–van Alphen effect

Measurements of quantum oscillatory phenomena
such as the de Haas–van Alphen (dHvA) and
Shubnikov–de Haas effects allow for a test of the valid-
ity of these band-structure calculations. The dHvA study
of UPt3 by Taillefer and co-workers (Taillefer et al.,
1987; Taillefer and Lonzarich, 1988) revealed a number
of different frequency components, plotted in Fig. 5 as a
function of the angle between the applied magnetic field
and the crystal axes. Most of the observed dHvA fre-
quency branches, and certainly all of those that corre-
spond to large fractions of the Brillouin zone, can be
satisfactorily identified with specific cyclotron orbits on
the calculated Fermi surface (Taillefer and Lonzarich,
1988; Norman et al., 1988). In Fig. 4, the identification of
the dHvA frequency branches a, d, g, l, e, and v to
certain predicted orbits is given. Five of the six Fermi-
surface sheets are sampled in the dHvA measurement,
and most of the dHvA frequencies find a natural expla-
nation and are in quantitative agreement with the calcu-
lated band structure. This includes the nontrivial struc-
ture for HibiGM (Fig. 5), made of five equally spaced
frequencies (d, u, f, c, and l), naturally explained in
terms of magnetic breakdown between two orbits cen-
tered on point A , respectively supported by the starfish
(d orbit) and the belly of the octopus (l orbit) (see
Taillefer and Lonzarich, 1988).

Recently, Julian et al. (2000) succeeded in resolving a
number of dHvA frequencies for Hic , not detected in
the early studies. In particular, they could extend the d
and v branches (around the mussel and the oyster) all
the way from the a to the c axis, for which they find an

FIG. 5. Variation of the de Haas–van Alphen frequencies with
orientation of the magnetic field in the crystallographic planes
a-b , a-c , and b-c . From Taillefer and Lonzarich, 1988.
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effective mass m* varying from 25 to 43 me and from 82
to 110 me , respectively. They also identify an orbit
around the urchins close to Hic , with m* .60. Kimura
et al. (1995) also reported the observation of two dHvA
frequencies for Hic , with F527 and 49 MG. They at-
tribute the larger frequency to a new branch, labeled t,
assigned to an orbit around the ‘‘belly’’ of the octopus.
Such a closed orbit would only exist for HW very close to
the c axis, as it seems to. (Note that Julian et al., 2000 do
not see this orbit.) As for the lower frequency, which
one would naturally associate with the rising d branch
(or even the e), these authors interpret it in terms of a
new orbit on the inside of a gaping hole within the oc-
topus. This proposed hole is said to result from a slight
shift of the Fermi level in their band calculation (see
Kimura et al., 1995). They invoke the lack of saturation
in their transverse magnetoresistance study as evidence
for this central void. Indeed, without this void, the octo-
pus supports open orbits along both a and b directions
and the magnetoresistance should saturate for a current
along those directions (given that UPt3 is a compensated
metal). However, the authors seem not to have been
aware of a previous study by Taillefer, Flouquet, and
Joss (1988), performed at lower temperature on a crystal
of longer mean free path, such that the maximum vct
was 10 times higher, where saturation was very clearly
established for a field along both the a and the b direc-
tions. Note also that a hole in the center of the octopus
would eliminate the possibility of magnetic breakdown
mentioned above. We conclude that no such hole exists
(our octopus has a full belly!), and the Fermi surface of
UPt3 is very much as shown in Fig. 4. The oyster and the
octopus are the only two Fermi-surface sheets that are
thermodynamically significant, enclosing a large fraction
of the Brillouin-zone volume and accounting for most of
the density of states. The cyclotron mass on the oyster is
the largest ever measured in any metal so far. Julian,
Teunissen, and Wiegers (1992) were able to resolve what
appears to be the two spin-split components of that
Fermi surface and found a mass of 135 me for the upper
branch.

In summary, we have good reasons to believe that
standard band-structure calculations reproduce well the
complex topology of the Fermi surface of UPt3 and that
the surfaces of Fig. 4 provide a fairly complete picture.
In great contrast, however, no such agreement is found
for the measured cyclotron masses, which range from
15 me for the smallest orbits to 90 me or more for the v
branch (oyster). Since the calculated band mass, mc , of
the various orbits is never more than 5 me (Norman
et al., 1988), this gives a mass enhancement that varies
by a factor 2 with an average of about 20:

m*

mc
512–29. (5)

The same factor is found in the thermodynamic mass,
which is just an average of the cyclotron mass over the
entire Fermi surface [see Eqs. (3) and (4)]. The ratio of
measured to calculated linear coefficient of the specific
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heat (Norman et al., 1988) works out to be gN /gcalc
517, where gcalc5p2kB

2 N(EF)/3. In this sense, the
large effective mass one extracts from the specific heat is
in excellent agreement with the cyclotron masses mea-
sured for various orbits around the Fermi surface. A
mass enhancement of 17 is enormous, much higher than
seen in any other class of materials before. It is of course
the defining characteristic of a heavy-fermion compound
and is due to the strong electron-electron correlations
not included in the band-structure calculations. It is in-
teresting that even in the presence of such strong corre-
lations, there is no evidence of any breakdown of Fermi-
liquid theory. The standard Lifshitz-Kosevich formula
for the field and temperature dependence of the ampli-
tude of quantum oscillations is perfectly verified down
to 10 mK and up to 18 T (Lonzarich and Julian, 1994).

The picture that emerges for UPt3 is then one of a
liquid of Fermionic quasiparticles with uniformly high
effective masses and a Fermi surface consisting of six
sheets. By uniformly high masses we mean that there are
no unrenormalized quasiparticles; one way of seeing this
is via the Fermi velocities, all of which are within 15% of
the same (extremely low) value:

^vF&bc.\^kF&bc /m* 55000 m/s (6)

for orbits in the b-c plane (Taillefer et al., 1987). This is
extremely slow; these fermions are not much faster than
a typical phonon.

Even though this detailed picture has been known for
over ten years, the Fermi surface of UPt3 is still fre-
quently approximated by a single sphere, with a radius
kF5(3p2Z2/Vm)1/251.08 Å21, where Z is the valence
number (usually taken to be 6, assuming only the three
5f electrons of each U atom contribute to the Fermi-
surface volume) and Vm is the molar volume, with an
effective mass m* 53\2gN /kB

2 kFVm5180 me , which
gives a Fermi velocity of 6800 m/s. The experiments
demonstrate that this is a highly oversimplified approxi-
mation.

The dHvA studies provided another useful piece of
information: the impurity scattering rate. Indeed, by
measuring the field dependence of the amplitude of a
particular frequency component (i.e., the usual Dingle-
plot analysis), the scattering rate along the associated
quasiparticle orbit was obtained. For a sample with re-
sidual resistivity r0.0.1 mV cm (Jic), Taillefer et al.
(1987) deduced mean free paths l dHvA51000, 1500, and
2200 Å for the a, e, and v orbits in the b-c plane, re-
spectively, or scattering rates 1/tdHvA55.6, 3.3, and 2.5
31010 s21.

C. Thermodynamic and transport properties

1. Specific heat

The specific heat of UPt3 is linear in temperature in
the range 0.5,T,1.5 K and given by C(T)5gNT , with
gN50.4460.02 J/(K2 mol U). The coefficient of the lin-
ear term is enormous, two to three orders of magnitude
larger than in simple metals, reflecting the huge effective
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masses seen in dHvA. A large gN is usually taken to be
the defining characteristic of the heavy-fermion state. In
other heavy-fermion compounds, gN ranges from ;100
(as in UPd2Al3 and URu2Si2) to ;1000 mJ/(K2 mol U)
(in UBe13). At temperatures above 1.5 K, contributions
to C(T) from excitations other than quasiparticles be-
come important, certainly phonons and probably also
spin fluctuations. A phonon T3 term of
;0.8 J/(K4 mol U) was extracted by Frings (1984), cor-
responding to a Debye temperature of ;210 K, compa-
rable to that of pure platinum, 230 K, and in agreement
with the value of 217 K derived from sound velocity
measurements (see Sec. II.A). In the presence of an ap-
plied magnetic field greater than 3 T [i.e., above Hc2(T
50)], two features are worth mentioning: a large upturn
in C/T at very low T , visible below about 100 mK (Bri-
son et al., 1994a), and a peak at 20 T, at the so-called
metamagnetic transition (Müller, Joss, and Taillefer,
1989). Although less pronounced, the upturn is also
present in zero field, i.e., in the superconducting state.
Its origin is not understood (see also Schubert, Strickler,
and Andres, 1992).

2. Thermal expansion

In a system with nearly localized quasiparticles, a
shortening of the interatomic separation is expected to
rapidly decrease the degree of correlation. This is indeed
the case in UPt3 , as seen by a number of experiments.
The usual measure of the sensitivity of the electronic
system to a change in volume is the dimensionless Grün-
eisen parameter:

G5
Vm

gN
S ]gN

]V D
T

. (7)

It has been estimated in two ways. From the pressure
dependence of the specific heat below 4 K, Brodale et al.
(1986) obtain ] ln gN /]P.224 Mbar21, so that G5
2(1/kVgN)(]gN /]P)T.50, where kV is the bulk com-
pressibility (see Sec. II.A). Alternatively, one can use
the linear coefficient of thermal expansion, aV
5]ln V/]T, and the appropriate Maxwell thermody-
namic relation to obtain G5(Vm /kVgN)(]aV /]T)V . At
low enough temperature that both C(T) and aV(T) are
linear in T , one finds G(T→0).60 (de Visser, Franse,
and Menovsky, 1985), compared to a value of 1–2 in
simple metals. This extremely high sensitivity of the av-
erage effective mass in UPt3 to a change in volume has
been interpreted as arising from a sensitivity in the mag-
netic correlations, e.g., spin fluctuations (Brodale et al.,
1986; van Dijk, 1994). Given this sensitivity, we expect
dramatic effects of pressure on the electronic properties
and on superconductivity. These effects will be very an-
isotropic, since a crystal of UPt3 expands along the a
and b axes upon heating from T50, but contracts along
the c axis, at least initially (de Visser, Franse, and Men-
ovsky, 1985).
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3. Charge conduction

The heavy itinerant quasiparticles in UPt3 can carry
charge and heat. This transport is anisotropic, with con-
duction along the c axis always better than perpendicu-
lar to it. Both elastic and inelastic scattering processes
are important at temperatures of order 1 K, being
roughly of the same magnitude at Tc in high quality
crystals.

The electrical resistivity of UPt3 is shown as a function
of temperature up to 300 K in Fig. 6(b), for a current
along each of the two high-symmetry directions, Jic and
J'c . (No difference is seen between Jib and Jia .) The
first noteworthy result is the absence of a peak: r(T)
never increases with decreasing temperature, as it usu-
ally does in heavy-fermion compounds, a feature attrib-
uted to the single-impurity Kondo effect. Second, at all
temperatures an anisotropy of about 2 is observed, with
ra ,b.2rc . The absolute value of the resistivity at room
temperature, if residual impurity scattering can be ne-
glected (as in the best samples), is ra ,b(300 K)
5230 mV cm and rc(300 K)5130 mV cm to within
10% or so (de Visser, Menovsky, and Franse, 1987;
Kimura et al., 1995). The low-temperature behavior is
shown in Fig. 6(a). It is characterized by a well-defined
T2 law, valid for both directions up to a temperature of
about 1.5 K: r(T)5r01AT2. Most studies on single
crystals (e.g., Lussier, Ellman, and Taillefer, 1994;

FIG. 6. Temperature dependence of the electrical resistivity of
a high-quality single crystal of UPt3 for current directions par-
allel ([0001]) and perpendicular to the hexagonal c axis. From
Kimura et al., 1995.
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Kimura et al., 1995; Suderow et al., 1997b; Kycia et al.,
1998) obtain a value for the inelastic scattering coeffi-
cient in agreement with A51.5560.1 mV cm K22 for
Jia ,b and A50.5560.05 mV cm K22 for Jic , indepen-
dent of r0 . The magnitude of r0 in nominally pure crys-
tals varies by a factor of 10 or so, with the following
range of values representative of single crystals used in
most investigations so far: r050.6–6 mV cm for Jia ,b
and r050.2–2 mV cm for Jic . Since the impurity scat-
tering rate appropriate for transport will be somewhat
lower than the scattering rates obtained from dHvA (the
latter is more sensitive to small-angle scattering), we es-
timate roughly that 1/t0.131010 s21 for r0
50.1 mV cm along the c axis, corresponding to l0
.5000 Å.

In the low-temperature regime (below ;1 K), the an-
isotropy in the conduction is roughly independent of
temperature (Lussier, Ellman, and Taillefer, 1994), and
sc /sb5rb /rc.2.6. The fact that the anisotropy is the
same for the elastic and inelastic terms (r0 and A) sug-
gests that it arises mainly from the Fermi velocities
rather than from the scattering rates. An evaluation of
the square of the Fermi velocity (or mass tensor) over
the various sheets of the calculated Fermi surface gives
an anisotropy ^vc

2&/^vb
2&52.1 (Norman, 1996). Note that

the mass enhancement, neglected in this ratio, could ac-
count for the additional anisotropy.

The inelastic electron-electron scattering is enor-
mously stronger (by three or four orders of magnitude)
in heavy-fermion materials than it is in normal metals.
Like the specific heat, it is governed by the density of
states at the Fermi energy and a simple relation gN

;AA is fairly well obeyed across the family of com-
pounds (Kadowaki and Woods, 1986). One way to inves-
tigate the effect is to apply pressure, thereby reducing
the quasiparticle bandwidth. Hydrostatic pressure has
little effect on r0 but it decreases A at the rate
d ln A/dP.240 Mbar21 (Willis et al., 1985; Ponchet
et al., 1986), roughly twice the corresponding rate for
gN . Note, however, that the response is highly aniso-
tropic: uniaxial stress applied along the c axis causes A
to increase (Taillefer et al., 1992).

A magnetic field lower than 10 T has no effect on A ,
but it causes an increase in r0 . This positive magnetore-
sistance is linear in field and depends on whether the
field is parallel or perpendicular to the c axis (de Visser,
Menovsky, and Franse, 1987). For Jic and H,10 T, one
has r(T ,H)5r01aH1AT2 with a56.8 (0.25)
31022 mV cm T21 for H'c (Hic) (Taillefer, Flouquet,
and Joss, 1988).

4. Heat conduction

Thermal conductivity is a tensor that relates the heat
current JW Q to the associated temperature gradient ¹T :
JQa52(bkab¹bT . In a hexagonal crystal the tensor is
diagonal and only two independent quantities are in-
volved. In simple kinetic theory assuming an isotropic
medium, the thermal conductivity is given by k
5cvl /3, where c5c(T) is the volume specific heat, v is
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the speed, and l the mean free path of the carriers. This
expression applies equally to electrons and phonons. For
normal metals at low temperatures, the electronic con-
duction is limited by impurity scattering, and k is linear
in temperature since c(T)5gNT , so kN5 1

3 gNvFl 0T .
The thermal conductivity of UPt3 below 1 K is shown

in Fig. 7 for both high-symmetry directions. The normal
state is characterized by strong inelastic scattering and
an anisotropy of kc /kb.2.7: kN(T)/T51/(a1bT2),
with a50.25 (0.09) m K2 W21 and b51.0 (0.37) m W21

for JQib (JQic) (Lussier, Ellman, and Taillefer, 1994,
1996). Quasiparticle scattering gives rise to the T2 term,
which (in these crystals) grows to be as large as the elas-
tic impurity component at Tc (i.e., bTc

2.a). It is also
seen that the anisotropy is independent of temperature
in the normal state.

Therefore the picture that emerges for the normal
state is remarkably simple: UPt3 is a slightly anisotropic
but three-dimensional Fermi liquid with strong electron-
electron interactions. The anisotropy is the same for
both particle and energy transport, and for both impu-
rity and electron scattering:

kc

kb
.

sc

sb
.2.7 (8)

for T,0.8 K (Lussier, Ellman, and Taillefer, 1994). It is
tempting to conclude from this that most of the anisot-
ropy comes from the anisotropy in the Fermi velocities
and that all scattering is s wave, i.e., that the transport
relaxation times telastic and t inelastic are almost isotropic.
(For a recent discussion of anisotropies, see Kycia et al.,
1998.)

The Wiedemann-Franz law is obeyed at very low tem-
perature, i.e., the Lorenz number L5k/sT reaches its
expected limiting value: r0 /a5L052.44
31028 W V K22 (Lussier, Ellman, and Taillefer, 1994;
Suderow et al., 1997b). Of course, L(T) is strongly tem-

FIG. 7. Thermal conductivity k i as a function of temperature,
plotted as k/T vs T for heat currents along the b and c axes.
The normal-state thermal conductivity below Tc (dashed lines)
is obtained by extrapolating the good fit kN ,i /T5(ai

1biT
2)21 found for 0.5,T,0.8 K. From Lussier, Ellman, and

Taillefer, 1996.
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perature dependent, as a result of the inelastic scatter-
ing, and L(0.8 K)50.75 L0 .

The electrons responsible for the large gN are also
the carriers of heat. This can be confirmed using
the known Fermi velocity (averaged over the various
orbits in the b-c plane), vbc.5000 m/s, combined
with gN50.44 J K22 mol21 and lbc.2000 Å (for r0
50.23 mV cm), giving an estimate of the thermal con-
ductivity due to the quasiparticles: kN /T5 1

3 gvbclbc
53.5 W K22 m21 at T,0.1 K. The measured values
(in the normal state) are kN /T5L0 /r054.0 (10.6)
W K22 m21, for JQib (JQic), reasonably close to our
rough estimate. This is further confirmation that the
Fermi-liquid picture of heavy and itinerant quasiparti-
cles is quantitatively consistent in UPt3 .

D. Magnetic properties

The spin degrees of freedom in strongly correlated
electron systems are at the heart of their subtle and ex-
otic low-temperature phenomena. It is interesting that
both high-Tc superconductors and heavy-fermion super-
conductors have low-lying magnetic fluctuations with
antiferromagnetic correlations and a proximity to anti-
ferromagnetic order.

1. Uniform magnetic susceptibility

The ac susceptibility of UPt3 was measured by Frings
et al. (1983) for fields parallel and perpendicular to the c
axis, as shown in Fig. 8. The Knight shift of nuclear mag-
netic resonance (NMR) frequencies also gives a measure
of the susceptibility x(T); Tou et al. (1996) have repro-
duced the temperature dependence and anisotropy of x
with 195Pt NMR. The main features of x are (1) a large
value at T50, (2) a weak temperature dependence at
low temperature (T,2 K), (3) a substantial anisotropy
(with the larger response for field in the basal plane),
and (4) a peak in xxx at ;20 K.

FIG. 8. Uniform magnetic susceptibility as a function of tem-
perature for fields along the three high-symmetry directions.
Equality of the linear susceptibility along the a and b axes is a
general consequence of hexagonal symmetry. From Frings
et al., 1983.
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We can understand this complex phenomenology
from the band calculations. As we have seen in Sec.
II.B.1, the single-particle states near the Fermi surface
are uranium 5f electrons in a j55/2 state which are split
by the crystal field into three doublets: jz565/2, jz
563/2, and jz561/2. The bands constructed from
these states all cross the Fermi energy. If we now apply a
magnetic field, there will be both a Pauli (intraband) xP
and a Van Vleck (interband) xVV contribution to the
susceptibility. The former is of order (geffmB)2N(«F) for
any band, while the latter is of order (geffmB)2/Ecf for a
pair of bands. Here geff is an effective g factor for the
coupling of the field to the total angular momentum of
the band or bands involved, and Ecf is a characteristic
crystal-field splitting. xVV comes from a sum over pairs
of bands [see Eq. (9) below], while xP is a sum over
single bands. In this highly degenerate multi-f-band
metal with 1/N(«F);Ecf we expect the Van Vleck part
of the susceptibility to be comparable to or larger than
the Pauli part.

The anisotropy of the two parts is also important. The
Van Vleck susceptibility is given by

x ii52nmB
2 (

a ,b

z^auLW i12SW iub& z2

Eb2Ea
fa~12fb!, (9)

where fa , fb , Ea , Eb are occupation factors and ener-
gies of the states a and b . n is the density of U atoms. If
HW is along the c axis, then z^auLW i12SW iub& z2

5(36/49)jz
2da ,b . In the approximation that states of dif-

ferent jz do not mix (negligible intersite interactions),
the perturbation introduced by HW is diagonal, and the
occupation factors then imply that the Van Vleck sus-
ceptibility is zero for this direction. In actual fact, be-
cause of the itinerant nature of the f electrons, the mix-
ing of states of different jz will give some Van Vleck
contribution for this direction of the field. If HW is in the
x direction, the corresponding expression for the square
of the matrix element is (36/49)(5/22jz)(5/21jz11) if
the states a and b differ by one unit of jz and is zero
otherwise. The Van Vleck susceptibility comes from four
distinct pairs of states: (jz525/2,23/2), (23/2,21/2),
(1/2,3/2), and (3/2,5/2), whenever one of the pair is oc-
cupied and the other unoccupied. The Pauli contribution
to xxx , on the other hand, comes only from the pair
(21/2,1/2) when this state is occupied. Again, these
statements are made in the approximation that intersite
mixing of the states is small.

Summing up these considerations, we expect that xzz
will be dominated by the Pauli contribution. We expect
that xxx will be dominated by the Van Vleck contribu-
tion and that it will be considerably larger than xzz .
Note that the interactions enhance the susceptibility and
that this is expected to affect Pauli and Van Vleck terms
alike.

This simple picture is consistent with the data in Fig.
8. A Pauli term is expected to behave as a constant for
kBT,«F and then to cross over to the 1/T Curie form.
Here «F is the effective Fermi temperature. Since it is a
measure of the density of states, it should be roughly
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proportional to C/T . The Van Vleck term could have a
more complex behavior because it depends on various
pairwise joint densities of states. Figure 8 shows that xxx
is considerably larger than xzz at all temperatures, in
accord with the expectation that Van Vleck terms tend
to dominate the total. Furthermore, the expected Pauli-
like dependence on temperature is seen for xzz , while
the temperature dependence of xxx is anomalous. This is
consistent with the hypothesis that xxx and xzz come
from different sets of transitions.

2. Magnetic correlations

The magnetic fluctuation spectrum of UPt3 was inves-
tigated by Aeppli and his collaborators (Aeppli, Bucher,
Broholm, et al., 1988; Aeppli, Bucher, Goldman, et al.,
1988) using inelastic neutron scattering. The basic fea-
tures are as follows: at a gross level, the spectrum at low
temperature (;1 K) is that of a local magnetic moment
of ;2mB on each U site fluctuating at a characteristic
energy of the order of 10 meV. On a finer scale, mo-
ments on nearest-neighbor sites (in adjacent planes
separated by c) become correlated antiferromagneti-
cally below about 20 K. The appearance of these corre-
lations coincides roughly with the peak in xxx . These
antiferromagnetic correlations are at QW 5(0,0,1) and
they peak in energy at 5 meV (Aeppli, Bucher, Gold-
man, et al., 1988). At even lower energies, the magnetic
behavior of UPt3 is dominated by a second type of an-
tiferromagnetic correlation, with characteristic energy
0.3 meV and wave vector QW 5(6 1

2 ,0,1), and associated
effective moment of ;0.1mB (Broholm, 1989). This cor-
responds to antiferromagnetic alignment of neighboring
sites within the same a-b plane, along the a* (or b) axis.
The temperature dependence of the inelastic scattering
at this wave vector is shown in Fig. 9. Although the role
of these fluctuations in either the formation of the
heavy-fermion state (mechanism for mass renormaliza-
tion) or the formation of the superconducting state
(pairing mechanism) is not established, it is likely to be
of fundamental importance, as is certainly the case for
3He and probably also for the high-Tc cuprates.

One might ask how this picture of fairly localized mo-
ments ties in with the fact that at low temperature UPt3
seems to behave very much as a Fermi liquid. In other
words, where are the magnetic fluctuations that must
inevitably result from the itinerant quasiparticles carry-
ing spin? They were shown by Bernhoeft and Lonzarich
(1995) to exist as long-wavelength magnetic fluctuations
(0.1,q,0.3 Å) at low temperature (;1 K) with a dis-
persive relaxation rate characteristic of a Fermi liquid.
This ‘‘slow’’ component of the fluctuation spectrum co-
exists with the ‘‘fast’’ contribution described above, and
it accounts for approximately 20% of the total static sus-
ceptibility. It is similar to the well-understood response
of nearly or weakly ferromagnetic d transition-metal
systems, but further complicated by the strong spin-orbit
interaction.
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3. Antiferromagnetic order

When the temperature is lowered below about TN
.5 K, an elastic component of the magnetic correlations
at QW 5(6 1

2 ,0,1) appears, i.e., static antiferromagnetic
order sets in, with a very small staggered moment of
order 0.01mB /U atom. This ordering was first noticed in
muon spin relaxation measurements by Heffner et al.
(1989) and was soon confirmed by neutron scattering
(Aeppli, Bucher, Broholm, et al., 1988), which estab-
lished the magnetic structure, shown in Fig. 10. The
magnetic order is collinear and commensurate with the
crystal lattice, with a moment aligned in the basal plane
(MW Sia* ) and a propagation vector QW 5(6 1

2 ,0,1) paral-
lel to the moment. It doubles the unit cell along a* and
it corresponds to antiferromagnetic coupling within
planes and ferromagnetic coupling between planes. The
temperature dependence of the scattering intensity (pro-
portional to MW S

2) is shown in the upper part of Fig. 9. It
is linear all the way between Tc and TN , i.e., uMW Su
;(TN2T)1/2.

All aspects of this ordering were reproduced by later
neutron studies on a different crystal (Hayden et al.,
1992; Lussier, Taillefer, et al., 1996) and by magnetic
x-ray scattering (Isaacs et al., 1995). The moment grows
to a maximum magnitude of 0.02–0.03mB /U atom and
the Néel temperature is between 5 and 6 K. On the
other hand, in a subsequent muon spin relaxation (mSR)
study, Dalmas de Réotier et al. (1995) detected no signa-

FIG. 9. Temperature dependence of neutron-scattering inten-

sity below 20 K for (a) the elastic peak at QW 5( 1
2 ,0,1) and (b)

the inelastic scattering at QW 5(0.52,0,0.99) for \v585 meV.
From Aeppli et al., 1988.
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ture of the ordering in a high quality annealed single
crystal of UPt3 . They attribute the absence of a mSR
anomaly to the fact that the implanted muon may well
sit in a high-symmetry site in the lattice where the total
field resulting from the antiferromagnetically arranged
moments would be canceled. In the presence of struc-
tural deformations (in crystals of lower quality), how-
ever, this cancellation would not be perfect and a small
mSR signal could appear (as seen by Luke et al., 1993;
see also Yaouanc et al., 2000).

Several observations might suggest an extrinsic origin.
For example, addition of a few percent Pd (see de Visser
et al., 1997, and references therein) or Th (see Aeppli
et al., 1988a, and references therein) causes a large or-
dered moment (;0.5mB /U atom) to appear. The order
in pure UPt3 never seems to develop over a long spatial
range: the correlation lengths are invariably of order 300
Å (Broholm, 1989; Isaacs et al., 1995). On the other
hand, an identical order has been seen in three distinct
crystals (and experiments). Furthermore, Isaacs et al.
(1995) showed that a heat treatment which strongly
modifies the shape of the superconducting transition
anomaly in the specific heat has no effect on TN or MW S .

One possibility is that the order is not truly static, but
only appears so as seen by neutrons. This would explain
the absence of an anomaly in all physical properties in-
vestigated so far (although the small size of the moment
may by itself preclude detection). In particular, no sign
of magnetic ordering was seen in the NMR Knight shift
(Tou et al., 1996), the specific heat (Fisher et al., 1991),
or the magnetization. On the other hand, the experi-
mental resolution of the mSR measurements provides a
lower limit of approximately 10 ms for the time scale on
which the order persists.

Even if it is intrinsic (and nearly static), as we believe
it is, the origin of the small-moment order in UPt3 is a
puzzle, as are most of its properties: Why no true long-
range order? Why no domain selection by a magnetic
field (Lussier, Taillefer, et al., 1996)? Why a mean-field

FIG. 10. Configuration of ordered magnetic moments (drawn
on the U site) in the antiferromagnetic state below 5 K, as
determined by neutron scattering. The magnetic moment lies
in the basal plane, parallel to the a* direction.
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behavior in temperature but not in pressure (Hayden
et al., 1992), etc.? Somewhat similar phenomena are en-
countered in other heavy-fermion compounds, and a
number of authors have attempted to explain the origin
of small moments in these systems. We shall not enter
into these attempts here (see, for example, Buyers,
1996), but simply take the antiferromagnetic order as
given and ask later what its role might be in shaping the
superconducting phase diagram.

E. Sample quality

UPt3 is an intermetallic binary compound which so-
lidifies congruently from the liquid phase at 1700 °C.
Depending on the cooling procedure, the material will
solidify into a polycrystal or a single crystal. Most recent
research has been done on single crystals. These come in
two varieties: whiskers and bulk. Whiskers are small
needlelike crystals with their length along the hexagonal
c axis. They grow in two distinct ways: spontaneously
from the melt upon cooling, at the surface of a boule
(Menovsky, Franse, and Moleman, 1984), and from a
bismuth flux (Fisk and Remeika, 1989). Whiskers are
used only rarely because of their small size (typical
length ,1 mm, typical section ,5000 mm2) and their
imposed geometry. In addition, there is the complicating
factor of flux inclusion in the flux-grown whiskers and
the uncontrolled nature of growth in the other type of
whisker, leading to widely varying quality. Nevertheless,
the longest electronic mean free paths have been found
in whiskers, which can have RRR values of up to 3000.
(RRR is the residual resistivity ratio, defined as the ratio
of the electrical resistance at 300 K to the electrical re-
sistance extrapolated to 0 K.) Thus they have proven to
be useful in certain cases, such as in Fermi-surface stud-
ies, which depend strongly on vct (Taillefer, Flouquet,
and Joss, 1988; Julian, Teunissen, and Wiegers, 1992).
They can also have a crystalline structure of extremely
high integrity, making them ideal for detailed structure
studies, for example, those of Ellman et al. (1997). They
may also prove to be appropriate for experiments de-
pending on good surface quality, such as tunnel junc-
tions.

