
  

THE NERNST EFFECT 

The Nernst effect is the development of a transverse electric field Ey across the 

width (y-axis) of a metallic sample when a temperature gradient ∂T / ∂x is applied along 

its length (x-axis) in the presence of a transverse magnetic field B (along the z-axis). 

Two mechanisms can give rise to a Nernst signal17, N ≡ Ey / ( ∂T / ∂x ): superconducting 

fluctuations14, which give a positive signal, and charge carriers (quasiparticles), which 

can give a signal of either sign. At low temperature, the magnitude of the quasiparticle 

Nernst signal is given approximately by17: 

ν / T  ≈  π2 / 3 ( kB 
2 / e ) ( µ / εF )    ,  (1) 

where ν ≡ N / B is the Nernst coefficient, T is the temperature, kB is Boltzmann’s 

constant, e is the electron charge, µ is the carrier mobility and εF the Fermi energy.    

Eq. (1) works remarkably well as a universal expression for the Nernst coefficient of 

metals at T → 0, accurate within a factor two or so in a wide range of materials17. It 

explains why a phase transition which reconstructs a large Fermi surface into small 

pockets (with small εF) can cause a major enhancement of ν. The heavy-fermion metal 

URu2Si2 provides a good example of this phenomenon. As the temperature drops below 

its transition to a semi-metallic state at 17 K, the carrier density n (or εF) falls and the 

mobility rises, both by roughly a factor 10, and ν / T increases by a factor 100 or so31. 

Note that the electrical resistivity ρ(T) is affected only weakly by these dramatic 

changes32, since mobility and carrier density are modified in ways which compensate in 

the conductivity σ = 1/ ρ = n e µ. This is why the Nernst effect is a vastly more sensitive 

probe of electronic transformations, such as density-wave transitions, than the 

resistivity. Here we use it to probe the pseudogap phase of a high-Tc superconductor. 
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EXPERIMENTAL DETAILS 

Crystal structure.  The hole-doped cuprate YBa2Cu3Oy (YBCO) has a lattice structure 

of orthorhombic symmetry, made of CuO2 planes stacked in pairs (bi-layers) along the 

c-axis, with non-equivalent a and b lattice parameters in the orthorhombic plane. In the 

middle of the separation between adjacent CuO2 bi-layers, there is a layer of one-

dimensional CuO chains running along the b-axis. The oxygen content of these chains 

can be varied by annealing, from full at y = 7.0 to empty at y = 6.0. For y > 6.5 or so, the 

chains conduct, at least at high temperature, causing an anisotropy in the DC 

conductivity σ, typically in the range σb / σa = 1 – 2.5 (ref. 5). 

Samples.  Our YBCO samples are fully detwinned crystals grown in non-reactive 

BaZrO3 crucibles from high-purity starting materials (see ref. 33). The samples are 

uncut, unpolished thin platelets, whose transport properties are measured via gold 

evaporated contacts (of resistance < 1 Ω), in a six-contact geometry.  Typical sample 

dimensions are 20-50 × 500-800 × 500-1000 µm3 (thickness × width × length). 

Estimates of hole concentration.  The hole concentration (doping) p in YBCO was 

determined from a relationship between Tc and the c-axis lattice constant13.  The value 

of Tc for each sample was defined as the temperature where its resistance goes to zero. 

The Tc values and corresponding p values are listed in Table S1 for the 14 samples 

studied here. 
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y ∆T Tc (K) p Tν (K) 

6.45 a 45 7.8 ------- 

6.45 b 45 7.8 ------- 

6.54 a 61.5 11.0 260 

6.67 a 66 12.0 250 

6.67 b 66 12.0 225 

6.75 a 75 13.2 230 

6.75 b 75 13.2 230 

6.86 a 91 15.0 175 

6.86 b 91 15.0 200 

6.92 b 93.5 16.1 185 

6.97 a 91.5 17.7 --------- 

6.97 b 91.5 17.7 150 

6.998 a 90.5 18.0 --------- 

6.998 b 90.5 18.0 140 

 

 

Table S1  | Sample characteristics. 

