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Over 20 years since the discovery of high temperature superconductivity in cuprates
(Bednorz and Müller, 1986 [1]), the first convincing observation of quantum oscillations
in underdoped YBa2Cu3O6.5 (Doiron-Leyraud et al., 2007 [2]) has deeply changed the
theoretical landscape relevant to these materials. The Fermi surface is a basic concept
of solid state physics, which underpins most physical properties (electrical, thermal,
optical, etc.) of a metal. Even in the presence of interactions, this fundamental concept
remains robust. While there was little doubt about the existence of a Fermi surface on
the overdoped side of the phase diagram of the cuprates, the discovery of quantum
oscillations in the underdoped regime was a surprise. The small pockets inferred from the
measurements in underdoped YBa2Cu3Oy contrast with the large orbit found in overdoped
Tl2Ba2CuO6+δ . A central issue in understanding the phase diagram of high temperature
superconductors is the origin of this difference at opposite sides of the superconducting
dome. This review aims to shed light on this issue by bringing together recent results of
quantum oscillation and transport measurements under high magnetic fields in hole-doped
cuprates.

© 2011 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

r é s u m é

Près de 20 ans après la découverte de la supraconductivité à haute température dans les
cuprates (Bednorz et Müller, 1986 [1]), les bases théoriques nécessaires à la compréhension
de ces systèmes ont été bouleversées par les premières observations indiscutables
d’oscillations quantiques dans YBa2Cu3O6.5 sous-dopé (Doiron-Leyraud et al., 2007 [2]).
En effet, la surface de Fermi reflète la plupart des propriétés physiques des métaux
(électriques, thermiques, optiques, etc.). Ce concept de base est très robuste, et demeure
valide même en présence de fortes interactions électroniques. Néanmoins, s’il n’y avait
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aucun doute sur l’existence de cette surface de Fermi du côté sur-dopé, la découverte
d’oscillations quantiques du côté sous-dopé a été, elle, une vraie surprise. Les petites
poches déduites des mesures dans YBa2Cu3Oy sous-dopé contrastent avec la grande orbite
observée dans Tl2Ba2CuO6+δ sur-dopé. Une question clef posée par le diagramme de phase
des cuprates est donc cette différence de comportement de part et d’autre du dôme
supraconducteur. Nous apportons des éléments de réponse à cette question, à la lumière
des résultats récents obtenus par les mesures d’oscillations quantiques et de transport sous
fort champ magnétique dans les cuprates dopés aux trous.

© 2011 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

The generic phase diagram of hole-doped cuprates shown in Fig. 1 shows that high temperature superconductivity (HTSC)
[1] is sandwiched between an insulating and a metallic phase. At zero doping, band structure calculations predict the
conducting band to be half-filled and therefore the system to be metallic. However, the strong electron–electron correlations
(strong on-site Coulomb repulsion) impede electrons from hopping from one atom to another. The resulting ground state
is a Mott insulator, which adopts an antiferromagnetic (AF) configuration for the Cu spin 1/2. The AF phase is rapidly
destabilized when carriers are added in the CuO2 planes and the Néel temperature T N vanishes at p ≈ 0.05 where the
superconducting dome emerges and extends to p ≈ 0.31 (for overdoped Tl2Ba2CuO6+δ). The optimal doping corresponds to
p ≈ 0.16 where the superconducting transition Tc is maximal. The underdoped (overdoped) regime corresponds to the left
(right) part of the dome.

On the strongly overdoped side, the electronic properties can be understood within the framework of the generalized
Fermi-liquid (FL) theory, the standard theory of electrons in solids. One robust signature of a FL is the observation of the
Wiedemann–Franz law in overdoped Tl2Ba2CuO6+δ [3] which demonstrates that the fermions which carry heat also carry
charge e and are therefore indistinguishable from standard Landau quasiparticles. Another strong indication of FL behaviour
comes from transport measurements in heavily overdoped (non-superconducting) La2−xSrxCuO4 which shows that both
ρab and ρc exhibit strictly T 2 behavior below 50 K [4]. However, as the overdoped compound becomes superconducting,
an additional T-linear component of the resistivity appears as seen in resistivity [3,5,6] and angular magneto-resistance
oscillation (AMRO) [7] measurements on Tl2Ba2CuO6+δ and in high-field magneto-transport measurements in the normal
state of overdoped La1.6−xNd0.4SrxCuO4 [8] and La2−xSrxCuO4 [9].

The underdoped side of the phase diagram is characterized by the presence of the mysterious pseudogap phase. The
first evidence of the pseudogap phase came from NMR measurements back in 1989 [10,11]. At a temperature T ∗ ≈ 300 K,
a sudden suppression of the Knight shift occurs. The fact that this happens at a temperature much higher than Tc in under-
doped cuprates suggests that the pseudogap is associated with spin singlet formation in agreement with a scenario based
on preformed pairs which form at T ∗ but without phase coherence. The latter occurs only at Tc where superconductivity
(zero resistance, Meissner effect) sets in. Angle-resolved photoemission spectroscopy (ARPES) measurements in underdoped
Bi2Sr2CaCu2O8+δ close to the anti-nodal directions have revealed that the quasiparticle peak disappears above Tc and that
there is an energy gap above Tc which persists up to T ∗ [12]. This gap is strongly anisotropic since it appears only at the
anti-nodal region of the Fermi surface (FS). The d-wave node below Tc becomes a gapless arc above Tc which expands
with increasing temperature to form the full FS at T ∗ . The similarity between the superconducting gap and the pseudogap
suggests that the latter may be a precursor of the former.

Fig. 1. Generic temperature-doping phase diagram of high temperature cuprate superconductors. The parent compound is an antiferromagnetic Mott insu-
lator. The dotted line is a crossover which mark the appearance of the pseudogap phase. At high doping, a generalized Fermi liquid behavior is recovered.
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An alternative scenario for the pseudogap phase is to assume that T ∗ marks the onset of an ordered phase. Coming
back to the NMR measurements and assuming that the Knight shift is proportional to the density of states at the Fermi
level, T ∗ marks the onset of an instability resulting in an energy gap. At least three experiments suggest that T ∗ marks
the onset of a phase with broken symmetry: using polarized elastic neutron diffraction, a novel AF order at Q = 0 has
been identified in underdoped YBa2Cu3Oy [13] and in underdoped HgBa2CuO4+δ [14]. Polar Kerr effect measurements
in underdoped YBa2Cu3Oy found also evidence for broken time-reversal symmetry near the pseudogap temperature [15].
Finally, recent Nernst effect measurements in underdoped YBa2Cu3Oy report the observation of a large in-plane anisotropy
of the Nernst coefficient that sets in precisely at T ∗ , suggesting that the pseudogap phase is an electronic state that breaks
four-fold rotational symmetry [16].

