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Vortex lattice melting and Hc2 in underdoped YBa2Cu3O y
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Vortices in a type-II superconductor form a lattice structure that melts when the thermal displacement of the
vortices is an appreciable fraction of the distance between vortices. In an anisotropic high-Tc superconductor,
such as YBa2Cu3Oy , the magnetic field value where this melting occurs can be much lower than the mean-field
critical field Hc2. We examine this melting transition in YBa2Cu3Oy with oxygen content y from 6.45 to 6.92, and
we perform a quantitative analysis of this transition in the cuprates by fitting the data to a theory of vortex-lattice
melting. The quality of the fits indicates that the transition to a resistive state is indeed the vortex lattice melting
transition, with the shape of the melting curves being consistent with the known change in penetration depth
anisotropy from underdoped to optimally doped YBa2Cu3Oy . We establish these fits as a valid technique for
finding Hc2(T = 0) from higher-temperature data when the experimentally accessible fields are not sufficient to
melt the lattice at zero temperature (near optimal doping). From the fits we extract Hc2(T = 0) as a function of
hole doping. The unusual doping dependence of Hc2(T = 0) points to some form of electronic order competing
with superconductivity around 0.12 hole doping.
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I. INTRODUCTION

Cuprate high-Tc superconductors are of great interest
not only because of their high transition temperatures, but
also because strong-correlation physics gives rise to peculiar
normal-state properties. Ironically, however, the strength of the
superconductivity in these high-Tc materials is what interferes
with measurement of the normal-state properties at low tem-
perature. Applying high magnetic fields can overcome this and
has led to the discovery of a small Fermi surface in underdoped
YBa2Cu3Oy via quantum oscillation measurements in pulsed
fields.1 This discovery prompted a large experimental survey of
the transport and thermodynamic properties of YBa2Cu3Oy in
high fields. The questions remain as to whether the high fields
are revealing the normal-state properties of YBa2Cu3Oy , or are
instead exposing a qualitatively different field-induced ground
state, or whether one might still be in a regime dominated by
superconducting pairing and the presence of vortices.

The idea of high magnetic fields revealing the normal state
in cuprate superconductors is a contentious one, in part because
the phase diagram of the cuprates differs qualitatively from that
of conventional type-II superconductors. Owing to the short
coherence length, low superfluid phase stiffness, and strong
anisotropy, fluctuations play a dominant role in the phase
diagram. There is evidence for three-dimensional (3D) XY
critical fluctuations below and above Tc.2–4 Previous transport
measurements on several cuprate compounds have shown
that reaching the resistive state requires very high magnetic
fields, and that the onset of resistivity as a function of field
and temperature does not follow the conventional Hc2 curve
derived from Ginzburg-Landau theory, as it does in more con-
ventional type-II superconductors.5,6 Instead, as is expected
for a superconductor governed by strong thermal fluctuations,

a vortex melting transition occurs,5,7,8 with an extensive
crossover regime to the normal state. Some Nernst effect
experiments have been taken as evidence for the presence of
superconducting pairing far above Tc, even in strong magnetic
fields.9 With this in mind, it is important to consider at which
field scale is superconductivity completely suppressed and the
normal state recovered, especially with regard to quantum
oscillation experiments, which are purported to probe the
“normal-state” Fermi surface. In this paper we present, in the
cuprates, a detailed comparison of the melting transition in
YBa2Cu3Oy with the theory of vortex-lattice melting.