The bulk single crystals have been grown by the usual
techniques of unidirectional solidification (for a review
see, for example, Abell, 1989): the Czochralski pulling
method (with either rf induction heating or arc melting),
the technique of vertical float zoning (typically with
electron-beam heating), or horizontal zoning on a water-
cooled crucible (which produces large-grained polycrys-
talline ingots out of which single crystals can be cut).
These techniques have been used by a number of groups
around the world.

One advantage of the U-Pt system is the low vapor
pressure of both constituents at (or below) 1700 °C. This
has meant negligible loss of either component during
growth, even when performed in vacuum, allowing the
use of electron-beam heating, and long heat treatments
in ultrahigh vacuum at fairly high temperatures.
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As long as care is taken to work with the purest start-
ing materials (99.97 at. % U, with RRR.30, and 99.995
at. % Pt, RRR.2000 after annealing), and in a clean
environment (typically provided by ultrahigh vacuum
technology), all of the above-mentioned techniques can
produce high-purity crystals.

Two kinds of defects will exist to some extent in any
crystal of UPt3 : chemical (substitutional or interstitial
trace impurities, from starting materials and through re-
action during growth or annealing), and structural
(stacking faults, dislocations, point disorder, low-angle
grain boundaries and mosaic, inhomogeneous stoichi-
ometry, built-in strain). Both of these affect the elec-
tronic properties and in particular the superconducting
properties.

The RRR[ R(300 K)/R0 is probably the simplest
and most reliable measure of overall sample quality. R0
is obtained from fitting the low-temperature resistance
to R01AT2 between Tc and 1.5 K. Because this ratio is
anisotropic, one needs to specify the current direction in
order to make meaningful comparisons. As an indica-
tion of current standards, the best single crystals pro-
duced by a number of groups have RRR.500 or r0
,0.25 mV cm (for Jic). We use this as our definition of
a ‘‘high quality sample.’’ The highest RRR in a bulk
crystal known to us is 1280 (Kycia et al., 1998).

Other common measures of sample quality are the
value of Tc (the upper transition) and the width dTc of
that transition, as measured by resistivity, susceptibility,
or specific heat. High-quality samples will have a resis-
tive transition with Tc.530 mK and dTc,20 mK. [The
ideal maximum value of Tc is estimated to be 563 mK
(Kycia et al., 1998).] The deliberate addition of impuri-
ties that go on the U site, such as rare-earth elements,
Th, Y, and Zr, or on the Pt site, such as Pd, rapidly
suppresses Tc : in most cases, superconductivity is de-
stroyed by an addition of less than 1% (Vorenkamp
et al., 1993; Dalichaouch et al., 1995). As a rough indica-
tion of the impact of impurity/defect scattering on super-
conductivity, Tc is decreased to half its maximum value
when the mean free path is made to drop to a value
roughly equal to the coherence length j.150 Å (Dali-
chaouch et al., 1995; Kycia et al., 1998).

The improving effect of annealing on the RRR has
been known for a long time (de Visser, Menovsky, and
Franse, 1987). Recently, Kycia et al. (1998) have carried
out a careful study in very pure crystals and show that
the RRR can be tripled by lowering the annealing tem-
perature from 1250 to 900 °C. Similarly, annealing is
typically needed for producing two distinct well-split su-
perconducting transitions in the specific heat (see Sec.
V.A.1; Midgley et al., 1993; Isaacs et al., 1995), and the
lower the annealing temperature the better (Brison
et al., 1994b). It now appears that the factor that limits
the RRR in most high-quality samples is structural im-
perfection (sensitive to some extent to heat treatment)
rather than chemical impurities.

The tremendous sensitivity of the specific heat near
Tc to annealing is perhaps not all that surprising: given
the huge Grüneisen parameter, any deformation of the
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lattice structure would be expected to have a large im-
pact on the electronic properties, at least locally. Glo-
bally, Tc is rapidly suppressed by stress (Willis et al.,
1985; Trappmann, Löhneysen, and Taillefer, 1991; Gre-
iter, Lonzarich, and Taillefer, 1992). Thus stacking faults
and other defects that produce strain fields could easily
broaden the transition seen in specific heat.

An x-ray and TEM study by Aronson et al. (1993)
suggests that stacking faults may be the predominant
form of structural disorder in some crystals of UPt3 . The
stacking sequence becomes ABACABACABAC, which
corresponds to a double hexagonal structure. This would
have a strong effect on the magnetic susceptibility. In
particular, the atoms in the A layer of the double hex-
agonal sequence are in an environment that has local
cubic symmetry, and therefore should have an isotropic
susceptibility. A study correlating structural disorder
and susceptibility would be illuminating.

These considerations on sample quality point to the
need for careful characterization of UPt3 crystals. This is
now being done more and more systematically, and
single crystals of UPt3 can be (and have been) produced
with a high degree of crystalline perfection, as can be
seen from recent x-ray studies on a whisker (Ellman
et al., 1997) and on a bulk crystal (Kycia et al., 1995),
and with transport mean free paths approaching 1 mm.
Of all the heavy-fermion superconductors, this is by far
the one for which sample quality is the highest. Never-
theless, it is pertinent to ask: are any of the interesting
properties of this material extrinsic, i.e., the result of
defects and ultimately absent in a perfect crystal? In par-
ticular, some authors have wondered in the past about
the intrinsic nature of the double superconducting tran-
sition, the small antiferromagnetic order, and the incom-
mensurate lattice distortion. The situation today allows
us to say with some confidence that the first is intrinsic
(see Sec. V.A.1), the second probably so (see Sec.
II.D.3), and the third probably not (see Sec. II.A). In
well-annealed high-purity crystals, several groups have
now observed a well-resolved double superconducting
transition in specific heat and antiferromagnetic order
with neutrons on one and the same crystal, with the very
same characteristics (Hayden et al., 1992; Brison et al.,
1994a; Dalmas de Réotier et al., 1995; Isaacs et al., 1995).
For those samples (or any other), no lattice modulation
has ever been seen by x-ray or neutron scattering.

III. SUPERCONDUCTING STATE—THE FRAMEWORK

A. Classification of superconducting states

The great interest in UPt3 arises from the possibility
of unconventional superconductivity, i.e., that the
ground state breaks lattice symmetry as well as gauge
symmetry. The phase diagram alone shows unambigu-
ously that the superconductivity of UPt3 has unconven-
tional symmetry. The s-wave state is unique, so at least
two of the three phases of UPt3 must have novel sym-
metry. The discovery of this phenomenon is analogous
to, and is as fundamental as, the discovery of antiferro-



249R. Joynt and L. Taillefer: Superconducting phases of UPt3
magnetism, which, unlike the ferromagnetism known
from ancient times, breaks translation symmetry. The
comparison can be carried further. Antiferromagnetism
vastly increases the types of magnetism that can occur in
nature. Unconventional superconductivity vastly in-
creases the types of superconductivity beyond isotropic
s wave. Furthermore, it is almost certainly caused by a
new mechanism, not the electron-phonon interaction
that causes conventional s-wave superconductivity, so
the study of the phenomenon carries us to the deepest
waters of correlated electron physics.

The analysis of symmetry limits and defines the pos-
sible superconducting states, allowing us to construct a
framework for the interpretation of experimental data.
Before plunging into the technical details, we can give
the overall scheme. The classification is done by looking
at the form of the Cooper-pair wave function, just as one
would classify states in atomic physics by orbital angular
momentum and spin. This part of the classification is
dictated by symmetry, namely, the way the wave func-
tion changes when rotated or reflected by the operations
that leave the crystal unchanged, i.e., the point group.
The analog of the point group in atomic physics is the
rotation group. There is also an analog to the principal
quantum number of atomic wave functions, as we shall
see. The principal quantum number is not related to
symmetry. In the atom, if we neglect spin-orbit coupling
(the LW •SW term), the states may be classified by LW and SW
separately, each being conserved. Spin-orbit coupling
breaks down this classification, and only the total angu-
lar momentum JW5LW 1SW and parity are still conserved.
This carries over to the Cooper-pair case. The Cooper-
pair case is actually simpler than the atomic physics case:
the point group is finite, and therefore the number of
representations is finite.

The formal analysis begins by writing down the
Hamiltonian for superconductivity. This is

H2mN5(
nkW s

«nkW sankW s
†

ankW s

1 (
nkW n8kW 8

(
s1s2s3s4

Vs1s2s3s4
~nkW ,n8kW 8!

3a
n ,2kW s1

†
a

nkW s2

†
an8kW 8s3

an8,2kW 8s4
, (10)

where n and n8 are band indices which keep track of the
crystal field and even-odd splittings, «nkW s are the band
energies relative to the chemical potential m, kW and kW 8
are crystal momenta, and s and s8 are two-valued vari-
ables which represent the ‘‘pseudospin.’’ They are de-
fined by adiabatic continuation. The spin-orbit coupling
is turned on gradually and the spin-up energy eigenstate
evolves into the s51 energy eigenstate and the spin-
down energy eigenstate evolves into the s52 energy
eigenstate. In UPt3 , we can identify these indices in a
less abstract fashion. At the G point, jz is a good quan-
tum number and the states jz and 2jz are degenerate.
These states may be split by an infinitesimal magnetic
field in the z direction into the jz.0 state and the jz
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,0 state. We then identify the s51 band as the one
containing the jz.0 state at the G point and s52 as the
band containing the jz,0 state. In the absence of a field,
the energy is independent of s throughout the band. The
energies «nkW 15«n ,2kW 15«nkW 25«n ,2kW 2 are in fact four-
fold degenerate because of time reversal and parity sym-
metry (Anderson, 1984).

The mean-field treatment of the Hamiltonian of Eq.
(10) proceeds by defining the gap function

Dss8~nkW !52 (
n8kW 8s3s4

Vs8ss3s4
~nkW ,n8kW 8!

3^an8kW 8s3
an8,2kW 8s4

& (11)

and neglecting its fluctuations. This leads to the equation
for the critical temperature:

vDs1s2
~nkW !52 (

n8kW 8s3s4

Vs2s1s3s4
~nkW ,n8kW 8!

3Ds3s4
~n8kW 8!d~«n8kW 8!, (12)

where v is related to Tc by kBTc51.14vce21/v. vc is the
cutoff for the interaction potential V̂ . It is Eq. (12), a
linear integral eigenvalue equation, which is taken as the
basis for discussion of the symmetry of the gap function.
From it we draw the following conclusions:

(1) the eigenfunctions of the the equation transform ac-
cording to a definite representation of the symmetry
group of V ;

(2) if the representation is multidimensional, then the
order parameter has more than one component;

(3) the critical temperature is a monotonically increas-
ing function of the eigenvalue, hence the eigenfunc-
tion belonging to the highest eigenvalue is realized
in the system;

(4) generically, there are no symmetries in the set of
band indices n , so the eigenvectors will generally
have nonzero components in all ‘‘directions’’ in this
space, and superconductivity occurs simultaneously
in all bands, even in bands where the interaction is
repulsive. The relative magnitude of coefficients of
V belonging to different bands may be very differ-
ent. The gap may be much smaller in some bands
than others, and can even change sign.

Since UPt3 has many disconnected pieces in its Fermi
surface, these possibilities are difficult to analyze even
from a phenomenological point of view.

It is convenient to express the gap function in a differ-
ent form:

Dss8~nkW !5i@c~nkW !1dW ~nkW !•sW #sy . (13)

Here sW i are the Pauli matrices. The definition in Eq.
(11) and the fermion anticommutation relations give
c(nkW )5c(n ,2kW ) and dW (nkW )52dW (n ,2kW ).

A state in which dW (nkW )50 is said to be a ‘‘singlet’’
state, and a state in which c(nkW )50 is said to be a ‘‘trip-
let’’ state. This misleading, but standard, terminology is
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borrowed from the theory of 3He. It does not reflect
anything about actual degeneracies for our case. In a
singlet state, each electron is paired with its time-
reversed partner with a pairing amplitude c(nkW ) which
may depend on the particular position on the Fermi sur-
face. The Cooper-pair wave function has even parity in
real space. For the triplet states, the parity is odd. How-
ever, the physical interpretation of dW (nkW ) is in general
somewhat complicated. If dW (nkW )5@0,0,dz(nkW )# , then
only time-reversed states are paired, but with the
other relative sign as compared with the singlet state.
Take a case in which the states at the Fermi surface of
band n are pure 6jz states. Then if dW (nkW ) is in the z
direction, ujz ,kW & is paired only with u2jz ,2kW &. When
dW (nkW ) has components in the x or y directions, then
there is also a pairing amplitude between ujz ,kW & and
ujz ,2kW &. The azimuthal angle of dW (nkW ) in the x-y plane
determines the phase of this amplitude relative to the
ujz ,kW &, u2jz ,2kW & amplitude. We see that the dW (nkW ) vec-
tor is a rather abstract quantity, useful more for its for-
mal properties than as a physical indicator. It is impor-
tant to note that dW (nkW ) does not represent the direction
of zero spin projection, as in 3He, or of zero total angu-
lar momentum projection of the atomic wave functions.
The band energies are much greater than the gap ener-
gies, so the eigenstates at a given kW are determined by
the starting crystal Hamiltonian while the direction of
dW (nkW ) represents the values of the pairing coefficients in
the three-dimensional triplet part of the four-
dimensional residual degeneracy space of the crystal
Hamiltonian.

The symmetry group of the Hamiltonian is the space
group of UPt3 (P63 /mmc). Usually it is assumed that
the Cooper pair has zero center-of-mass momentum.
When this is the case, the translation group may be ig-
nored. We shall discuss theories in which nonzero mo-
mentum is postulated in Sec. III D, but here restrict our-
selves to the zero-momentum case. Then only the point
group D6h is relevant. It contains 24 operations, 12
proper rotations Ri , and the inversion I which com-
mutes with all the operations of the group. There are six
representations of the pure rotation group D6 obtained
by dividing out the (normal) inversion subgroup. A1 ,
A2 , B1 , and B2 are one dimensional, while E1 and E2
are two dimensional, so that the functions belonging to
them come in degenerate pairs. Then we add back in the
transformation property under I. This is either even or
odd, indicated by the subscript g (‘‘gerade’’) for even
parity or u (‘‘ungerade’’) for odd parity, giving A1g and
A1u , and so on for all the representations.

The number of eigenfunctions of Eq. (12) is infinite.
Since the number of representations is very much finite,
each representation owns many eigenfunctions. If we
were to label these within one representation, the label
would be analogous to the principal quantum number, as
mentioned above. Only one function, or one pair of
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functions, has the highest eigenvalue and is the gap func-
tion (or functions) chosen by the system.

Two further characteristics of special states are best
defined here for future reference. A unitary state is a
triplet state for which dW 3dW * 50. A state that breaks
time-reversal symmetry is one for which D* ÞeifD ,
where eif is a phase (which may be removed by a gauge
transformation).

The framework based only on symmetry sets strong
constraints on theories of superconducting order in
UPt3 : any candidate order parameter should be drawn
from a single representation of D6h . Because it has
seemed difficult to explain all or some experiments
within this framework, a number of proposals for the
superconducting state of UPt3 have been made which
are outside it.

If spin-orbit coupling were negligible, then the sym-
metry group would be D6h3SU(2). In addition to the
operations already mentioned, which would act only on
the orbital degrees of freedom (kW ), we would have a
three-dimensional rotation group acting only on the spin
degrees of freedom (s). In particular, the dW vector
would be free to rotate relative to the crystal axes. Since
the expectation value of the spin-orbit coupling term in
uranium wave functions is of the order of 1 eV [incor-
porated into enkW s in Eq. (11)], it is obvious that it cannot
be neglected in the wave functions. On the other hand,
the role that this coupling plays in the pairing interaction
Vs8ss3s4

(nkW ,n8kW 8) in Eq. (10) is less clear. This has not
been investigated, but it seems unlikely that the symme-
try of V would be higher than that of the crystal. How-
ever, if one assumes that it can be neglected, there are
representations that are one or two dimensional in the
space group, but three dimensional (spin 1) in the spin
rotation group (see Sec. III.D.2).

A further interesting possibility is that two different
representations are nearly degenerate, in the sense that
the eigenvalues v in Eq. (12) corresponding to the two
representations are nearly the same. To the extent that
weak-coupling theory is valid, so that the exponential
relation between Tc and v holds with v!1, even a small
difference in eigenvalues leads to a large difference in
critical temperatures. This picture is not ruled out by
symmetry, of course, but raises questions about tuning of
parameters or of hidden symmetry in the system (see
Sec. III.D.3).

Finally, as seen above, it is perfectly permissible to
include appropriate translations, since they are also
genuine symmetries of the system. One may then choose
the gap function to belong to a nontrivial representation
of the translation group. This increases the possible
number of superconducting states, since it means pairing
between kW and 2kW 1QW , with QW Þ0 (see Sec. III.D.4).

A related issue is whether, on dynamical grounds, we
can say anything about the SC state. Take the case of a
single band, and assume that the pairing interaction has
the form Vs1s2s3s4

(kW ,kW 8)5gWs1s3
•Ws2s4

which is the sim-
plest angular-momentum-dependent interaction. This
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TABLE I. Illustrative polynomial functions and functions that form a complete periodic basis for the
singlet representations of D6h . For work involving the full Fermi surface, the final column should be
used. fx(kW )[sin(kxa)1sin(kxa/2)cos()kya/2), fy(kW )[6) cos(kxa/2)sin()kya/2), f6(kW )[fx(kW )
6ify(kW ), and fz(kW )[sin(kzc). Both sets of notation in common use for the representations of D6h
are given. Commas separate degenerate functions, while semicolons separate nondegenerate func-
tions belonging to a single representation.

Rep. Illustrative Complete, periodic
A1g (G1

1) 1; 1;
kx

21ky
2 ; fx(kW )21fy(kW )2;

kz
2 ; fz(kW )2;

¯ ¯

A2g (G2
1) kxky(kx

223ky
2)(ky

223kx
2) Im@f1(kW)6#

B1g (G3
1) kzky(ky

223kx
2) fz(kW )Im@f1(kW)3#

B2g (G4
1) kzkx(kx

223ky
2) fz(kW )Re@f1(kW)3#

E1g (G5
1) kzkx ,kzky fz(kW )Re@f1(kW)#, fz(kW )Im@f1(kW)#;

fz(kW )Re@f2(kW)5#, fz(kW )Im@f2(kW)5#

E2g (G6
1) kx

22ky
2 ,2kxky Re@f1(kW)2#, Im@f1(kW)2#;

Re@f2(kW)4#, Im@f2(kW)4#
type of interaction can lead to a triplet state (for g,0)
as well as a singlet state (for g.0). The electron wave
functions, as we have seen, are partly oriented by the
crystal field, but no band has a definite value of ujzu.
Using this interaction shows that the crystal field tends
to orient dW (kW ) along the z axis, while spin-orbit coupling
tends to orient dW (kW ) along k̂ . The resulting state is a
compromise in which dW (kW ) wanders on the Fermi sur-
face. If the pair potential depends strongly on momen-
tum, g→V(kW ,kW 8), which is almost certainly the case in
UPt3 , this expectation is only strengthened.

Detailed attempts to calculate the gap function from
first principles have been made. They have been based
on the theory of 3He, in which, roughly speaking, the
frequency- and wave-vector-dependent magnetic suscep-
tibility (measured by neutron scattering) is used as an
interaction in Eq. (10). Early attempts to implement this
in UPt3 (Norman, 1987; Putikka and Joynt, 1988, 1989)
led to gap functions that did not have the proper trans-
lation symmetry. The other big complication, orbital de-
generacy split by spin-orbit coupling and crystal fields,
was treated crudely or not at all. In a series of papers,
Norman (1990, 1993, 1994a, 1994b) has attempted to
rectify this situation. The most recent of these papers is
the first to really treat the channel dependence of the
interaction properly. Norman proposes a model of on-U-
site pairing which looks promising. The magnetic sus-
ceptibility for all frequencies and wave vectors is still
needed as input, and further experimental work may be
needed to push this approach further.

B. Gap functions and gap nodes

To discuss experiments, we must look at some actual
gap functions belonging to the different representations.
It has been customary to give examples of basis func-
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tions in discussions of the symmetry issue, without dis-
cussing how these functions are actually realized. This
practice can create the misleading impression that these
example basis functions themselves, or something very
similar to them, are the alternatives for the supercon-
ducting state. This is not really true, as the examples
usually given are dictated by simplicity of appearance
and brevity of presentation. For example, tables of poly-
nomial functions are given by Sigrist and Ueda (1991)
and tight-binding-type functions are given by Putikka
and Joynt (1988).

These tables, and all others so far given in the litera-
ture, have two flaws. They do not give a complete set of
functions, which is needed if one wishes to understand
all the possibilities, and the functions are not periodic in
reciprocal space, as is required by translation symmetry.
We shall attempt to rectify this situation in this section,
first giving full tables, then explaining how they are con-
structed, and finally offering a guide to their use.

A set of complete periodic basis functions for singlet
and triplet representations of D6h is given in Tables I
and II, respectively. The concept of completeness in this
context is due to Yip and Garg (1993). It means that all
possible functions in a given representation can be
found in, or written as a combination of, the functions in
the table. As an example, let us investigate the possible
basis functions belonging to B1g , ignoring the question
of periodicity for the moment.

The listed function fz(kW )Im@f1(kW)3# transforms ac-
cording to B1g . However, there is an infinite set of lin-
early independent functions that so transform and each
therefore belongs to the representation B1g . For ex-
ample, the function @fz(kW )#3 Im@f1(kW)3# belongs to this
set, since multiplication by @fz(kW )#2 does not change the
transformation properties. Completeness is the state-
ment that all of the basis functions for B1g can be writ-
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TABLE II. Illustrative polynomial functions and functions that form a complete periodic basis for
the triplet representations of D6h . For work involving the full Fermi surface, the final column should
be used. fx(kW )[sin(kxa)1sin(kxa/2)cos()kya/2), fy(kW )[6) cos(kxa/2)sin()kya/2), f6(kW )[fx(kW )
6ify(kW ), fz(kW )[sin(kzc), k6[kx6iky , and r̂65 x̂6i ŷ . Both sets of notation in common use for the
representations of D6h are given. Commas separate degenerate functions, while semicolons separate
nondegenerate functions belonging to a single representation.

Rep. Illustrative Complete, periodic
A1u (G1

2) ẑkz ; ẑfz(kW );
x̂kx1 ŷky ; x̂kx1 ŷky ;
¯ Re@f1(kW)5r̂1#;
¯ ¯

A2u (G2
2) x̂ky2 ŷkx Im@f2(kW)r̂1#;

Im@f1(kW)5r̂2#;

Im@f1(kW)6#fz(kW)ẑ;
B1u (G3

2) ẑky(ky
223kx

2); Im@f1(kW)3#ẑ;
kz@ x̂(kx

22ky
2)22 ŷkxky# Im@f1(kW)2fz(kW)r̂1#;

Im@f1(kW)4fz(kW)r̂2#;
B2u (G3

2) ẑkx(kx
223ky

2) Re@f1(kW)3#ẑ;
kz@ ŷ(ky

22kx
2)22 x̂kykx# Re@f1(kW)2fz(kW)r̂1#;

Re@f1(kW)4fz(kW)r̂2#;
E1u (G5

2) ẑkx , ẑky ; Re@f1(kW)#ẑ, Im@f1(kW)#ẑ;
kzx̂ ,kzŷ Re@fz(kW)r̂1#, Im@fz(kW)r̂1#;

Re@f1(kW)2r̂2#fz(kW), Im@f1(kW)2r̂2#fz(kW);

Re@f2(kW)5#ẑ, Im@f2(kW)5#ẑ;

Re@f2(kW)4r̂2#fz(kW), Im@f2(kW)4r̂2#fz(kW);

Re@f2(kW)6r̂1#fz(kW), Im@f2(kW)6r̂1#fz(kW);
E2u (G6

2) x̂kx2 ŷky , x̂ky2 ŷkx Re@f1(kW)r̂1#, Im@f1(kW)r̂1#;
ẑ(kx

22ky
2)kz , ẑkxkykz Re@f1(kW)2#fz(kW)ẑ, Im@f1(kW)2#fz(kW)ẑ;

Re@f1(kW)3r̂2#, Im@f1(kW)3r̂2#;

Re@f2(kW)3r̂2#, Im@f2(kW)3r̂2#;

Re@f2(kW)4#fz(kW)ẑ, Im@f2(kW)4#fz(kW)ẑ;

Re@f2(kW)5r̂1#, Im@f2(kW)5r̂1#;
ten as the listed basis function times a function that is
completely invariant under all the operations of D6h .
There are no other functions which transform according
to B1g . The actual gap function is an infinite linear com-
bination of all of them. Because of completeness, it suf-
fices to examine only the functions listed in the tables in
order to determine those properties. The number of
functions belonging to A1g is infinite. (The ellipsis in
Table I under A1g stands for all such functions.)

On the other hand, it is vitally important to look at all
the functions in the final column when there is more
than one listed. Nearly all published tables have the de-
fect that they do not give a complete list, and this can
lead to serious errors, since any one function may have
special properties that are actually not generic. It can be
shown (Yip and Garg, 1993) that the number of func-
tions needed for a complete (in the special sense defined
here) list for the representation is equal to the dimen-
sion of the representation in the singlet case and three
times the dimension in the triplet case.
., Vol. 74, No. 1, January 2002
Periodicity is a separate issue. The actual gap function
must be periodic in crystal momentum space (in the ex-
tended zone scheme), as the actual momenta are deter-
mined only up to reciprocal-lattice vectors. The usual
polynomial basis functions do not have this property. It
is not too difficult to remedy this problem, and this has
been done in the tables. It is important to be careful
about this if sheets of the Fermi surface intersect the
Brillouin zone. This does occur in UPt3 . For example,
the horizontal caps of the zone are at kz56p/c . Any
gap function that contains fz(kW )5sin(kzc) as a factor
clearly vanishes on these faces, resulting in a line of
nodes on the ‘‘star’’ sheet of the Fermi surface, for ex-
ample.

How does one use these tables? Let us imagine we
have written down an infinite linearly independent set
for a one-dimensional singlet representation and call
these functions Fi(kW ). Then the solution to the linear-
ized gap equation belonging to the highest eigenvalue
can be written as
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c~kW !5(
i51

`

ciFi~kW !. (14)

Since all the symmetries have been taken into account
already, the ci are determined by dynamical consider-
ations only. That is, they depend on the precise form of
the starting crystal Hamiltonian and on the details of the
pairing potential in Eq. (12). At present, we have no
reliable way to calculate these coefficients in UPt3 . We
can say, however, that there are no additional symme-
tries which will make any of the ci turn out to be zero,
and changing any parameter (by applying pressure, say)
in the Hamiltonian will generically change all the ci .
The solution c(kW ) will, however, have all the same
transformation properties as the basis functions Fi be-
cause these properties are not altered by taking linear
combinations.

In the two-dimensional singlet case, the gap function
is

c~kW !5a1(
i

2

ci1Fi
(1)~kW !1a2(

i

2

ci2Fi
(2)~kW !, (15)

where Fi
(j) is the jth member of the ith pair of functions

in Table I. For E1g , for example, F1
(2)5fz(kW )Im@f1(kW)#,

up to multiplication by an invariant function. The com-
plex coefficients a1 and a2 are determined by nonlinear
effects, i.e., not by Eq. (12). Unlike the cij , a1 and a2 (or
rather their ratio) may take on special values which are
constrained by symmetry.

By far the most important characteristic of a gap is its
nodal structure. We can now see how to deduce this for
a singlet representation and an arbitrary Fermi surface.
In E1g , for example, all basis functions include fz(kW )
5sin(kzc). Hence there are lines of nodes where the
planes kz50 and kz56p/c intersect the Fermi surface.
Also, the Fi

(1)(kW ) are odd under reflection in the y-z
plane. Thus, if a250, then there are lines of nodes where
kx50 on the Fermi surface. If a150, then there are lines
of nodes where ky50 instead. If a1 and a2 are nonzero
and relatively real, a1 /a25real, the plane of zeros in kW
space is rotated and the line of nodes is given by the
intersection of the plane determined by the equation
a1kx1a2ky50 and the Fermi surface. Finally if a1 /a2
has an imaginary part, then the nodes lie at the intersec-
tion of these planes and the Fermi surface, which is at
kx5ky50. These are point nodes. The symmetry of the
low-temperature phase is not known until the a1 and a2
are known. For example, the a250 state has a residual
reflection symmetry in the x-z plane, and has time-
reversal symmetry. The state with complex a1 /a2 has
neither of these symmetries. The angle dependence of
the gap function for the (1,i) state, i.e., where a151 and
a25i , is shown on a single spherical Fermi surface in
Fig. 11. This gap structure is called ‘‘hybrid I,’’ charac-
terized by a combination of an equatorial line node (at
kz50) and point nodes at the poles (kx5ky50). The
gap grows linearly away from the nodes in both cases.
Rev. Mod. Phys., Vol. 74, No. 1, January 2002
The most complicated case is that of a two-
dimensional triplet representation, E1u or E2u . The
state of the system is given by

dW ~kW !5a1(
i51

6

ci1FW i
(1)~kW !1a2(

i51

6

ci2FW i
(2)~kW !, (16)

where again the ci are determined dynamically and, in
the generic case, none of them are zero.