Oxygen content y, temperature gradient direction, Tc, doping p and Tν for each 

of the 14 YBCO samples measured in this study. See text for definitions of Tc, p 

and Tν. The error bar on Tc is typically ± 0.2 K. The error bar on Tν is shown in 

Figs. S1 and S2. 
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Measurement of the Nernst coefficient. The Nernst signal was measured by applying 

a steady heat current through the sample (along the x-axis). The longitudinal thermal 

gradient was measured using two uncalibrated Cernox chip thermometers (Lakeshore), 

referenced to a further calibrated Cernox. The temperature of the experiment was 

stabilized at each point to within ± 10 mK. The temperature and voltage were measured 

with and without applied thermal gradient (ΔT) for calibration. The magnetic field B, 

applied along the c-axis (B || z), was then swept, with the heat on, from – 15 to + 15 T at 

0.4 T / min, continuously taking data. The thermal gradient was monitored continuously 

and remained constant during the course of a sweep. The Nernst coefficient (N) was 

extracted from that part of the measured voltage which is anti-symmetric with respect to 

the magnetic field: 

  N = Ey / ( ∂T / ∂x ) = [ ΔVy(B) / ΔTx  –  ΔVy(-B) / ΔTx  ] ( L / 2 w )   , 

where ΔV is the difference in the voltage measured with and without thermal gradient.   

L is the length (between contacts along the x-axis) and w the width (along the y-axis) of 

the sample. This anti-symmetrization procedure removes any longitudinal 

thermoelectric contribution from the sample and a constant background from the 

measurement circuit. The uncertainty on N comes mostly from the uncertainty in 

measuring L and w, giving a typical error bar of ± 10 % on ν. 

The Nernst effect was measured in 14 YBCO samples. The raw data are shown in Figs. 

S1, S2 and S3. All the Nernst data displayed here (whether in the main article or in this 

Supplementary Information) are for an applied magnetic field B = 15 T, except for the     

p = 0.13 samples (both a-axis and b-axis), where B = 10 T. Note that the quasiparticle 

Nernst coefficient of interest here is completely independent of magnetic field. For only 

one curve, the p = 0.12 a-axis curve in Fig. 3a, we used data taken at a different field, 

namely B = 3 T.  The reason is cosmetic: to make the rise due to the superconducting 

contribution in the p = 0.12 data well separated from the rise in the p = 0.11 data. 
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DATA ANALYSIS 

Definition of the pseudogap temperature T*.  Following the standard definition18,19, 

we define the pseudogap temperature in YBCO to be the temperature Tρ below which 

the  a-axis resistivity drops below its linear temperature dependence at high 

temperature. In Fig. S4, an example is given for p = 0.13, both from our own data and 

from published data19. In Fig. 2, we plot Tρ for different dopings (using data from ref. 

19). 

Definition of Tv .  We define Tv as the temperature below which v / T falls below its 

maximal value at high temperature, as shown in Figs. S1 and S2. Because this is not a 

sharp transition but a smooth crossover, estimates of Tv have some uncertainty, 

dependent also on the noise level of the data. In Figs. S1 and S2, we show what we feel 

are reasonable uncertainties on Tv for each sample. These are then plotted in Fig. 2. In 

Fig. S4d, we show how resistivity and Nernst coefficient both deviate simultaneously 

from their linear high-temperature behaviour. In Fig. S4d and Fig. 2, we see that Tv and 

Tρ are equal within error bars, showing that the drop in v / T is caused by the onset of 

the pseudogap phase. We also show that within error bars Tv is the same for ΔT || a and 

ΔT || b. With increasing p, as Tv and Tc come together, the dip in v / T becomes 

shallower (Fig. 3). For ΔT || a, it can no longer be resolved at p = 0.177 (Fig. S2e).  

However, because it is much more pronounced for ΔT || b, roughly by a factor 10       

(Fig. S3), the dip remains clearly visible in all b-axis samples, up to and including           

p = 0.18 (Fig. S1). 

Anisotropy of the Nernst signal.  The anisotropy is obtained directly from the raw 

Nernst signals va (ΔT || a) and vb (ΔT || b) measured on a pair of de-twinned crystals 

prepared together, in identical fashion and hence with the very same doping (Fig. S3). It 

is plotted as a difference D(T) ≡ (va – vb) / T in Figs. 4a and S5, as a ratio vb / va in Fig. 

S6, and as a fraction (vb – va) / (vb + va) in Figs. 4b and S7. 
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THE ROLE OF CuO CHAINS 

Here we summarize the four arguments put forward to rule out chain conductivity as the 

cause of the large anisotropy in the Nernst signal below Tv. 