II. THEORY

The thermodynamic critical field Hc is the field at which
superconductivity is destroyed in a type-I superconductor, and
is directly related to the condensation energy of the supercon-
ducting ground state. In a type-II superconductor the magnetic
field can penetrate the sample at a field lower than Hc. At this
field, Hc1, the magnetic field penetrates the superconductor
in the form of vortices, with each vortex being supercurrent
running around a normal-state core and containing a quantum
of magnetic flux. The cores of these vortices, whose size is
of order the superconducting coherence length ξ0, are in the
normal state; outside of the vortex cores, the strength of the
magnetic field decays over the length scale of the penetration
depth λ, which, for strongly type-II superconductors such as
the cuprates, is much larger than the coherence length. These
vortices can form a two-dimensional lattice perpendicular
to the applied field (a “vortex lattice”),10 and the lattice
spacing shrinks in size as the magnetic field is increased.
As long as the vortices remain pinned, the zero-resistance
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property is maintained in the material. When the vortex cores
overlap at a second field scale Hc2, superconductivity is
destroyed. In an isotropic, low-Tc type-II superconductor, such
as Nb3Sn, resistivity sets in at Hc2 and the diamagnetic signal
of superconductivity completely disappears. In terms of the
mean-field Ginzburg-Landau coherence length ξ0, this field
scale is

μ0Hc2(T = 0) = �0

2πξ 2
0

, (1)

where �0 is the flux quantum in SI units [Hc2(T = 0) will
henceforth be Hc2(0)].11

The situation is more complicated in high-Tc materials,
where the vortex lattice can melt into a vortex liquid well below
Hc2. The Lindemann criterion for melting requires the thermal
displacement of a lattice to be some fraction (defined cL) of
the average lattice constant. Using the Lindemann criterion for
a vortex lattice, Houghton et al.12 have shown that, because
of the large anisotropy in the cuprates, the vortex lattice in
a strongly type-II superconductor with a high Tc can melt at
field values Bm well below Hc2 for intermediate temperatures
(away from 0 K and Tc).13 In these materials, Hc2 represents
a crossover from a vortex-liquid to the normal state. In the
traditional picture the melting field Bm and μ0Hc2 are equal at
zero temperature, since there are no thermal fluctuations at zero
temperature to melt the vortex lattice. The presence of strong
quantum fluctuations could result in a vortex liquid persisting
down to zero temperature. However, in order to compare our
experimental data with the theory of vortex lattice melting, we
use the assumption made by Houghton et al.,12 Blatter et al.,13

and others that Bm(0) = μ0Hc2(0).
Using the notation of Blatter et al.,13 the melting transition

field Bm is given implicitly by
√

bm(t)

1 − bm(t)

t√
1 − t

[
4(

√
2 − 1)√

1 − bm(t)
+ 1

]
= 2πc2

L√
Gi

. (2)

The reduced field variable is bm = Bm/μ0Hc2, and t = T/Tc

is the reduced temperature.
The Ginzburg number Gi, on the right hand side of Eq. (2),

is given by

Gi = 1

2

(
kBTcγ

4π
μ0

[(μ0Hc(T = 0)]2ξ 3
0

)2

(3)

≈ [9.225 × 108(Wb−1K−1) × μ0Hc2(0)Tcλabλc]2, (4)

where γ is the anisotropy ratio γ ≡ λc

λab
, and the definition

Hc2(0) ≡
4π
μ0

λ2
ab[μ0Hc(T =0)]2

�0
has been used (λab and λc are the

penetration depths parallel and perpendicular to the â-b̂ plane
at zero temperature). As emphasized by Blatter et al.,13 this
Ginzburg number should be thought of as a useful collection
of parameters, and not as a number describing the width
of fluctuations around Tc as it is in more three-dimensional
superconductors. The Lindemann number cL appearing on the
right hand side of Eq. (2) represents the fraction of the vortex
lattice parameter, av ≡

√
�0
B

, that the thermal displacement
must reach in order for the vortex lattice to melt.7,12,13 Attempts
have been made to calculate cL, with values between 0.2 and
0.4 obtained for the cuprates, depending on the specific model
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FIG. 1. (Color online) The ĉ-axis resistance of YBa2Cu3O6.59 as a
function of magnetic field, from 1.5 to 200 K. The onset of resistivity
as field is increased marks the vortex lattice melting transition. At
low temperatures, quantum oscillations are seen above this melting
field.