To determine the nodal structure of E2u , we need to
form the above sum, taking all 12 functions in the lower
right square of Table II, and then compute udW (kW )u. First
let a250, so only the functions in the left column appear.
Since fz(kW ) appears in only two of them, there is no line
of nodes at kz50. fx and fy appear in all functions, so
the only nodes are where fx(kW ) and fy(kW ) both vanish,
namely, at kx5ky50. Inspection of the second column
then shows that this is independent of the choice of a1
and a2 , so these point nodes are there for all E2u states.

The fact that there are only point nodes for the two-
dimensional triplet representations is an explicit realiza-
tion of the general theorem due to Blount (1985) that, in
the presence of spin-orbit coupling, singlet states may
have either line nodes or point nodes, but triplet states
have only point nodes. This has important consequences

FIG. 11. Gap structure for a hybrid-I gap (a) and a hybrid-II
gap (b), respectively appropriate for the E1g and E2u repre-
sentations. The gap magnitude as a function of azimuthal angle
u is shown in (c). Note the linear rise from the equator in both
cases and the linear vs quadratic rise from the pole for E1g and
E2u, respectively. Note also that a general choice for the open-
ing parameters (m,m1,m2) would make the two gaps less simi-
lar than they appear here. From Graf, Yip, and Sauls, 1999.
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for some candidate order parameters.
By setting c1j5c3j5c4j5c6j50, we can construct a

state in which dW ;fz(kW ), so that there is a line of nodes
in E2u (kz50). This has been proposed on phenomeno-
logical grounds (Choi and Sauls, 1991) and will be dis-
cussed in Sec. III.D.1. Since the ci are not constrained
by symmetry, they are functions of all the parameters of
the underlying Hamiltonian. Nodes of the gap produced
by such choices are therefore unstable in the sense that
any change in the system (applying pressure, for ex-
ample) will lift them.

The gap structure for this special choice of E2u state is
shown in Fig. 11, for the (1,i) state where a151 and
a25i . This gap is called ‘‘hybrid II’’ and it is character-
ized by a combination of an equatorial line node where
the gap vanishes linearly and point nodes at the poles
where the gap vanishes quadratically.

C. Calculation methods

The effect of gap anisotropy and nodal structure on
physical properties was investigated in the context of
superfluid 3He in the 1970s, as reviewed by Leggett
(1975). For unconventional superconductors, the theo-
retical foundations were developed in the mid-1980s in
the wake of the discovery of heavy-fermion supercon-
ductors, by authors such as Coffey, Rice, and Ueda
(1985), Volovik and Gor’kov (1985), Hirschfeld, Voll-
hardt, and Wölfle (1986), Pethick and Pines (1986),
Schmitt-Rink, Miyake, and Varma (1986), and Monien
et al. (1987). Much of this early work is summarized by
Sigrist and Ueda (1991). Properties such as specific heat,
ultrasound attenuation, thermal conductivity, and NMR
relaxation rate were calculated for various order param-
eters and compared to what experimental evidence
there was at the time.

The three basic results that emerged from this work,
and which remain today as the key elements in the
analysis of thermal properties of any unconventional su-
perconductor, including, for example, the high-Tc cu-
prates, are (1) there is a power-law dependence on tem-
perature at T!Tc , instead of the conventional activated
behavior (at least in the pure limit); (2) it is necessary to
treat impurity scattering in (or near) the unitarity limit
of strong (resonant) scattering (Pethick and Pines,
1986), described by a scattering phase shift d0.p/2; (3)
a gapless regime appears at low energy, even for small
concentrations of nonmagnetic impurities, giving rise to
a residual normal fluid of zero-energy quasiparticles
(Hirschfeld, Vollhardt, and Wölfle, 1986; Schmitt-Rink,
Miyake, and Varma, 1986).

A fourth, more recent development was the recogni-
tion that, for some transport properties and certain gap
structures, there can be asymptotic low-temperature be-
havior that is independent of the impurity concentration
(universal), as first pointed out by Lee (1993).

All of these results depend on the fact that the gap has
nodes, which is the reason we have consistently stressed
this feature of the gap functions.
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From a purely technical standpoint, the methods of
calculating the response functions and thermodynamic
functions of superconductors are generalizations of well-
established techniques developed for the s-wave case of
a nodeless gap function, where the agreement of theory
and experiment is generally very good. In the case of
UPt3 , many properties have been measured, and there
are qualitative deviations from s-wave behavior, con-
firming the identification of this material as unconven-
tional, in the sense of having an order parameter with a
symmetry other than A1g . This means that there are
many possibilities for the gap function.

From these arguments, we can identify the most
promising area of investigation to be the asymptotic
low-temperature regime, as the qualitative behavior as
T→0 may be independent of unknown parameters for a
pure system, and even, in some cases, for a dirty system.
Any discussion of low-temperature properties begins
with the density of states r(v), the number of states per
unit energy range per unit volume for the quasiparticle
excitations. We have seen that line nodes, point nodes,
and no nodes are possible in the pure superconductors,
and it turns out that gaplessness can occur as a result of
impurity scattering. These lead to various results for the
low-frequency behavior of r(v). In the case of a unitary
gap function, as defined in Sec. III.A, the density of
states is given by r(v)5 2/V (kW d(v2EkW ), with E

kW
2

5e2(kW )1uD(kW )u2 or E
kW
2
5e2(kW )1udW (kW )u2. At suffi-

ciently low v, the sum over kW may be restricted to the
neighborhood of the nodes. The results are shown in
Table III.

An example of a calculation for a point node at kW 0
with linear dispersion is

r~v!5
1

4p3 E
kW 'kW 0

d3k d~v2EkW !

5
1

4p3 E dk id2k'

3d@v2AvF
2 k i

21c2~k'x
2 1k'y

2 !# (17)

5
1

4p3vFc2 E dzdxdyd~v2Az21x21y2!

5
v2

p2vFc2 . (18)

TABLE III. Density of states r(v) at low energies for different
nodal structures. The dispersion refers to the the change in
energy EkW as kW is varied away from the nodal point kW n but
remains on the Fermi surface. In the case of a line node, the
direction is perpendicular to the line.

Node type Dispersion Example gap uD(kW)u r(v)

Line linear kz uvu
Point linear Akx

21ky
2 v2

Line quadratic kz
2 Auvu

Point quadratic kx
21ky

2 uvu
Gapless flat 0 constant
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The origin for the integration is at kW 0 , k i is the direction
normal to the Fermi surface, and kW' lies on the Fermi
surface. c is the slope of the perpendicular dispersion.

Using Table III, which gives the power laws for the
density of states, power laws for other measurable quan-
tities may be derived by simple scaling arguments. See
Barash and Svidzinsky (1996) for a good discussion. For
example, the specific heat for r(v);va is given by

C52
2
T E

0

`

r~E !E2
]f

]E
dE

;2
2
T E

0

`

E21a
]f

]E
dE (19)

;2
2
T

T21aE
0

`

x21af8~x !dx;T11a. (20)

Here f(E)51/(11eE/kBT), and we made the substitu-
tion x5E/kBT . Other quantities follow by the same sort
of argument; Table IV results. Some gaps have more
than one kind of node. As noted above, these are known
as hybrid gaps. In this case, the lowest power dominates
at sufficiently low temperature.

Beyond the low-temperature region, the response
may still show qualitative signatures of unconventional
superconductivity if there is directionality involved. The
nodal points or lines may dominate the response to a
low-frequency probe. The conduction of heat depends
on the direction of current flow. The absorption of ultra-
sound depends on the propagation and polarization di-
rections. We shall see examples in Secs. V.C and V.B.

One of the key differences between conventional and
unconventional superconductors is the major impact im-
purities and defects have on the latter. Indeed, even an
infinitesimal level of disorder will modify the density of
states qualitatively if there are nodes. The gap fills in
and the density of states at the chemical potential imme-
diately becomes finite. If the scattering is at or near the
unitarity limit, as is usually thought (Pethick and Pines,
1986), this conclusion is further strengthened: there can
even be a peak in r(v) at or near the chemical potential
(Hirschfeld, Vollhardt, and Wölfle, 1986; Schmitt-Rink,
Miyake, and Varma, 1986).

The subject of different types of impurity scattering in
superconductors with strong spin-orbit coupling has not
received much attention, possibly because it is some-

TABLE IV. Power-law dependences for various quantities in
the asymptotic low-temperature regime. These laws hold for a
clean superconductor with linear dispersion of the gap at the
nodes.

Lines Points

Specific heat CV T2 T3

NMR relaxation rate 1/T1 T3 T5

Thermal conductivity k T2 T3

Penetration depth 1/l i
2 T3 T2

Penetration depth 1/l'
2 T T4
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what vexatious. If we begin by ignoring spin-orbit cou-
pling and assuming that the single-particle states are
eigenfunctions of spin, then the division of scattering
into the canonical three categories of potential scatter-
ing, spin-orbit scattering, and magnetic scattering still
makes good sense. However, the consequences of the
different kinds of scattering are not quite the same as in
the case of s-wave pairing. Even potential scattering will
reduce Tc . Formally, the anomalous self-energy S2 van-
ishes and does not cancel the normal self-energy in the
Tc equation. This vanishing is usually incorporated from
the start in calculations. (This result follows from the
usual assumption of isotropic scattering, which may be
dangerous, according to Haas et al., 1997.) Tc is a
strongly decreasing function of concentration. This is as
it must be, as the scattering mixes different momentum
states. Since unconventional superconductivity depends
for its pairing energy on constructive interference in mo-
mentum space, the mixing must reduce the strength of
the pairing. Spin-orbit scattering and magnetic scattering
also reduce the critical temperature for the same reason.
If there is spin-orbit scattering, the anomalous self-
energy also does not vanish, as the symmetry properties
of the scattering operator do not allow this.

Once spin-orbit coupling in the lattice becomes impor-
tant, even the classification of scattering types must
change somewhat. An impurity produces scattering from
a state ukW ,a& to a state ukW 8,a8&. The pseudospin index a

will not be conserved for general kW and kW 8 even if the
scattering preserves spin. Thus there is no analog of po-
tential scattering in heavy-fermion materials in general
and in UPt3 in particular. In view of the arguments in
the preceding paragraph, this also implies that
Sss8

(2)(kW ,ivn)Þ0 for these materials. It would be interest-
ing to see calculations of observable quantities which
incorporate this fact. The Pauli part of the magnetic sus-
ceptibility should remain finite at zero temperature even
for singlet pairing.

Magnetic scattering is distinguishable from spin-orbit
scattering because the scatterer will generally have an
internal degree of freedom. However, spin-orbit cou-
pling and crystal-field effects must be taken into ac-
count. In UPt3 the most interesting case is a magnetic
scatterer which substitutes on the uranium site, which
therefore feels a crystal field with hexagonal symmetry.
As long as the splitting due to this field is much greater
than the gap energy (as one would of course expect), the
impurity level is twofold degenerate, not 2J11-fold de-
generate. The relaxation time becomes independent of
J . This is consistent with observations of Dalichaouch
et al. (1995), but it does not depend on having triplet
pairing, contrary to their conclusion.

D. Candidate theories

In the absence of a reliable microscopic account of the
interaction that produces superconductivity, theoretical
work has concentrated on the intermediate level of de-
scription. A parametrized order parameter is postulated,



256 R. Joynt and L. Taillefer: Superconducting phases of UPt3
without derivation from a microscopic Hamiltonian, in
order to explain experiments. Success or failure is
judged in a phenomenological fashion. This procedure is
appropriate, since the identification of the order param-
eter would be a giant step in the construction of a com-
plete theory. There are three points to be stressed in this
connection. First, although we are not able to derive the
order parameter from a Hamiltonian, it must neverthe-
less be consistent with the symmetry of the Hamiltonian.
That is, it should fall into the classification scheme given
above. Second, it should not involve fine-tuning of pa-
rameters. Third (and most obviously), a theory should
explain, or at least be consistent with, all experiments.
Historically most theories were motivated by one or a
few experiments. In many cases, the broader conse-
quences have not been sufficiently considered. One role
of this review is to view the proposed theories with these
three points in mind.

In this section, candidates for the order parameter in
all three phases of UPt3 are introduced and described.
The theories and their original motivations are given in
roughly chronological order. The most important fea-
tures of any theory are the number of components and
the nodal structure in the A and B phases, so these are
given in detail.

1. Two-dimensional representations

Order parameters belonging to a two-dimensional
representation may be thought of as vectors that are
confined to the basal plane, so that they are character-
ized by the two coefficients (a1 ,a2) from Eqs. (15) and
(16) multiplying independent basis functions for the gap.
For brevity, we shall use the illustrative functions in this
section.

All two-dimensional representation theories share im-
portant common features. The splitting of the critical
temperatures for the A and B phases is due to a small
coupling to the antiferromagnetism that splits the ener-
gies of the (1,0) and (0,1) states. The A phase is (1,0)
and the C phase is (0,1). The state for the A phase is
stabilized by the coupling to magnetism, whereas the
state for the C phase is stabilized by the coupling to the
external field. The B phase is the (1,6i) state, a com-
promise between the two.

E1g is a two-dimensional singlet (even-parity) repre-
sentation. From Table I we see that the simplest illustra-
tive example of degenerate basis functions is the pair
(kzkx ,kzky). The state for the A phase is a (1,0)
state, D(kW )5D0(T) kzkx , or a (0,1) state, D(kW )
5D0(T) kzky ; which of the two is stable depends on
small terms that split the energies, as discussed below.
There are lines of nodes at the equator (kz50) and on a
‘‘vertical’’ line (kx50) or (ky50). The B phase is pro-
posed to be a complex combination: the (1,i) state
D(kW )5D0(T) kz@kx1id(T) ky# or the (1,2i) state
D(kW )5D0(T) kz@ky1id(T) kx# . These states break
time-reversal symmetry. Inspection of Table I shows
that, generically, the energy gap uD(kW )u in the B phase
vanishes linearly (;ukzu) at the equator and also lin-
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early at the poles (kx5ky50) where uD(kW )u
;Akx

21ky
25usin uu, where u is the polar angle. This

nodal pattern, called hybrid I, is illustrated in Fig. 11.
The position of the nodes and their linear nature follow
from symmetry alone, as may also be verified from Table
I.

This theory was originally proposed when it was
found as the solution of a microscopic model (Putikka
and Joynt, 1988, 1989). It was the first definite represen-
tation of D6h to be given for the order parameter of the
system. The B phase is similar in nodal structure to the
earlier hybrid order parameter, ‘‘hybrid’’ indicating both
line and point nodes. This nodal structure was first sug-
gested by Hirschfeld, Vollhardt, and Wölfle (1986) based
on a reasonable agreement between experiment and
their calculations of thermal properties. The implica-
tions of the E1g model for the phase diagram have re-
ceived a detailed review (Park and Joynt, 1995).

E2u is a two-dimensional triplet (odd-parity) repre-
sentation. The degenerate basis functions from
Table I are the pairs [ẑkzkxky , ẑkz(kx

22ky
2)] and ( x̂kx

2 ŷky , x̂ky2 ŷkx). A general (1,0) state would have the
form dW (kW )5c1(T) ẑkzkxky1c2(T)( x̂kx2 ŷky), and the
(0,1) state would be dW (kW )5c1(T) ẑkz(kx

22ky
2)

1c2(T)( x̂ky2 ŷkx), following the notation of Sec. III.B.
These states have point nodes at the poles. For the
(1,6i) states associated with phase B at low tempera-
tures, the gap function is dW 5c1(T) ẑ kz(kx6iky)2

1c2(T)(kx6iky)( x̂6i ŷ)2. This also has point nodes at
kx5ky50. Reference to Table II shows that the point
nodal structure is generic in this representation. This is
clearly inconsistent with experiment, as we shall see be-
low. Consequently, proposals for E2u have set c2(T)
50, fixing dW to be in the z direction. For the B phase we
then get dW ; ẑkz(kx

22ky
212ikxky). This has linear line

nodes and quadratic point nodes. This nodal structure,
called hybrid II, is sketched in Fig. 11. The line of nodes
is not dictated by symmetry and is unstable to any per-
turbation of the system (Blount, 1985).

The E2u representation was originally proposed by
Choi and Sauls (1991) in order to account for the anisot-
ropy of the upper critical field, as discussed in Sec. IV.B
below. It has been thoroughly reviewed by Sauls (1994).

An interesting version of this theory is that of Norman
(1995b): on-uranium-site E2u pairing. Then we may
expect line nodes on the zone faces kz
56p/c . This again corresponds to a particular choice of
basis functions.

2. Spin triplet

This theory was originally proposed in order to ex-
plain the phase diagram in the H-T plane (Machida and
Ozaki, 1991). The spin wave function of the pair has S
51, which transforms as a three-dimensional vector, so
the dW vector takes the form dW 5dxx̂1dyŷ1dzẑ . As men-
tioned above, this theory depends on the questionable
hypothesis that spin-orbit coupling is very small. The
tables of Sec. III.B cannot be used directly, as they de-
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pend on having spin-orbit energies which much exceed
gap energies. However, the spatial form of the orbital
wave function should still transform according to the
D6h group. It must be of odd parity. The spatial repre-
sentation can be one or two dimensional and indeed any
of the six odd-parity representations is possible. Hence
many patterns of nodes are possible. Several specific
possibilities have been considered (Machida and Ozaki,
1989, 1991; Machida, Ozaki, and Ohmi, 1989; Machida,
1992; Machida, Fujita, and Ohmi, 1993; Machida et al.,
1993; Ohmi and Machida, 1993, 1996a, 1996b). The most
recent version posits an E2u orbital state, which has a
twofold orbital degeneracy: dW 5c1dW 1(T)1c2dW 2(T), etc.
Together with the threefold spin degeneracy, this makes
a six component order parameter (Machida and Ohmi,
1998; Machida, Nishira, and Ohmi, 1999).

The A phase is then a (1,0,0) state, i.e., dy50 and
dz50. The forms of the B and C phases depend on the
field direction, but could be, for example, (1,i ,0) and
(0,0,1) respectively, for a field in the z direction. As with
the 2D theories, the phase diagram depends in an essen-
tial fashion on the coupling of superconductivity and
magnetism.

3. Mixed representations

A number of theories involving two separate repre-
sentations have been proposed. They share the charac-
teristic feature that the two superconducting transitions
involve gap functions that are not related by symmetry.
The splitting of the phase transition is due to accidental
degeneracy, not to coupling to the magnetism. Once two
representations are involved, the possibilities for the
form of the order parameter become numerous. As a
class, such theories therefore have relatively little pre-
dictive power. It is correspondingly difficult to rule them
out in a definitive fashion. However, some specific pro-
posals can be evaluated.

• Mixed A1u and A2u . These two representations are
degenerate if the in-plane spin-orbit interaction is
zero (Joynt et al., 1990). In this theory, the explanation
of the two close transitions is that this coupling is
small. This theory was used to explain the fact that
Hc2(T) is isotropic when HW is rotated in the basal
plane. The two representations are not mixed by the
field for any such direction. The gap is generically
nodeless, which creates difficulties with low-
temperature properties.

• Mixed A and B. This proposal offers an explanation of
the fact that the H-T phase diagram is rather similar
for HW along the c axis and HW in the basal plane (Chen
and Garg, 1993). This is due to the fact that the two
representations Ai and Bj are not mixed by the exter-
nal field for any direction of HW . In this theory, the two
transitions are due to the separate Tc equations for A
and B : the closeness of the two transitions is acciden-
tal. A number of nodal configurations are possible,
but the B phase of this theory, in which the relative
Rev. Mod. Phys., Vol. 74, No. 1, January 2002
phase of the two representations is p/2, does not have
a line of nodes (Sauls, 1994). This theory has received
the most detailed treatment of any of the mixed-
representation theories (Garg and Chen, 1994). It is
the only one which will be considered seriously in de-
tail later.

• Mixed A1g and E1g . This model is based on in-plane
isotropy of the spin-orbit coupling for the near degen-
eracy of the two representations (Zhitomirskii and
Ueda, 1997). Thus, while it has phenomenological vir-
tues similar to the A-B theory for the phase diagram,
it has additional theoretical motivation. However, the
gap is generically nodeless.

4. Broken translation symmetry

In this picture, the Cooper pairs have a nonzero
center-of-mass momentum (Heid et al., 1995). This is a
three-component theory, as the momentum is taken at
the M point of the hexagonal Brillouin zone, which cor-
responds to three inequivalent crystal momenta. It is
motivated microscopically by the idea of odd-frequency
pairing (Balatsky and Abrahams, 1992), which is favored
in two-channel Kondo models (Emery and Kivelson,
1992) that have been proposed for heavy-fermion sys-
tems (Cox, 1993). Phenomenologically, it was used to
explain the same apparent out-of-plane isotropy in the
H-T phase diagram as the spin-triplet and A-B theo-
ries. In fact, the free energy is the same as the spin-
triplet theory at the Ginzburg-Landau level. The orbital
wave function belongs to the A2g representation, which
can have vertical lines of nodes. Because of the nonzero
pair momentum, a uniform field does not mix the differ-
ent components of the order parameter.

5. Glass model

This model was proposed to explain the in-plane isot-
ropy of the Hc2(T) curve (Joynt et al., 1990). It differs
from the other models by taking into account the do-
main structure of the antiferromagnetism, which creates
disorder on a scale comparable to the superconducting
coherence length. Thus, even in zero field, the order pa-
rameter has spatial variation in the A phase. The scale
of the variation is determined by a competition between
the gradient energy of the superconducting order pa-
rameter and the interaction between superconductivity
and magnetism. This scenario has been worked out only
in the context of the E1g representation. In this case, the
B phase is actually the same as in the E1g representa-
tion, with the same nodal pattern of line and point nodes
with linear dispersion. The A phase may be thought of
as an ( r̂x, r̂y) phase where r̂ tries to follow the local mag-
netization direction. Graf and Hess (2001) have recently
revisited this scenario and find that the properties of the
superconducting state depend sensitively on the mag-
netic domain structure.
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6. Other theories

A number of other proposals have been made but not
worked out in much detail. Some of these have interest-
ing features, but often too little is known about the
theory to give a reasonable evaluation. Three examples
are as follows: superconductivity is connected to a rota-
tion of the magnetic moment (Blount, Varma, and Aep-
pli, 1990); the order parameter is nonunitary and be-
longs to the E1u representation (Ohmi and Machida,
1996a, 1996b), or the order parameter belongs to the
E2g representation (Yin and Maki, 1994). There is also
an interesting theory based on combining the odd-
frequency pairing hypothesis with a novel picture of the
normal-state quasiparticles to produce a magnetic super-
conducting ordering (Coleman, Miranda, and Tsvelik,
1994).

IV. SUPERCONDUCTING PHASE DIAGRAM

A magnetic field HW has a profound effect on all super-
conductors. In conventional type-II systems there are
two superconducting phases in the H-T plane: the low-
field Meissner phase and the high-field vortex phase,
separated by the Hc1(T) curve. In UPt3 , by the same
count, there are five phases: phase C, which is a vortex
phase, and phases A and B, each divided into a Meissner
phase and a vortex phase [below and above Hc1(T)].

A. Zero field and ambient pressure

1. Specific heat

The specific heat of UPt3 is shown in Fig. 12 as C/T vs
T . The data of Brison et al. (1994a), on a high quality
single crystal annealed for 3 days at 1200 °C, nicely ex-
hibits the main features: the onset of superconductivity
at ;0.5 K, the appearance of a second transition at a
slightly lower temperature, the roughly linear decrease
in C/T with temperature, and the large upturn below 0.1
K.

FIG. 12. Specific heat divided by temperature vs temperature.
From Brison et al., 1994b.
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These features have been reproduced by several
groups on different samples, provided these were of suf-
ficient quality. As mentioned in Sec. II.E, improper heat
treatment, for example, can cause the two superconduct-
ing transitions to be considerably broadened and sup-
pressed.

The double transition was first resolved by Fisher
et al. (1989) and there is now overwhelming evidence
that it is an intrinsic property of UPt3 , a defining char-
acteristic of the pure material. The main arguments
against an extrinsic origin for the second transition,
caused, for example, by inhomogeneities in the sample,
are the following. All characteristics of the two transi-
tions are found to converge on one and the same set of
values for all crystals. For example, the difference DTc
between the two Tc’s, commonly referred to as the
‘‘splitting,’’ is remarkably invariable (wandering at most
by 61%Tc). Both transitions can be very sharp, with a
width .Tc/100. No single transition has ever been ob-
served with a width less than the splitting (50 mK). Fi-
nally, the transitions shift in subtle, nontrivial ways un-
der applied magnetic field or pressure. For example, two
sharp transitions at ambient pressure turn (reversibly)
into a single, equally sharp transition upon applying hy-
drostatic pressure in excess of 4 kbar (Trappmann,
Löhneysen, and Taillefer, 1991). The reader is referred
to the excellent review on the specific heat of UPt3 by
Löhneysen (1994).

The specific heat in the vicinity of the supercon-
ducting transition is shown in Fig. 13 (for a high quality
polycrystal). Using an idealized construction for
C/T vs T shown by the straight lines (e.g., for the
P50 curve), we can define the following character-
istics:

FIG. 13. Specific heat for different hydrostatic pressures plot-
ted as C/T vs T . From Trappmann, Löhneysen, and Taillefer,
1991.
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gN5~C/T !T.Tc
1,Tc

6 ,

DC6/Tc
65~C/T !T5Tc

62e2~C/T !T5Tc
61e ,

where 1 (2) refers to the upper (lower) transition. All
published data on single crystals, analyzed in this way,
are collected in Table V. This includes seven different
crystals, grown using four different techniques. As can
be seen, the values are all very close. For the sake of
specificity, we adopt the following values as the defining
parameters of C/T in UPt3 :

Tc
15530, Tc

25480,

DTc5Tc
12Tc

2550 ~ in mK!, (21)

gN50.44,
DC1

Tc
1 50.24,

DC2

Tc
2 50.12 ~ in J K22 mol21!. (22)

We note that the splitting DTc is only 10% of Tc . The
proximity of the two Tc’s is suggestive of a common
origin, e.g., a lifted degeneracy. Note also that the
specific-heat jumps at Tc

1 and Tc
2 are large in absolute

terms, i.e., in keeping with the huge value of gN . This
shows that the heavy-fermion quasiparticles are in-
volved in forming the superconducting state.

The application of a magnetic field decreases and
merges the two transitions, without significant broaden-
ing, as established by Hasselbach, Taillefer, and Flou-
quet (1989, 1990), for a field direction both along and
perpendicular to the c axis. This behavior was later con-
firmed by Jin, Carter, et al. (1992) and Bogenberger et al.
(1993). Beyond a certain field, only one transition is seen
in C(T) vs T , with the critical point (H* ,TH* ) in the
H-T plane given by

~HW ' ĉ !: H* .0.4 T, TH* .Tc
120.1 K, (23)

~HW i ĉ !: H* .0.8 T, TH* .Tc
120.15 K. (24)

It has become clear from a variety of measurements,
such as ultrasound attenuation (Adenwalla et al., 1990;
Bruls et al., 1990), dilatometry (van Dijk et al., 1993b),
and magnetocaloric effect (Bogenberger et al., 1993),
that the critical point in the H-T diagram for both field
directions is in fact a tetracritical point, where four lines
(phases) meet, to within an accuracy of about 5 mK. The
phase diagram obtained by Adenwalla et al. (1990) using
sound velocity is shown in Figs. 14 and 15.

All measurements to date converge on very much the
same H-T phase diagram. There are three distinct
phases below the Hc2(T) line, with phase B the stable
one at low temperature, low field and low pressure.
Again, phases A and B each have both a Meissner state
[below Hc1(T)] and a vortex state [above Hc1(T)].

The very existence of multicomponent phase dia-
grams as in Figs. 14 and 15 (and an equivalent one for
the P-T plane, shown in Fig. 16), in particular with their
multicritical point, rules out an extrinsic origin to the
Rev. Mod. Phys., Vol. 74, No. 1, January 2002
lower transition. It also argues strongly in favor of a
superconducting transition at Tc

2 , i.e., one at which a
new superconducting order parameter sets in, rather
than a magnetic order or a change in structure. Further
evidence for this comes from a sudden increase in the
slope of Hc1(T) at Tc

2 (Vincent et al., 1991), indicating
an increase in condensation energy at that point (see
Sec. V.D).

2. Ginzburg-Landau theory

In the E1g and E1u representations, the order param-
eter transforms as a complex vector under in-plane ro-
tations, and it makes good sense to write it as hW
5(hx ,hy). [This was (a1 ,a2) above, but the h notation

FIG. 14. Phase diagram for HW in the a-b plane. Data (squares)
are sound velocity measurements of Adenwalla et al. (1990)
and the line is a theoretical fit from Park and Joynt (1995)
using an E1g gap structure.

FIG. 15. Phase diagram for HW along the c axis. Data (squares)
are sound velocity measurements of Adenwalla et al. (1990)
and the line is a theoretical fit from Park and Joynt (1995)
using an E1g gap structure.
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is conventional.] The free energy F therefore includes
terms that are the usual two-dimensional scalars. The
transformation properties of the E2g and E2u represen-
tations, exemplified by the functions in Table II, are less
familiar, but the free energies of E1 and E2 are isomor-
phic in zero field and it makes sense to use the same
notation for both. Because of this isomorphism, these
two theories make the same predictions for the zero-
field phase diagram.