There is still no consensus whether the pseudogap is a precursor to or distinct from the superconducting phase [17]. In
most doped Mott insulator scenarios such as the “resonating valence bond” (RVB) [18] or the pre-formed pairs scenario [19],
the pseudogap phase corresponds to a phase with either spin singlets formation or pre-formed pairs without phase coher-
ence. The FS consists of 4 nodal hole pockets, with one side of each pocket having a quasiparticle residue much smaller
than the other one, leading to Fermi arcs. In other classes of scenarios such as spin density wave order [20,21], stripe or-
der [22,23], d-density wave order [24] or Marginal Fermi liquid (MFL) [25], the pseudogap is not related to superconductivity
but rather competes with it. All these scenarios predict a quantum critical point lying inside the superconducting dome in
the overdoped side [26,27] where the pseudogap disappears. Except for the MFL scenario, they involve a FS reconstruction
where the resulting FS typically consists of electron and hole sheets.

The discovery of magnetic quantum oscillations in underdoped YBa2Cu3Oy in 2007 has provided us with a powerful new
probe of this reconstruction [2].

2. Magnetic quantum oscillations

2.1. Theory

In the presence of a magnetic field, the energy levels of electrons are quantized into Landau levels. A full quantum
mechanic treatment leads to the electronic dispersion for free electrons:

εn(kz) =
(
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h̄ωc + h̄2k2
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The Landau levels are separated by the energy h̄ωc = h̄eB/m∗ , which increases as the field increases. As the field is swept,
there is a reorganization of the electronic states: each time a Landau level crosses the Fermi energy, there is a singularity in
the density of states which gives rise to the oscillation of many physical properties [28]. The oscillation of the magnetization
is called the de Haas–van Alphen effect [29] (dHvA) and the oscillation of the resistivity is called the Shubnikov–de Haas
effect [30] (SdH) in tribute to the scientists who discovered these effects in elemental bismuth in 1930. The dHvA and SdH
effects are described by the Lifshitz–Kosevich (LK) theory [31]. The oscillatory part of the magnetoconductivity for a general
3D case is given by:
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The frequency Fi of the oscillation is proportional to the extremal area Ai of the FS (sum over i Fermi surfaces): Fi =
h̄

2πe Ai . The index p corresponds to the sum over the harmonics. γi is a phase factor and RT , R D and R S are the thermal,
impurity and spin damping factors, respectively.

When the amplitude of the oscillations is small in comparison to the background, the LK formula can be applied to
the oscillatory part of the magnetoresistance: �σ

σ ≈ �ρ
ρ . When the amplitude of the oscillations becomes comparable to the

background, then one has to work on the oscillatory part of the conductivity. Dividing the oscillatory part by the background
and applying the LK formula for large amplitude oscillations would generally lead to the appearance of harmonics in the
signal.

In order to observe quantum oscillations, it is necessary that the distance between Landau levels is greater than the
thermal broadening, e.g. h̄ωc > kB T . These measurements are therefore performed at low temperature (below 10 K in the
case of the cuprates). The damping factor

RT = αT m∗
i /B

sinh(αT m∗
i /B)

= X

sinh(X)

with α = 2π2m∗kB/eh̄ takes into account finite temperature effects due to the broadening of the Fermi function. It allows
the effective mass m∗ to be deduced from the temperature dependence of the amplitude of the oscillations. m∗ is the
thermodynamic effective mass which includes electron–electron and electron–phonon interactions and can be compared to
that deduced from the Sommerfeld coefficient of the specific heat.

Another requirement to observe quantum oscillations is that the broadening of the Landau levels due to impurity
scattering should be less than the distance between the Landau levels, e.g. h̄ωc > h̄/τ leading to ωcτ > 1. The damping



B. Vignolle et al. / C. R. Physique 12 (2011) 446–460 449
factor
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is called the Dingle factor, where � is the low temperature mean free path that can be deduced from the field dependence
of the amplitude of the oscillations. This term imposes the necessity to work on high quality single crystals. Due to the
stronger effect of small angle scattering on the dephasing of the quantum oscillations, � extracted from quantum oscillations
is usually smaller than the mean free path deduced from transport measurements [32].

Finally, the damping factor R S = cos( π glms
2m0

) takes into account the spin splitting due to Zeeman effect. The effective
mass which enters this expression is usually not the same as m∗ . Since ms only includes electro-electron interactions:
m∗ = (1 + λphonon)ms [33].1

In the case of a quasi-2D metal, the warping of the FS manifests itself as a frequency-splitting corresponding to neck
and belly frequencies, associated with the minimum and maximum cross-sections of the FS. The oscillatory part of the
magnetoresistivity of the fundamental component of oscillation becomes:
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F is the frequency corresponding to the average area of a cylinder, �F is the splitting corresponding to the warping of
the cylinder described by the Bessel function J0, kF is the average radius of the cylinder, c is the c-axis lattice parameter,
θ is the angle between the field and the c-axis, γ is a phase factor. RT , R D , and Rs are the damping factors discussed
previously. Instead of treating the electron effective mass, the amplitude, the phase of the oscillations, and the Dingle
temperature separately for the neck and belly orbits, only one value of each of these parameters is required to describe a
single FS, reducing the number of fitting parameters.

2.2. Experimental techniques

Transport and torque measurements up to 60 T are routinely performed at the LNCMI in Toulouse, in pulsed resistive
magnets driven by a 24 kV, 14 MJ capacitor bank [35]. Variable temperatures are obtained using a standard 4He cryostat for
T varying from 1.5 to 300 K and using a dilution fridge with a plastic mixing chamber for temperatures below 1.5 K. For in-
plane transport measurements, longitudinal (Rxx) and transverse (Rxy) resistances are obtained from the voltage difference
measured diagonally on either side of the sample width, for a field parallel (up) and anti-parallel (down) to the c-axis.
Electrical contacts to the sample were made by evaporating gold pads. For longitudinal c-axis transport (I ‖ B ‖ c), large
current pads and small voltage pads mounted across the top and bottom so as to short out any in-plane current (Corbino
geometry). A current excitation of 5 to 10 mA at 60 kHz was used. Typical dimension of the samples are (1×1×0.05 mm3).

Torque measurements were performed with a commercial piezoresistive microcantilever [36] down to 0.4 K. The sample
was glued with Araldite epoxy to the cantilever. A one-axis rotating sample holder allowed the angle (θ ∼ 5◦) to be varied
between the normal to the CuO2 planes and the magnetic field at ambient temperature. The cantilever was set inside a
vacuum tight resin capsule filled at room temperature with 4He gas to ensure thermalization of the sample. This capsule
sits in the 3He/4He mixture of the dilution fridge. The temperature gradient between the sample located at the end of the
cantilever and the thermometer located in the mixing chamber was estimated by measuring the critical field of a known
compound under the same experimental conditions. The temperature gradient is about 0.2 ± 0.1 K at 0.4 K and negligible
above 1 K. This uncertainty does not affect significantly the value of the physical parameters extracted from the data. The
variation of the piezoresistance of the cantilever is measured with a Wheatstone bridge with an AC excitation at a frequency
of 63 kHz.