(see Blatter et al.13 for a review), but cL is probably better left
as a fit parameter.14

III. EXPERIMENT

All of the samples used in this study were fully detwinned,
single-crystal YBa2Cu3Oy , grown in barium zirconate cru-
cibles and annealed in oxygen to the desired concentration.15

Gold contacts were evaporated onto the a-b faces for a
four-point c-axis resistivity geometry, and the gold was
partially diffused into the sample near 500 ◦C to obtain subohm
contacts.16 The chain oxygen was then ordered into super-
structures (ortho-II for YBa2Cu3O6.45 through YBa2Cu3O6.59,
ortho-VIII for YBa2Cu3O6.67, ortho-III for YBa2Cu3O6.75, and
ortho-I for YBa2Cu3O6.86 and YBa2Cu3O6.92) by annealing the
samples just below the superstructure transition temperature.17

Figure 1 shows a typical set of ĉ-axis resistivity curves up to
60 Tesla, from 1.5 to 200 K for YBa2Cu3O6.59. We define the
resistive vortex-melting transition as the magnetic field where
the resistance is 1/100 of its value at 60 Tesla. The definition
of Bm from resistivity curves is somewhat uncertain because of
the width of the resistive transition (see upper panel of Fig. 2).
An alternative definition would be the intersection of a line
tangent to the steepest part of the resistive transition with the
temperature axis. This would lead to small offsets (one Tesla at
most) in Bm, but would not otherwise affect the conclusions of
this paper. However, it is important that a consistent definition
across different doping levels be used.

The upper panel of Fig. 2 shows the vortex lattice melting
transition from 1.2 K up to Tc for YBa2Cu3O6.59, one of
the underdoped samples in which the melting transition is
accessible even at low temperatures. The concave upwards
shape is characteristic of a vortex melting transition, as
seen before in YBa2Cu3Oy and in other cuprates,6,14 and
differs qualitatively from the concave downwards curvature
of Hc2(T ) in conventional superconductors. This form has
been observed in a number of cuprates,6,18,19 but a systematic
comparison to Eq. (2) across the underdoped regime of the
cuprates has not been performed. Here we present data for
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FIG. 2. (Color online) Top: A magnified plot of the resistive
transitions shown above in Fig. 1. The red dots are where the
resistance is 1/100 of its value at 60 T (extrapolated for high
temperatures where resistance was not measured to the highest fields).
Bottom: The same data points as highlighted in red in the top panel,
now plotted as a function of temperature. The black line is a fit
to Eq. (2), using the known parameters given in Table I, and gives
μ0Hc2(0) = 28 ± 0.3 T, and cL = 0.37.

YBa2Cu3Oy from oxygen content 6.45 to 6.92, with Tcs
ranging from 44.5 to 93.5 K, and identify trends that arise
as a function of doping. Characteristic curves for several other
dopings are shown in Fig. 3, all with an upwards curvature,
although that shape becomes less pronounced for the higher Tc

samples.
Equation (2) can be expanded about Tc and solved for Bm

as shown in Blatter et al.,13 but if the full temperature range
from 1.5 K to Tc is to be used then it is more accurate to
fit to the full implicit expression for Bm. The use of Eq. (2)
requires both the in-plane and out-of-plane zero-temperature
penetration depths, as well as the Tc: these values are also
listed along with the hole doping (estimated using Liang
et al.20) in Table I. The in-plane penetration depth values, λab,
come from electron-spin resonance (ESR) measurements21

and from muon-spin rotation experiments,22 both performed
on comparable YBa2Cu3Oy crystals grown at the University
of British Columbia (UBC). In the case of the ESR values,
the geometric mean of λa and λb was taken. Out-of-plane
penetration depth values, λc, come from infrared reflectance
measurements,23 also performed on UBC crystals. Interpolated
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FIG. 3. (Color online) The vortex lattice melting transition for
several different oxygen concentrations. The temperature axis has
been scaled by Tc, and the lines are best-fit lines to Eq. (2). All of
the data points were acquired in the same manner as described in the
caption of Fig. 2.

values for the penetration depth were used when the exact
doping values were not available. The penetration depth values
and the interpolation are shown in the upper panel of Fig. 4.