At first, the presence of the staggered magnetization
MW S will be ignored. Thus F5*fdV with

f~hW !5a0~T2Tc0!hW •hW * 1b1~hW •hW * !21b2uhW •hW u2.
(25)

The parameters appearing in this expression are to be
determined later, either by calculation from microscopic
theory (difficult at the present stage of knowledge) or by
comparison to experiment. The second quartic term
arises because of the complex nature of hW , which makes
f depend on the relative phase of hx and hy . Minimiza-
tion of F gives two possible phases depending on the
sign of b2 : b2.0 gives hW 5h1(T)(1,i) and b2,0 gives
hW 5h2(T)(1,0), with h1(T)25a0(Tc02T)/2b1 and
h2(T)25a0(Tc02T)/2(b11b2). As emphasized
above, these two phases have very different properties.
It is important to note that symmetry operations may be
performed on these phases to obtain equivalent, degen-
erate ones. For example, hW 5h(1,2i) is equivalent to
hW 5h(1,i) by time-reversal symmetry. Sixfold anisotropy
appears only at sixth order in uhW u and is neglected in Eq.
(25). At this level, hW 5h(1,0) is equivalent to hW
5h(0,1), but even with full crystal anisotropy any order
parameter may be rotated by a multiple of p/3 in the
x-y plane. These degeneracies may give rise to domains
in real samples.

If we include the interaction between superconductiv-
ity and magnetism, we obtain

f~hW !5a0~T2Tc0!hW •hW * 1b1~hW •hW * !21b2uhW •hW u2

2buMW S•hW u21cMS
2hW •hW * . (26)

Here MW S is the staggered magnetization. In UPt3 , it is

FIG. 16. Pressure-temperature phase diagram for hydrostatic
pressure, as determined by specific heat. From Löhneysen,
Trappmann, and Taillefer, 1992.
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parallel to the a* axis (and to the ordering wave vector
QW ) and therefore it breaks the hexagonal symmetry.

We now introduce the effective-field method which
will be used repeatedly below. In a situation in which
there is more than one order parameter (here hW and
MW S), but the respective critical temperatures are differ-
ent, an effective free energy is written for the lower tran-
sition. The Néel temperature TN is about ten times the
superconducting critical temperature Tc . The magnetic
order parameter is thus well established at Tc and MW S
may be treated as an effective field which acts on hW . We
choose coordinates such that MW S5MSx̂ and set b.0, to
find

f~hW !5a0~T2Tc
1!uhxu21a0~T2Ty!uhyu2

1b1~hW •hW * !21b2uhW •hW u2, (27)

where Tc
15Tc02cMS

2 /a01bMS
2 /a0 and Ty5Tc0

2cMS
2 /a0 .

There are now two transitions since the effective field
breaks the symmetry between x and y . The prediction
of two transitions in specific heat was the first successful
prediction of the two-component theory (Joynt, 1988).
The first transition to appear as the system is cooled is at
Tc

1 . For T just below Tc
1 , hx

eq5@a0(Tc
12T)/2(b1

1b2)#1/2 is the equilibrium value of hx . In the two-
component theory, this is the (1,0) phase, identified with
phase A. The specific-heat jump is DCv

15Tc
1a0

2/2(b1

1b2). To find Tc
2 , the temperature of the lower transi-

tion, we write an effective free energy for hy , regarding
hx as an effective field which acts on hy . We may take
hx real and write hy5uhyueif, so that f is the relative
phase of the two components. This gives an effective
free-energy density

feff~hy!5a0~T2Ty!uhyu21b1uhyu412~hx
eq!2uhyu2

1b2uhyu412b2~hx
eq!2uhyu2cos~2f!. (28)

If b2.0, the last term is minimized by taking f
56p/2. On substituting for hx

eq , we have

feff~ uhyu!5a0~12b̃ !~T2Tc
2!uhyu21~b11b2!uhyu4,

(29)

with b̃5(b12b2)/(b11b2) and Tc
25(Ty2b̃Tc

1)/(1
2b̃). The second transition occurs when the coefficient
of the quadratic term changes sign, namely, at Tc

2 . This
is a lower temperature than Ty , which is the bare critical
temperature for hy . The second transition is pushed
downwards because of the cross terms in hy and hx .
This phenomenon is akin to a repulsion between the two
transitions on the phase diagram. The lower phase in
this theory is called the (1,i) phase because of the rela-
tive phases of the two components, and it is identified
with phase B. Note that the actual ratio of the two com-
ponents is not A21, but is a pure imaginary,
temperature-dependent number. This number should
approach i as T→0 as MW S can then be regarded as a
perturbation.

The parameters in Eqs. (25) and (26) can only be cal-
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TABLE V. Characteristics of the specific heat of UPt3 in the vicinity of the superconducting transi-
tion in zero applied magnetic field and pressure, for all published data on single crystals. The anneal-
ing temperature is in °C, Tc in mK, and C/T in J K22 mol21.

Reference Annealing Tc
2 Tc

1 DTc gN DC2/Tc
2 DC1/Tc

1 ratio

Hasselbach et al. (1989) 434 490 56 0.45 0.10 0.21 0.48
Jin, Carter, et al. (1992) 950 464 515 51 0.41 0.12 0.24 0.50
Bogenberger et al. (1993) 1200 467 523 56 0.44 0.09 0.22 0.42
Brison et al. (1994b) 1200 480 530 50 0.44 0.12 0.23 0.52
Isaacs et al. (1995) 1230 460 510 50 0.44 0.11 0.23 0.48
Kimura et al. (1995) 1200 530 580 50 0.42 0.09 0.20 0.45
Taillefer, Ellman, et al. (1997) 431 492 61 0.43 0.09 0.22 0.41
Kycia (1997) 900 495 545 50 (0.44) 0.13 0.25 0.52
culated using microscopic theory, but some constraints
from experiment can be noted. We must have b2.0. If
b2,0, then the direction of hW is always fixed relative to
MW S and there is no second transition. As for c , super-
conductivity and magnetism are believed to be incom-
patible, as the two compete for the same Fermi surface.
This argument would lead to c.0, although the sign of c
does not affect any of the measurable quantities in this
section. The same is true of b , but it is of greater physi-
cal relevance because it determines the relative orienta-
tion of hW and MW S5MSx̂ , thus whether we get a (1,0)
order parameter with (b.0) or a (0,1) order parameter
with (b,0) in the A phase. Physically, the difference
between (0,1) and (1,0) in the E1g and E2u phases is a
gap structure which is rotated by 90° and 45° about the
c axis, respectively. These structures lead to differences
in ultrasonic attenuation (see Sec. V.C) and vortex lat-
tice orientation (see Sec. V.D.1).

For a discussion of how to perform microscopic calcu-
lations of the parameters governing the coupling of mag-
netism and superconductivity, see Sigrist and Ueda
(1991). For an analysis of phases in which QW and MW S are
not parallel or perpendicular, see Joynt (1990).

The effective-field method is useful for finding the
lower phase boundary. To get the total specific-heat
jump relative to the normal state at the lower transition
dCv

2 , one must keep in mind that both uhx(T)u2 and
uhy(T)u2 have a kink at Tc

1 . Thus the temperature de-
pendence of both below Tc

1 is needed. A straightfor-
ward calculation (Sigrist, Joynt, and Rice, 1987; Hess,
Tokuyasu, and Sauls, 1989; Machida, Ozaki, and Ohmi,
1989) gives dCv

25Tc
2 (a0

2/2b1). This yields a dimension-
less ratio between observable quantities of

dCv
2

DCv
1 5

Tc
2~b11b2!

Tc
1b1

. (30)

Experimentally, the values for the specific heat ratios
given in Table V yield b2 /b1 5 1

2 , using dCv
2/Tc

2

.DCv
2/Tc

21DCv
1/Tc

1 . Weak coupling for two-component
theories gives b2 /b1 51. It is interesting to use the ex-
perimental value b2 /b1 5 1

2 to investigate some other
quantities of interest. The dimensionless quantity b̃
5(b12b2)/(b11b2) then becomes 1

3 . This allows us to
fix the bare critical temperature Ty mentioned above:
., Vol. 74, No. 1, January 2002
Ty5~12b̃ !Tc
21b̃Tc

1 . (31)

If we take the representative values Tc
250.53 K and

Tc
150.48 K, then Ty50.497 K. The interaction between

hy and hx shifts the lower transition from 0.497 K down
to 0.48 K, a shift of 17 mK. This in turn yields bMS

2 /a0

533 mK, which is a measure of the strength of the in-
teraction between superconductivity and magnetism.

This is a convenient place to explain some of the dif-
ferences in the predictions of various theories. The free
energy of Eq. (26) applies to the E1g and E2u theories.
The order parameter for the spin triplet is a three-
component vector hW 85(hx8 ,hy8 ,hz8) and the free-energy
density is

f~hW 8!5a0~T2Tc0!hW 8•hW 8* 1b1~hW 8•hW 8* !2

1b2uhW 8•hW 8u21cMS
2hW 8•hW 8* 2bMW S

2 uhx8u
2.

(32)

As above, we have taken the interaction between hW 8 and
MW S to favor a parallel alignment in phase A. Since MW S
5MSx̂ , we therefore have hW 85h8(1,0,0) in this phase.
At the lower transition, we enter the (1,i ,i) phase (in an
obvious notation), which is identified with phase B. For
the thermodynamic properties, however, the two-
component theories and the three-component theory
are equivalent. This may be seen by the mapping: uhx8u

2

→uhxu2 and uhy8u
21uhz8u

2→uhyu2. If we were to add spin-
orbit coupling and a crystal field as a perturbation, the
coefficient for uhz8u

2 would be different from that of the
other two components and the possibility of a third tran-
sition arises.

The order parameter for mixed-representation theo-
ries is D5haFa(kW )1hbFb(kW ) and the free-energy den-
sity is

f~ha ,hb!5aa~T2Ta!uhau21ab~T2Tb!uhbu2

1bauhau41bbuhbu41babuhau2uhbu2

1bab8 ~ha
2hb*

21ha*
2hb

2 !. (33)

No coupling to the magnetization need be included,
since it merely changes the value of the parameters that
already appear. If we ignore the quartic cross-coupling
terms, we get a specific-heat jump ratio of
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TABLE VI. Experimental values of the change in various critical temperatures with pressure (for the
four transition lines), as deduced from thermal expansion measurements (van Dijk, 1994).

HW 'c (H50.6 T)
NC

HW 'c (H50.6 T)
BC

HW ic (H51.2 T)
NC

HW ic (H51.2 T)
BC

dT/dPa (mK/kbar) 26.565 0650 24.865 0650
dT/dPc (mK/kbar) 20.565 2170650 23.065 2210650
dT/dP (mK/kbar) 213.568 2170680 212.268 2210680
dCv
2

DCv
1 5

Tc
2ab

2ba

Tc
1aa

2bb
. (34)

In this class of theories aaÞab and baÞbb . Hence
there is, from the phenomenological theory alone, no
relation between the specific-heat jumps, nor even any
reason to suppose that they are the same order of mag-
nitude. In this sense, this theory offers no explanation of
the fact that the two jumps are of similar height. It can
be argued against this that, if Ta'Tb , then the other
coefficients might well be close also when an actual mi-
croscopic calculation of the Ginzburg-Landau param-
eters is done. This would happen if the underlying
theory were similar to BCS weak coupling in involving
only one parameter (the coupling constant) per repre-
sentation. The similarity in height of the specific-heat
jumps is rather strong evidence against theories in which
there is little relation between the nature of the two
transitions in spite of their proximity, such as the mixed
superconducting-magnetic theory of Blount, Varma, and
Aeppli (1990).

In summary, the measured specific heat certainly sug-
gests a superconducting order parameter with two, or
possibly three, components which are nearly degenerate.
The most apparent mechanism for the splitting of the
degeneracy is a coupling to the antiferromagnetism. The
evidence for and against this mechanism will be consid-
ered below. The comparable size of the jumps consti-
tutes some evidence for the multidimensional represen-
tation theories. It does not rule out mixed-
representation theories, but it limits their possible forms.
It provides evidence that both transitions are due to su-
perconductivity.

3. Other experiments

The superconducting transition at Tc
1 is immediately

visible in many types of experiments, but the same is not
true for the lower transition. Apart from specific heat,
the transition at Tc

2 between phase A and phase B was
mainly seen in thermal expansion and ultrasound mea-
surements. All measurements agree on the value of Tc

2

relative to that of Tc
1 . The coefficient of linear thermal

expansion along the c axis, ac[(1/c)(]c/]T), shows a
steplike positive anomaly @ac(Tc

11e).ac(Tc
12e)# at

the upper transition of about 0.6 parts per million and a
negative anomaly @ac(Tc

21e),ac(Tc
22e)# of about

0.2 parts per million at the lower transition. There is no
corresponding signature of the transition in the thermal
expansion in the basal plane. The longitudinal sound ve-
., Vol. 74, No. 1, January 2002
locity vs drops sharply at Tc
1 by a relative amount

Dvs /vs'231025 over a temperature range of about 10
mK (Adenwalla et al., 1990; Bruls et al., 1990). At Tc

2 , a
much smaller but still distinct anomaly is seen. (The
lower transition is barely visible in transverse sound.)
Sound velocity has been a key tool in mapping the phase
diagram as a function of field and pressure, as shown in
Figs. 14 and 15. Its relevance at zero field and pressure is
mainly that the anomalies observed confirm the specific-
heat results. As discussed in detail in Sec. V.C, the at-
tenuation of transverse sound has revealed a clear signa-
ture of the transition between phase A and phase B and
has provided a powerful probe of the nodal structure of
each phase. Finally, note that even though the magni-
tude of Tc

1 can vary by up to 80 mK or so, the difference
in critical temperatures is always roughly the same, Tc

1

2Tc
2550 mK (see Table VI). This suggests that disor-

der affects the two transitions in a similar way, which
makes mixed-representation theories involving an
s-wave and a d-wave part less attractive.

B. Phase diagram in a magnetic field

The most remarkable set of observations in UPt3 is
the phase diagram in a magnetic field with its three dis-
tinct phases. The data are shown for HW i â in Fig. 14.
They show the three superconducting phases and the
normal phase meeting at a tetracritical point at Ht
50.44 T and Tt50.39 K.

In this section we analyze this phase diagram in detail,
beginning with a review of the experiments in the first
subsection, then turning to the internal phase bound-
aries in the second. The third and fourth subsections are
devoted to the anisotropy between the basal plane and
c-axis field directions and the lower critical fields, re-
spectively.

1. Upper critical fields and tetracritical point

The upper critical field Hc2(T) of UPt3 was first mea-
sured by Chen et al. (1984) and subsequently by many
others. The data of Shivaram, Rosenbaum, and Hinks
(1986) are shown in Fig. 17 for field directions parallel
(Hc2

i ) and perpendicular (Hc2
' ) to the c axis. Although

Hc2(T) is somewhat sensitive to sample quality, the fol-
lowing basic features have been reproduced in all recent
measurements, on a variety of crystals: (1) the magni-
tude of Hc2(T) is large relative to Tc , in keeping with
the huge effective masses involved in the orbital re-
sponse; (2) there is a reversal in the anisotropy Hc2

i /Hc2
'
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at T.0.2 K, with Hc2
i

.Hc2
' near Tc and Hc2

i
,Hc2

' at
low temperature; (3) there is an abrupt increase of slope
in Hc2

' (T) at T.Tc
120.1 K, H.4 kOe. The measured

value of Hc2 at T→0, a property of the C phase, in-
creases with sample quality. In high quality single crys-
tals (Shivaram, Rosenbaum, and Hinks, 1986; Keller
et al., 1995) one finds (in tesla)

C phase: Hc2
i

~0 !.2.1 T; Hc2
' ~0 !.2.8 T. (35)

A rough estimate of the average coherence length at T
50 gives j(0).\^vF&/pD(0).120 Å [using ^vF&5vbc
55000 m/s and D(0).2kBTc], and a corresponding av-
erage upper critical field ^Hc2(0)&5F0 /@2pj2(0)#
.2.3 T, consistent with the measured values. Note that
the coherence length is much shorter than a typical
mean free path (in excess of 2000 Å in high quality crys-
tals), so that UPt3 samples are usually well into the
‘‘clean limit.’’

The slope of Hc2(T) at Tc5Tc
1 is a property of the A

phase, with

A phase: S dHc2
i

dT D
Tc

1

527.260.6 T/K;

S dHc2
'

dT D
Tc

1

524.460.3 T/K. (36)

Normally, one would be able to relate the value of
Hc2(T) at T50 with its slope at Tc , but in UPt3 this is
suspect since the former is a property of the C phase.
The change of phase is partly responsible for the anisot-
ropy reversal, in addition to the presence of strong Pauli
limiting for HW i ĉ . This may be due either to the anisot-
ropy of the susceptibility, as explained in Sec. II.D, or to
anisotropy of the order parameter (see below). Figure
18 shows more clearly the ‘‘kink’’ in Hc2

' (T), seen for all
directions of HW in the basal plane (Taillefer et al., 1990).

FIG. 17. Upper critical field for field directions parallel (open
circles) and perpendicular (filled circles) to the c axis. From
Shivaram, Rosenbaum, and Hinks, 1986.
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In the Ginzburg-Landau regime (near Tc ,) the a-c
anisotropy is a combination of two effects: the angular
dependence of the mass tensor (or Fermi velocity) and
that of the gap D(u). It is striking that in UPt3 , charac-
terized by a highly anisotropic gap structure (well estab-
lished for the B phase and very likely for the A phase;
see Secs. V.B and V.C), the anisotropy in Hc2(T) near
Tc

1 is precisely given by the mass tensor anisotropy, just
as expected for an isotropic order parameter:
(dHc2

i /dT)Tc
1 /(dHc2

' /dT)Tc
151.645Amr, where the

mass ratio mr[m' /m i5^vc
2&/^vb

2&. From Sec. II.B, the
normal-state transport gives mr52.75(1.64)2. More-
over, the full dependence of Hc2 on polar angle (near
Tc

1) fits the standard mass tensor expression Hc2(u)
5AmrHc2(p/2)@mr sin2 u1cos2 u#. The slope of the ther-
modynamic critical field Hc(T) in the A phase is dic-
tated by the jump in specific heat DC at Tc

1 :
(dHc /dT)Tc

152@4pgN(DC/CN)#1/2.2800 Oe/K, us-

ing the value DC at the upper transition given in Table
V.

Continuing to use s-wave theory with mass anisotropy
for the moment, these data allow us to estimate the
Ginzburg-Landau parameter kGL[l/j , where l
5l i /Ami and j5j iAmi. l i is the penetration depth for
screening currents along the principal axis i (a , b , or c ,)
j i is the coherence length describing the spatial variation
of the order parameter along the i axis, and mi is the i
component of the normalized effective mass tensor
(mambmc[1). Given that mr5m' /m i52.7, with ma

5mb[m' and mc[m i , we have Am'51.18 and Am i

50.72, so that for the A phase: kGL544, using data for
either field direction: (dHc2

i /dT)Tc
15&(kGL/

Ami)(dHc /dT)Tc
1 (i5i ,').

The large value of kGL places UPt3 in the strong
type-II limit of magnetic behavior, as for all heavy-
fermion and cuprate superconductors. The fact that l

FIG. 18. Upper critical field for field in the basal plane, show-
ing the sharp break in slope (kink) at about 4 Oe. From
Taillefer et al., 1990.
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@j implies that the electrodynamic properties of UPt3

can be treated in the local (or London) approximation.
In this limit, the penetration depth is a simple and direct
measure of the superfluid density. At T50, the magni-
tude of l is governed by the mass m and the conduction-
electron density n : l(0)5(mc2/4pne2)1/25c/v̄p , where
v̄p is the average plasma frequency given, for example,
by \v̄p5@2.231026 eV#(mi /r0,it0)1/2 (i5i ,'), with
r0,i in mV cm and t0 in sec. Using the values derived
from normal-state transport (Sec. II.B), we get \v̄p
50.37 eV (4.831014 sec21) and l(0)56250 Å, so that
l i(0)54500 Å, l'(0)57400 Å. These are the compo-
nents of the penetration depth one would expect to mea-
sure in the B phase. If we assume that kGL544 in the B
phase as well as the A phase, then j(0)5l(0)/kGL

.140 Å, and j i(0).190 Å, and j'(0).120 Å. This
Ginzburg-Landau estimate for j(0) agrees well with our
previous BCS estimate. A very rough independent esti-
mate for kGL appropriate for low temperatures is ob-
tained by ignoring gap anisotropy and using weak-
coupling expressions for the condensation energy and
the zero-temperature gap: Hc

2(0).4pNFD2(0).12
3(1.76)2gN(kBTc)2/p , which gives Hc(0)'550 Oe, so
that kGL5Am'Hc2

' (0)/@&Hc(0)#'46. This is an indi-
cation that UPt3 is not too far from weak coupling.

For a review of upper critical fields in UPt3 and other
heavy-fermion superconductors, see Keller et al. (1995).

The first direct evidence of an additional phase
boundary in UPt3 came from measurements of the ultra-
sonic attenuation as a function of applied field (Müller
et al., 1986; Qian et al., 1987). Early indications of a
phase transition induced by a magnetic field also came
from accurate measurements of Hc2(T), which revealed
a sudden change of slope near 0.4 T (Rauchschwalbe
et al., 1985; Taillefer, Picquemal, and Flouquet, 1988).
The existence of a tetracritical point where the three
superconducting phases meet was first proposed on the
basis of specific-heat measurements in a magnetic field
(Hasselbach, Taillefer, and Flouquet, 1989). The most
complete tracing of the phase boundaries was done by
locating the anomalies in the longitudinal sound velocity
(Adenwalla et al., 1990; Bruls et al., 1990). The resulting
phase diagram agrees with measurements of specific
heat in applied fields (see Taillefer, 1990), with magne-
tostriction measurements (van Dijk et al., 1993a), and
with the magnetocaloric effect (Bogenberger et al., 1993;
Löhneysen, 1994) in the regions of temperature and field
where there is overlap.

The tetracritical point is a rather remarkable structure
that was analyzed from the purely thermodynamic point
of view by Yip, Li, and Kumar (1991). If the four bound-
aries that meet at this point all correspond to second-
order phase transitions, there are relations between the
four specific-heat jumps across these lines and the slopes
of the lines entering the point. This follows solely
from the fact that the entropy is a continuous and single-
valued function near the tetracritical point. These rela-
tions were verified by van Dijk et al. (1993b). They
measured thermal expansion coefficients near the tetra-
Rev. Mod. Phys., Vol. 74, No. 1, January 2002
critical point to determine the critical field slopes and
used specific-heat measurements from Hasselbach,
Taillefer, and Flouquet (1990). A violation would indi-
cate that some of the transitions are first order. This
conclusion that all boundaries are second order is also
consistent with the fact that no hysteresis is ever ob-
served. Other investigators (Adenwalla et al., 1992) ar-
gued that the BC transition is weakly first order, but
their analysis seems to imply that the ratio of specific-
heat steps across the A-B boundary is zero, which is not
consistent with experiment (see van Dijk et al., 1993b,
for details). It now seems safe to say that all four bound-
aries are really second order.

The rough analysis of upper critical fields using only
mass anisotropy in a one-component theory gives insight
into parameter magnitudes, but it obviously cannot pro-
duce multiple phases. Thus we now continue the devel-
opment of multicomponent theories begun in Sec. IV.A.
The application of a field produces a nonuniform order
parameter and requires the introduction of gradient
terms in the free energy. The minimization of the result-
ing functional is more complicated than the calculations
done above for zero field. We shall focus on the case of
HW in the basal plane, as it is much simpler from the
calculational point of view.

Unlike the zero-field calculations, there are substan-
tial differences even between different two-component
theories, so we subdivide the presentation.

a. E1g theory

The uniform free-energy density is most conveniently
written as

fu5a0~T2Tc
1!uhxu21a0~T2Ty!uhyu21b1~hW •hW * !2

1b2uhW •hW u2, (37)

and the gradient terms are

fg5K1 (
i ,j5x ,y

Dih jDi* h j* 1K2 (
i ,j5x ,y

Dih iDj* h j*

1K3 (
i ,j5x ,y

Dih jDj* h i* 1K4 (
i5x ,y

uDzh iu2. (38)

The total free-energy density is f5fu1fg . Here we have
defined the covariant derivatives: Di5]/]xi12ieAi /
\c , where 2e is the charge on the electron. The sixfold
rotation axis is the z axis, and the direction of the order
parameter is confined to the basal plane. Thus the sums
run only over the in-plane coordinates x and y . The
gradient terms in Eq. (38) are the most general allowed
in two-component theories in the absence of magnetism.
Some effect of MW S is implicitly contained in the uniform
part of f in Eq. (37) by distinguishing between Tc

1 and
Ty . The gradient terms of Eq. (38) do not include the
breaking of hexagonal symmetry due to the appearance
of MW S . This means we have neglected the coupling of
the magnetization to the supercurrent. We shall remedy
this defect below by adding additional terms to Eq. (38).
For the moment, this complication is neglected.
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The first problem is to determine Hc2(T). This is
done in the usual fashion. One first minimizes the qua-
dratic part of F5*fdV with respect to the functional
form of hW (rW), which corresponds to finding the lowest
eigenvalue of a linear operator. This determines the
equilibrium form of hW . Once this form is substituted in
the free energy, we can determine the location of the
phase boundary by asking for what values of H and T
the coefficient of the quadratic term changes sign. De-
tails of calculations of this kind are given by Volovik
(1988), Hess et al. (1989), Machida and Ozaki (1989),
Sundaram and Joynt (1989), and Garg (1992).

We make the standard assumption that the order pa-
rameter is uniform along the direction of the field. Inter-
estingly, this is not valid for all values of the parameters
Ki (Garg, 1992). In fact, for K21K3.3.126K1 , a non-
uniform state is stable. However, this parameter range is
not reached in UPt3 (Park and Joynt, 1995). Nonuni-
form and even orbitally paramagnetic states have been
investigated by Palumbo, Muzikar, and Sauls (1990) and
Palumbo and Muzikar (1992a, 1992b), but there appears
to be no evidence for them in UPt3 .

Minimizing the volume integral of the quadratic part
of f with respect to the form of hW (z) gives two Euler-
Lagrange equations and two equations for the critical
fields:

Hc2x~T !5
\ca0

2e~KK4!1/2 ~Tc
12T !,

Hc2y~T !5
\ca0

2e~K1K4!1/2 ~Ty2T !. (39)

Here K5K11K21K3 . Given that K.K1 and Tc
1

.Ty , these two lines cross at the point (Tt ,Tt). Hc2(T)
is given by the greater of the two, so Hc25Hc2x ,H
,Ht , and Hc25Hc2y ,H.Ht , where

Ht5
\ca0

2e~K1K4!1/2 ~Tc
12Ty!, Tt5

TyAK2Tc
1AK1

AK2AK1

.

(40)

In other words, Hc2 has a kink at (Ht ,Tt). Bear in mind
that Ty is the bare lower critical temperature, not the
actual one. Hence the NC phase boundary extrapolates
back to the temperature axis to a point between Tc

1 and
Tc

2 . Therefore the very peculiar shape of the Hc2 curve,
with its very abrupt change in slope (Taillefer et al.,
1990), is well explained in the two-component theory, at
least for HW ' ĉ .

Computing the Hc2 curve is analogous to finding the
ground state of a particle in a magnetic field. The
quantum-mechanical analog in the present case is a two-
component spinor problem, with the components cou-
pling in a different fashion to the external field, but not
mixing. This leads to a level crossing and the kink. The
reason for the crossing must be a symmetry. In this case
the system is symmetric under reflection in the x-z
plane.
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The ratio of Hc2 slopes (]Hc2 /]T)5H8 below and
above the kink is given by HNA8 /HNC8 5(K1 /K)1/2.
(HXY is the field at the boundary between phases X and
Y .) This is one of the better measured quantities in
UPt3 , as the upper critical field lines are rather linear
for this direction of the applied field. Detailed measure-
ments give values from 0.65 (Taillefer et al., 1990) lead-
ing to (K1 /K)'0.42.

In E1g the in-plane stiffness constants K1 , K2 , and K3
are generally of the same order of magnitude. Particle-
hole symmetry and weak-coupling theory in fact lead to
K25K3 and K15K21K3 . This gives the above ratio as
K1 /K50.5, which is very reasonable agreement with ex-
periment, which speaks strongly in favor of this theory.
The same parameters give a reasonable fit to the less
easily calculable AB and BC phase boundaries (Park
and Joynt, 1995), to be discussed below.

b. E2u theory

The free-energy density in the E2u theory has the
same structure as in Eqs. (37) and (38). However, it dif-
fers from E1g in that K2!K1 and K3!K1 . This arises
from the fact that these two parameters are averages of
the Fermi velocity over rather high in-plane angular har-
monics in this theory (Sauls, 1994). According to Eq.
(39), hx and hy have the same slope for the upper criti-
cal field. This would lead to no kink in Hc2 , and in fact
to a very different phase diagram than is observed. The
E2u theory relies on a different mechanism to produce
the kink (Sauls, 1994), which we now discuss.

The idea is to introduce a coupling between the mag-
netism and the supercurrent which is allowed by symme-
try. To the free-energy density in Eqs. (37) and (38), one
adds a term

fms5Kms (
i5x ,y

~ uDihxu22uDihyu2!. (41)

Here Kms is proportional to MW S
2 . This gives a different

slope to the two Hc2 lines for the two components of hW .
It leads then by precisely the same mechanism as above
to the kink in the upper critical field:

Hc2x~T !5
\ca0

2e@~K11Kms!K4#1/2 ~Tc
12T !

and

Hc2y~T !5
\ca0

2e@~K12Kms!K4#1/2 ~Ty2T !. (42)

In this theory, there is no natural explanation for the
ratio of slopes, as there was in E1g .