The first argument is that chain-related anisotropy, as manifest in the conductivity, 

decreases with decreasing temperature below 150 K, at all dopings (see ref. 5). By 

contrast, the Nernst anisotropy grows with decreasing temperature, at all dopings. 

The second argument is that the Nernst anisotropy undergoes a pronounced increase 

starting at Tv, being very small and temperature-independent above Tv (Fig. S5). By 

contrast, chain conductivity is either entirely unaffected by the onset of the pseudogap 

phase (as in the y = 6.998 samples; see Fig. S9a) or possibly suppressed (see ref. 5). 

The third argument is that the Nernst anisotropy remains large even when chain 

conductivity has been essentially switched off, as in the p = 0.08 samples where σb / σa 

has become negligibly small even at room temperature (see Fig. S6a and ref. 5). 

The fourth and most compelling argument is that the Nernst anisotropy is not enhanced 

by making the conductivity of chains 4 times larger at a nearly identical doping, as in 

the y = 6.998 samples vs the y = 6.97 samples (see Figs. S8 and S9). In fact, the reverse 

is true: the very high chain conductivity in 6.998 causes an anisotropy in the Nernst 

signal which is opposite to the pseudogap-related anisotropy seen in all samples. 

Indeed, the total Nernst signal is made less anisotropic below Tv, not more, by making 

the chains more conducting, e.g. vb / va ≈ 1 at 100 K (see Fig. S3f). As a result of this 

compensating effect of chains, the anisotropy difference in the 6.998 samples is smaller 

below Tv than it would otherwise be (see Fig. S9). Correcting for this chain-related 

background yields a universal rate of growth in the anisotropy below Tv (Figs. 4a and 

S9c). 
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Figure S1 | Nernst coefficient of b-axis samples (ΔT // b). 

a – f, Nernst coefficient ν of b-axis YBCO samples (ΔT // b) measured in a magnetic 

field B = 15 T (10 T for the p = 0.13 sample in b), plotted as v / T vs T, with doping 

values as indicated. The arrows indicate the value of Tν at each doping. The horizontal 

error bars indicate the uncertainty in determining the location of Tν. These Tν values are 

listed in Table S1 and plotted with their error bars in Fig. 2. During the measurement of 

the y = 6.998 b-axis sample, data between 155 and 250 K was lost. As the data below 

155 K was clearly sufficient to see the pseudogap-related drop in v / T  and define Tν 

unambiguously, we did not repeat the measurement. In order to calculate the anisotropy 

difference D(T) ≡ (νa – νb) / T up to 200 K (Fig. S9b), we interpolate the data linearly 

between 155 and 250 K, as shown by the red dashed line in f. 
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Figure S2 | Nernst coefficient of a-axis samples (ΔT // a). 

a – f, Nernst coefficient ν of a-axis YBCO samples (ΔT // a) measured in a magnetic 

field B = 15 T (10 T for the p = 0.13 sample in c), plotted as v / T vs T,  of a-axis 

samples (ΔT // a) with doping values as indicated. The arrows indicate the value of Tν at 

each doping. The horizontal error bars indicate the uncertainty in determining the 

location of Tν. These Tν values are listed in Table S1 and are plotted with their 

associated error bars in Fig. 2. 
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Figure S3 | Comparison of a-axis and b-axis Nernst signals. 

a – f, Nernst coefficient ν of YBCO measured in a magnetic field B = 15 T (10 T for the 

p = 0.13 sample in c), plotted as  v / T vs T,  comparing directly the a-axis (blue) and   

b-axis (red) signals at each doping. A pronounced anisotropy is observed at all dopings, 

with vb becoming much more negative than va at low temperature, except for the 6.998 

samples (in f), where the highly conducting chains contribute an anisotropy in the 

opposite direction, causing νa / T  to be anomalously negative, even at T > Tν. 