With λc, λab, and Tc experimentally determined, the data
at each doping can be fit using only two parameters: cL and
Hc2(0). The fits in the lower panel of Fig. 2 and in Fig. 3 clearly
show that three-dimensional vortex melting describes the in-
field resistive transition in YBa2Cu3Oy from y = 6.45 to 6.92.
The penetration depth anisotropy, γ = λc

λab
, changes from ∼50

at 6.45 to ∼16 at 6.92; this results in decreased curvature of the
melting line as oxygen content (and hole doping) increases.
This is the same behavior seen in several different cuprates
of varying anisotropy, reported in Ando et al.6 The cL and
Hc2(0) values extracted this way are given in Table I for all of
the dopings measured. The fact that the Lindemann number
remains relatively constant as a function of doping means that
the shape of the melting curve is determined primarily by
the penetration depths, which are becoming less anisotropic
as hole doping increases. The Lindemann number and the

penetration depths appear only as the ratio c2
L

λabλc
in Eq. (2), and

we plot this ratio in the lower panel of Fig. 4. The increase

of c2
L

λabλc
with hole doping is what is controlling the changing

curvature as a function of doping. With this parameter setting
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TABLE I. Hc2(0) and cL as obtained by fitting the vortex lattice melting curves to Eq. (2). ξ0 is calculated from Hc2(0) using Eq. (1). The
uncertainties come from the width of the resistive transition and the proximity of the lowest data point to T = 0 K. The hole doping is obtained
from the Tc, using Fig. 3 of Liang et al.20

Oxygen Hole
Content Doping Tc λab λc ξ0 μ0Hc2(0)
y p (K) (nm) (μm) (Å) (T) cL

6.45 0.078 44.5 208 10.2 25.4 ± 0.5 50.8 ± 2.0 0.37
6.47 0.089 51 189 8.8 26.9 ± 0.5 45.2 ± 1.6 0.41
6.56 0.104 59 165 7.0 29.9 ± 0.4 36.9 ± 1.0 0.31
6.59 0.111 61.5 155 6.3 34.3 ± 0.3 28.0 ± 0.3 0.37
6.67 I 0.116 64.7 147 5.6 36.6 ± 0.5 24.5 ± 0.7 0.41
6.67 II 0.120 66 144 5.3 36.1 ± 1.5 25.2 ± 2.0 0.31
6.75 0.132 75.3 130 4.1 27.9 ± 0.5 42.1 ± 1.5 0.37
6.80 0.137 80.5 125 3.7 27.0 ± 0.9 45.0 ± 3.0 0.34
6.86 0.152 91.1 111 2.4 21.5 ± 0.6 70.9 ± 2.0 0.39
6.92 0.162 93.5 104 1.7 16.4 ± 0.8 121.9 ± 10.3 0.38

the shape, Hc2(0) corresponds to the T = 0 intercept of the
melting curve.
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FIG. 4. (Color online) Top: The in-plane and out-of-plane pen-
etration depths of YBa2Cu3Oy , as measured by muon-spin rotation
(λab at 0.11 holes), electron-spin resonance (the other λab points),
and infrared reflectance (λc).21–23 Note the difference in scale for the
left- and right-hand axes: the anisotropy is actually decreasing with
increased hole doping. The dashed lines are parabolic fits to the data,
which are used to obtain interpolated values for doping levels not
measured, and should be viewed as purely phenomenological. Bot-
tom: The ratio of the Lindemann number squared to the product of the
in-plane and out-of-plane penetration depths. This quantity, appearing
on the right-hand side of Eq. (2), controls the curvature of Bm vs T .

It should be emphasized that in Eq. (2)

lim
T →0

Bm(T ) = μ0Hc2(0), (5)

and so the values of Hc2(0) derived from fits to Eq. (2) are
determined mostly by the zero-temperature intercept of the
data for Bm vs T , and are essentially independent of the
penetration depth values chosen. The penetration depths and

the Lindemann number always enter Eq. (2) as the ratio c2
L

λabλc
,

and so errors in the penetration depth values (which arise
because we use interpolated values from the upper panel of
Fig. 4) are absorbed into the fit value of cL.

