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Nernst effect in the electron-doped cuprate superconductor Pr2−xCexCuO4:
Superconducting fluctuations, upper critical field Hc2, and the origin of the Tc dome
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The Nernst effect was measured in the electron-doped cuprate superconductor Pr2−xCexCuO4 (PCCO) at four
concentrations, from underdoped (x = 0.13) to overdoped (x = 0.17), for a wide range of temperatures above the
critical temperature Tc. A magnetic field H up to 15 T was used to reliably access the normal-state quasiparticle
contribution to the Nernst signal Nqp, which is subtracted from the total signal N , to obtain the superconducting
contribution Nsc. As a function of H , Nsc peaks at a field H� whose temperature dependence obeys H�

c2ln(T/Tc),
as it does in a conventional superconductor such as NbxSi1−x . The doping dependence of the characteristic field
scale H�

c2, shown to be closely related to the upper critical field Hc2, tracks the domelike dependence of Tc, showing
that superconductivity is weakened below the quantum critical point where the Fermi surface is reconstructed,
presumably by the onset of antiferromagnetic order. Our data at all dopings are quantitatively consistent with the
theory of Gaussian superconducting fluctuations, eliminating the need to invoke unusual vortexlike excitations
above Tc, and ruling out phase fluctuations as the mechanism for the fall of Tc with underdoping. We compare the
properties of PCCO with those of hole-doped cuprates and conclude that the domes of Tc and Hc2 versus doping
in the latter materials are also controlled predominantly by phase competition rather than phase fluctuations.
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I. INTRODUCTION

Cuprate superconductors have attracted enormous attention
because they hold the record for the highest critical temper-
ature Tc, which can be as high as 164 K, halfway to room
temperature [1]. As a function of doping, Tc displays a dome-
like dependence, reaching a maximal value at some optimal
doping. A fundamental question is as follows: Why does Tc not
continue to rise with underdoping? A long-held scenario is that
the pairing strength (and superconducting gap magnitude) does
continue to rise, but the critical temperature Tc for long-range
coherence falls because of increasingly strong fluctuations in
the phase of the superconducting order parameter [2]. So,
the underlying strength of superconductivity would become
greater than suggested by the maximal (optimal) value of
Tc, and finding ways to increase phase rigidity could further
increase the maximal Tc.

The main experimental support for this phase fluctuation
scenario came from the observation of a sizable Nernst signal
above Tc in underdoped cuprates such as La2−xSrxCuO4

(LSCO) [3,4]. The Nernst effect, the transverse thermoelectric
response to a magnetic field, is large in the vortex-liquid state
of type-II superconductors, due to the motion of vortices [5].
Consequently, the observation of a large Nernst signal well
above Tc in hole-doped cuprates was attributed to short-lived
vortex excitations above Tc [3]. In this picture, Cooper pairs
with a finite gap in their excitation spectrum survive to
temperatures as high as T � 3 Tc. Defining the upper critical
field Hc2 needed to suppress superconductivity as the field
where the Nernst signal vanishes, Hc2 was found to increase
with underdoping, and this was taken as evidence of a rising
gap [6]. A paradigm was born: While the superconducting
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gap and the upper critical field increase with underdoping, Tc

decreases due to phase fluctuations.
In recent years, it was shown that the three basic assump-

tions underlying this interpretation of the Nernst response
in cuprates are invalid. The first assumption was that the
quasiparticle contribution to the measured Nernst signal Nqp