For both electrical transport and torque measurements, we ensure that data collected during the rise and the fall of the
field pulse are in perfect agreement, excluding any heating due to eddy currents.

3. Quantum oscillations in overdoped Tl2Ba2CuO6+δ

First experimental clues for the existence of a FS in overdoped Tl2Ba2CuO6+δ came from AMRO [37] and ARPES [38]
experiments. Both probes have suggested the existence of a FS in agreement with band structure calculations [39], e.g. a
large quasi-two-dimensional (Q2D) warped cylinder which represents ∼ 65% of the first Brillouin zone. Nevertheless AMRO
is a semi-classical probe of the underlying FS which cannot directly conclude about the coherent nature of quasiparticles and
the peak of quasiparticles measured by ARPES is too broad (100 meV) to be ascribed to coherent quasiparticles. Quantum
oscillations are the most sensitive probe of the FS of a metal and demonstrate that well-defined quasiparticles are the low
energy excitations of the system. They have long been searched for in overdoped cuprates, but have only been detected
within the last two years.

1 Note that ms is renormalized by the spin-symmetric and the spin anti-symmetric (Stoner) parts of the electron–electron interactions but not by
electron–phonon interactions. m∗ is renormalized by the spin-symmetric part of the electron–electron interactions and also by electron–phonon interac-
tions [34].
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Fig. 2. (a) Magnetic field dependence of the interlayer resistance of overdoped Tl2Ba2CuO6+δ (Tc = 10 K) at T = 2.8 K (raw data). The insert is a zoom
on the high field part where quantum oscillations are seen for B > 58 T. (b) Oscillatory part of the torque data plotted as a function of 1/B . (c) Fourier
transform of the signal presented in (b), showing a single peak at F = 18 100 T (from [40]).

Quantum oscillations measurements in overdoped Tl2Ba2CuO6+δ were performed by means of longitudinal c-axis mag-
netoresistance as well as torque measurements [40]. Single crystals of Tl2Ba2CuO6+δ with Tc ≈ 10 K have been chosen for
their high crystalline quality, with a mean free path estimated from zero field transport measurements to be of the order
of 100 nm [5]. Fig. 2a shows the interlayer magnetoresistance up to 60 T. Above the superconducting transition, a strong
magnetoresistance develops and quantum oscillations with small amplitude emerge above the noise level from 58 T in the
magnetoresistance measurements (see insert of Fig. 2a). Fig. 2b displays the oscillatory part of the magnetization plotted
versus 1/B . The observation of oscillations, periodic in 1/B , in both the magnetization and the resistivity, at fields well
above the upper critical field, confirms these as quantum oscillations. The Fourier transform yields the power spectrum dis-
played in Fig. 2c which consists in a single sharp peak at a frequency of 18 100 ± 50 T. The frequency of oscillation can be
related to the extremal area of the FS perpendicular to the applied magnetic field via the Onsager relation, leading to a FS
cross section A F = 172.8±0.5 nm−2. Assuming a cylindrical FS, the corresponding Fermi wavevector kF = 7.42±0.05 nm−1

is in excellent agreement with the values deduced from AMRO (kF = 7.35 ± 0.1 nm−1) [37] and ARPES (7.28 ± 0.2 nm−1)
[38] at similar doping level. The Luttinger sum rule states that at 2D the density of carriers n = 2A F /(2π)2, that is n = F/φ0
where φ0 = h/2e is the flux quantum. The measured frequency corresponds to a carrier density n = 1.3 = 1 + p with 1 hole
corresponding to the half-filled band, and p hole added by hole doping. This agrees nicely with the Hall number nH = 1.3
obtained at low temperature [5].

More recently, the angular dependence of quantum oscillations in two samples at different doping level (Tc = 10 K and
26 K) have been studied in static fields up to 45 T at the NHMFL [41]. The frequency reported for the Tc = 10 K sample
is in excellent agreement with the one reported in pulsed field (18 100 T). The frequency of oscillations for the Tc = 26 K
sample is 17 630 T, corresponding to a carrier density n = 1.27 = 1 + p.

The effective mass m∗ of the quasiparticles can be deduced from the temperature dependence of the quantum oscilla-
tions amplitude. Within the experimental resolution, this evolution is found to follow the Lifshitz–Kosevich formalism. The
deduced effective mass measured in pulsed field m∗ = (4.1±1)m0, where m0 is the free electron mass, indicates that strong
electronic correlations still persist at this doping level (DFT calculations predict that the bare band mass is 1.7 m0 at this
doping level) [42]. The lower temperature achieved in the static field study enables the effective mass deduced from the
pulsed field experiment to be refined: m∗ = 4.9 − 5.8 m0 for the Tc = 10 K samples and m∗ ≈ 5 m0 for the Tc = 26 K sam-
ple. Analysis of the field dependence of the quantum oscillations leads to an estimate of the Dingle temperature T D ≈ 6 K,
corresponding to a mean free path � ≈ 320 Å.

Given that for a two-dimensional FS, the electronic specific heat (Sommerfeld coefficient) is γel = (π N Ak2
Ba2/3h̄2)m∗

(where kB is the Boltzmann constant, N A is Avogadro number, and a = 3.86 Å is the in-plane lattice constant), m∗ deduced
from quantum oscillations converts to γel = 7.6 ± 0.6 mJ mol−1 K−2 [42], in excellent agreement with that measured directly
for overdoped polycrystalline Tl2Ba2CuO6+δ (7.0 ± 2.0 mJ mol−1 K−2) [43]. The mass enhancement appears to be rather
doping independent in this doping range, as expected from the relatively doping independent Sommerfeld coefficient [43]
extracted from heat capacity measurements.

We can thus make quantitative comparisons between quasiparticle properties derived from quantum oscillations at high
fields and those measured directly by transport, ARPES and thermodynamics at zero field. This good overall consistency
implies that the FS only consists of the single quasi-two-dimensional sheet measured with quantum oscillations.

The angular dependence of the amplitude of the oscillations is consistent with conventional Zeeman splitting, giving
rise to spin zero at a polar angle θ = 27.5◦ , yielding a spin mass of 4.9 m0, close to the measured thermodynamic mass.
This study also confirms that the crystals are highly homogeneous samples (δp < 0.005) and that quantum oscillations
do not arise from a non-superconducting fraction of the sample, ruling out scenarios where the weakening of supercon-
ductivity with overdoping is due to inhomogeneity (i.e. phase segregation between hole-rich (non-SC) and hole-poor (SC)
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Fig. 3. (a) Hall resistance Rxy as a function of magnetic field B , for YBa2Cu3O6.5, at different temperatures between 1.5 and 4.2 K (from [2]). The field is
applied normal to the CuO2 planes (B ‖ c) and the current is along the a-axis of the orthorhombic crystal structure ( J ‖ a). Note that Rxy < 0, pointing to
electron-like carriers. The insert shows a zoom on the data at T = 2 K, with a fitted monotonic background (dashed line). (b) The oscillatory component of
the 4-points measurements of the magnetoresistance for YBa2Cu4O8 at various temperatures. Solid lines are best fits to Eq. (1) giving m∗ = (2.7 ± 0.3)m0

(from [44]).

regions). Superconductivity in Tl2Ba2CuO6+δ is found disappear at p(Tc = 0) = 0.31, a significantly higher doping level than
in La2−xSrxCuO4 where p(Tc = 0) = 0.27. Pair breaking effects due to impurity scattering can explain this trend as the
amount of impurity and disorder is known to be greater in La2−xSrxCuO4.