In using Eq. (2), we have ignored the possibility that the
onset of finite resistivity is due to the lattice depinning, and
not actually melting. This assumption is probably justified, as
the depinning transition is distinct from the melting transition
in YBa2Cu3Oy only for temperatures very close to Tc and
in samples with extremely low disorder.5 The fits shown in
Figs. 2 and 3 show data up to near Tc when available, but
only data at temperatures less than 0.8 × Tc were used in
the fits (which also avoids any possible effects of XY-critical
phenomena near Tc).7 Additionally, all of the samples in this
study (except for possibly the YBa2Cu3O6.92 sample) have
more disorder than the YBa2Cu3O6.95 sample used in Liang
et al.5 This is because the ortho-II, -III, -V, and -VIII states are
not perfectly ordered,17 and have more disorder than ortho-I
ordered YBa2Cu3O6.95, which is close to stoichiometry. This
disorder pushes the depinning transition closer to Tc.

The extracted values for Hc2(0) are plotted with the phase
diagram of YBa2Cu3Oy in Fig. 5, and show an anomaly around
0.12 hole doping. The solid blue line in Fig. 5 is the function

1 − Tc/T max
c = 82.6(p − 0.16)2, (6)

where T max
c is the maximum Tc of the material (equal to 94.3 K

for YBa2Cu3Oy).20 This function has been found to describe
Tc as a function of p in the cuprates, except for the suppression
of Tc around 1/8 hole doping.20 The green circles in Fig. 5 are
the absolute difference between the actual Tc and Eq. (6), and
the suppression of Tc is clearly correlated with a suppression of
Hc2(0). Suppression of the melting transition in this region was
reported for a few different doping levels in LeBoeuf et al.19
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FIG. 5. (Color online) The superconducting phase diagram of
YBa2Cu3Oy . Hc2(0) is suppressed in the same region that Tc

deviates from the parabolic form—a clear sign of the weakening of
superconductivity around 0.12 hole doping. The Tc values are taken
from Liang et al.20

IV. DISCUSSION

The suppression of Tc in the underdoped region of the
phase diagram was mapped in detail by Liang et al.20 In
the same work, Liang et al.20 correlated the ĉ-axis lattice
parameter with the hole doping of the copper-oxygen planes,
showing a smooth evolution of hole doping with increased
oxygen content. This demonstrates that the suppression of Tc

is not due to some peculiarity of the copper-oxygen chain
doping mechanism in YBa2Cu3Oy , but is in fact inherent
to the electronic properties of the material. It was supposed
that the suppression of Tc may be due to a competition
of superconductivity with stripe formation, as has been
demonstrated explicitly in the lanthanum cuprates.24

The phase diagram in Fig. 5 shows a clear correlation
between the suppression of Tc near 0.12 hole doping and a
suppression in the T = 0 melting field and hence a suppression
of Hc2(0). This further strengthens the case that the anomaly
in Tc is related to a weakening of superconductivity. The
corresponding maximum in coherence length—recall that
ξ0 ∝ [Hc2(0)]−1/2—has also been seen in μSR25 and in the
fluctuation-magnetoconductance.26,27

Recent NMR28 and x-ray diffraction29–31 experiments
have indicated the possibility of charge order in underdoped
YBa2Cu3Oy . In all three x-ray diffraction experiments, the
charge order was seen to drop in intensity below Tc. Addition-
ally, Chang et al.30 found that the intensity of the charge-order

peaks could be increased with an applied magnetic field
below Tc. These experiments give further evidence for a
close competition between superconductivity and the charge-
ordered state. This is in agreement with the minimum in Hc2(0)
we observe near 0.12 hole doping.