is negligible, so that all of the signal can be attributed to
superconducting fluctuations. It has since become clear that
Nqp can in fact be large in a variety of strongly correlated metals
[7], including cuprates [8]. For example, Nernst measurements
in YBa2Cu3Oy (YBCO) and HgBa2CuO4+δ (Hg1201) reveal
a large negative Nqp, easily disentangled from Nsc because its
sign is opposite to that of the superconducting signal [9–13].
In these materials, Nqp starts to grow below the pseudogap
temperature T �, and it becomes comparable in magnitude
to Nsc at Tc. In the electron-doped material PCCO, the two
contributions are again readily resolved, even though both
are positive in this case, because Nqp exhibits a peak at high
temperature while Nsc peaks at Tc, which is relatively low in
this material [14,15]. A similar two-peak structure is observed
in the hole-doped material La2−x−yEuySrxCuO4 (Eu-LSCO)
[8]. In LSCO, the material on which the early studies were
based, Nqp(T ) is very similar to that of Eu-LSCO, but, because
Tc is higher in LSCO, its peak now merges with the peak in
Nsc(T ), and hence the two contributions are more difficult to
disentangle [8].

The second assumption is that Nsc(H ) vanishes above
Hc2. Nernst measurements on the conventional superconductor
NbxSi1−x have revealed that a superconducting signal can
persist to fields as high as H � 4 Hc2 (and to temperatures
as high as T � 30 Tc) [16,17]. This countered the notion
that superconducting fluctuations do not exist above Hc2.
The third assumption was that fluctuations which persist
up to 2–3 Tc cannot be the usual Gaussian fluctuations of
the superconducting order parameter, and hence these were
attributed to unusual vortexlike excitations. In 2009, two
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groups arrived at a complete theory of Gaussian fluctuations
in a dirty two-dimensional (2D) superconductor, extending
earlier work [18] to arbitrary temperatures and fields [19,20].
This theory was able to explain in detail and quantitatively the
NbxSi1−xdata, proving that standard fluctuations can indeed
persist up to T � Tc and H � Hc2.

The failure of these three assumptions and the advent
of the new theoretical framework imposed a complete re-
examination of the Nernst effect in cuprate superconductors.
This started with a study of the hole-doped cuprate Eu-LSCO,
in which Nsc(T ,H ) was shown to behave in the same way as
it does in NbxSi1−x and to agree with Gaussian theory [21].
The characteristic field H�

c2 extracted directly from the data,
which we show here to be approximately equal to Hc2, was
found to be very low in the underdoped regime. The authors
also reanalyzed the published Nernst data on other hole-doped
cuprates to show that H�

c2 in fact decreases with underdoping
[21], in contrast to the prior report of an increasing Hc2 [6].
However, because the Eu-LSCO study was limited to dopings
on the underdoped side of the Tc dome, it did not allow for
the ultimate test: to compare the nature of superconducting
fluctuations on the two sides of the dome, and see whether
there is a fundamental difference, or not.

In this paper, we report a study of superconducting fluctua-
tions in the electron-doped cuprate PCCO that extends across
the phase diagram, allowing us to compare both sides of the
dome. This cuprate offers a major advantage in that its critical
magnetic field at all dopings is low enough that fluctuations can
be fully suppressed by applying only 15 T, thereby allowing a
careful extraction of the underlying quasiparticle contribution
Nqp. This is essential for a detailed analysis of Nsc. We
find that Nsc obeys Gaussian fluctuation theory quantitatively,
compelling evidence that fluctuations in this cuprate are not
unusual, on either side of the dome.

We extract H�
c2 directly from the Nsc data and find that it

tracks Tc as a function of doping, with H�
c2 and Tc both showing

a dome that peaks at the same critical doping. This doping is
where the Fermi surface of PCCO is known to undergo a
reconstruction [22], due to the onset of a competing phase that
breaks translational symmetry, presumably antiferromagnetic
order [23]. We conclude that superconductivity in electron-
doped cuprates weakens below optimal doping not because
of superconducting phase fluctuations, but because of phase
competition. Comparing with the properties of hole-doped
cuprates, we argue that the same conclusion applies for
hole-doped materials.