In summary, the FS of overdoped Tl2Ba2CuO6+δ is characterized by a large Q2D hole-like Fermi cylinder covering ∼65%
of the first Brillouin zone. All the numbers deduced from these low temperature/high magnetic field studies are in excellent
agreement with other experimental techniques (zero and low magnetic field) in the same material at similar doping levels.
Despite strong electron–electron interactions, the observation of quantum oscillations implies that quasiparticles exist at all
points of the FS of overdoped Tl2Ba2CuO6+δ . The observation of genuine quantum oscillations in Tl2Ba2CuO6+δ supports the
recognized idea that generalized Fermi-liquid theory can be applied on the overdoped side of the phase diagram, and that
deviations from the Fermi–Dirac statistics are not relevant above 350 mK [42].

4. Quantum oscillations in underdoped YBa2Cu3Oy and YBa2Cu4O8

The open issue is now to understand how the large FS enclosing 1+ p holes for overdoped cuprates evolves as the system
is driven closer to the Mott insulating phase. As shown by ARPES measurements for example, the underdoped regime is
highly anomalous and the FS seems to consist of disconnected “Fermi arcs” [12]. The fundamental question that can be
addressed with quantum oscillation measurements is whether underdoped copper oxides have a closed and coherent FS,
and if so, whether it is different from that seen in the overdoped regime.

Fig. 3a shows the first convincing evidence of quantum oscillations in cuprates, detected in the Hall resistance of
YBa2Cu3O6.5 (Tc = 57.5 K, p = 0.10) where oscillations are clearly seen above the resistive superconducting transition [2].
The insert of Fig. 3a shows the 2 K isotherm and a smooth background curve (dashed line). A subtraction of this monotonic
background allows to show that the oscillations are periodic in 1/B , as expected for oscillations that arise from Landau
quantization. The Fourier transform consists in a single peak at F = (530 ± 20) T. Oscillations of the same frequency are also
observed in Rxx , albeit with a smaller amplitude [45]. The temperature dependence of the amplitude of the oscillations al-
lows to deduce the effective mass m∗ = (1.9 ± 0.1)m0. The observation of genuine quantum oscillations has been confirmed
by measurements of the de Haas–van Alphen effect in YBa2Cu3O6.5 [46] with the same frequency and effective mass. As a
thermodynamic measurement, it firmly establishes the existence of well-defined quasiparticles at the FS with a substantial
mean free path.

Fig. 3b shows the temperature dependence of the oscillatory component of the magnetoresistance for the related stoi-
chiometric compound YBa2Cu4O8 (Tc = 82 K, p = 0.14) between 50 and 61 T [44]. A fit of Eq. (1) to the data (shown
in solid lines in Fig. 3b) gives a single frequency F = (660 ± 30) T, an effective mass m∗ = (2.7 ± 0.3)m0 and an average
SdH mean free path �SdH = (90 ± 30) Å. Quantum oscillations in YBa2Cu4O8 have also been observed using a tunnel-diode
oscillator technique in pulsed magnetic fields up to 85 T in Los Alamos [47]. The oscillation frequency, F = (660 ± 15) T,
and the effective mass, m∗ = (3.1 ± 0.3) m0, are consistent with the measurements in Toulouse.

4.1. Evidence for multiple frequencies in YBa2Cu3Oy

The presence of the main frequency F = 540 T has been confirmed by de Haas–van Alphen measurements in YBa2Cu3O6.5
(also grown at the University of British Columbia) by the Cambridge group in static magnetic fields up to 45 T in Tallahassee
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Fig. 4. Fourier analysis of the oscillatory torque (see insert) for YBa2Cu3O6.54 showing that the main oscillation, at first believed to be single frequency, is
composed of three closely spaced frequencies (from [49]).

[48]. In addition, a new oscillatory component of higher frequency called Fβ = (1650 ± 40) T has been reported with an
amplitude almost 30 times smaller than the dominant component. In order to confirm whether there are other closed
sections of the FS, something of fundamental importance for clarifying the FS of HTSC in the pseudogap phase, we have
performed high-precision measurements of the de Haas–van Alphen effect in underdoped YBa2Cu3Oy (y = 6.51 and y =
6.54) by averaging several pulses (up to 10) for the same experimental conditions [49].

The insert of Fig. 4 shows the oscillatory component of the torque for YBa2Cu3O6.54 at T = (0.7 ± 0.2) K. We found no
evidence for an oscillatory component of the high frequency Fβ as reported in Ref. [48]. However, the improved sensitivity
of the measurements allows the discovery of some important details on the electronic structure of underdoped YBCO. While
the amplitude of the oscillations should grow exponentially with magnetic field for a single frequency, a modulation of
the amplitude of the oscillations (beating effect) can be noticed in the raw data, which is the signature of the presence of
more than one frequency in the oscillatory spectrum. In order to resolve the multiple frequencies, we have performed fits
of Eq. (1) to the data with four frequencies. Fig. 4 shows a Fourier transform of the data (the broad peak in blue circles
with a maximum around 535 T) along with the relative amplitude of three frequencies used in the fit: a main frequency
F1 = 540 ± 15 T (red line) and two satellites F2 = 450 ± 15 T (green line) and F3 = 630 ± 40 T (purple line). The fourth
frequency F4 = 1130 ± 20 T corresponds probably to the second harmonic of F1. The most natural explanation for the
multiple frequencies is to invoke both a slight modulation of the FS sheet along the c-axis (warping) and a bilayer splitting
effect, the latter being intrinsic to YBa2Cu3Oy which contains two closely spaced CuO2 planes.