−0.8

−0.6

−0.4

−0.2

0

0.2 a

−4

−2

0
b

ν 
/ T

 (n
V 

/ K
2  T

)

50 100 150

−1

−0.5

0

0.5

T (K)

c

−0.4

0

0.4

p = 0.15p = 0.08

d∆ T || a
b

80 100 120 140 160

−0.05

0

0.05

T (K)

e

p = 0.18p = 0.12
y = 6.97

80 100 120 140 160

−0.1

−0.05

0

0.05

T (K)

f

y = 6.998
p = 0.18p = 0.13

doi: 10.1038/nature08716 SUPPLEMENTARY INFORMATION

www.nature.com/nature 9



 

Figure S4 | Definition of Tρ and comparison of ρ and ν / T . 

a, Resistivity of YBCO p = 0.13 for J // a (from ref. 19). The line is a linear fit to the 

data at high temperature. b, Difference between the data and the fit in a, Δρa = ρa – fit. 

The temperature below which ρa(T) deviates from linearity, or Δρa(T) deviates from 

zero, is defined as Tρ. c, Resistivity for J // a in the p = 0.13 sample studied here. 

Comparison with panel a shows excellent agreement with the data of Ando et al. (ref. 

19). d, In this panel, we compare the drop in resistivity (green) with the drop in the 

Nernst coefficient (blue) measured on the same sample (a-axis p = 0.13). We plot Δρa 

calculated from the data and fit in panel c and Δν / T, the difference between the ν / T 

data in Fig. S2c and the constant dashed-line fit at high temperature (Fig. S2c). Δν / T is 

shown for ΔT // a (blue circles; data from Fig. S2c) and ΔT // b (red circles; data from 

Fig. S1b). The value of Tv for ΔT // a and ΔT // b is shown as arrows (from Figs. S1b 

and S2c). 
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Figure S5 | Anisotropy of the Nernst signal: difference. 

Difference in the Nernst signal of YBCO between ∆T || a (data in Fig. S2) and ∆T || b 

(data in Fig. S1) measured at a given doping, defined as D(T) ≡ (νa – νb ) / T , for 

dopings as indicated. The inset of panel a is a zoom on the p = 0.12 data at high 

temperature. The arrows show the location of Tν  (from b-axis data in Fig. S1). Upon 

cooling, the increase in D(T) above its very small nearly flat value at high temperature 

is seen to start precisely at Tν  in all cases, showing that the onset of the pseudgap phase 

is causing the anisotropy. The colour-coded dashed lines are linear fits to the data above  

Tν ; the fact that they have a slight downward slope may reflect a small contribution 

from CuO chains, better seen in the 6.998 samples (Fig. S9b). Note that the slow initial 

rise in D(T) below Tν  is due to the slow initial rise in the signal itself (Fig. S7). 
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Figure S6 | Anisotropy of the Nernst signal: ratio. 

Anisotropy of the Nernst signal compared with the corresponding anisotropy of the 

conductivity, both plotted as ratios: νb / νa (dots) and σb / σa (curve), respectively. The 

separate data for νa and νb are shown in Fig. S3. a, For p = 0.08, we see that both ratios 

rise with decreasing temperature, roughly tracking each other (but with νb / νa being 

considerably larger). The fact that σb / σa → 1 at high temperature shows that the 

conductivity of CuO chains is negligible at this doping, as previously demonstrated5. 

This implies that the large anisotropy in the Nernst signal is a property of the CuO2 

planes. b, At p = 0.12, the chains now conduct5. While they dominate the anisotropy in 

σ and completely modify the temperature dependence of σb / σa (with respect to that 

seen at p = 0.08), the behaviour of νb / νa remains much the same as for p = 0.08. There 

is a ± 20 % error bar on νb / νa (shown for 90 K) from the ± 10 % uncertainty on each of 

νb and νa. 
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Figure S7 | Anisotropy of the Nernst signal: difference vs sum. 

The a-b anisotropy of the Nernst coefficient ν can be displayed as a ratio, νb / νa (as in     

Fig. S6) or as a difference, D(T) = (νa – νb ) / T (as in Fig. S5). Above Tν, D(T) is very 

small but not quite zero, and it rises dramatically below Tν. In order to display purely 

the pseudogap-induced anisotropy, we can subtract the small background anisotropy, 

and plot either D(T) – D(Tν), as in Fig. 4a, or more precisely D(T) – D0(T), as in panel b, 

where D0(T) is a linear fit to D(T) above Tν (see panel d). However, D(T) is not a 

transparent measure of the anisotropy because its growth is dominated by the dramatic 

growth in the underlying Nernst signal ν itself. A more revealing quantity to look at is 

the ratio of difference over sum, or D(T) / S(T) = (νb – νa) / (νb + νa), where                     

S(T) ≡ – (νb + νa ) / T. This quantity can be viewed as a “nematic order parameter” (ref. 