The physical upper critical field is given by Hc2
5Hc2x ,H,Ht and Hc25Hc2y ,H.Ht , where

Ht5
\ca0

2eK4
1/2

1

AK11Kms2AK12Kms

(43)

and
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Tt5
TyA~K11Kms!2Tc

1A~K12Kms!

A~K11Kms!2A~K12Kms!
(44)

are the formulas for the tetracritical point. In the E1g
theory, the current coupling term is also present, but for
this direction of the field it changes only the effective
values of K1 and K . Note that the sign of the coupling
Kms is crucial for E2u . Magnetism must favor one com-
ponent of hW in the uniform limit but relatively suppress
gradients of this same component.

The identification of the A and C phases of UPt3 for
the field in the basal plane is the same for E1g and E2u .
In the A phase, we have hW 5(h ,0) in the A phase and
hW 5(0,h) in the C phase. The physics of this is quite
simple. At low applied fields, the orienting effect of the
magnetization on hW is the most important, while at high
fields, hW is aligned by the field. Furthermore, in the A
and C phases, the free energy reduces to that of a one-
component superconductor with mass anisotropy.
Therefore the flux lattice in these phases is predicted to
be of the centered rectangular form. The C phase has
lines of nodes along both vertical and horizontal direc-
tions. This could lead to a AH dependence in the specific
heat at low temperatures (Volovik, 1988). This predic-
tion is hard to test in UPt3 , as will be seen in Sec. V.A.

c. Mixed-representation theories

Mixed-representation theories can lead to very differ-
ent results, depending on the choice of representations.
The only one that has been worked out in any detail is
the AB theory (Chen and Garg, 1993, 1994). We remind
the reader that ‘‘AB’’ in this context refers to a mixture
of an A1 or A2 representation with a B1 or B2 represen-
tation, not to the AB transition. For clarity in this sec-
tion, we shall demote the letters for the theory to lower
case. The free-energy density is of the form fab5fu

ab

1fg
ab , with

fu
ab5a0~T2Ta!uhau21a0~T2Tb!uhbu21bauhau4

1bbuhbu41b1
abuhau2uhbu21b2

ab@~hahb* !2

1~hbha* !2# , (45)

and

fg
ab5Ka (

i ,j5x ,y
uDihau21Kb (

i ,j5x ,y
uDihbu2

1Ka8uDzhau21Kb8 uDzhbu2. (46)

There are no terms for which the field mixes the two
components ha and hb at this order. This is the reason
for this choice of representations. This theory is there-
fore somewhat simpler than the two-component theo-
ries. For a fixed field direction in the basal plane, it is
isomorphic to the two-component theories and cannot
be distinguished on qualitative grounds. In terms of the
parameters in Eqs. (45) and (46), the tetracritical point
is at (Ht ,Tt), with
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Ht5
a0\c

e

Ta2Tb

2
1

AKbKb82AKaKa8
, (47)

Tt5
Ta2Tb

2
2

Ta1Tb

2

AKbKb82AKaKa8

AKbKb81AKaKa8
. (48)

This theory also gives no natural explanation of the
ratio of slopes.

d. Spin-triplet theory

The spin-triplet theory has qualitatively different be-
havior from the other theories in a field. The free-energy
density can be written as f t5fu

t 1fg
t , with

fu
t 5a0

t ~T2Tc0!hW •hW * 1b1~hW •hW * !21b2uhW •hW u2

2gMS
2~2uhxu22uhyu22uhzu2!, (49)

and

fg
t 5K1

t (
i5x ,y ;j5x ,y ,z

uDih ju21K2
t (

j5x ,y ,z
uDzh ju2 (50)

(Machida and Ozaki, 1991; Machida, Ozaki, et al., 1993).
Here, we have again assumed that MW S is in the x̂ direc-
tion. The A phase has the form hW 5(h ,0,0). In this
theory there is, at this level, no kink in the Hc2(T)
curve.

This theory originally postulated the following mecha-
nism to produce the kink. Apart from the coupling of
the applied field to the currents, which is linear in HW ,
there are paramagnetic terms which arise as soon as H
.Hc1 , i.e., as soon as the field penetrates the sample.
These are quadratic in HW and take the form

f2m5azHz
2hW •hW * 1ax~Hx

21Hy
2!hW •hW * 1aduHW •hW u2.

(51)

The three components, one having a high Tc , the other
two having a lower Tc , have the same slope for the
Hc2(T) curve in the absence of these terms. When they
are present at finite field, the second term will mean that
the slopes are different. If ad is positive, then the com-
ponent of hW parallel to HW will be suppressed by the field.
As long as this is the one belonging to the higher Tc , we
can get a crossing of the Hc2 curves. This happens not
because the initial slopes of the curves are different, but
because their curvatures are different. Thus, in this
theory, the kink in Hc2 is due to an effect that is nonlin-
ear in the applied field. This is not obviously consistent
with the experimental Hc2 curve for this direction of the
field, which is rather linear for H<Ht . Still, the linearity
is somewhat sample dependent, and the spin-triplet
theory gives a reasonable account of the phase diagram
for this direction of the field. In a later version of this
theory, the proposers note that the coupling of the cur-
rent to the magnetization can also produce the tetracriti-
cal point (Machida, Ozaki, et al., 1993), as in the E2u
theory.

We have thus far concentrated on the kink in Hc2 and
the AB tranisition. Theory does reasonably well in de-
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scribing these features of the phase diagram. What
about more global features of the diagram? Can we pre-
dict a real tetracritical point? What is the nature of the
three phases at finite field?

These questions may be answered by focusing on the
CB transition (Joynt, 1991). We start in the C phase, i.e.,
at a point (H ,T) with H.Ht , HW 5Hx̂ , and T,Tt . At
this point hW 5@0,hy(x ,z)# , and hy(x ,z) has a known
analytic form if H is sufficiently close to Hc2 , meaning
in this case that (H ,T) is sufficiently close to (Ht ,Tt).
We now fix T and reduce H . We again use the effective-
field method, this time to write an effective free energy
for hx .

The Euler-Lagrange equation that results is

05
dF

dhx*
5a0~Tc

22T !hx2KDx
2hx2K4Dz

2hx

12b1uhyu2~x ,z !hx12b2hy
2~x ,z !hx* 1O~hy

3!.

(52)

This is a Schrödinger equation for hx . We see that the
terms that result from the coupling of hx and hy now act
as a potential in which the fictitious particle moves.

The lattice is commensurate with the field with one
flux quantum passing through each unit cell. Our prob-
lem is therefore that of a particle in a periodic crystal
potential with a commensurate magnetic field. This, to-
gether with fact that hx must lie in the lowest Landau
level near Hc2 , allows one to solve for hx . The general
solution is

hx5hx0 (
n52`

`

cneiz0x/l 2
expS inq~z1z0!/l

2
1
2

~K4 /K !1/2~x1x01nql !2/l 2D . (53)

This equation corrects two misprints which appeared in
Eq. (5) of Joynt (1991). With the cn and q parameters
properly chosen, it represents a centered rectangular lat-
tice for hx with the origin of the coordinates at (x0 ,z0).
When the eigenvalue corresponding to this solution
passes through zero, hx will appear and we are in the B
phase via a second-order transition. uhxu2 has the same
periodicity as uhyu2. Because the new lattice fits in the
registry with the old, the CB transition does not change
the structure of the lattice: in the B phase just below the
CB boundary it is centered rectangular with the same
aspect ratio as in the C phase. This is a consequence of
Bloch’s theorem and makes the designation of the CB
boundary as the ‘‘flux lattice line,’’ as it has sometimes
been called, inappropriate. The actual evolution of the
structure of the flux lattice will be discussed in more
detail in Sec. V.D.1. Here we focus on the phase diagram
itself.

The free energy which now results when the spatial
forms of hx and hy have been substituted in is remark-
ably simple:
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F52a0@T2Tc
1~H !#^uhxu2&2a0@T2Ty~H !#^uhyu2&

(54)

1b̃x^uhxu2&21b̃y^uhyu2&21b̃xy^uhxu2&^uhyu2& . (55)

Here

Ty~H !5Tx2
2e

\ca0
~K1K4!1/2H ,

Tc
1~H !5Tc

12
2e

\ca0
~KK4!1/2H (56)

describe the bare Hc2 curves and the b̃ i are Abrikosov
parameters. Details are given in Park and Joynt (1995).
Inspection of the free energy of Eq. (55) for any fixed H
reveals that it is essentially the same as the zero-field
free energy. We need only make the replacements uhxu2

→^uhxu2& and so on. The coupling constant b1 is re-
placed by the renormalized constants b̃x ,b̃y and b2 be-
comes b̃xy .

The AB transition at finite field is computed in an
exactly analogous fashion. In the above Eqs. (52)–(55)
we need only interchange K and K1 and hx and hy ev-
erywhere. The Abrikosov parameters also come out dif-
ferently, since they are computed in the C lattice struc-
ture. These differences only amount to quantitative
changes, however. Hence there is a beautiful symmetry
between the BC transition and the AB transition.

This symmetry immediately implies that there are two
transition as a function of T for any fixed H . The only
exception is where H5Ht , when the two transitions be-
come degenerate. The two-component theory leads un-
avoidably to the phase diagram observed for HW in the
basal plane, including the tetracritical point. A fit using
parameters from an E1g theory (Park and Joynt, 1995)
produces very good phase boundaries, as shown in Fig.
14.

2. Lower critical field

We saw above that the magnitude of Hc2 for different
directions was consistent with the simple assumption of
mass anisotropy in a one-component theory. We might
expect that the lower critical field Hc1(T) would be de-
termined by the same parameters, l, j, m' , and m i .
With the values arrived at above, we may use the rela-
tion Hc1(T)5ln(kGL)Hc

2(T)/Hc2(T) to obtain the pre-
dicted values: (dHc1 /dT)Tc

15234(245) Oe/K for HW i ĉ

(HW ' ĉ), and Hc1(0)555(41) Oe for HW i ĉ (HW ' ĉ). As we
shall see, these are much lower than the values extracted
from existing experiments.

Attempts to measure the lower critical field Hc1(T) of
UPt3 have been made by a few groups using different
techniques (Shivaram et al., 1989; Vincent et al., 1991;
Zhao et al., 1991). This is a much more tricky measure-
ment than that of Hc2(T), and the results vary consid-
erably. The data of Vincent et al. (1991), obtained in an
M vs T measurement at fixed H , are shown in Fig. 19.
The qualitative features are (1) a virtually isotropic
Hc1(T) over the whole temperature range, and (2) a
sudden increase in slope occurring at a temperature T0
approximately 50 mK below Tc . The slope near Tc

1 is
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FIG. 19. Lower critical field for fields parallel
and perpendicular to the c axis, obtained
from magnetization data. From Vincent et al.,
1991.
A phase: S dHc1
i

dT D
Tc

1

.2400 Oe/K;

S dHc1
'

dT D
Tc

1

.2410 Oe/K, (57)

and the ratio of the slope above the kink (below T0) to
the slope below the kink is 1.4 (1.3) for HW ' ĉ (HW i ĉ). See
Sec. IV.B for a calculation which gives this value. These
features were confirmed by Zhao et al. (1991) in an M vs
H measurement at fixed T , but with different values:
Tc

12T0.100 mK, the (isotropic) slope at Tc is 60%
lower, and the ratios are 1.2 (1.3). Using an LC resona-
tor technique, Shivaram, Gannon, and Hinks (1989) ob-
tained much lower values, a large anisotropy, and a kink
only for HW ' ĉ . The most significant result is the obser-
vation of an increase in dHc1 /dT , evidence that the
condensation energy increases at T0.Tc

2 , as it must if a
second superconducting order parameter sets in at the
lower transition. Quantitatively, however, the behavior
of Hc1(T) is unexpected given the upper critical field
data. From the value of dHc1 /dT at Tc , an independent
estimate of kGL can be made, and Vincent et al. (1991)
obtain kGL.2.5.

While we do not expect the standard one-parameter
Ginzburg-Landau description to hold quantitatively in
UPt3 , the large discrepancy between estimates from Hc2
and those from Hc1 remains puzzling. It may also call
into question the success of the various measurements in
determining the true magnitude of Hc1 in this system.

In summary, the measured Hc2(T) of UPt3 in the A
phase exhibits exactly what is expected for an isotropic
order parameter, given the known values of vF , mr , and
Tc . The system is in the strong type-II limit, with kGL
.40, so that the penetration depth is simply given by
the London formula, with magnitude given by the
plasma frequency and anisotropy governed by the mass
ratio, which yields l i(0)54500 Å and l'(0)57400 Å.
On the other hand, measurements of the magnitude of
Hc1(T) seem to invalidate this simple picture, with val-
ues much larger than expected and much too small an
anisotropy. Unfortunately, experiments disagree on the
magnitude of Hc1 , so that the situation is rather incon-
clusive. The transition to the high-field C phase is clearly
detected in Hc2

' (T), while the superconducting nature
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of the A to B transition is manifest in the increase of
Hc1(T) at Tc

2 .
The theory of the lower critical fields in two-

component theories has concentrated not on the magni-
tude, but rather on the kink in Hc1(T). The calculations
are simpler than those for the upper critical fields (Hess
et al., 1989).

In the Meissner state, the kinetic-energy density of the
currents H2/8p is independent of the microscopic state.
Hence, the free-energy balance of the various states is
not affected by the application of the field. The transi-
tion temperature is calculated as in the zero-field case,
and we find that it always occurs at Tc

1 . Thus the AB
phase boundary is vertical in the H-T plane for H
,Hc1 .

The Hc1(T) curve must have a kink where it inter-
sects the AB boundary. The standard formula for Hc1
for a one-component superconductor depends only on
the energy of a single vortex: Hc15(F0/4plylz) ln k,
where F0 is the flux quantum and the ln k factor is a
correction for the core energy. This formula makes clear
that the kinetic energy of the vortex is all that matters,
up to logarithmic corrections. This in turn depends only
on the superfluid density (}1/l2), which is proportional
to uhxu2 in the A phase, and Hc1 is therefore linear near
Tc

1 . In the B phase the superfluid density is propor-
tional to a sum of uhxu2 and uhy

2u weighted by the appro-
priate stiffness constants. Since both uhx

2u(T) and
uhy

2u(T) have a kink at Tc
2 , Hc1(T) has a kink there as

well. The relative magnitude of the kink may then be
computed by simply combining Maxwell’s equations
with the expression for the current jW;dF/dAW to get the
penetration depths. Let us denote the slope of Hc1 just
above (below) Tc

2 as dHc1 /dTu1(2) . The result, ignor-
ing core contributions, is then (Sarma et al., 1992)

dHc1 /dTu2

dHc1 /dTu1
5

1
4 S 11

b2

b1
D S 31

K1

K D . (58)

Combining data from various experiments now gives a
rough consistency check on the two-component theory.
The data of Vincent et al. (1991) give

dHc1 /dTu2

dHc1 /dTu1
'1.4, (59)
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while we had b2 /b1'0.5 from specific-heat experiments
and K1 /K'0.5 from Hc2(T). Substituting these two
values into the right-hand side of Eq. (58), we obtain
1.31. This is very reasonable agreement considering the
accuracy of the data and the fact that the experiments
were performed on different samples.

3. In-plane anisotropy of the upper critical field

One of the simplest but most important of all experi-
mental results is the observation that the in-plane an-
isotropy of Hc2 is very small and that the anisotropy is
sixfold, not twofold (Keller et al., 1994, 1995). The mag-
nitude of the anisotropy in the resistivity at fixed uHW u
from peak to valley is a maximum of 3% and changes
sign at T5437 mK. These results can be explained by
assuming that MW S rotates with the field so as to remain
perpendicular to it (Sauls, 1996) and that uMW Su is thereby
modulated. This is achieved by adding a term
;uMW Su6 cos 6uM (in an obvious notation) to the free en-
ergy.

The reason for the importance of these observations is
that the hypothesis that the magnetization rotates with
the field is absolutely central to all the theories of Hc2
presented in this section except for the mixed-
representation theories. Each depends on the same
physical picture of the two in-plane components of the
order parameter having different Hc2 values depending
on whether they are parallel or perpendicular to HW . The
direction of the component that condenses at Tc

1, how-
ever, is fixed by the direction of the magnetization. In
order for there to be in-plane isotropy of the phase dia-
gram, which there is (to within 3%), the magnetization
must rotate in field. If not, and the magnetization direc-
tion is fixed, the slopes of the NA and AB boundaries
would be interchanged when the field is rotated by 90°
in the plane. This would be in gross contradiction to the
observations.

In fact, the hypothesis of magnetization rotation is in
apparent contradiction with an experiment of Lussier,
Taillefer, et al. (1996). An in-plane field of 3.2 T was
applied, and the magnetic Bragg diffraction was ob-
served. The sixfold symmetric pattern, interpreted as
three equally populated domains, was unaffected by the
field and interpreted as ruling out the idea of magneti-
zation rotation. This interpretation has been called into
question by Moreno and Sauls (2001). If it holds up, it
would invalidate the overall theoretical analysis of the
phase diagram. Mixed representation theories would be-
come much stronger as candidates for the order param-
eter.

4. Magnetic field along the c axis

The phase diagram of UPt3 when HW is along the c axis
shows interesting similarities and differences from that
when HW is in the basal plane. The data from Adenwalla
et al. (1990) are shown in Fig. 15. The Hc2 curve is much
smoother. It is not entirely clear whether there is a kink
Rev. Mod. Phys., Vol. 74, No. 1, January 2002
or just a sudden change in curvature near the point Hz
50.9 T and Tz50.35 K. The inner transition line is
much smoother, shows no kink, and has considerable
curvature even at low fields. The point (Hz ,Tz) where
the two lines meet (or come very close together) is
rather far from the tetracritical point when HW is in the
basal plane, but ultrasonic measurements of the phase
diagram at intermediate angles make it clear that the
tetracritical point structure evolves in a continuous fash-
ion from one to the other (Lin et al., 1994a, 1994b). The
lines meet to within an accuracy of about 5 mK for all
directions. Still, when HW is in the basal plane, four rather
straight lines appear to meet, but this is not the case
when HW is along the c axis. Furthermore, there seems to
be reciprocal curvature in the inner and outer bound-
aries reminiscent of level repulsion effects in quantum
theory. An acceptable theory should explain both the
similarities and the differences observed in the two di-
rections.

a. E1g

The Ginzburg-Landau theory of the phase diagram is
similar in principle to that for the basal plane direction
but in practice the calculations are more complex. De-
tailed analysis of the equations (Sundaram and Joynt,
1989; Zhitomirskii, 1989) leads to the conclusion that
different Landau levels are coupled. All residual sym-
metries are broken when HW i ĉ and thus no level cross-
ings are allowed. The E1 theory is consistent with the
data only if the two lines in Fig. 15 do not cross, with the
consequence that there are only two superconducting
phases: in this picture the A and C phases are not dis-
tinct and are connected by a narrow ‘‘neck’’ in the H-T
plane, except when HW is in the basal plane. The data of
Fig. 15 can be fit within the E1g theory (Park and Joynt,
1995).

The near crossing of the phase boundaries will occur
only if K2'K3 and then H52\c(Tc12Ty)/4eKms is an
equation for the field at the near-crossing point. In a
pure system with particle-hole symmetry, one does in
fact find K25K3 , as already noted. The fact that the
crossing is narrowly avoided is therefore a consequence
of higher-order terms in the underlying theory. The fit
obtained by Park and Joynt (1995) is shown in Fig. 15.

There is very little theoretical work on the structure of
the B phase near Hc2 for HW i ĉ . In the E1g theory there
are again two flux lattices just below the AB transition.
They must be offset from one another in order that the
AB transition be second order. The offset vector has not
been computed. There is no guarantee that the structure
is the same as for HW in the basal plane, leaving open the
interesting possibility of a transition in the vortex lattice
as a function of angle.

b. E2u

The E2u picture has K2'K3'0 but is nevertheless in
some ways similar to the E1 picture for HW i ĉ , and a simi-
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lar fit to the phase boundaries may be attempted. To
obtain the near crossing appears to require that Kms be
negative. As we saw in the previous section, the E2u

theory for the other direction of HW requires that Kms be
positive.

Hc1 may also be calculated for this field direction
(Hess, Tokuyasu, and Sauls, 1989) in the two-component
picture. The ratio of slope above and below the kink is
given by

dHc1 /dTu2

dHc1 /dTu1
5

1
4 S 11

b2

b1
D S 21

K1

K
1

K

K1
D . (60)

Substituting b2 /b150.5 and K/K152 gives 1.56 for the
ratio as compared with the experimental value of 1.3
(see Sec. IV.B.2). In general, the agreement of theory
and experiment for the slope ratios for the two field
directions is satisfactory, given the experimental difficul-
ties outlined in Sec. IV.B.2. However, as was pointed out
in that section, the overall values of Hc1 are too large to
be explained within Ginzburg-Landau theory with a
single order parameter and mass anisotropy. In all mul-
ticomponent theories, one-component theory gives an
adequate picture of the effectively one-component A
phase (though of course not of the two-component B
phase). Hence the mystery of the high Hc1 values is not
solved by invoking unconventional superconductivity.

c. Mixed-representation theories

This class of theories yields a phase diagram in agree-
ment with experiment for the proper choice of represen-
tations. The AB theory was in fact first proposed for
this purpose (Chen and Garg, 1993, 1994). If we take the
free energy of Eqs. (45) and (55), there is a tetracritical
point for all directions of the field. For this direction,
this point is at (Hz ,Tz), with

Hz5
a0\c

e

Ta2Tb

2
1

Kb2Ka
, (61)

Tz5
Ta2Tb

2
2

Ta1Tb

2
Kb2Ka

Kb1Ka
. (62)

The AB theory is distinguished by being essentially iso-
tropic except for parameter changes. This has the minor
drawback that one might have difficulty producing the
shape changes in the phase boundaries as HW is rotated
from the basal plane to the c axis. However, no detailed
fits have been attempted.

d. Spin-triplet theory

This theory also predicts a tetracritical point for HW i ĉ
(Machida, Ohmi, and Ozaki, 1993). The difficulty is that,
for this direction of the external field there may be too
many phases (Joynt, 1992). For HW in the basal plane, the
AB phase boundary is formed by a line of points at
which both hy and hz vanish continuously. The initial
slopes of the AB and NA boundaries are identical, and
the curvature terms eventually cause these boundaries
to cross. The form of the curvature terms for HW 5Hẑ is
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fm5~az1ad!H2uhzu21azH2uhxu21azH2uhyu2, (63)

which means that hy and hz are split by the external
field in second order. Because the initial slopes are
equal, the AB boundary must split into two, producing
an additional phase. This has not been observed, in spite
of the very careful investigation of this boundary using
ultrasound. It has been suggested that this phase is sup-
pressed by large ad (Machida, Ohmi, and Ozaki, 1993),
but the splitting is quadratic in field and only turns on at
Hc1 . The basic point is that the antiferromagnetic order
produces an in-plane splitting and the field produces a
splitting between the c axis and the plane. In a constant
field just above Hc1 , there must be three phase transi-
tions as the temperature is changed. The difficulty of
having too many phases is still present in later versions
of the spin-triplet theory (Machida and Ohmi, 1998) and
appears to be a major phenomenological problem for
this picture.

C. Phase diagram under pressure

1. The pressure-temperature plane

The pressure-temperature (P-T) phase diagram of
superconducting UPt3 was first obtained by Trappman,
Löhneysen, and Taillefer (1991) using specific-heat mea-
surements under hydrostatic pressure, and is shown in
Fig. 16. The two transition temperatures Tc

1 and Tc
2 are

suppressed by the application of pressure at an inital
rate of approximately 220 mK/kbar and 25 mK/kbar,
respectively. They eventually come together at a pres-
sure between 3 and 4 kbar. The remarkable feature is
that the two transitions do not cross at that point but
merge and remain as a single transition thereafter
(Löhneysen, Trappmann, and Taillefer, 1992). This de-
generacy strongly suggests that the two transitions at
ambient pressure are not accidentally close and, in our
view, tends to rule out those theories that invoke acci-
dental near degeneracy.

The total jump in the specific heat, i.e., the sum of the
two separate jumps D(C1/Tc

1)1D(C2/Tc
2), decreases

gradually with pressure from about 0.3 J/K2 mol at P
50 kbar to about 0.2 J/K2 mol at P54.5 kbar (Trapp-
mann, Löhneysen, and Taillefer, 1991; Löhneysen,
Trappmann, and Taillefer, 1992). This is consistent with
the idea of two components, as it can be shown (Sigrist
et al., 1987) that each component continues to supply its
own jump after merger, the result being the sum of the
two.

Jin, Carter, et al. (1992) have shown that most of the
pressure dependence of the critical temperatures comes
from the stress along the c axis. These authors confirm
that the two transitions merge and do not cross as a
function of pressure. Stress in the basal plane broadens
the transitions and moves them downwards, but does
not merge them. The critical point is given by

P* .3.7 kbar, TP* .Tc
120.1 K, (64)

~SW i ĉ !: S* .1.4 kbar, TS* .Tc
120.03 K. (65)
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A variety of other measurements have confirmed the
pressure dependence measured above. In a susceptibility
measurement to detect Tc

1 as a function of uniaxial
stress, Greiter, Lonzarich, and Taillefer (1992) obtain
dTc

1/dP522465 mK/kbar with essentially all of the ef-
fect produced by stress along the c axis.

The pressure slopes of the critical temperatures can
also be determined from measurements of the thermal
expansion coefficient a(t) through the Ehrenfest rela-
tion (van Dijk et al., 1994):

]T

]Pi
5

VmDa i

D~C/T !
, (66)

where Vm is the molar volume, Da i is the change in the
expansion coefficient, and D(C/T) is the change in spe-
cific heat divided by temperature. Pi , i5a ,c refers to
the stress along the a or the c axis. The derivative must
be taken at constant field. For hydrostatic pressure P ,
we have

]T

]P U
H

52
]T

]Pa
U

H

51
]T

]Pc
U

H

. (67)

This method tends to find somewhat lower (and more
uncertain) values for the slopes: dTc

1/dP5213.5
610 mK/kbar and dTc

2/dP521615 mK/kbar.
Neutron scattering (Aeppli, Bucher, Broholm, et al.,

1988; Aeppli, Bucher, Goldman, et al., 1988) and reso-
nant magnetic x-ray scattering (Isaacs et al., 1995) have
both been used to characterize the antiferromagnetism
in UPt3 , as detailed in Sec. II.D. These experiments are
of great importance because of the hypothesized con-
nection between superconductivity and antiferromag-
netism. Neutron scattering under pressure played a key
role in establishing this connection. The intensity of vari-
ous Bragg reflections (proportional to MS

2) at a tempera-
ture T51.8 K was found to be proportional to Pc2P ,
where Pc'3.2 kbar, as shown in Fig. 20 (Hayden et al.,
1992). The data may also be fit with a higher exponent
and then Pc'4 kbar. The behavior of the critical tem-
perature TN under pressure was also measured by Hay-
den et al. (1992) in the same experiment. The striking
finding was that this critical pressure for suppressing the
moment to zero (or nearly zero) was very much the
same pressure that was found to merge the two transi-
tions Tc

1 and Tc
2 . It is difficult to believe that this could

be a simple coincidence—rather it argues strongly in fa-
vor of a model in which the two transitions at ambient
pressure (and zero magnetic field) are the result of a
doubly degenerate transition split by a coupling to the
symmetry-breaking antiferromagnetic order.

The behavior of the critical temperature TN was mea-
sured in the same experiment. Strangely, there was no
observable pressure dependence of TN'5 K, at least up
to 2 kbar (which is still fairly far below Pc). The tem-
perature dependence of MS

2 appears to be accurately lin-
ear as long as T.Tc

1 . The phenomenological form is
therefore roughly
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MS~P ,T !5Ms0S Pc2P

Pc
D 1/2S TN2T

TN
D 1/2

, (68)

where Ms0 is the zero-temperature, zero-pressure value,
Ms050.02mB . Near Tc

1 , there is a kink in MS(T) (Aep-
pli, Bucher, Broholm, et al., 1988). The interpretation of
the kink is not straightforward. It is present at roughly
the same temperature even when H52.5T@Hc2 . It is
therefore not entirely associated with superconductivity.
Nevertheless, it appears to be more pronounced in the
superconducting state. None of these effects is due to a
rotation in the magnetic moment, which appears on
more detailed examination to be absent (Hayden et al.,
1992; Isaacs et al., 1995). This conflicts with theories that
depend on a change in magnetic structure in the super-
conducting state (Blount et al., 1990; Harán and Geh-
ring, 1995).

FIG. 20. The magnetic moment squared (a) and Néel tempera-
ture (b) as a function of pressure from neutron-scattering ex-
periments. Also shown is the T-p phase diagram (Fig. 16).
From Hayden et al., 1992.



272 R. Joynt and L. Taillefer: Superconducting phases of UPt3
The remarkable thing about these results is that they
give us an unexpected and welcome tool for testing the
theories of the phase diagram. Moderate pressures de-
stroy antiferromagnetism, which restores the symmetry
of the crystal structure. UPt3 can be investigated in both
the orthorhombic state below Pc and the fully hexagonal
state above Pc .

Relatively little theoretical work has been done on the
pressure dependence of the phase diagram. This depen-
dence must be understood if we are to get at the super-
conducting order parameter. Fortunately, the relative
simplicity of the data and the fact that the state of the
system is spatially uniform make progress possible
(Joynt, 1993; Park and Joynt, 1995; Harán and Gehring,
1995). The simplest free energy for the magnetism is

fM5aM~P ,T !M21bMM4. (69)

In order to reproduce the magnetic behavior above Tc
1

and zero pressure, we need to have

aM~P50,T !/bM5~1.631024mB
2 /K !~T2TN!, (70)

while the pressure dependence is given by

aM~P ,T !5aM
0 ~P2PN!~T2TN!'2aM

0 TN~P2PN!,
(71)

with

aM
0 /bM55.331025mB

2 /~K kbar!. (72)

These forms for the coefficients yield Eq. (68) immedi-
ately.