In such a situation, angle dependent measurements are needed to clarify whether the multiple frequencies arise from a
warped 3-dimensional surface or from separate Fermi sheets. Indeed, if the multiple frequencies arise from the neck and
belly orbits, they should follow an angle dependence given by Eq. (2). c-axis longitudinal magnetoresistance measurements
in YBa2Cu3O6.5 have been performed at different angles between the CuO2 plane and the magnetic field [33]. By measuring
c-axis resistivity, this is the cyclotron motion of electrons in a plane perpendicular to the applied magnetic field which
is being probed. The advantage of measuring c-axis resistivity is the large amplitude of the signal, which is at least two
orders of magnitude larger than in-plane measurements due to the anisotropy of the electronic properties of YBa2Cu3Oy

and increases greatly the sensitivity of the measurements.
Assuming that the frequency splitting is due to warping of the FS, fits of Eq. (2) for a quasi-2D FS have been performed

to the entire set of data. A method based on a genetic algorithm that explores a wide parameter space for the entire data
set allows one to fit both the field and the angle dependence of the resistivity simultaneously and then iterating with fits
to the field and temperature dependence [33]. The fitted model involves two surfaces (F S1 = 526 T and F S2 = 478 T) and
their corresponding difference between the area of the neck and belly orbits (�F S1 = 3.5 T and �F S2 = 37.7 T). Note that
the contributions from higher harmonics and a weak signal with a frequency near F3 = 630 T have not been included in
the model. The closeness in size of the cylinders, in the Dingle temperatures, and in the cyclotron masses suggest that
the separate pieces of FS might be more closely related, as it is the case for example in a bilayer splitting scenario. In
addition, these measurements uncover for the first time the effects of Zeeman splitting in the measurements [33], known
as the spin-zero effect due to the interference of spin-up and spin-down contributions on each Fermi sheets. The spin-zero
effect manifests itself as a vanishing of the amplitude of the oscillations for the entire field range at a specific angle. This
indicates that the interaction of the magnetic field with the spins of the electrons is a simple symmetric Zeeman splitting,
linear in magnetic field, a key sign that the quasiparticles in the cuprates behave as free spins. The presence of spin-zero
is consistent with either non-magnetic scenarios [50] or longitudinal (or canted) spin density wave (SDW) (e.g. when the
staggered moments have a substantial component along the field direction) [51].
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Fig. 5. (a) Oscillatory part of the c-axis magnetoresistance plotted as 1/B in YBa2Cu3Oy at T = 1.5 K for different doping levels p. Note that the curves for
p = 0.102 and p = 0.105 have been multiplied by a factor 10 and those for p = 0.097 and p = 0.12 by a factor 100. (b) Doping dependence of the frequency
of quantum oscillations deduced from the raw data shown in (a). The red (round) point at p = 0.14 corresponds to in-plane resistivity measurements in
YBa2Cu4O8 from Ref. [44]. The dashed line is a guide to eyes.

4.2. Doping dependence of the frequency of quantum oscillations in YBa2Cu3Oy

A doping evolution of the frequency observed is of prime interest to settle the topology of the FS that will be discussed
In Section 7. The oscillatory parts of the magnetoresistance of YBa2Cu3Oy at five different doping levels between 45 T
and 60 T is shown in Fig. 5. The signal becomes very small as the doping level departs from high quality oxygen ordered
YBa2Cu3O6.5 (p = 0.11).

While there is a subtle change in the frequency of oscillations, a careful analysis by indexing the maximum of the
oscillations versus 1/B (Onsager relation [28]) yields the doping dependence of the frequency shown in Fig. 5b. There is a
clear trend of increasing frequency as the doping increases, that is to say the size of the small Fermi pocket increases when
the system is doped. This doping evolution is a key feature to discuss the topology of the FS in the underdoped regime and
calls for a close theoretical investigation.

5. Comparison of quantum oscillations on both sides of the phase diagram

We now discuss the implications of quantum oscillations on both sides of the phase diagram of cuprates. In Fig. 6a, the
oscillatory part of the magnetization for YBa2Cu3O6.5 (red) and Tl2Ba2CuO6+δ (magenta) are plotted together as 1/B . There
is a drastic difference in the frequency of the oscillations as shown by the corresponding Fourier transform in Fig. 6b. For
overdoped Tl2Ba2CuO6+δ , a frequency F = 18 100 T leads to a FS cross section area A F = 172.8 nm−2, which represents
65% of the first Brillouin zone. Surprisingly, the frequency F = 540 T found for underdoped YBa2Cu3O6.5 corresponds to an
extremal area A F = 5.1 nm−2, which represents only 1.9% of the first Brillouin zone. A sketch of the size of the pocket in
the first Brillouin zone deduced from quantum oscillations is shown in the insert of Fig. 6b. For Tl2Ba2CuO6+δ , a frequency
F = 18 100 T converts to a carrier density n = 1.3 = 1 + p carrier per Cu atom, while for YBa2Cu3O6.5, the frequency
F = 540 T corresponds to n = 0.038 carrier per planar Cu atom.

The dramatic difference between the small pocket revealed by the low frequency reported for YBa2Cu3O6.5 and the large
cylindrical surface observed in overdoped Tl2Ba2CuO6+δ reflects thus the difference in the carrier density on both side of
the phase diagram. The measurements offer strong support for the scenario that beyond a critical doping level p∗ within
the superconducting dome, cuprates undergo an FS reconstruction at a critical doping 0.14 < p∗ < 0.27, where the large
hole-like FS reconstruct into small pockets. We will now show that the experimental findings in the underdoped regime are
not compatible with band structure calculations and with doped Mott insulator scenarios.

5.1. Comparison with band structure calculations

Results obtained for overdoped Tl2Ba2CuO6+δ are in excellent agreement with band structure calculations. For
YBa2Cu3O6.5, the FS deduced from band structure calculations consists of two large hole-like tubular CuO2 sheets, plus
three quasi-one-dimensional sheets. A subtle change in the Fermi energy can lead to the appearance of an additional small
hole-like pocket [52], whose size may be comparable with the small pocket deduced from quantum oscillations. Few ex-
perimental observations rule out the FS derived from band structure calculations. The large tubular sheets have not been
observed in any measurements. Moreover, if one assumes the small frequency corresponds to the small hole-like pocket
at the Y point, it disagrees with the negative Hall effect (see Fig. 3a) which points to an electron pocket. Finally, band
structure calculations in YBa2Cu4O8 have shown that the CuO/BaO band which gives rise to the small hole-like pocket at
the Y point in YBa2Cu3O6.5, is 400 meV below the Fermi energy, excluding that this band could give rise to a small pocket
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Fig. 6. (a) Oscillatory part of the magnetization (raw data) versus 1/B of Tl2Ba2CuO6+δ (magenta) and YBa2Cu3O6.5 (red). (b) Fourier analysis of the raw
data shown in (a). The insert is a sketch of the size of the Fermi pocket in the first Brillouin zone deduced from the frequency of the quantum oscillations
for Tl2Ba2CuO6+δ (magenta) and YBa2Cu3O6.5 (red). Note that the position in the Brillouin zone and the shape of the Fermi surfaces are arbitrary.

in YBa2Cu4O8. We thus conclude that band structure calculations are incompatible with the measured quantum oscillations
in both YBa2Cu3O6.5 and YBa2Cu4O8.