34), analogous to the equivalent ratio derived from the resistance, (Rx – Ry ) / (Rx + Ry ), 

used as a measure of nematicity in 2D electron gases and Sr3Ru2O7 (ref. 34). Using the 

raw data for νa and νb in YBCO at p = 0.12 (from Fig. S3b), this ratio is plotted in      

Fig. 4b and panel e (full red dots). The degree of nematicity is large at low temperature, 

roughly 0.8 at 90 K, for an absolute maximum of 1.0. However, because both (νa – νb) 

and (νa + νb) change sign near 150 K (panels c and d), it becomes meaningless to plot        

(νb – νa) / (νb + νa) above 120 K or so. We can avoid this complication by measuring 

D(T) and S(T) relative to their value at Tν, i.e. by plotting [D(T) – D(Tν)] / [S(T) – S(Tν)], 

as in Fig. 4b and panel e (open circles). (For comparison, we also plot [D(T) – D0] / 

[S(T) – S0] and [D(T) – D0] / [S(T) – 2S0] in panel e, with S0 a small constant offset; see 

panel c.) Note that the uncertainty becomes large as T → Tν, where the denominator 

approaches zero, so the detailed rise just below Tν is not known. At low temperature, 

however, [D(T) – D(Tν)] / [S(T) – S(Tν)] ≈ (νb – νa) / (νb + νa) is well-defined and 

accurately known. 
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Figure S8 | Conductivity anisotropy in samples with y = 6.97 vs y = 6.998. 

Anisotropy of the in-plane conductivity σ(T) of YBCO at p ≈ 0.18, for samples with 

oxygen content y = 6.97 (blue) and y = 6.998 (red). a, Anisotropy ratio σb / σa . A value 

of 4.7 reached near 150 K is the largest anisotropy ratio reported to date, indicating a 

high level of order and purity in the CuO chains of these 6.998 samples. b, Anisotropy 

difference σb – σa , a direct measure of the chain conductivity.  By going from 3% 

oxygen vacancies in the CuO chains of the y = 6.97 samples to 0.2% vacancies in the    

y = 6.998 samples, the conductivity of chains is enhanced by a factor 4. 
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Figure S9 | Chain contribution to the Nernst anisotropy. 

Here we compare the two pairs of samples whose conductivity anisotropy is shown in 

Fig. S8, with y = 6.97 (green) and y = 6.998 (brown). a, Chain resistivity of the 6.998 

samples, defined as ρchain ≡ 1 / (σb – σa), plotted vs T2. ρchain is seen to exhibit a perfect 

T2 dependence from Tc to 300 K, known to be characteristic of chains both in 

YBa2Cu3Oy (ref. 35) and in YBa2Cu4O8 (ref. 36). Note that the T2 dependence persists 

unperturbed through Tν (arrow), evidence that chains are unaffected by the onset of the 

pseudogap phase. b, Anisotropy difference in the Nernst signal, D(T) ≡ va / T – vb / T, 

plotted as D(T) – D(Tν) versus T / Tν . For a given pair of samples, we use the value of 

Tν for the b-axis sample; the same is true for Fig. 4a. The non-zero downward-sloping 

background in the 6.998 data above Tν is a clear manifestation of the enhanced chain 

conductivity. The nearly flat background above Tν in the 6.97 samples, and indeed at all 

other dopings (see Fig. 4a and Fig. S5), shows that chains make a negligible 

contribution to the Nernst anisotropy above Tν unless they are extremely conducting, as 

in the 6.998 samples. Assuming that the chain-induced background in the 6.998 extends 

smoothly below Tν, as sketched by the dashed line, we can subtract that background 

(dashed line) from the 6.998 data to get the chain-free data shown in panel c. The 

resulting chain-free anisotropy is then seen to be the same for both pairs of samples. 

Support for the assumption that the chain contribution extends smoothly through Tν 

comes from the fact that the chain conductivity goes through Tν unperturbed, as shown 

for YBa2Cu3O6.998 in panel a. The same is true for YBa2Cu4O8 through T* (ref. 36). 
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