The superconducting part of the free energy is

fS5aS~P ,T !hW •hW * 1b1~hW •hW * !21b2uhW •hW u2, (73)

where, for the first time, we must worry about the pres-
sure dependence of aS . Experiment again indicates that
it is a linear function:

aS~P ,T !5aST~T2Tc
0!1aSPP . (74)

For P.Pc , we have MS50 and the magnetic and super-
conducting parts of the free energy are independent.
dTc /dP is determined by the coefficients aST and aSP :
aSP /aST511 mK/kbar.

In all the equations of this section, we have assumed
that only the quadratic terms producing the phase tran-
sitions have pressure dependence. This is approximately
consistent with experiment, but there is some evidence
that the ratio b2 /b1 increases slightly (10%) between 0
and 4 kbar (Löhneysen et al., 1992).

The terms in the free energy that couple superconduc-
tivity and magnetism are

fSM52buMW •hW u21b8M2hW •hW * . (75)

Now, considering hW as an effective field acting on MW S ,
we see that the theory does indeed produce a kink in MW S
at Tc

1 . The break in slope may be calculated from Eqs.
(73), (69), and (75) as

D
dM2

dT
52

aS~b1b8!

4bM~b11b2!
. (76)
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Thus the Ginzburg-Landau theory is qualitatively con-
sistent with the Aeppli, Bucher, Goldman, et al. (1988)
data cited above. There are too many unknown param-
eters to make a quantitative comparison.

The P-T phase diagram is almost as unusual as the
H-T phase diagram. Particularly striking is the fact that
the two superconducting transitions merge at the critical
pressure rather than crossing. Theory and experiment
are in reasonably good agreement. Because the coupling
terms are not very sensitive to the representation, as
long as it is two dimensional, the observations do not
distinguish between E1g and E2u . One possible discrep-
ancy between the two-component theory and experi-
ment is that the theory predicts (Harán and Gehring,
1995)

S[
Tc

1~P50 !2Text~P50 !

Tc
2~P50 !2Text~P50 !

51. (77)

Here Text(P50) is the temperature obtained by ex-
trapolating Tc(P) for P.Pc back to the P50 axis. This
would be the zero-pressure critical temperature if there
were no magnetism. This relation holds because, inde-
pendent of magnetism, pressure should affect the critical
temperatures of two degenerate components equally. S
.1 for the data in Fig. 16. However, given the uncer-
tainty in the measurements, there is rather large error in
Text . It may be better to wait for more accurate deter-
minations of S before drawing conclusions.

For the P-T phase diagram, the spin-triplet theory is
equivalent to two-component theories and thus can ac-
count for the data.

The P-T diagram is evidence against mixed-
representation pictures. In these theories, each compo-
nent has its own pressure dependence. Thus the critical
temperatures follow independent curves Tc

1(P) and
Tc

2(P). These curves may or may not cross, but they
should never merge.

2. The field-temperature-pressure space

Since both pressure and field measurements have
been separately very informative, we may expect that
the full mapping of the phase diagram in the three-
dimensional H-T-P space would give further informa-
tion about the underlying state of UPt3 . This turns out
to be so.

The earliest work along these lines determined the
initial pressure slopes of phase boundaries according to
Eq. (66) (van Dijk et al., 1993b, 1994). This extends the
H-T plane infinitesimally into the third dimension with-
out having to apply actual pressure. Since the effect of
stress in the basal plane is not very informative, we con-
centrate on the effect of uniaxial stress along the c axis.

The C phase is not very sensitive to stress. The NC
boundary moves down at rates of 20.565 mK/kbar for
HW ' ĉ and 23.065 mK/kbar for HW i ĉ . The B phase, by
contrast, is rapidly suppressed. The BC boundary moves
down at rates of 2170650 mK/kbar for HW ' ĉ and
2210650 mK/kbar for HW i ĉ . The pressure dependences
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of the NA and AB boundaries were not measured di-
rectly, but the end of the Tc splitting around P'3 kbar
means that the tetracritical point moves downward and
the A phase disappears.

The positions of the phase boundaries in all three di-
mensions have been determined by measurements of the
jump in sound velocities (Boukhny et al., 1994). The
phase diagram for HW ' ĉ which they deduce from their
measurements is shown in Fig. 21. At low pressures their
results are in agreement with those of van Dijk et al. for
the NC and BC boundaries. However, there is a large
discrepancy with other work for the AB boundary at
zero applied field. The sound measurements give a value
of dTAB /dP5110 mK/kbar, while the specific-heat
data of Trappmann, Löhneysen, and Taillefer (1991)
cited above give dTAB /dP525 mK/kbar. Not even the
sign is the same. The source of this difference is at
present obscure.

Figure 21 shows the NC boundary to be very insensi-
tive to pressure even at the highest pressure measured,
3.14 kbar. The BC phase boundary decreases with al-
most a constant slope, so there are no real surprises at
higher pressures.

There are two main features that are noteworthy.
First, there are two phases when P.Pc , even at zero

field. The B and C phases appear to have the same criti-
cal temperature at Pc , but the temperatures diverge
again as pressure is increased further. This is also in ap-
parent disagreement with the data of Trappmann,
Löhneysen, and Taillefer (1991). These authors saw only
one phase transition at zero field and high pressure. This
may be due to the fact that the BC boundary at higher
pressures is very flat as a function of temperature, mak-

FIG. 21. Phase diagram in the H-P-T space as determined by
ultrasound measurements of Boukhny et al. (1994).
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ing the specific-heat jump very broad when taken at con-
stant pressure. These discrepancies at P.Pc are abso-
lutely central for the physical picture of
superconductivity in UPt3 .

Second, the slope (]HNC /]T)P of the NC phase
boundary and the slope (]HNA /]T)P of the NA phase
boundary do not change much with pressure. The differ-
ence in these slopes is predicted to be proportional to
MS

2;(P2Pc) in E2u theory and in some versions of the
spin-triplet theory. This is in disagreement with experi-
ment.

There is very little theory on the pressure dependence
of the phase diagram at finite field. We summarize
briefly the one paper on this topic (Joynt, 1993). Within
the formalism presented in the previous section for the
two-component theory, the pressure dependence in
Ginzburg-Landau theory comes in the coefficients
a(P ,T) of the quadratic terms and the indirect effect of
the magnetization. The pressure coefficients may then
be determined from the experimental values of dTc

1/dP
and dTc

2/dP . Once these are known, the analysis of Hc2
and the BC boundary in Sec. IV.B can be repeated.
Once again, the results hold, strictly speaking, only in
the neighborhood of the critical point. Furthermore,
they hold only in the low- (linear-) pressure regime, as
no microscopic theory of the pressure effects exists.

The pressure derivatives of the phase boundaries can
be expressed in terms of relations between observable
zero-pressure quantities. For example,
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where the ]H/]T are measured at zero pressure,
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and

dy

dx
[

~]Tc
1/]P !H50

~]Tc
2/]P !H50

. (80)

There are similar expressions for the other slopes.
Taking data from van Dijk (1994) and van Dijk et al.
(1993a, 1993b), u'0.88 and dy /dx,0.2, the results are
as follows: 2]H/]PBC50.13560.055 T/kbar (theory) as
compared to 0.2 T/kbar (experiment) and 2]H/]PNC
,0.006 T/kbar (theory) as compared to 0.0 T/kbar (ex-
periment). The theory also makes the prediction that
2]H/]PNA50.09 T/kbar; this quantity has yet to be
measured.

If the values of uy and dy /dx were taken from
Boukhny et al. (1994), the theory results would be very
different because of the difference in dTc2 /dP .

The fundamental question raised by the velocity data
is this. Any theory in which the split transition is due to
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the coupling to the magnetic order (E1g , E2u , spin trip-
let) contradicts the sound data above Pc . The symmetry
is full D6h , and the components of the order parameter
must be degenerate. There is no room for a second tran-
sition as a function of temperature in zero field. Mixed-
representation theories, on the other hand, would pre-
dict precisely this behavior. It is therefore crucial to
obtain confirmation of the existence of this additional
phase boundary by a different experiment, given the dis-
agreement between sound-velocity and specific-heat
measurements.

V. PROPERTIES OF THE SUPERCONDUCTING STATES

Since 1989, investigations into the superconducting
behavior of UPt3 can typically be divided into two dis-
tinct yet related efforts: an effort to elucidate the origin
of phase multiplicity and an effort to identify the super-
conducting order parameter of the various phases. The
present review is also divided along those lines. In Sec.
IV, the superconducting phase diagram as a function of
magnetic field, temperature, and pressure was discussed
in detail, in the context of the various scenarios put for-
ward to explain its various features. In this section, we
review the main physical properties of UPt3 , with a view
to identifying what is thought to be an unconventional
order parameter. This discussion will focus almost exclu-
sively on phase B—the low-temperature, low-field, zero-
pressure phase. The other phases have so far remained
largely inaccessible for experimental and/or theoretical
reasons: the high-temperature phase (A) because of the
very limited temperature range over which it exists, the
high-field phase (C) because of the complicating pres-
ence of vortices, and the possible high-pressure phase
for the obvious technical reason.

Information on the superconducting wave function
can be obtained experimentally in a number of ways: (1)
via the orbital part of the wave function by studying the
temperature and field dependence of various physical
properties, such as ultrasound attenuation and penetra-
tion depth; (2) via the spin part of the wave function by
looking at the magnetic response, such as the Knight
shift; (3) via direct gap spectroscopy, using electromag-
netic absorption, various kinds of tunneling, photoemis-
sion, etc.; (4) via the phase of the wave function using
the Josephson effect or other phase-sensitive experi-
ments. While all of these approaches have been ex-
ploited in the study of high-Tc superconductors, with a
few exceptions only the first two have been successfully
applied to UPt3 so far.

The use of directional probes (such as sound attenua-
tion and thermal conductivity) is expected to be particu-
larly powerful, as the presence of nodes in the gap for
certain kW directions will manifest itself as an enhanced
thermal excitation of quasiparticles with velocities in
those directions.

Power-law dependences in the thermal properties at
low temperature derive from the asymptotic angular de-
pendence of D(kW ) near the node, which translates as a
Rev. Mod. Phys., Vol. 74, No. 1, January 2002
certain power-law dependence of the density of quasi-
particle states on energy E , as discussed in Sec. III.C.
Let us stress two general points. First, these are
asymptotic behaviors and so expected to apply only at
T!Tc . How low in temperature one really needs to
look is difficult to say; it depends on the property and a
number of factors. A rough guide is T,0.3Tc , so less
than 150 mK in UPt3 . Second, these power laws hold
only for perfectly pure systems. In real, impure samples,
the gapless regime may mask them entirely. Theoreti-
cally, this regime is thought to extend at most to a tem-
perature of about (\GD0)1/2/kB , where D0 is the maxi-
mum value of the gap. From our previous estimate of
the elastic scattering rate for transport in high-quality
crystals of UPt3 , G51/2t0.1010 sec21 and \G
.0.15kBTc , so that deviations from the pure behavior
are expected below about 0.5Tc (using D0.2kBTc). In
practice, as we shall see in Sec. V.B, there is no sign of a
residual normal fluid even down to much lower tem-
peratures, and empirically the gapless regime therefore
appears to be confined to below .0.1Tc in crystals with
r0.0.2 mV cm. This means that the clean asymptotic
behavior in UPt3 is expected roughly below 150 mK or
so, with possible deviations due to gaplessness at the
low-temperature end. It should be said that a clear-cut
power-law dependence on temperature is almost never
seen. Experimentally, this is probably most often be-
cause the minimum temperature is not low enough, but
also in some cases because excitations other than quasi-
particles contribute to the quantity of interest. Theoreti-
cally, the prediction of a simple power law (where the
power is not necessarily an integer) may not survive the
inclusion of various effects, usually neglected, such as a
multisheet Fermi surface, inelastic scattering, aniso-
tropic scattering, a phase shift slightly away from p/2, or
a range of phase shifts, not to mention a normal state
not truly describable as a Fermi liquid. A widely known
example of a clean power law in a superconductor is the
observation of a linear dependence for the penetration
depth below 25 K in the high-Tc cuprate YBa2Cu3O7
(Tc593 K; Hardy et al., 1993), viewed as strong evi-
dence for a gap with line nodes characteristic of a dx22y2

pairing state.
With these points in mind, let us examine a number of

quantities measured in phase B of UPt3 .

A. Specific heat

1. Temperature dependence

The specific heat of UPt3 was shown in Figs. 12 and
13, and discussed in detail in Secs. IV.A.1, IV.B.1, and
IV.C.1, in connection with the phase diagram. In this
section we focus on an analysis of the data for phase B.
The reader is referred to the excellent review of the
specific heat by Löhneysen (1994).

The B phase exists at H50 and P50, and it sets in at
Tc

250.48 K. The presence of a huge anomaly in C/T
below 0.1 K (0.2Tc

2) precludes the extraction of infor-
mation from the specific heat in the range (T!Tc)
where it would be most interesting and diagnostic for
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order-parameter symmetry. Furthermore, nothing can
really be said about the possible existence of a gapless
regime. No satisfactory explanation has been given for
the anomaly, which Schuberth, Strickler, and Andres
(1992) showed to be a peak centered around 20 mK. In
most reported studies, the data above 0.1 K are fit to
C/T5g01aT , usually in the range approximately be-
tween 0.3Tc

2 and Tc
2 , yielding a nonzero value for g0

which depends on sample quality (and the actual fitting
interval). For high-quality crystals, a fit from 0.3 to
0.6Tc

2 yields g0.0.120.2gN (Bogenberger et al., 1993;
Brison et al., 1994b; Taillefer, Ellman et al., 1997), but an
extrapolation of the data below 150 mK gives no inter-
cept (Brison et al., 1994b; see also Ott et al., 1987). Such
a fitting procedure is devoid of real meaning, not only
because C/T is not really linear over any of that range,
but also because a power law is not expected at such
high temperatures. In particular, one cannot seriously
argue in favor of a gap with a line node as opposed to a
gap with point nodes on the basis of the asymptotic be-
havior given in Table IV: C/T}T (line node), C/T}T2

(point node). So the only two reliable facts are the fol-
lowing: (1) there is a large number of thermal excita-
tions at low temperature (most probably quasiparticles),
and (2) the jump at Tc

2 is small compared with the iso-
tropic BCS result (DC/gNTc51.43). Indeed, at T
5Tc/4, C/gNT50.5 in UPt3 , compared to 0.13 in Al
(Phillips, 1959), for example. This argues strongly for
nodes in the gap (or at least a highly anisotropic gap),
but again it does not really allow a distinction between
line and point nodes. Theoretical calculations by
Hirschfeld, Wölfle, and Einzel (1988) for a gap with
point nodes, one with line nodes, and a hybrid gap are
shown in Fig. 22. Note the presence of a gapless regime
at very low temperature, where C/T saturates and gives
a finite value at T50, the signature of a residual normal
fluid. Note also that above that regime, there is no clear
power-law dependence, so that C/T is not linear for ei-
ther the gap with line nodes or the hybrid gap. All three

FIG. 22. Specific heat calculated for axial, polar, and hybrid
gaps, plotted in reduced units as C/T vs T . The calculations
assume resonant impurity scattering and an impurity scattering
rate of 0.01kBTc . From Hirschfeld, Wölfle, and Einzel, 1988.
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gaps can roughly account for the data of Fig. 12 (above
Tc/10). At T5Tc/4, the calculation (with G50.01Tc)
gives C/gNT50.54 (polar), 0.29 (axial) and 0.41 (hy-
brid). Whether the slightly better agreement found for
the polar or hybrid gap can be viewed as evidence for
line nodes is uncertain: it depends on the value used for
G and on how one subtracts the low-T anomaly. The
calculated jump at Tc is DC/gNTc.0.7 (polar), 1.2
(axial), and 1.0 (hybrid) (see also Monien et al., 1987),
all small relative to the value for an isotropic gap, and in
rough agreement with the small measured values. It is
difficult to be more quantitative about this aspect be-
cause of the presence of two transitions.

We conclude, more from the magnitude of C/T at low
T and the jump at Tc than from any power-law analysis,
that the specific heat of UPt3 can be understood in terms
of a highly anisotropic gap, most likely with nodes. A
gap with line nodes or a hybrid gap is perhaps margin-
ally favored over a gap with point nodes only.

At a pressure of 5 kbar, where antiferromagnetic or-
der no longer exists (see Sec. IV.C.1), the C/T vs T
curve (with only one transition) is very similar to that of
the B phase at zero pressure (Sieck, Löhneysen, and
Taillefer, 1995), e.g., C/T50.7gN at T/Tc51/3 in both
cases.

2. Vortex state

The application of a magnetic field H provides an-
other way of studying the quasiparticle spectrum of un-
conventional superconductors and hence of probing
their gap structure. In the vortex state, the quasiparticle
energies are Doppler shifted by the superfluid flow
around each vortex, so that quasiparticles near the
nodes can be excited even at T50 by applying small
magnetic fields. Volovik (1993) was the first to show
that, because the average Doppler shift is proportional
to AH , a gap with a line of nodes (and therefore a den-
sity of states with a linear dependence on energy at low
energies) would produce a dominant AH contribution to
the electronic specific heat. More generally, because the
Doppler shift and the thermal energy kBT have similar
effects, one expects scaling relations for thermodynamic
and transport properties with respect to the single scal-
ing variable x5T/TcAHc2 /H (Kopnin and Volovik,
1996; Simon and Lee, 1997). For example, C/T
5AHF(x), where F(x) is some unknown scaling func-
tion which tends to a constant for x!1, so that at low
temperature C/T}AH . In the high-temperature super-
conductors, the observation of this ‘‘Volovik’’ effect was
first reported in specific-heat studies by Moler et al.
(1994, 1997) and later others (Wright et al., 1999; Junod
et al., 2000), as well as in low-temperature thermal con-
ductivity measurements (Chiao et al., 1999).

The field dependence of C(T) in UPt3 was first mea-
sured for HW i ĉ by Ellman et al. (1990) and then with
greater resolution by Ramirez, Stücheli, and Bucher
(1995) for both HW i ĉ and HW ' ĉ . At their lowest tempera-
ture of 150 mK, the latter authors find C(H)/T to be
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well described by a fit to a1bAH , up to 1.9 T for HW ' ĉ
and 0.75 T for HW i ĉ . They offer this as evidence for a line
node in the gap structure of the B phase. There are
three reasons why this is more likely to be fortuitous
than compelling. First, at 150 mK the specific heat is
probably still contaminated to some extent by the huge
anomalous peak at 20 mK, known, moreover, to grow
with field (Schuberth and Fischer, 1994). Second, the au-
thors neglected to consider possible hyperfine contribu-
tions in their field dependence, the like of which needed
to be carefully subtracted from the data on YBa2Cu3O7 .
Finally, 150 mK is not low enough to ensure that F(x) is
constant. In UPt3 for HW ' ĉ , x.0.9 at 150 mK and 0.4 T
(the maximum field in the B phase), so that significant
deviations from the simple AH behavior are expected in
the range investigated. In fact, it appears that in UPt3
the regime where a simple scaling of the kind C
}TH1/2 for a line node might hold is not accessible by
specific heat. Note, finally, that a AH dependence is also
found in conventional superconductors such as NbSe2 ,
with no nodes in the gap function (Sonier et al., 1999).

In summary, specific-heat measurements on UPt3
have proven invaluable in establishing the existence of
phase multiplicity in this material and then in mapping
out the phase diagram as a function of pressure and
magnetic field. On the other hand, studies of the tem-
perature and magnetic-field dependence of C/T in phase
B have led to little in the way of firm information about
the order parameter, largely because of the anomalous
peak below 0.1 K. As we shall see, other properties have
proven much more powerful in this respect.

B. Thermal conductivity

In this section, we show how the thermal conductivity
k(T) has been used to gain insight into the details of the
gap structure in UPt3 . The directional nature of trans-
port properties makes them powerful probes of the su-
perconducting state in unconventional superconductors
with highly anisotropic gap structures. An additional ad-
vantage of heat conduction over specific heat is that only
itinerant excitations are measured. This is particularly
significant in UPt3 , since the large anomaly in C/T at
low T is not present in k/T (implying that it is due to
localized excitations). In general, the main weakness of
the technique is that it is often difficult to separate the
contributions of phonons and electrons, and in most
conventional superconductors phonons become the
dominant carriers of heat at T!Tc . Conveniently, this is
not the case for high-quality crystals of UPt3 (with
RRR.500), for which the phonon contribution can be
neglected at all temperatures below Tc (see Lussier, Ell-
man, and Taillefer, 1994, 1996).

A number of groups have measured the thermal con-
ductivity of UPt3 . The early measurements (Franse
et al., 1985; Jaccard et al., 1985; Steglich et al., 1985;
Sulpice et al., 1986; Ott et al., 1987) were done on poly-
crystals and are therefore not able to shed light directly
on the anisotropy of the gap. The electronic mean free
Rev. Mod. Phys., Vol. 74, No. 1, January 2002
path was also shorter in these early samples so that the
phonon contribution may then have been non-
negligible. The first measurement on single crystals was
performed by Behnia et al. (1991), who also studied the
effect of a magnetic field in various directions, but not
the anisotropy of the conduction for various directions
of the heat current on the same crystal. That measure-
ment was first performed by Lussier, Ellman, and
Taillefer (1994, 1996); their findings were subsequently
confirmed by Huxley et al. (1995) and extended to lower
temperature by Suderow et al. (1997a, 1997b), who also
studied the effect of a magnetic field (Suderow et al.,
1998).

1. Temperature dependence

Bardeen, Rickayzen, and Tewordt (1959) calculated
the electronic contribution to the thermal conductivity
of a superconductor with an isotropic s-wave gap, when
the dominant scatterers are impurities. As a result of the
coherence factor for an s-wave gap, they found that the
relaxation time in the superconducting state ts acquires
an energy dependence that is exactly canceled by that of
the quasiparticle group velocity vs in the product vsts ,
so that the mean free path in the superconducting state
is the same as in the normal state. A similar cancellation
in the product of the density of states and velocity,
Ns(E)vs5N(EF)vF , leads to an expression for k
@}N(E)v2t# which is exactly equivalent to the normal-
state expression except for the gap @D(T)# in the quasi-
particle excitation spectrum:
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where f(E)5(11eE/kBT)21. The magnitude and tem-
perature dependence of D(T) therefore completely de-
termine kes(T). The result is plotted in Fig. 23 for the
standard BCS gap with 2D(0)53.52kBTc . The charac-
teristic exponential rise from T50 is seen at low tem-
peratures, such that kes is only 1–2 % of its normal-state
value at 0.2Tc . Equation (81) fits perfectly the measured
k(T) in pure samples of conventional superconductors
such as Al, Nb, and V in the range where phonons are
negligible, with 2D(0)/kBTc53.52 (Satterthwaite,
1962), 3.6 (Lowell and Sousa, 1970), and 3.39 (Tsai et al.,
1981), respectively.

It is instructive to compare the thermal conductivity
of UPt3 , displayed in Fig. 7 for both kb and kc , with the
standard theory. This is done in Fig. 23, where kb is
plotted vs reduced temperature Tc

2 (i.e., relative to the
B-phase transition) and normalized by the normal state
kN5T/(a1bT2). Because the theory does not include
any inelastic scattering, the comparison should, strictly
speaking, be limited to the elastic regime below about
Tc/4. In that range, the thermal excitation of quasiparti-
cles in UPt3 is seen to be at least ten times faster than
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the standard BCS model predicts. An additional discrep-
ancy arises when one looks at the anisotropy, which we
discuss below.

In the mid-1980s, several authors generalized the stan-
dard Bardeen-Rickayzen-Tewordt theory to apply it to
unconventional order parameters, in particular with an-
isotropic gap structures with nodes (Hirschfeld, Voll-
hardt, and Wölfle, 1986; Schmitt-Rink, Miyake, and
Varma, 1986; Arfi and Pethick, 1988; Arfi, Bahlouli, and
Pethick, 1989). All of them neglected inelastic electron-
electron scattering and assumed isotropic
(s-wave) scattering off impurities, which is treated either
in the Born limit of weak scattering (scattering phase
shift d0.0) or in the unitarity limit of strong (resonant)
scattering (d05p/2). Two types of calculations were
performed: self-consistent calculations which include the
pair-breaking effect of impurity scattering (Hirschfeld,
Vollhardt, and Wölfle, 1986; Schmitt-Rink, Miyake, and
Varma, 1986) and those which neglect this effect (Arfi
and Pethick, 1988; Arfi, Bahlouli, and Pethick, 1989).
The effect of pair breaking shows up at temperatures
below an energy scale g, often called the impurity band-
width, which depends on the normal-state scattering rate
G0 . The value of g depends strongly on the phase shift;
it is highest for d05p/2, where g.A\G0kBTc (Graf
et al., 1996; Hirschfeld and Putikka, 1996). For a high-
purity crystal of UPt3 , where \G050.05kBTc , this gives
roughly g.0.2kBTc . The main feature of that regime,

FIG. 23. Temperature dependence of heat (k) and sound
propagation (a) in the basal plane of UPt3 , normalized to the
normal state, compared with the behavior expected of a stan-
dard BCS superconductor with an isotropic s-wave gap func-
tion.
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which we call the ‘‘gapless regime,’’ is the novel presence
of a residual normal fluid of zero-energy quasiparticles
at T50 (Hirschfeld, Vollhardt, and Wölfle, 1986;
Schmitt-Rink, Miyake, and Varma, 1986).

Neglecting the pair-breaking effect of impurities and
assuming isotropic (s-wave) scattering, Arfi and Pethick
(1988) calculated the two components of k, namely, kzz
[kc and kxx[ka5kb , for three generic gap structures:
the polar (cos u), the axial (sin u), and the
‘‘d-wave’’ gap (sin u cos u), on a single spherical Fermi
surface for a scattering phase shift close to 0 or p/2.
Their results for k/T versus T are shown in Fig. 24. Two
basic features emerge: (1) heat conduction is always
much better along the direction of nodes and (2) quali-
tative agreement with experimental data is not possible
in the Born approximation, which is seen to lead to large
values of k/T at T→0 in the nodal directions, compa-
rable in magnitude to the normal-state value. The neces-
sity of invoking large phase shifts, close to p/2, to ex-
plain the fact that in heavy-fermion systems such as
UPt3 k/T→0 as T→0 was first emphasized by Pethick
and Pines (1986); it has since become a widespread as-
sumption in the description of superconducting proper-
ties in all strongly correlated electron systems (e.g., high-
Tc cuprates). For the three gaps considered in Fig. 24,
the anisotropy of conduction is striking. For example,
the ratio of heat conduction parallel and perpendicular
to the c axis, kzz /kxx[kc /kb , goes to zero for a polar
gap and to infinity for an axial gap, as T→0. (See Barash
and Svidzinsky, 1996, 1998 for the actual temperature
dependence of the limiting behavior.) In each case, heat
conduction in the direction where the gap is fully devel-
oped is quite similar to that of an s-wave gap (see Fig.
23). This implies that a measurement of transport anisot-
ropy can be a powerful way of distinguishing between
candidate gap structures.

In the mid-1990s, in the wake of measurements of the
anisotropy of heat transport, further calculations were
performed with the aim of using the new data to resolve
the debate over the orbital symmetry of the order pa-
rameter. Fledderjohann and Hirschfeld (1995) showed
that there is a distinct difference between the two hybrid
gaps associated with phase B in the E1g and E2u sce-
narios, i.e., D(u);sin u cos u and D(u);sin2u cos u, re-
spectively. Indeed, while the anisotropy ratio tends to
zero as T→0 for the former (in the pure limit), it re-
mains finite for the latter (in fact, it is unchanged below
Tc for a spherical Fermi surface). This is a consequence
of the topological difference in the gap at the point node
between the two structures, namely, D(u);u vs u2

[which leads to N(E);E2 vs E]. It appears that no
other physical property is as sensitive to that subtle to-
pological difference.

In general, k(T) is expected to depend on the complex
topology of the Fermi surface and the microscopic pair-
ing interaction, and one must go beyond a model with a
spherical Fermi surface. However, as argued by Graf,
Yip, and Sauls (1996, 1999) and Barash and Svidzinsky
(1996, 1998), at sufficiently low temperature only a
knowledge of the asymptotic topology of the gap at the
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nodes is needed. Within such an ‘‘asymptotic regime,’’ it
should be sufficient to approximate the Fermi surface by
an ellipsoid and expand the gap structure at the nodes in
terms of the lowest ellipsoidal harmonics. Both Norman

FIG. 24. Thermal conductivity calculated for axial, polar, and
hybrid (d-wave) gaps, for directions of the heat current paral-
lel (ZZ) and perpendicular (XX) to the c axis, plotted in
reduced units as k ii(T)/T . From Arfi and Pethick, 1988. Im-
purity scattering is treated in the Born approximation (dN

!p/2) and in the unitarity limit (dN5p/2).
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and Hirschfeld (1996) and Graf, Yip, and Sauls (1996,
1999) have done this and fitted their calculations to the
data of Lussier, Ellman, and Taillefer (1996), plotted in
Fig. 25 as k/T normalized to 1 at Tc

2 versus reduced
temperature. In the bottom panel, the anisotropy ratio is
shown also normalized to 1 at Tc

2 . Because at present
the theory is somewhat simplistic in its treatment of
electron-electron scattering, the most reliable compari-
son with experiment is in the ‘‘elastic regime.’’ The data
are therefore shown for T,0.3Tc

2 , in which interval the
effect of inelastic scattering on k is less than 10%.