5.2. Four nodal hole pockets

A number of theories predict a FS made of four small hole-like pockets at nodal positions (carrier density equal to p)
in the underdoped regime, going over to a large FS (carrier density equal to 1 + p) when p exceeds a critical value p∗ .
Some of these are analogous to the usual spin-density-wave scenario in the sense that they invoke the onset of an ordered
phase with broken symmetry below p∗ [20,21,24,53,54], while others do not require any broken symmetry [55–57]. The
second class of scenarios predicts four-nodal hole pockets, whose area grows as the doping increases and merge into the
large FS in the overdoped regime. Assuming that ARPES detects only one side of a hole pocket at (π/2,π/2), e.g. that the
quasiparticle residue for the part of the pocket facing (π,π ) is rather small, these scenarios could reconcile the quantum
oscillations with photoemission measurements [20,58,59]. Assuming that the pocket is a hole pocket (of arbitrary curvature)
and there is nothing else in the FS, and assuming also that n must be equal to the density of doped holes (n = p = 0.1 for
YBa2Cu3O6.5), the Luttinger sum rule is clearly violated, whether the relevant Brillouin zone includes one or two of these
pockets (whether n = nSdH = 0.038 or n = 2×nSdH = 0.076). In addition, the negative Hall coefficient R H at low temperature
(see Fig. 3a) implies that the Shubnikov–de Haas frequency must come from a high-mobility electron pocket, because the
amplitude of Shubnikov–de Haas oscillations depends exponentially on mobility μ, as exp(−π/μB). Therefore, a scenario
based on a doped Mott insulator which predicts a FS made of four nodal hole-like pockets, is not compatible with our
experimental findings.

If the FS contains other sheets (not seen in the quantum oscillations measurements) besides the observed pockets, then
the Luttinger sum rule can easily be satisfied. In particular, the negative Hall effect seen in Fig. 3a points to the presence of
an electron pocket in the FS, arguing for a reconstruction of the local density approximation FS into small electron and hole
sheets. Before discussing different theories based on the reconstruction of the FS, the next section will review evidence for
the presence of an electron pocket in the FS of underdoped YBa2Cu3Oy .

6. The case for an electron pocket

6.1. Experimental evidences

The normal-state Hall coefficient R H = t Rxy/B , where t is the sample thickness, measured at high field is displayed in
Fig. 7a as a function of temperature for overdoped Tl2Ba2CuO6+δ [5] (p ≈ 0.25, green symbols), underdoped YBa2Cu3O6.5
(p = 0.097, red symbols) and YBa2Cu3O6.67 (p = 0.12, blue line) [60]. In overdoped Tl2Ba2CuO6+δ , the Hall coefficient is
almost temperature independent and is positive (e.g. hole-like). It extrapolates to a small number corresponding to a large
carrier density (R H = 1/ne). However, for underdoped YBa2Cu3Oy , R H (T ) goes from positive at high temperature to negative
as T → 0. As demonstrated in Refs. [60,62], the negative R H is shown to be unambiguously a property of the normal state.
The most natural explanation for the negative R H is the presence of an electron pocket in the FS. In a scenario in which
the FS contains both electron and hole sheets, the sign of R H depends on the relative magnitude of the electron and
hole densities ne and nh and mobilities μe and μh (μ = eτ/m∗). Given that these materials are hole-doped, we expect
nh > ne . The fact that R H < 0 at low temperature therefore implies that μe > μh at low temperature. Given strong inelastic
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Fig. 7. (a) Hall coefficient R H versus T for YBa2Cu3O6.5 [60] (red symbols), YBa2Cu3O6.67 [60] (blue line) and Tl2Ba2CuO6+δ (green symbols) [5], at B =
55, 45 and 16 T, respectively. (b) Thermopower of YBa2Cu3O6.67 plotted as S/T versus T measured at B = 28 T [61].

scattering, this inequality can then easily be inverted at high temperature, offering a straightforward mechanism for the
sign change in R H .

The presence of an electron pocket in the FS of underdoped YBa2Cu3Oy has been strengthened by Seebeck measurements
in YBa2Cu3O6.67 shown in Fig. 7b [61]. When a temperature difference �T is applied along the x-axis of a metallic sample,
a longitudinal voltage V x develops across the sample, and the Seebeck coefficient (or thermopower) is defined as S =
V x/�T . In a Boltzmann picture for a single band metal, the magnitude of this coefficient is given by: S/T = ±π2

2
kB
e

1
T F

where T F = (h̄2/2kB)(k2
F /m∗) is the Fermi temperature. The sign of S is controlled by the carrier type: positive for holes,

negative for electrons. We see that S/T undergoes a change of sign, from positive above T = 50 K to negative below, similar
to the sign change of the Hall coefficient R H . The fact that both S and R H are negative in the normal state at T → 0 is
compelling evidence for an electron-like sheet in the FS. Moreover, the Fermi pocket measured by quantum oscillations has
a sufficiently small Fermi energy to account for the large magnitude of the negative thermopower at T → 0 [61].

Another evidence for the FS reconstruction into electron and hole sheets comes from the self-consistent analysis of the
Hall resistivity and magnetoresistance of underdoped YBa2Cu4O8 [63]. Field-independent fitting parameters (ne,h and μe,h)
are obtained at all temperatures between 1.5 and 100 K and for all fields above a cutoff field Bn that corresponds to
the restoration of the resistive normal state. One important finding of this study is a dramatic fall in μh below 30 K
which reveals a marked change in the mobility of the hole-like carriers, possibly due to their quasi-1D nature. It reflects
the predominance of the electron pocket mobility at low temperature. Moreover, since the fitting parameters are field
independent, this implies that if the FS reconstruction is field induced, it must take place at fields B < Bn .

In addition to the negative Hall and Seebeck coefficients at low temperature, another indication for the presence of
an electron pocket in the FS of underdoped YBa2Cu3Oy comes from the phase shift of about π between the quantum
oscillations in the transverse magnetoresistance Rxx and in the Hall resistance Rxy , as noticed in Ref. [45]. Indeed, it has
been shown that for a 2D electron gas, the diagonal and off-diagonal elements of the resistivity tensor oscillate in anti-phase
as a function of the magnetic field [64].

6.2. Location of the electron pocket

As it will be discussed in Section 7, most scenarios based on FS reconstruction predict the emergence of an electron
pocket at the anti-nodal directions of the Brillouin zone, i.e. at (π,0) and equivalents points. One way to probe the position
of this pocket at (π,0) is to perform c-axis transport at low temperature. Indeed, in a simple tight binding model, the
c-axis conductivity is proportional to t⊥ and due to the particular structure of cuprates, the interlayer hopping integral
t⊥ depends strongly on the in-plane momentum k of carriers, namely for a tetragonal cuprate material [65]: t⊥(k) =
t⊥
4 [cos(kxa)−cos(kya)]2. The c-axis hopping integral vanishes for momenta k along to the nodal directions (kx = ky) whereas

it is maximal for momenta k along the anti-nodal directions (kx = 0 or ky = 0). The fact that strong quantum oscillations
are observed in ρc [33] is a first indication that those states at (π,0) where t⊥ is maximum, are in fact the small closed
pocket responsible for the oscillations since the oscillatory part of the conductivity is proportional to t⊥ .