V. CONCLUSION

The onset of finite resistivity in a magnetic field coincides
with the vortex melting transition in YBa2Cu3Oy . This melting
transition can be substantially below mean-field Hc2 at tem-
peratures between 0 K and Tc.12 Using a Lindemann criterion
for melting produces good agreement between theory and
experiment, with a Lindemann number cL between 0.3 and 0.4.
These values are consistent with theoretical predictions, which
vary between 0.2 and 0.4 for highly anisotropic materials.13

Because this model agrees well with the data across such
a wide range of dopings (and anisotropies) where Hc2(0) is
experimentally accessible, it is reasonable to assume that the
extrapolations to zero temperature at higher doping levels gives
a reasonable determination of Hc2(0).

Within the framework we used for flux-line-lattice
melting,7,12,13 Bm is required to approach μ0Hc2 as T → 0.
The agreement between our data and this theory suggests that
μ0Hc2(0) = Bm(0), in contrast to previous suggestions.9,32–34

This means that the quantum oscillations seen in underdoped
YBa2Cu3Oy would occur in a state free of vortices (super-
conducting fluctuations may still be present,35 of course, as
detected in the Nernst signal,36 for example.) This absence of
vortices is consistent with the lack of a field-dependent scatter-
ing term needed to fully describe the quantum oscillations.37

Below optimal doping, Hc2(0) is rapidly suppressed with
decreasing hole doping, reaching a minimum of 24.5 T at
p = 0.116 holes. At lower hole doping Hc2(0) recovers—even
as Tc continues to decrease—indicating the presence of a
phase that competes with superconductivity, a phase which
is strongest between 0.11 and 0.13 holes.
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F. Laliberté, B. Pingault, B. J. Ramshaw, R. Liang, D. A. Bonn,
W. N. Hardy, H. Takagi, A. B. Antunes, I. Sheikin, K. Behnia, and
L. Taillefer, Phys. Rev. Lett. 104, 057005 (2010).

37B. J. Ramshaw, B. Vignolle, J. Day, R. Liang, W. N. Hardy,
C. Proust, and D. A. Bonn, Nat. Phys. 7, 234 (2011).

174501-6

http://dx.doi.org/10.1103/PhysRevB.40.6763
http://dx.doi.org/10.1103/PhysRevB.40.6763
http://dx.doi.org/10.1103/RevModPhys.66.1125
http://dx.doi.org/10.1016/S0964-1807(96)00022-1
http://dx.doi.org/10.1016/S0921-4534(98)00275-5
http://dx.doi.org/10.1103/PhysRevB.68.104515
http://dx.doi.org/10.1038/415299a
http://dx.doi.org/10.1038/415299a
http://dx.doi.org/10.1103/PhysRevB.83.054506
http://dx.doi.org/10.1103/PhysRevB.83.054506
http://dx.doi.org/10.1103/PhysRevB.73.180505
http://dx.doi.org/10.1103/PhysRevB.73.180505
http://dx.doi.org/10.1103/PhysRevB.69.184513
http://dx.doi.org/10.1103/PhysRevLett.79.2875
http://dx.doi.org/10.1103/PhysRevLett.79.2875
http://dx.doi.org/10.1016/0921-4534(95)00579-X
http://dx.doi.org/10.1016/0921-4534(95)00579-X
http://dx.doi.org/10.1038/375561a0
http://dx.doi.org/10.1103/PhysRevB.76.134518
http://dx.doi.org/10.1103/PhysRevB.76.134518
http://dx.doi.org/10.1103/PhysRevLett.88.167005
http://dx.doi.org/10.1038/nature10345
http://dx.doi.org/10.1038/nature10345
http://dx.doi.org/10.1126/science.1223532
http://dx.doi.org/10.1038/nphys2456
http://dx.doi.org/10.1038/nphys2456
http://dx.doi.org/10.1103/PhysRevLett.109.167001
http://dx.doi.org/10.1103/PhysRevLett.109.167001
http://dx.doi.org/10.1103/PhysRevLett.88.257003
http://dx.doi.org/10.1126/science.1078422
http://dx.doi.org/10.1038/nphys1921
http://dx.doi.org/10.1038/nphys2380
http://dx.doi.org/10.1038/nphys2380
http://dx.doi.org/10.1103/PhysRevLett.104.057005
http://dx.doi.org/10.1038/nphys1873