Two basic results emerge from the data. First, as
pointed out earlier for kb , the rise in k/T from T50 is
much more rapid than in conventional superconductors,
and this is true for both current directions, indicating
that there are nodes along both directions. This there-
fore rules out not only the nodeless gap of s-wave sym-
metry but also the axial and polar gaps, with nodes in
only one of these directions. Second, the anisotropy
kc /kb extrapolates to a finite, nonzero value at T50,
about half that of the normal state. As argued by Barash
and Svidzinsky (1998), this special feature strongly fa-
vors a hybrid-II gap over a hybrid-I gap.

Let us compare the recent theoretical calculations
with the experimental data of Lussier, Ellman, and
Taillefer (1996) more quantitatively. The transport
theory in its current state assumes isotropic scattering
and is parametrized in terms of G0 and d0 . A rough
estimate of the impurity scattering rate may be obtained
from the normal-state conductivities given that we know
gN and have a fair idea of vF ,i from the dHvA effect:

\G05
\

6
gN vF ,i

2 S 1
kN ,i /T D

T→0

.0.1kBTc
2 , (82)

using vF ,i.3800 (6200) m/s and kN ,i /T5L0 /r0,i with
r0,i50.61 (0.23) mV cm, for i5a (i5c). Within a fac-
tor of 2 either way, this should be about right. The phase
shift is in principle unconstrained, but since significant
deviations from the unitarity limit lead to gross disagree-
ment with experiment, d0 is taken to be p/2. (For an
account of the effect of arbitrary phase shifts, see Arfi,
Bahlouli, and Pethick, 1989 and Hirschfeld and Putikka,
1996.) We discuss separately the temperature regimes
above and below the onset of pair-breaking effects.

a. Asymptotic regime (0.1,T/T c
2,0.3)

Within a simplified picture of a single ellipsoidal
Fermi surface for UPt3 with a mass ratio of 2.7 (see Sec.
II.B) and assuming uniaxial symmetry about the c axis
(i.e., leaving out states that break uniaxial symmetry),
the magnitude of the gap depends only on the polar
angle u. A general gap will be a linear combination of
ellipsoidal harmonics YLM , each of which vanishes
for one or more values of u (except Y00). The nodes
can therefore be points at the poles (u50), a line
around the equator (u590°), two lines above and below
(u590°6u0) the equator, or a combination of these
three basic elements. The five lowest harmonics have
the following structure: Y00;const (‘‘s-wave’’),
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FIG. 25. Thermal conductivity and its anisot-
ropy: (a) thermal conductivity along axes c
(kc , open circles) and b (kb , filled circles) vs
reduced temperature and normalized at Tc

2 ,
for the asymptotic regime below ;150 mK.
From Lussier, Ellmann, and Taillefer, 1996.
(b) The anisotropy ratio kc /kb . The data are
compared with calculations by Norman and
Hirschfeld (1996) for a hybrid-I gap (dashed
lines) and a hybrid-II gap (solid lines). The
calculations use the parameters \G0

50.05kBTc
2 and d05p/2.
Y10;cos u (‘‘polar’’), Y11;sin u (‘‘axial’’), Y20;(cos2u
20.15) (‘‘tropical,’’ as u0523° for a mass ratio of 2.7),
Y21;sin u cos u (‘‘hybrid I’’). The asymptotic behavior of
the axial gap near the poles, for example, is linear
(sin u;u for u,20° or so) and therefore the asymptotic
regime corresponds approximately to kBT,D(u
520°), which translates roughly as T/Tc,0.3.

A full calculation by Norman and Hirschfeld (1996),
assuming \G050.05kBTc

2 and d05p/2, for the simplest
hybrid gaps of E1g and E2u symmetry, namely, Y21 and
Y32 , respectively, is compared to the data in Fig. 25. The
fits have been fine tuned by adding a small amount of
the next harmonic:

hybrid I ~E1g!:

uDI~u!u;Y2120.15Y41;sin u cos u ~120.44 cos2u!;
(83)

hybrid II ~E2u!:

uDII~u!u;Y3210.25Y52;sin2u cos u ~110.65 cos2u!.
(84)

This slight admixture is a way of adjusting how fast
the gap grows out of the point nodes in each case, while
preserving the respective symmetries. The gap rises lin-
early from the line node at u5p/2, with a slope Sline
5udD(u)/duu52.5D0 for the hybrid-I gap and 2.1D0 for
the hybrid-II gap, where D0 is the maximum value of the
gap. From the point node at u50, the hybrid-I gap rises
linearly with Spoint51.4D0 , while the hybrid-II gap rises
quadratically with a curvature Spoint8 .8D0 . Very similar
results and values were obtained by Graf, Yip, and Sauls
(1999). kb /T is well reproduced by the calculation for
both gaps. It is along the c axis (u.0) that the gaps
differ and the disparity in the behavior of the two gaps is
clearly brought out by looking at the ratio of kc and kb .
The data for kc /kb are almost flat and extrapolate to a
value between 0.4 and 0.5 at T50, as also found by Hux-
ley et al. (1995), something which the E2u gap can easily
reproduce. On the other hand, the E1g gap above the
gapless regime is qualitatively different, being character-
ized by a smooth extrapolation to zero. Indeed, if the
gapless regime were suppressed by reducing G0 , the cal-
culated ratio would eventually go to zero (see Norman
Rev. Mod. Phys., Vol. 74, No. 1, January 2002
and Hirschfeld, 1996), as expected on simple grounds of
topology. We conclude that the anisotropy of heat con-
duction in the asymptotic regime favors a hybrid-II gap,
of E2u symmetry, over a hybrid-I gap, of E1g symmetry,
for phase B of UPt3 . We remind the reader that for a
specified symmetry of the order parameter there are an
infinity of possible gap structures. One is allowed by
symmetry to multiply this basic gap structure by any
function of u with A1g (or s-wave) symmetry: for ex-
ample, by Y20 (the tropical gap), which introduces two
extra lines of nodes at the tropics, in addition to the
symmetry-imposed line around the equator. This will in-
troduce additional nodes and therefore alter the trans-
port properties at low temperature; in particular, a tropi-
cal gap leads to a nonzero extrapolated ratio kc /kb . In
the same way, if one attempts to go beyond ellipsoidal
harmonics and use more realistic basis functions reflect-
ing the real Fermi surface and pairing potential, addi-
tional nodes may appear. What makes the simple ap-
proach used above reasonable is the basic idea that the
condensation energy gained by going to the supercon-
ducting state is in general maximized by a gap function
having the smallest number of nodes for a given symme-
try. (See Norman and Hirschfeld, 1996, for a discussion
of these issues.)

Quantitatively, the calculation for the hybrid-II gap
agrees very well with the data, except at the lowest tem-
peratures. For \G050.05kBTc

2 , deviations due to the
gapless regime become noticeable below about 0.15Tc

2 .
They can be reduced by using a smaller G0 , but this
would lead to an inconsistency when it comes to the
normal state, which imposes the requirement that G0 be
within a factor of 2 or so of 0.1Tc

2 . For a detailed the-
oretical discussion of thermal conductivity in the
asymptotic regime, see Barash and Svidzinsky (1998).

b. Gapless regime (T/T c
2,0.1)

To leading order in kBT/g , the behavior in the gap-
less regime (kBT,g) is given by (Graf et al., 1996)

k i

T
5

1
3

gNvF ,i
2 t iF11

7p2

15
ai

2S kBT

g D 2G ~ i5a ,b ,c !,

(85)



280 R. Joynt and L. Taillefer: Superconducting phases of UPt3
where vF ,i is the average Fermi velocity in the i direc-
tion. In the strong-scattering limit, the value of t i and ai
for the hybrid-II gap, for example, is

hybrid II~E2u!, JW ib : tb5
3\

4Sline
, ab5

1
2

;

(86)

hybrid II ~E2u!, JW ic : tc5
3\

2Spoint8
, ac5

1
2

,

(87)

where Spoint8 is the curvature of the gap at the quadratic
point node.

The characteristic feature of gapless behavior is a re-
sidual linear term in k(T). The size of this linear term is
dictated by the slope S (or curvature S8) of the gap as it
increases away from the node. Of particular interest is
the prediction that for certain gap topologies and cur-
rent directions—such as a current in the basal plane and
a gap increasing as cos u (e.g., polar, hybrid I and hybrid
II) or a current along ĉ and a gap increasing as sin2u
(e.g., hybrid II), but not as sin u (e.g., axial and hybrid
I)—the magnitude of (k/T)T→0 is independent of scat-
tering rate. The possibility of such ‘‘universal’’ transport
was first pointed out by Lee (1993) for a d-wave gap in
two dimensions and confirmed in the high-Tc cuprate
YBa2Cu3O7 by Taillefer, Lussier, et al. (1997).

The calculated curves in Fig. 25 show clearly this re-
sidual linear term, which dominates k for kBT,g . The
gapless behavior is brought out by looking at the ratio
kc /kb for the E1g curve, where it sets in below 0.1Tc

2 .
For the hybrid-II gap of Eq. (84), the universal limit of
k/T is approximately 1.4 (1.9) mW K22 cm21, for the b
axis (c axis). A smooth extrapolation of the data below
Tc

2/6 clearly yields a much smaller value than these pre-
dicted limits. Suderow et al. (1997b) were able to extend
the measurement of thermal conductivity down to
Tc /30. They used two single crystals of a quality very
similar to those used by Lussier, Ellman, and Taillefer
(1994, 1996), characterized by r0,i50.54 (0.17) mV cm
for JW ib (JW ic), as compared to 0.61 (0.23) mV cm.
(The slight difference in anisotropy ratio, 3.1 versus 2.7,
leads one to suspect that the two crystals were not quite
identical in at least one of the two studies, perhaps in
both.) Their low-temperature data are plotted in Fig. 26
as k/T versus T2, with the inset focusing on the range
below 30 mK. The measured k(T) below 0.1Tc

2 is in
sharp disagreement with the behavior expected theoreti-
cally for the gapless regime, and this for either of the
two hybrid gaps. First, there is no sign of a residual lin-
ear term for JW ic , and the residual linear term for JW ib is
;10 times smaller than predicted based on the value of
Sline determined from fitting kb /T in the asymptotic re-
gime. Indeed, a linear fit below 30 mK yields k i /T5a i
1b iT

2, with a i . 0.15 (0.0) mW K22 cm21 and b i
. 800 (1400) mW K24 cm21, for the b axis (c axis).
Note that this disagreement is independent of the cho-
sen value for G0 . (In principle, it is also independent of
d0 , although if the phase shift were chosen to be less
Rev. Mod. Phys., Vol. 74, No. 1, January 2002
than 0.9p/2 or so, a much larger linear term would be
predicted at these temperatures; see Arfi, Bahlouli, and
Pethick, 1989.) Moreover, the coefficients of the cubic
term, bc and bb , are much too large to agree with Eq.
(85). For example, the fitted value for kb /T yields g
.15 mK (Suderow et al., 1997b), a very small crossover
temperature for d05p/2. Indeed, it implies \G0 /kBTc
.(g/kBTc)2.0.001, i.e., an electronic mean free path
of 50 mm.

In summary, a comparison of recent theoretical and
experimental results for the thermal conductivity of
UPt3 in phase B leads us to two basic conclusions. First,
the behavior of both kb(T) and kc(T) in the asymptotic
regime—the interval at low temperature where the
nodal regions dominate the transport and neither gap-
lessness nor inelastic scattering is important—is in excel-
lent agreement with a hybrid-II gap—with point nodes
along the c axis from which the gap grows as u2 and a
line node in the basal plane—and resonant impurity
scattering (d05p/2). This is the simplest, lowest-order
gap compatible with E2u symmetry (when dW i ĉ is im-
posed). The strongest evidence in support of this identi-
fication, in particular as opposed to a hybrid-I gap (of
E1g symmetry) is the large value of the anisotropy ratio
as T→0. In addition, the correct limiting temperature
dependence (roughly k/T;T2) is observed below
.100 mK for both current directions (Suderow et al.,
1997b), and a good quantitative agreement is obtained
with calculations using a scattering rate close to that ex-
tracted self-consistently from the normal-state data (i.e.,
\G050.05kBTc).

The second conclusion is that there is no such agree-
ment when it comes to the gapless regime. For a
hybrid-II gap, the theory predicts a residual linear term
of about 1 –2 mW K22 cm21 for both directions given
the slope/curvature of the gap at the nodes obtained
from fitting at higher temperature, and none is seen
along the c axis while only a linear term ten times

FIG. 26. Thermal conductivity along the c axis (open squares)
and the b axis (filled circles) below 70 mK, plotted as k i /T vs
T2. The inset shows the data below 30 mK. From Suderow
et al., 1997b.
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smaller is resolved along the b axis. Disagreement is also
obtained for the finite temperature corrections and the
crossover temperature. It is not clear why this part of the
theory appears to fail, but the simplified description of
impurity scattering, in terms of a single isotropic relax-
ation rate and a single phase shift at p/2, may have to be
reexamined.

2. Vortex state

The ‘‘Volovik effect’’ discussed in Sec. V.A.2 as the
origin of the AH dependence of the specific heat also
applies to the heat conduction. The thermal conductivity
study of Suderow et al. (1998) in UPt3 represents the
most detailed, accurate, and complete study of this phe-
nomenon. Their central result is the observation of ex-
cellent scaling of both kb and kc as a function of the
scaling parameter x5T/TcAHc2 /H :

kb~H ,T !

T2.7 5 gb~x !, (88)

kc~H ,T !

T3.1 5 gc~x !. (89)

The scaling functions g(x) flatten off at high x to-
wards a constant so that the zero-field low-temperature
power law of roughly T3 is recovered. Barash and Svid-
zinsky (1998) have argued that precisely this kind of
scaling is expected from a hybrid-II gap, while notice-
able deviations from scaling are expected for the
hybrid-I gap. Another way of seeing this is to note that
at low temperature k;H for both current directions,
suggesting that the density of states associated with the
point nodes along ĉ and that associated with the line
node perpendicular to ĉ has the same energy depen-
dence, as is the case for the hybrid-II gap. In summary,
both the weak temperature dependence of the anisot-
ropy ratio kc /kb in zero field and the behavior in a mag-
netic field favor a state of E2u symmetry over a state of
E1g symmetry for phase B of UPt3 .

C. Ultrasonic attenuation

The propagation of long-wavelength sound waves in a
metal at low temperature is damped (or attenuated) pri-
marily by electrons, so that a measurement of ultrasonic
attenuation is a probe of the quasiparticle properties.
Because sound can be made to travel in various well-
defined directions in a single crystal, it is a directional
probe very much as thermal conductivity was shown to
be. For transverse (or shear) modes of vibration, the
possibilities are multiplied because, in addition to the
direction of the propagation vector qW , one can also vary
the direction of particle motion, i.e., the polarization
vector ê .

A basic consideration in the description of sound at-
tenuation in metals is whether the wavelength l of the
sound wave is greater or shorter than the electronic
mean free path l0 . In typical single crystals of UPt3 ,
with l0,5000 Å, and at typical measurement frequen-
Rev. Mod. Phys., Vol. 74, No. 1, January 2002
cies (between 30 and 500 MHz), one always finds l0
,l , although in the best crystals at the highest frequen-
cies the two lengths do become comparable. In this hy-
drodynamic (or ‘‘dirty’’) limit, the momentum depen-
dence of the viscosity h̄ is irrelevent and the attenuation
is proportional to the square of the frequency:

aqW ê5
v2

rvs
3 h̄qW ê , (90)

where v52pf5vsq5vs /l , r is the density of the solid,
and vs is the sound velocity. An v2 dependence has in-
deed been observed in all experiments on UPt3 .

It is instructive to compare expressions for the ther-
mal conductivity and the viscosity (in the hydrodynamic
limit) for transverse sound (Arfi and Pethick, 1988;
Moreno and Coleman, 1996):

k ii5
1
T (

kW
S 2

]f

]EkW
D tkW vkW

2
E

kW
2
@ k̂• ı̂ #2, (91)

h̄qW ê5(
kW

S 2
]f

]EkW
D tkW vkW

2 ukW u2@ k̂•q̂#2@ k̂• ê #2, (92)

assuming vW kW ikW . At low temperature, only those quasi-
particles with kW near nodal directions are thermally ex-
cited. Consider, for example, a node along ẑ (or ĉ , i.e.,
at u50): kzz will be strongly enhanced over kxx because
of the factor @ k̂• î #25cos2u. On the other hand, the vis-
cosity will remain almost as low for transverse sound
propagating along ẑ as it is for qW' ẑ , due to the extra
factor @ k̂• ê #25sin2u sin2f. However, for configurations
such that neither qW nor ê is perpendicular to the nodal
direction, the thermally excited quasiparticles will be
much more effective in attenuating the sound. Moreno
and Coleman (1996) have emphasized the power of the
technique, whereby a choice of qW and ê can make nodes
either ‘‘active’’ or ‘‘inactive’’ in this way. This approach
was applied to great effect in the case of UPt3 .

Before we consider anisotropic gap structures, it is in-
structive to compare the behavior of UPt3 to standard
BCS theory for an isotropic gap. This is done using the
data of Ellman, Taillefer, and Poirier (1996) in Fig. 23
for aba in phase B (below Tc

2). For this particular polar-
ization, the attenuation at low temperature rises much
more rapidly than it does in conventional superconduct-
ors, for which a(T) agrees well with the BCS prediction
[i.e., a(T)5f(D)/f(0), where f is the Fermi function].
This is another indication of strong thermal excitation of
quasiparticles.

The theory of ultrasonic attenuation in unconven-
tional superconductors has developed in a way very
similar to that of thermal conductivity. The same treat-
ment of impurity scattering, assumed isotropic and close
to the unitarity limit, and of pair-breaking was adopted.
Note that, because the intrinsic zero of electronic at-
tenuation is difficult to establish experimentally with ac-
curacy, a measurement of a is not likely to be a good
way of investigating the residual normal fluid predicted
by the theory. The calculation of aqW ê(T) is considerably
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more involved that that of k ii(T); in addition to the
usual deformation potential, several other processes
may be relevant, such as possible electric-field effects,
collective modes of the order parameter (Wölfle, 1986),
and Landau-Khalatnikov damping due to a modulation
of the gap by the strain (Miyake and Varma, 1986). Fur-
thermore, vertex corrections are important in the calcu-
lation of longitudinal sound attenuation (Hirschfeld,
Wölfle, and Einzel, 1988). Finally, the ql0→0 approxi-
mation may not always be quite valid.

A number of authors have calculated aqW ê(T) in the
hydrodynamic limit for axial, polar, and/or hybrid-I gaps
(Rodriguez, 1985; Coppersmith and Klemm, 1986;
Hirschfeld, Vollhardt, and Wölfle, 1986; Scharnberg
et al., 1986; Schmitt-Rink, Miyake, and Varma, 1986;
Monien et al., 1987; Arfi and Pethick, 1988; Arfi, Bahlo-
uli, and Pethick, 1989). All results are qualitatively simi-
lar; those of Arfi and Pethick (1988) are shown in Fig.
27, for axial, polar, and hybrid-I (‘‘d-wave’’) gaps in the
strong-scattering limit (d05p/2) neglecting pair-
breaking effects. All gaps give rise to pronounced
anisotropies. Note the similarity between the polar and
the d-wave states, in particular for transverse modes.
This is a reflection of the fact that the point nodes at the
poles in the d-wave gap are inactive for qW' ẑ . Note also
how much larger axy(T) is relative to axz(T), as a re-
sult of (sections of) the equatorial line nodes being acti-
vated for ê' ẑ . A large anisotropy ratio axy(T)/axz(T)
is therefore a signature of a line node in the basal plane
in uniaxial gaps.

1. Transverse sound

The attenuation of transverse sound in superconduct-
ing UPt3 was measured by Müller et al. (1986) for qW i ĉ
and by Shivaram, Jeong, et al. (1986), Thalmeier et al.
(1992), and Ellman, Taillefer, and Poirier (1996) for qW i b̂
and both êi â and êi ĉ . In all cases, a}v2. From the
magnitude of a(Tc)vs

3/f2}t(Tc), it appears that the
various crystals used were of comparable quality (within
a factor of 2), and it seems that the measurement of abc
by Thalmeier et al. had problems (the size of the attenu-
ation is 100 times too small). In their seminal study, Shi-
varam, Jeong, et al. (1986) found the viscosity
(}avs

3) to be isotropic in the normal state and to be-
come distinctly anisotropic in the superconducting state,
with aba;T and aba;T3 approximately. It was their
study on UPt3 that first provided definitive evidence for
a highly anisotropic gap in heavy-fermion superconduct-
ors. Their data were soon shown to be in qualitative
agreement with a gap structure with a line of nodes in
the basal plane (Schmitt-Rink, Miyake, and Varma,
1986), such as a polar gap (Shivaram et al., 1987). Ten
years later, Ellman, Taillefer, and Poirier (1996) per-
formed the same study on a crystal with two well-
resolved transitions and were therefore able to measure
transverse sound attenuation not only in phase B but
also in phase A. Their results are shown in Fig. 28 (bot-
tom panel). Early and recent data are in excellent agree-
ment (for phase B).
Rev. Mod. Phys., Vol. 74, No. 1, January 2002
As a result of its limited range in temperature, very
little was known about phase A, and this study provided
the first information on the quasiparticle spectrum in
that phase. As may be seen, aab drops initially with de-
creasing temperature before becoming roughly constant,
while aac has only a slight ‘‘bump’’ seemingly superim-
posed on the sharply falling attenuation observed in the

FIG. 27. Components of the ultrasound attenuation relative to
their normal-state values at Tc calculated for the axial, polar,
and hybrid-I (d-wave) gaps, assuming resonant impurity scat-
tering and G0→0. From Arfi and Pethick, 1988.
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B phase. Qualitatively, this implies that more quasipar-
ticles exist in phase A than would be present if phase B
extended up to the same temperature. Specifically, these
extra excitations preferentially scatter sound when the
polarization is in the basal plane. When the data are
normalized to the attenuation at either Tc

1 or Tc
2 and

are plotted as a function of temperature normalized to
the appropriate critical temperature, it is evident that
aab is much enhanced in the A phase as compared to the
B phase (see Taillefer, Ellman, et al., 1997). In contrast,
the data for the c-axis polarization, aac , are roughly
equal in the two phases. From the observed difference in
the anisotropy of the two phases, the authors conclude
that the order parameter associated with phase A must
change upon going into phase B, thereby providing ad-
ditional evidence for a transition between two distinct
superconducting states at Tc

2 . There are more nodal
lines in the gap structure of phase A than in that of
phase B.

Graf, Yip, and Sauls (2000) have recently calculated
the attenuation of transverse sound in both phases of
UPt3 for a number of gap structures and fitted these to
the data of Ellman, Taillefer, and Poirier (1996), in an
attempt to further discriminate between the possible
scenarios for the phase diagram. Their results for the
E2u scenario are shown in Fig. 28. Specifically, the cal-
culated curves are for a (1,i) orbital state in phase B,
with a kz(kx

21ky
2) nodal structure, and a (1,0) state in

phase A, with a kz(kx
22ky

2) nodal structure. The agree-
ment with experiment is excellent for both polarizations
and for both phases, which leads the authors to conclude
strongly in favor of the E2u scenario. Indeed, equivalent
calculations for E1g and other scenarios fail to account
for the behavior in the A phase (Graf, Yip, and Sauls,
2000). [Very recently, this conclusion has been chal-
lenged by Wu and Joynt (2002).] It should be stressed
that this conclusion is weakened if one takes into ac-
count the multidomain structure that is likely to exist in
phase A. For the calculated curves of Fig. 28, the

FIG. 28. Transverse ultrasound attenuation normalized at Tc
1

(data from Ellmann, Taillefer, and Poirier, 1996), compared to
calculations by Graf, Yip, and Sauls (2000) for an E2u gap.
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authors have assumed a single domain over the whole
crystal and, moreover, an optimum alignment of the
nodal structure kz(kx

22ky
2), i.e., such that the two mu-

tually perpendicular planes of nodes containing the c
axis are at 45° from the propagation vector qW . If the very
existence of phase A is due to a coupling with the anti-
ferromagnetic order, one expects the three equally
populated magnetic domains (Lussier et al., 1996) to
generate a corresponding domain configuration for the
superconducting order parameter, so that the nodal
planes will be at 645° from the 0°, 120°, and 240°,
directions. A more realistic calculation is to average
over these three orientations. This averaging was shown
to suppress the degree of anisotropy between axy and
axz (Graf, Yip, and Sauls, 2000). Moreover, it eliminates
the difference between E1g and E2u , and most probably
means that one cannot tell whether it is the (1,0) state or
the (0,1) state which is favored in phase A. For example,
the (0,1) state in E2u has kzkxky nodal structure, i.e., the
same three mutually orthogonal nodal planes as for (1,0)
but rotated by an extra 45° about the c axis. Although
this difference in orientation can lead to a large discrep-
ancy in the attenuation arising in the two states in a
single, suitably chosen monodomain, the discrepancy is
averaged away in a multidomain configuration.

In summary, it is probably fair to say that the recent
calculations of Graf, Yip, and Sauls (2000) confirm that
the transverse sound attenuation measured in both
phases A and B is compatible with the symmetry-
breaking-field scenarios based on either E1g or E2u sym-
metry, but they do not allow one to distinguish between
the two or allow one to determine whether it is the (1,0)
or the (0,1) state which exists in phase A.

2. Longitudinal sound

The experimental situation for longitudinal sound at-
tenuation in UPt3 is somewhat confused. The first mea-
surement, by Bishop et al. (1984), yielded a roughly T2

dependence for azz between 0.15 and 0.4 K. Two years
later, Müller et al. (1986) obtained azz;T3 in the same
range, and also observed a lambda-shaped peak just be-
low Tc . Then Schenstrom et al. (1989) obtained azz
;T1.2; they also observed a very small anisotropy, with
axx;T1.3. Thalmeier et al. (1992) also reported a virtu-
ally isotropic behavior, but this time with azz.axx
;T3. Finally, in a high-resolution experiment down to
much lower temperature (5 mK), Jin, Lee, et al. (1992)
obtained axx;T1.5 for a fit between 5 and 400 mK. They
also saw a sharp peak at Tc

1 and a ‘‘bump’’ at Tc
2 . Un-

fortunately, they did not measure the anisotropy. It was
taken on the same crystal as used previously by Schen-
strom et al., and the two sets of data for axx(T) agree
well (the slightly different power laws come from the
fact that Jin et al. included the range 5–100 mK, which
by itself gives T1.8). The data of Schenstrom et al. (1989)
are shown in Fig. 29 for both modes.

One should not attach too much importance to the
actual power law, but the fact that different measure-
ments yield such different fits is intriguing. A number of
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factors would have to be examined in order to reconcile
these disparate results. First, the frequency was different
(it ranged from 92 MHz for Müller et al. to 508 MHz for
Bishop et al.) and frequency effects have been observed
(Müller et al., 1986). Second, the relative importance of
elastic and inelastic scattering was different for the dif-
ferent crystals. By itself, this effect could well account
for most of the discrepancy. From the magnitude of the
attenuation at Tc , one can see that the importance of
inelastic scattering was about five times (three times)
smaller in the experiment of Müller et al. (Bishop et al.)
than it was in the case of Schenstrom et al. Of course,
the possibility of heating the sample at the lowest tem-
perature is perhaps an issue in some cases, giving rise to
a false flattening off of a at low temperature. When
comparing with the calculations in Fig. 27, the data of
Fig. 29 below Tc

2 are seen to be in fair agreement for
either a polar or a hybrid-I gap. In order to say more,
detailed calculations which include inelastic scattering
and the presence of phase A are needed.

The peak at Tc in the longitudinal a(T), also seen in
UBe13 (Golding et al., 1985), has been attributed to a
variety of mechanisms, including collective modes
(Wölfle, 1986) and damping by domain walls (Joynt,
Rice, and Ueda, 1986). For a discussion of this feature,
see Sigrist and Ueda (1991) and Grewe and Steglich
(1991).

In conclusion, the measured temperature dependence
of both transverse and longitudinal ultrasonic attenua-
tion in UPt3 is in agreement with calculations assuming a
hybrid gap in phase B and a gap structure with addi-
tional nodal planes in phase A. This is qualitatively con-
sistent with both E1g and E2u scenarios.

We have not mentioned here studies in a magnetic
field, for they have contributed little solid information
on the nature of the superconducting phases. Note, how-
ever, that anomalies in the magnetic-field dependence of
the longitudinal ultrasonic attenuation, first observed by
Müller et al. (1987) and Qian et al. (1987), and investi-
gated later by Schenstrom et al. (1989), provided the first

FIG. 29. Attenuation of longitudinal ultrasound propagating
along the b axis and the c axis at 240 MHz as a function of
temperature. From Schenstrom et al., 1989.
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clear indication of a phase transition between phase B
and phase C.

D. London penetration depth

1. Vortex lattice

The subject of vortices is always interesting for theo-
rists because of its intrinsic beauty. In UPt3 alone, it has
generated a literature of goodly size. Some other re-
views of this topic have appeared. Salomaa and Volovik
(1987) reviewed vortices in 3He—this topic is the ances-
tor of all such work in UPt3 . Sigrist and Ueda (1991)
included a summary of work on unconventional super-
conductors. We shall not recapitulate indvidual papers in
detail, because there are, to date, few experiments that
can test the theories. Only some conceptual develop-
ments will be mentioned. Schenstrom et al. (1989), Hess
et al. (1989), and Tokuyasu et al. (1990) showed numeri-
cally that, for HW along the c axis, the vortices become
nonaxisymmetric. This could drive a transition in the
flux lattice from hexagonal to honeycomb as a function
of applied field. Similar effects have been found for all
directions of HW (Barash and Mel’nikov, 1991). The ana-
lytic groundwork for understanding the energetics of
vortex lattices is contained in papers of Luk’yanchuk
(1991) and Zhitomirskii and Luk’yanchuk (1992). For HW
along the c axis, one can even find a transition from a
lattice consisting of single-quantum vortices to double-
quantum vortices (Mel’nikov, 1992) in certain parameter
ranges.