The presence of the electron pocket at (π,0) has also a pronounced impact on c-axis magnetotransport. Recent longi-
tudinal c-axis resistivity (I ‖ B ‖ c) measurements in three underdoped samples of YBa2Cu3Oy (p = 0.097, 0.109 and 0.120)
up to 60 T and at low temperature have revealed that the c-axis resistivity is metallic-like at low temperature [66] in
contrast to the insulating-like behaviour above Tc [67,68]. For all samples, the initial rise in the magnetoresistance-free ρc

(extrapolated at B = 0 T) with decreasing temperature turns into a drop at low temperature, passing through a maximum
between 20 and 40 K. This type of temperature dependence of the c-axis resistivity is the hallmark of a crossover between
an incoherent regime at high temperature and a coherent regime at low temperature, as observed in numerous anisotropic
quasi-two-dimensional systems such as Sr2RuO4 [69]. The metallic behavior of the c-axis resistivity at low temperature is
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Fig. 8. Hall coefficient of YBa2Cu3Oy at nine different dopings p as indicated, normalized to its value at T = 100 K. The data is taken at the highest magnetic
field B reached, as indicated. (a) p < 0.11. (b) p > 0.12. T0 marks the temperature at which R H (T ) changes sign. (c) Phase diagram of YBCO, showing the
zero-field superconducting transition temperature Tc (black diamonds) as a function of doping and the sign-change temperature T0 of R H , obtained once
superconductivity is suppressed by a magnetic field, is shown in red squares (from [62]).

thus another strong indication of coherent states at (π,0) where most FS reconstruction scenarios predict the emergence of
an electron pocket. The compensated electron and hole scenario [70] which ascribes the dominant frequency of the quantum
oscillations to a hole pocket located at (π/2,π/2) is not compatible with the present results which directly demonstrates
that the dominant frequency arises from an electron pocket located at the anti-nodes. It is also difficult to reconcile such a
scenario [70] with a large negative Hall coefficient [62].

6.3. Lifshitz transition

The doping dependence of the frequency linked to the electron pocket in Fig. 5 shows that the size of pocket decreases
as the doping decreases. Unfortunately, probably due to sample quality, it has not been possible yet to observe quantum
oscillations in YBa2Cu3Oy below p = 0.097. In order to extract information on the electron pocket at lower doping, it is
instructive to discuss the doping dependence of the Hall coefficient. Fig. 8(a) and (b) shows subsequent measurements of
the normal-state Hall coefficient, measured at the highest field (between 45 and 60 T) as a function of temperature for
several dopings from p = 0.078 to p = 0.152 [62]. These measurements confirm the trend of R H (T ) going from positive at
T = 100 K to negative as T → 0 for all doping levels for p > 0.08. For p = 0.078, R H (T ) never changes sign and simply
increases monotonically with decreasing temperature. Fig. 8(c) shows the phase diagram for YBa2Cu3Oy (Tc line in black
symbols) where the characteristic temperature T0, where the Hall effect changes sign, is plotted in red symbols [62]. We
see that T0 peaks at p = 1/8 and below this maximum, T0 decreases monotonically (and linearly) to zero at p = 0.08.
At this lowest doping, the vanishing of T0 reflects the fact that R H is seen positive at all temperatures (see data for the
p = 0.078 sample in Fig. 8a). This drastic change of behavior in R H points to a topological change in the FS of YBa2Cu3Oy

as the doping is decreased below a critical doping p < pL = 0.08, a Lifshitz transition at which the closed electron pocket
disappears.

Another impact of the disappearance the electron pocket can be inferred from the c-axis resistivity. Earlier measurements
of c-axis transport on a YBa2Cu3Oy sample with Tc = 49 K (p � 0.08) [71] are consistent with such a transition: the
magnetoresistance in ρc(B) is entirely gone and ρc(T ) is incoherent, increasing down to the lowest temperatures. This
close correlation between R H and the magnetoresistance in ρc is further confirmation that the electron pocket in the FS
of YBa2Cu3Oy is located at (π,0) above a critical doping pL = 0.08, where it controls how much of the orbital MR in the
in-plane transport is reflected in the c-axis conduction.

7. Reconstruction of the FS of underdoped cuprates

As pointed out previously, the combination of a small FS volume from quantum oscillations and negative R H and S
pointing to electron pockets argues strongly for a reconstruction of the local density approximation FS, in both underdoped
YBa2Cu3Oy and YBa2Cu4O8. The standard mechanism for such reconstruction is the onset of a density-wave instability [27].
In copper oxides, several mechanisms can be invoked for a reconstruction of the FS that would result in electron and hole
surfaces.

7.1. Commensurate and incommensurate reconstruction

When an order induces a new periodicity in the system, the translational symmetry of the electronic states is broken.
Any kind of order with a finite Q can produce a reconstruction of the FS. This order may in principle be a spin order (AF
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Fig. 9. (a) to (d) FS evolution appropriate for the hole-doped cuprates in a (π,π ) ordering wavevector scenario (adapted from [21]). (e) to (h) FS evolution
in the spin-stripe-ordered state (adapted from [72]). p∗ marks a QCP where the FS starts to reconstruct. pL marks the Lifshitz transition where the electron
pocket disappears. Electron and hole sheets are depicted in dark yellow and blue, respectively.

or SDW), a charge order, a d-density wave order or a stripe order (a unidirectional and incommensurate modulation of spin
and charge densities). Most theories focus on forms of order with a characteristic Q vector near (π,π ). If Q = (π,π), the
reconstruction is said to be commensurate. If Q = (π [1 ± δ],π), the reconstruction is incommensurate. This section will
focus on commensurate and incommensurate AF, SDW and d-DW order, while the next section will be devoted to stripe
order.

Several scenarios based on finite Q ordering wavevector lead to a reconstruction of the large hole-like FS into small
hole pockets at (π/2,π/2) and small electron pocket at (π,0) (see Fig. 9a–d for the commensurate case δ = 0). A model
based on an antiferromagnetic order has been proposed to explain the physical properties of electron-doped cuprates. ARPES
measurements on Nd2−xCexCuO4−δ [73] have seen the three Fermi-surface topologies sketched in Fig. 9 (but with a large
electron pocket at (π/2,π/2) and a small hole pocket at (π,π )). Such a model can also explain the sign change in the
low-temperature Hall coefficient R H measured in the electron-doped copper oxide Pr2−xCexCuO4−δ (PCCO) [74], on crossing
a critical concentration xc close to where long-range antiferromagnetic order ends [53]. Quantum oscillations have been
recently observed in the electron-doped Nd2−xCexCuO4−δ [75] and reveal a sharp qualitative change in the FS topology at a
critical doping level significantly exceeding the optimal doping.

Another approach is an antiferromagnetic SDW, a collective effect that emerges from the instability of the FS. SDW
scenarios have been proposed soon after the discovery of HTSC (for a review, see Ref. [20]) and more recently, a theory
taking into account the competition between superconductivity and SDW order has been developed [76,77]. While the
normal state properties are controlled by a quantum critical point (QCP) at pm linked to the onset of SDW order in a
large FS metal, the competition between superconductivity and SDW order shifts the actual QCP to a lower doping ps <

pm in the underdoped regime, so that SDW order is only present for p < ps in the superconducting state. The normal
state QCP at p = pm can be directly observed when the system remains metallic at T = 0 in the presence of a strong
enough magnetic field. Note that a neutron scattering study of the static and dynamic spin correlations in the underdoped
YBa2Cu3O6.45 in magnetic fields up to 15 T have shown an enhancement of the static incommensurate magnetic order at
low temperatures [78]. Whether SDW order would persist to higher doping in the presence of a large field that suppresses
superconductivity, as it does in the case of LSCO [79], is not known yet for the case of YBa2Cu3Oy .