The only direct measurement performed to date on
the vortex structure is low-angle neutron scattering
(Kleiman et al., 1992; Yaron et al., 1997). In this experi-
ment, the applied magnetic field is in the basal plane, say
HW 5Hx̂ . It satisfies Hc1!H,Hc2 . The neutrons are in-
cident on the sample from the same direction. They scat-
ter off the gradient in the magnetic field which is the
result of the flux lattice. The scattering amplitude for a
change in neutron wave vector QW is proportional to
h(QW ), the Fourier component of the field. QW lies in the
y-z plane, so the two crystal axes of the flux lattice are
not equivalent. The scattering intensity is very low and
falls off as l24, where l is a penetration depth. This
means in practice that only Bragg scattering at the first
shell of reciprocal-lattice vectors can be observed and
only low temperatures (where l is relatively small) are
accessible. In the most recent experiment, the intensities
have been measured at 50 mK and from 3 to 9 T. The A
phase is not probed, but the BC transition is believed to
occur at around 5–6 T in this sample, and signatures of it
may be searched for. The experiment looked at the peak
positions (lattice structure) and their intensities (form
factor).

A conventional centered rectangular lattice is ob-
served, i.e., a triangular lattice compressed in the c di-
rection. The opening angle is 2aL538° (at low field)
instead of the standard 2aL560° for a perfect triangular
lattice. In the anisotropic London theory, the angle a is
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governed by anisotropy in both the Fermi velocity and
the gap, much as Hc2 is. Describing both sources of an-
isotropy in terms of an effective mass tensor, Kleiman
et al. find m' /m i5(3 tan2 aL)2152.8, a value very close
to the normal-state mass ratio (mr52.7). Therefore, just
as for our Hc2 analysis of the A phase (see Sec. IV.B),
we arrive at the conclusion that no additional anisotropy
from the gap structure seems to show up in the B phase,
measured this time by the distortion of the vortex lat-
tice.

From a measurement of the form factors for the
vortex-lattice Bragg peaks, Kleiman et al. (1992) obtain
the following independent estimates for the coherence
length and penetration depth: j i(0)515764 Å, j'(0)
59363 Å, l i(0)54220690 Å, l'(0)571506150 Å.
From these numbers we get a separate estimate of the
average plasma frequency, namely, \v̄p50.39 eV, which
is only 5% larger than we had evaluated from the resis-
tivity and our estimate of t058310211 sec (for r0,c
5r0,i50.23 mV cm), which is thereby nicely confirmed.
Note that infrared reflectivity data also yield an average
plasma frequency equal to 4.831014 sec21, or 0.32 eV
(Sulewski et al., 1988).

Let us now look at the effect of increasing the field
(still applied in the basal plane). The structure remains
centered rectangular through the BC transition. This is
in agreement with a theorem of Zhitomirskii (1989) that
this is the only possible structure for the vortex lattice of
a two-component superconductor. At least for this direc-
tion of the field, there is no change from hexagonal to
honeycomb. However, the opening angle aL shows an
overall increase as the field is increased (see Fig. 30). In
the C or high-field phase, we should find conventional
behavior, as only one component exists and the free en-
ergy of its spatial configurations is the same as that for a
conventional superconductor (Barash and Mel’nikov,
1994; Fujita et al., 1994). Thus we expect a field-
independent aL in this phase. Standard one-component
theory gives tan2(aL)5 K1/3K4 . In the B phase, the sec-
ond component grows as A(HBC2H). The second com-
ponent has a different anisotropy in its stiffness coeffi-
cients (the K’s). The anisotropy of the whole lattice is a
combination of the two, leading to a field-dependent an-

FIG. 30. The opening angle of the centered rectangular vortex
lattice as a function of field from Yaron et al. (1997). The open-
ing angle is defined in the inset. The fit is from Joynt (1997).
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isotropy. The angle is given by Joynt (1997),

tan2~aL!5
K11r2~H !~K11K21K3!

3@11r2~H !#K4
, (93)

with r2(H) the average ratio of uhxu2 to uhyu2, so that
r2(H);(HBC2H). The stiffness coefficients are as de-
fined in Eq. (38). The fact that aL is found to be field
dependent in UPt3 at low fields is therefore consistent
with a two-component picture. The prediction that it is
field independent at higher fields is consistent with the
data of Yaron et al. (1997), reproduced in Fig. 30, if their
last data point at the highest fields, with large error bars,
is ignored.

The second set of data is the intensity as a function of
field. A form factor is usually measured by looking at
the falloff of intensity at successively larger Bragg peaks.
Here we are looking at the same Bragg peak but chang-
ing the lattice constant. The overall decrease in slope is
due to the fact that the cores overlap more as the field
increases, so the field distribution becomes smoother.
Roughly, the intensity is ;exp(2cj0

2/a2), where a is the
intervortex separation, c is a constant, and j0 is a coher-
ence length.

A theory of this intensity in an unconventional super-
conductor, based on the picture of the B phase pre-
sented in Sec. IV.B, but assuming a double lattice with
no offset, has been worked out (Joynt, 1997). The basic
point is that the form factor should show a kink as H
passes through HBC . The kink is due to the fact that a
second coherence length appears in the B phase. The
data of Yaron et al. (1997), shown in Fig. 31, are consis-
tent with this.

The theory of the neutron scattering is still at a simple
level. Nonlocal effects may be important at the relatively
low experimental temperatures (Takanaka, 1977). Also
Yaouanc, Dalmas de Réotier, and Brandt (1997) have
criticized the cutoff procedure implicit in the calcula-
tions. In addition, the theory is based on a generic two-
component picture, so it gives no way to distinguish be-
tween different gap structures. The field needs more
experimental input, possibly from other techniques for
looking at vortices, such as decoration, scanning tunnel-

FIG. 31. The intensity of the first shell of Bragg peaks as a
function of field from Yaron et al. (1997). The fit is from Joynt
(1997).
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ing microscopy, and electron imaging, as well as more
theoretical work.

Let us now turn to the A-B transition. This was inves-
tigated by Huxley et al. (2000), who used neutron scat-
tering to look at the vortex lattice at H50.19 T as a
function of temperature for HW i ĉ . They found that the
lattice is accurately hexagonal in both phases. In the B
phase, the nearest-neighbor vector is parallel to the a*
direction, while in the A phase it rotates by 615°. They
interpret this result as an alignment of the lattice to a
gap of E2u form, noting that a gap with kxky behavior in
the plane should give rise to such an orienting effect, as
it naturally introduces a 15° angle in the problem, unlike
the kx or ky gaps appropriate for E1g . The connection
between the form of the gap and the lattice orientation
is actually rather indirect, however, and a full Ginzburg-
Landau analysis would be preferable. This has very re-
cently been carried out by Moreno and Sauls (2001),
who conclude that the data favor E2u .

2. Temperature dependence

Because of the simple relation between the London
penetration depth and the superfluid density tensor,
1/(lL

i )2;ns
i , a measurement of the penetration depth is

a powerful probe of the superconducting state. There
are two aspects to the measurement: (1) the absolute
value l i(0) and its anisotropy—which as we saw simply
give the plasma frequency and the mass anisotropy—
and (2) the temperature dependence dl i(T) and its
anisotropy—which give information about gap nodes
and their configuration (see Sec. V; Gross-Alltag et al.
1991; Barash and Svidzinsky, 1996). As mentioned in
Sec. V, the measurement of dl(T) in YBa2Cu3O7
played a leading role in establishing the existence of line
nodes in the gap structure of the high-Tc supercon-
ductor YBa2Cu3O7 (Hardy et al., 1993). For this mate-
rial, microwave cavity techniques proved the most sen-
sitive, and were successful because of the high degree of
surface perfection achieved in as-grown single crystals
(and helped by the large Tc). This issue of surface qual-
ity is a crucial one for most techniques attempting to
measure the penetration depth, a concern we have not
been faced with in the discussion of bulk probes. Indeed,
because the magnetic field penetrates only about 1 mm
into a sample of UPt3 (0.2 mm in YBa2Cu3O7), a large
fraction of that depth must be free of defects which per-
turb the screening currents, and be representative of the
bulk. The surface-sensitive techniques that have been
applied to UPt3 are mainly dc magnetization (see, for
example, Gross-Alltag et al., 1991) and ac susceptibility
(see, for example, Signore et al., 1994), as well as other
high-frequency inductive techniques (see, for example,
Shivaram, Gannon, and Hinks, 1990; Bruls, 1995).

The dc magnetization results of Gross-Alltag et al.
(1991) for three single crystals and two field directions
yield dl;T2 in all cases, with little anisotropy in the
prefactor. (Note that similar supercurrent configurations
may exist for different field directions.) Polishing leads
to a 50% increase in dl. This effect leads the authors to
Rev. Mod. Phys., Vol. 74, No. 1, January 2002
conclude that ‘‘because of the observed sensitivity of the
crystal surfaces to mechanical working, a more sophisti-
cated surface preparation would seem necessary to de-
termine a dl anisotropy unambiguously.’’ Much the
same conclusion may be reached from the studies of Si-
gnore et al. (1994). Another cause for concern is the
large value extracted at low temperature: l(0)519 000
65000 Å, a factor of 3 larger than expected.

In recent years, muon spin relaxation (mSR) has be-
come a prime method for the study of type-II supercon-
ductors, because it is largely insensitive to surface effects
(muons penetrate ;100 mm) and it allows for an abso-
lute measurement of l. The inhomogeneity of the field
profile inside the sample when permeated by vortices
leads to a relaxation of the muon spin, which can be
detected and used as a measure of the field distribution.
The weak point of this technique is that in order to ex-
tract l(T) from the observed relaxation, a convoluted
analysis and some assumptions about the vortex lattice
are necessary. Broholm et al. (1990) were the first to use
transverse-field mSR to probe the internal field distribu-
tion of a crystal of UPt3 along both high-symmetry di-
rections. The penetration depth for the B phase they
extract from their analysis has the following characteris-
tics. The absolute value of the London penetration
depth at T50 is l i(0)56920640 Å, l'(0)57200
6100 Å. While l'(0) is in excellent agreement with es-
timates from either normal-state transport or neutron
diffraction, l i(0) is considerably larger then these esti-
mates (by a factor of 1.6). The temperature dependence
of l'(T), which reflects that of the superfluid density in
the basal plane, obeys

l'
2 ~0 !

l'
2 ~T !

5S 11
dl'~T !

l'~0 ! D 22

. 12a
T

Tc
, (94)

all the way from 0.1 to 0.6Tc , with a.1 (Broholm et al.,
1990). The fact that a is so large means that thermal
excitation of quasiparticles with velocity in the basal
plane is strong, as was previously established by trans-
verse ultrasonic attenuation. Assuming that this depen-
dence extrapolates down to low temperature implies
dl;T , as expected for a line node in the basal plane.
The other component, l i(T), is somewhat flatter at low
temperature. The authors argue that a proper fit is only
possible with a hybrid-type gap (with both a line node at
the equator and point nodes at the poles) and is not
consistent with a polar gap.

Yaouanc et al. (1998) have recently performed the
same mSR experiment on a single crystal with a clear
double transition. Their data are shown in Fig. 32. They
obtain values of l(0) that are in better agreement with
the neutron and Hc2 results: lc(0)542606150 Å,
la(0)560406130 Å. The temperature dependence
agrees qualitatively with that of Broholm et al. Yaouanc
et al. were able to fit their data using either a hybrid-I
gap, proportional to Y2120.1Y41 , or a hybrid-II gap,
proportional to Y3220.1Y52 . As can be seen from Fig.
32, both gaps fit the low-temperature data reasonably
well. (Note that the best fit for hybrid I is obtained using
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the very same orbital dependence that gave the best fit
to the thermal conductivity data in Fig. 25.)

In summary, the mSR data of Yaouanc et al. (1998) are
in remarkably good agreement with the picture devel-
oped until now for the superconducting state of UPt3 .
The anisotropy in dl(T) supports the assignment of a
hybrid gap to the B phase and the magnitude of l(0) is
just right.

E. Other properties

There are a host of properties measured in UPt3 not
mentioned in this review, which in principle also contain
information about the symmetry of the order parameter.
We have elected to focus on those properties which we
felt were at a sufficiently advanced stage of development
to warrant a meaningful confrontation between theory
and experiment. Furthermore, there are areas of inves-
tigation that have not yet been, or are just beginning to
be, exploited in the case of UPt3 , such as electron tun-
neling and electromagnetic absorption—which played
such a prominent role in our understanding of conven-
tional superconductors—or Josephson junctions and
angle-resolved photoemission, which have produced
some of the most decisive information in the high-Tc
cuprates.

In this section, we discuss briefly two techniques that
have shed some light on the order parameter of UPt3
from a different angle to that of thermodynamic and
transport properties discussed until now: nuclear mag-
netic resonance and point-contact spectroscopy. The
former can access information about the spin part of the
wave function (via the Knight shift), as was done so
beautifully in superfluid 3He, and it is an example of
case-II coherence factors (nuclear-spin relaxation rate),
as opposed to the case-I coherence factors applicable to
k and a. The latter technique is one of several spectro-
scopic probes of superconductors, measuring the energy
gap directly rather than indirectly via the temperature
and field dependence, and one of the few actually ap-
plied with some success to UPt3 .

FIG. 32. Temperature dependence of the penetration depth
for principal directions parallel (lc) and perpendicular (la) to
the c axis, plotted as l i

22(T) vs T . Lines are fits assuming the
three different gap structures as shown. From Yaouanc et al.,
1998.
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1. Nuclear magnetic resonance

a. Nuclear-spin relaxation

Nuclear spins precessing in a magnetic field will relax
as a result of their interaction with conduction electrons.
The relaxation process involves the flipping of spins so
that the relevant coherence factor (case II) which ac-
counts for the pair correlations in the superconducting
state is different from that relevant to k and a where no
spin flip occurs (case I). For an s-wave order parameter,
this difference shows up dramatically as a peak in 1/T1
just below Tc , reflecting the divergent density of states
at the gap edge (see, for example, Tinkham, 1996). For
unconventional order parameters, case-I and case-II co-
herence factors are the same and contribute no extra
energy dependence relative to the matrix elements in
the normal state, so they do not lead to any enhance-
ment (Sigrist and Ueda, 1991). Therefore the presence
of a so-called Hebel-Slichter peak in 1/T1 is a signature
of a conventional s-wave order parameter.

The nuclear magnetic relaxation rate of 195Pt in UPt3
was measured by Kohori et al. (1988), using powders of
70–200 mm (to maximize surface area). Their data are
plotted in Fig. 33 on a log-log plot. In the normal state,
from 0.5 to 4.2 K, a Korringa law (1/T1;T) is observed,
consistent with the Fermi-liquid behavior seen in other
properties (although seldom to quite as high a tempera-
ture). The relaxation rate drops precipitously just below
Tc , in a way that is reminiscent of axy(T). The absence
of any Hebel-Slichter peak is unambiguous. At low tem-

FIG. 33. Temperature dependence of the nuclear magnetic re-
laxation rate (1/T1) measured on a powdered sample. From
Kohori et al., 1988.
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perature, between 0.1 and 0.3 K, 1/T1}T3, just as ex-
pected for a gap with a line node or, more precisely, for
a quasiparticle density of states that grows linearly in
energy (Sigrist and Ueda, 1991). This is true of the E1g ,
E2u with dW i ẑ , and polar gaps. It is an intriguing fact that
a T3 dependence of 1/T1 at low temperature is observed
in virtually all unconventional superconductors: heavy
fermions (UPt3 , UBe13 , CeCu2Si2 , UPd2Al3), high-Tc
cuprates (e.g., YBa2Cu3O7), Sr2RuO4 , and organics.
Kohori et al. (1988) were able to fit their data assuming a
polar gap D0 cos u and neglecting gapless effects due to
impurity scattering. From a best fit to the entire T de-
pendence, they get D055.3kBTc . In the usual way, the
coefficient of the T3 term at low temperature is dictated
by the regions in the gap near the nodes, in this case by
the slope of the gap at the line node, and the fit there-
fore yields Sline55.3kBTc . Note that the value obtained
in Sec. V.B from fitting k(T) with an E1g-type gap in the
asymptotic regime was Sline55.3kBTc , using the weak-
coupling value for the maximum gap, Dmax52.1kBTc .
(A very similar value is obtained for the E2u gap.) This
clearly calls for a full calculation of 1/T1 vs T using both
the E1g and E2u gaps.

We note en passant that there is no indication of a
linear term in 1/T1 at low temperature. Just as in the
results for k(T) down to 0.1 K, the residual normal fluid
predicted by theory for UPt3 with \G0.0.1kBTc
(Hirschfeld, Wölfle, and Einzel, 1988) remains elusive.

b. Knight shift

The Knight shift is important because it gives the ac-
tual spin polarization at a nuclear site. Thus the spin
susceptibility xs can be measured, although absolute
measurements require the independent determination of
hyperfine coupling constants. In superfluid 3He, the sus-
ceptibility of the isotropic B phase drops by 1/3 on cool-
ing from Tc to 0, while in the equal-spin-paired A phase,
there is no change in the measured xs as long as the
order parameter is free to rotate. In an s-wave supercon-
ductor, xs drops to zero. It is possible to make bulk mea-
surements on strongly type-II materials such as UPt3 in
the range Hc1!H,Hc2 because the field in the sample
is essentially uniform.

Measurements in the normal state confirmed that the
temperature dependence of the Knight shift tracks the
temperature dependence of the measured uniform sus-
ceptibility (Kohori et al., 1987, 1990). The shift is large,
reflecting the heavy-fermion nature of UPt3 , and nega-
tive, reflecting negative hyperfine couplings between the
d and the s electrons of the Pt atom. Near Tc , the shift
is about 28% for H'c and about 22% for Hic (Lee
et al., 1993). In the superconducting state, some tem-
perature dependence of the Knight shift has been de-
tected (Tou et al., 1996, 1998). However, the reduction of
the shift is very small. If we denote the shift for Hic as
Kc , and those for H along the a and b directions as Ka
and Kb , and their changes on reducing the temperature
from Tc to 0 as dKi , then the observations are that
dKa'0, dKb50.07%, and dKc50.08%. Furthermore,
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the latter two changes occur only at low fields. If Hb
>3.37 kOe or Hc>2.30 kOe, then dKb50, and dKc
50. No change at all, or possibly a very small rise, in the
shift is observed if H is along a , at all field strengths.
Even the largest changes are not much bigger than the
error bars.

Tou et al. interpret their results in terms of the spin-
triplet theory (Ohmi and Machida, 1996a, 1996b) with
very small spin-orbit coupling, which gives results simi-
lar to the A phase of 3He. The in-plane anisotropy is
then attributed to coupling of the superconducting order
parameter to MW S . The picture requires, in addition, a
reorientation of dW as a function of H for H along the c
axis at around Hc52.3 kOe. This explanation has the
virtue of explaining the isotropy of dKi at high fields.
However, it has several drawbacks. It does not explain
the foremost puzzle about the results, which is why the
changes, when they do occur, are very small. It takes no
account of the Van Vleck part of the susceptibility,
which is large but not affected by superconductivity, as
pointed out in Sec. II.C.1. Finally, there is no indepen-
dent evidence for a reorientation transition at Hc52.3
kOe from other measurements. While the Knight-shift
results are not conclusive in favor of any theory, they
speak against singlet models such as the E1g model,
which should have a reduced susceptibility at zero tem-
perature. Even in this case, however, no theory of the
Knight shift that takes into account spin-orbit coupling
and Van Vleck contributions has been offered so far.

2. Point-contact spectroscopy and Josephson tunneling

The current-voltage characteristics of a point contact
between a normal electrode (or tip) and a supercon-
ductor can yield spectroscopic information on the en-
ergy gap via the mechanism of Andreev reflection. For a
recent review of point-contact spectroscopy in heavy-
fermion superconductors, the reader is referred to the
excellent article by Löhneysen (1996). We will only sum-
marize here the main results and conclusions.

A typical point-contact spectrum on UPt3 is shown in
Fig. 34, for an electron injection preferentially along the
c axis. A gap is unambiguously observed, with a maxi-
mum amplitude of about 100 mV, or '2kBTc . The
V-shaped feature is at variance with the prediction for a
standard s-wave gap which leads to a flat region near
zero bias (see Fig. 34). [More conventional gap features
of this kind have been seen in CeCu2Si2 and URu2Si2
for current directions also along ĉ (De Wilde et al.,
1994).] The fits in Fig. 34 are as follows: curve 0, D

5D0 (isotropic gap); curves 1 and 3, D52D0k̂z(k̂x

1ik̂y); curve 2, D5D0k̂z; curve 4, D5(s)/2)D0k̂z(k̂x
2

1k̂y
2), with D0575 mV and m' /m i52.25 for curves 0, 1,

2, 4 and D0575 mV and m' /m i510 for curve 3. The V
shape is thus seen as evidence for a point node along ĉ ,
as supported by the various fits in Fig. 34. The fit for
gaps with a point node yields a gap maximum D0
575 mV52.0kBTc (Tc50.44 K). In UPt3 , unlike in
CeCu2Si2 and URu2Si2 , the gap feature disappears rap-
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idly with increasing magnetic field or temperature (De
Wilde et al., 1994), in keeping with the strong thermal
excitation of quasiparticles along ĉ . Point-contact spec-
tra for injection in the basal plane in most cases show no
feature (Goll et al., 1993), a fact used as evidence for a
line node in the basal plane, possibly broadened into a
‘‘belt’’ by impurities. Goll et al. (1995) have observed a
double-minimum structure typical of Andreev reflec-
tion. These authors argue that such a structure is only
possible if the order parameter does not change sign as
kz→2kz . In other words, a gap given, for example, by
ukzu(kx1iky) (of E1u symmetry) can account for the
double minimum, but kz(kx1iky) (of E1g symmetry)
cannot.

The Josephson effect was observed for the first time in
UPt3 by Sumiyama et al. (1998). They clearly observed a
supercurrent in UPt3-Cu-Nb junction in an SNS configu-
ration. Some differences in the critical current were seen
between current flow in the b and c directions. The au-
thors ascribed this to an underlying anisotropy in the
order parameter. However, the Fraunhofer pattern was
chaotic, suggesting nonuniform current flow. Further-
more, the measurements for different directions were
taken on different faces with correspondingly different
Cu interlayers. This makes it difficult to normalize the
results with respect to one another. In the SNS configu-
ration, there is no eIcRn /D;1 to help with this. If one is
to draw conclusions about anisotropy, the barrier itself
must not break translation symmetry along the face.
Thus it would probably be premature to conclude any-
thing about the order parameter at the present stage of
these experiments. If the junction quality improves, and
particularly if SIS junctions are made, then phase-
sensitive experiments, for example, corner junction ex-
periments, would become possible. This could yield a
wealth of valuable information about the order param-
eter. The possibilities have received a comprehensive re-
view by Sauls (1994).

FIG. 34. Point-contact spectroscopy: normalized differential
resistance vs voltage of a silver tip pressed on the basal plane
of a UPt3 single crystal (exp.), compared with calculations for
various gap structures described in the text. From De Wilde
et al., 1994.
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VI. CONCLUSIONS AND FUTURE DIRECTIONS

There are three types of evidence to indicate that
UPt3 is an unconventional superconductor. These are
the anisotropic transport properties in the superconduct-
ing state, most notably the ultrasonic attenuation and
the thermal conductivity; the multiplicity of phases, most
notably seen in specific-heat and ultrasonic measure-
ments; and the absence of activated temperature depen-
dence in any physical property. This is a combination of
very disparate physical phenomena. Together, they
make an exceedingly powerful case that superconductiv-
ity in UPt3 is unconventional. Any attempt to explain
the behavior of UPt3 using s-wave superconductivity
would involve multiple ad hoc features. Qualitatively,
the three types of evidence are naturally explained in
the framework of unconventional superconductivity.

This does not narrow down the range of possibilities
as much as we might wish, however. Even within the
usual group-theoretical framework, there are numerous
forms for the superconducting order parameter. Let us
try to analyze this issue briefly, but systematically, pull-
ing together all of what has gone before.

The two-dimensional representation and spin-triplet
scenarios have traditionally dominated the field, as they
give a natural explanation for the split transition. Within
this picture, the splitting is caused by the coupling to
magnetism. This was very strongly supported by the
pressure data, in which the superconducting transitions
coalesce just when the magnetism disappears. It seems
difficult to believe that this beautiful result could be ac-
cidental. Yet, as we have seen, there is also evidence
from sound velocities that the coalescence is illusory and
may actually be a crossing. The latter would support the
mixed-representation hypothesis. Related to this is the
in-plane near isotropy of the critical fields. To produce
this result, two-component theories must invoke the hy-
pothesis that the magnetization is rotated by the field.
This has been called into question by neutron-scattering
experiments.

If one assumes that somehow these problems can be
solved, the two-dimensional picture also gives very nice
agreement of theory and experiment for the entire
H-T-P phase diagram, but only if the K parameter,
which represents coupling of the order parameter direc-
tion to the field direction, is appreciable, as it is in E1g .
A large class of theories, most importantly E2u , in
which K vanishes or is small, have difficulty with the
behavior of the normal-superconducting phase bound-
aries under pressure.

Can these problems be solved? It is perhaps sugges-
tive that they all revolve around a single question, the
coupling of superconductivity and magnetism. Do we
understand the nature of the magnetic ordering? Does
the small moment mean that it is a secondary order pa-
rameter? Why is the magnetic ordering so poor, and
does this fact affect its coupling to superconductivity? If
there are no answers, or if these are not the right ques-
tions, then the alternative is that the coupling of super-
conductivity and magnetism is not the origin of the split
transition.
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If the split transition is due to an accidental degen-
eracy, as in the mixed-representation picture, equally
many questions remain to be answered. Most such sce-
narios have a difficult time producing a gap nodal struc-
ture consistent with experiment. Perhaps the most diffi-
cult problem is one of credibility: how is it that the first
truly unconventional superconductor would just happen
to have this very unlikely feature?

In the other category of phenomena, that of low-
temperature and anisotropic properties, we have an
equally tantalizing situation. The specific heat suggests
that there are gap nodes but sheds little light on the
nodal structure. Ultrasonic attenuation clearly shows
that there is a line of nodes in the basal plane, which
narrows down the possibilities more than any other
single observation. The presumption is now strong that
the gap is odd under reflection in the x-y plane.

It is thermal conductivity, however, which is probably
the only tool for actually probing in detail what is hap-
pening at the gap nodes. Based on experiments to date,
we can state that gap nodes at the poles with quadratic
dispersion appear to be favored by the data in the
asymptotic regime. This type of gap is associated with
the E2u theory, but this is somewhat arbitrary: this gap
structure is not symmetry related in this representation
and could occur only by a fortuitous accident. In the
gapless regime, no theory appears at present to account
for the data all that well.

Early hopes that the order parameter of UPt3 would
be sorted out quickly, as quickly as the problem of 3He
or high-Tc superconductivity, have been dashed. It is a
much more complicated system. We require new probes
of the gap structure and the vortex structure. We need to
understand the theory of the low-temperature behavior
better, including the behavior of the residual normal
fluid in the presence of impurities and interactions. We
need to resolve the important questions remaining about
the phase diagram, especially regarding the coupling of
superconductivity and magnetism, and we need defini-
tive answers about what is going on at high pressure.
There appears to be plenty for everyone to do.
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H. v. Löhneysen, 1993, Phys. Rev. Lett. 70, 678.

Mineev, V. P., and K. V. Samokhin, 1999, Introduction to Un-
conventional Superconductivity (Gordon and Breach, Am-
sterdam).

Miyake, K., and C. M. Varma, 1986, Phys. Rev. Lett. 57, 1627.
Moler, K., D. J. Baar, J. S. Urbach, R. Liang, W. N. Hardy, and

A. Kapitulnik, 1994, Phys. Rev. Lett. 73, 2744.
Moler, K., D. L. Sisson, J. S. Urbach, M. R. Beasley, A. Kapit-

ulnik, D. J. Baar, R. Liang, and W. N. Hardy, 1997, Phys. Rev.
B 55, 3954.

Monien, H., K. Scharnberg, L. Tewordt, and D. Walker, 1987,
Solid State Commun. 61, 581.

Moreno, J., and P. Coleman, 1996, Phys. Rev. B 53, 2995.
Moreno, J., and J. A. Sauls, 2001, Phys. Rev. B 63, 024419.
Müller, T., W. Joss, and L. Taillefer, 1989, Phys. Rev. B 40,

2614.
Müller, V., D. Maurer, E. W. Scheidt, Ch. Roth, K. Lüders, E.
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Lüthi, 1992, J. Magn. Magn. Mater. 108, 109.
Tokuyasu, T., D. Hess, and J. A. Sauls, 1990, Phys. Rev. B 41,

8891.
Tinkham, M., 1996, Introduction to Superconductivity

(McGraw-Hill, New York).
Tou, H., Y. Kitaoka, K. Ishida, K. Asayama, N. Kimura, Y.

Onuki, E. Yamamoto, Y. Haga, and K. Maezawa, 1998, Phys.
Rev. Lett. 80, 3129.

Tou, H., Y. Kitaoka, N. Kimura, Y. Onuki, E. Yamamoto, and
K. Maezawa, 1996, Phys. Rev. Lett. 77, 1374.
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