The neutron diffraction measurements in YBa2Cu3O6.45 combined with the observation of the Fβ = 1650 T frequency in
Ref. [48] have led several authors to suggest a FS reconstruction with an incommensurate wavevector Q = (π [1 ± 2δ],π),
as it is the case for a collinear spin-density wave [80]. While this scenario makes a direct link between quantum oscilla-
tions measurements and incommensurate static order seen by neutron, the observation of the Fβ frequency has not been
confirmed as discussed above.

Another competing order scenario is based on an unusual broken symmetry d-density-wave order [24], which could also
cause a (π,π ) or incommensurate folding of the FS and could thus produce an electron pocket near (π,0) [81]. This state
corresponds to circulating orbital currents arranged in a staggered pattern, leading to very small magnetic moments. No
clear signature of d-DW order has been obtained using neutron diffraction.

The Lifshitz transition leading to the disappearance of the electron pocket is inherent to the commensurate (π,π )
reconstruction scenario since the gap at the anti-nodal directions increases as the doping decreases. Such scenario can
thus explain the Lifshitz transition at pL = 0.08 but it remains to understand why the hole pocket is not seen in any
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measurement. Moreover, the disappearance of the electron pocket below pL = 0.08 is associated with a sudden jump in
the magnitude of the in-plane resistivity (the so-called metal–insulator crossover) [62] and an increase in its in-plane
anisotropy [82], which is not easy to reconcile with a (π,π ) reconstruction scenario. We will see in the next section that
the stripe order offers an alternative scenario able to explain both experimental observations.

7.2. Stripe order

In the low coupling limit [22,23,54], a stripe order consists of a combination of a charge density wave (potential V c)
and spin density wave (potential V s), e.g. an oscillation of the charge density around its average value and a spin density
modulation. The effect of stripe order is to reconstruct the large FS as shown for example in Fig. 9e–g for a doping p = 1/8,
for different spin-stripe potential V s and for the charge-stripe potential V c = 0 [54,72]. The results are plotted not in the
reduced Brillouin zone, but in a quadrant of the full square lattice zone. The generic FS is complicated since it consists of
open orbits and depending on the value of the charge and spin scattering potentials, of hole pockets (nodal directions), and
electron pockets (anti-nodal directions). It is noteworthy that in the model of Ref. [54] a condition for the appearance of an
electron pocket in the reconstructed FS is to have a spin potential V s non-zero. This scenario could in principle explain the
presence of only one frequency (and the related ones due to bilayer splitting and warping of the FS) if the FS contains only
the electron pocket and the 1D chains, as the one shown in Fig. 9f. Due to the presence of the 1D chains, the Luttinger sum
rule can easily be satisfied since quantum oscillations detect only the closed orbit. A strong indication for a stripe scenario
comes from the in-plane resistivity of YBa2Cu3Oy at p < 0.08 whose anisotropy increases at low temperature, reaching
an anisotropy ratio ρa/ρb = 2 [82]. This means that in the metallic state below the critical doping pL = 0.08, the FS that
remains after the electron pocket has disappeared must have anisotropy in the plane, as one expect if the FS consists of
only 1D chains. Norman et al. have shown that a Lifshitz transition, where the pockets touch and so connect to form an
open (quasi-1D) FS (see Fig. 9e–f), occurs at a doping level pL comparable to that observed in experiment. Note that in this
model, the authors have assumed that the incommensurability of the stripe wavevector depends on the doping level and
that the size of the electron pocket is independent of doping, whereas our study suggests that the size of the FS slightly
increases as the doping increases from p = 0.097 to 0.14. A consequence of the Lifshitz transition is the manifestation of the
so-called metal–insulator crossover. There is a sudden change in behavior occurring between p = 0.08 and p = 0.09, where
ρa (100 K) jumps from a low, p-independent value above p = 0.09 to a high, strongly p-dependent value below p = 0.08
[62]. This metal–insulator crossover can be explained by the disappearance of the electron pocket, leaving only the quasi-1D
sheets of the FS which have a much lower conductivity at low temperature.

In another stripe model, which assumes a substantial C4 symmetry breaking, a charge density wave order can produce
an electron pocket close to the anti-node [83]. This model has been developed in order to reconcile the charge density
modulation observed at low temperature by recent NMR measurements, without any form of SDW order [84].

A stripe scenario appears thus quite reasonable for YBa2Cu3Oy: it can account for the appearance of an electron pocket in
the FS below p∗ , a result of broken translational symmetry, and for its disappearance at pL , due to a Lifshitz transition. It is
also consistent with the evidence of broken rotational symmetry from resistivity [82] and recent Nernst measurements [16].

A recent comparison of Seebeck data in YBa2Cu3Oy and in La1.8−xEu0.2SrxCuO4, a material where stripe order at low
temperature is well established, reveals a detailed similarity as a function of both doping and temperature, which shows
that: 1) the two very different cuprate materials undergo the same Fermi-surface reconstruction; 2) this reconstruction is
caused by stripe order [85].

8. Conclusion

After two decades of intense theoretical as well as experimental efforts to understand how high temperature super-
conductivity sets in and how to describe the normal state properties, the observation of quantum oscillation has deeply
changed the landscape to describe these fascinating materials. It allows to discuss a fundamental concept in metals, the FS,
and therefore about the normal state with new theoretical background. The measurements of quantum oscillations at low
temperature on both sides of the phase diagram of cuprates confirm the existence of a FS with sharply defined excitations
on the overdoped side but also show that the FS has suffered a drastic modification on the underdoped side. The small
Fermi pocket inferred from quantum oscillations in the underdoped regime, combined with the negative Hall and Seebeck
coefficients pointing to an electron pocket greatly strengthens the case that the FS of YBa2Cu3Oy undergoes a reconstruction
because the translational symmetry of its lattice is broken at low temperature. The fact that strong quantum oscillations are
observed in ρc and the observation of a crossover towards a coherent regime in the c-axis resistivity at low temperature
implies that this electron pocket is located at the anti-nodal directions in the first Brillouin zone, as predicted by most
density-wave scenarios. Among all these scenarios (antiferromagnetic, spin density wave, d-DW and stripes), the stripe sce-
nario seems to be the most adequate to describe most of the experimental findings obtained from various transport probes
including the rotational symmetry breaking at T ∗ . Of course, this order parameter which breaks the translational symmetry
of the lattice is not yet settled in YBa2Cu3Oy and several measurements can help resolving this issue such as a full doping
dependence of quantum oscillations, neutron, NMR and X-ray measurements in high fields.
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