II. PREVIOUS WORK

The Nernst effect in PCCO has been measured previously,
on thin films with 0.13 � x � 0.19 [14,15,24]. A sizable
Nsc was detected above Tc in underdoped samples, but not
in overdoped samples. As a result, Gaussian theory was
tentatively ruled out and the signal was attributed to phase
fluctuations which go away with overdoping. In our study,
an improved signal-to-noise ratio and a higher magnetic field
allow us to clearly detect Nsc in the overdoped regime. We find
that there is in fact no qualitative difference between overdoped
and underdoped behavior. For x � 0.15, our data are consistent
with previous data.

TABLE I. Fundamental parameters of superconducting PCCO,
as a function of electron concentration x: critical temperature Tc,
defined as the temperature below which the resistance is zero at
H = 0; Hvs(0), the zero-temperature value of the vortex-solid melting
field Hvs(T ), defined as the magnetic field below which the resistance
is zero; characteristic magnetic field scale H�

c2, obtained from the
superconducting Nernst signal above Tc [see Eq. 4].

x Tc Hvs(0) H�
c2

(K) (T) (T)

0.13 8.8 ± 0.3 3.4 ± 0.3 2.1 ± 0.2
0.14 17.4 ± 0.1 10.1 ± 0.5 4.3 ± 0.3
0.15 19.5 ± 0.1 8.9 ± 0.4 5.4 ± 0.3
0.17 13.4 ± 0.1 3.0 ± 0.2 3.0 ± 0.3

III. METHODS

We measured four Pr2−xCexCuO4−δ thin films to cover
underdoped (x = 0.13, 0.14), optimally doped (x = 0.15),
and overdoped (x = 0.17) compositions. The epitaxial thin
films with [001] orientation were grown by pulsed laser
deposition on LSAT [(LaAlO3)0.3(Sr2AlTaO6)0.7] substrates
using Cu-rich targets to eliminate parasitic phases [25].
Typical sample dimensions are 3 × 2 mm, with a thickness
of 3000 Å. The Nernst effect was measured using one heater,
one differential thermocouple, and one absolute thermocouple
[26]. We used nonmagnetic type-E thermocouples made of
chromel and constantan wires. Resistivity measurements were
performed in a Quantum Design PPMS. The electrical and
thermal currents were applied along the basal plane of the
tetragonal crystal structure, and the magnetic field was always
applied perpendicular to the basal plane, i.e., along the c axis.
The critical temperature Tc is defined as the temperature where
the resistivity goes to zero; the values are listed in Table I.

IV. RESULTS

A. Resistivity, Tc, and Tmin

Figure 1 displays the resistivity data ρ versus T for our four
samples at H = 0 to show the superconducting transition and
at H = 15 T to show the normal-state behavior. The Tc values
are plotted in Fig. 2. As in all cuprate superconductors, Tc has a
characteristic domelike dependence on doping. Except at x =
0.17, all normal-state resistivity curves ρ(T ) show a minimum,
at a temperature Tmin which increases with decreasing x.
Figure 2 shows the doping evolution of Tmin, seen to extrapolate
to zero at x = 0.16. This is also the critical doping where the
normal-state Fermi surface of PCCO at T → 0 is known to
undergo a reconstruction, detected as a sudden change in the
Hall coefficient RH , going from small and positive at x > 0.16
to large and negative at x � 0.16 [22,27]. This Fermi-surface
reconstruction (FSR) is attributed to a quantum critical point
(QCP) below which some ordered phase sets in, at xc = 0.16
(in the absence of superconductivity). Measurements of the
Hall coefficient RH at H = 15 T in our own thin films find
that in the low temperature limit, RH > 0 in our sample with
x = 0.17 and RH < 0 in our sample with x = 0.15, confirming
that the normal-state QCP at which FSR occurs in our samples
is xc = 0.16 ± 0.01, in excellent agreement with prior data
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FIG. 1. (Color online) In-plane resistivity of PCCO as a function
of temperature for our four thin-film samples. The data at H = 0 show
the superconducting transition and the data at H = 15 T show the
normal-state behavior. For all samples except x = 0.17, ρ(T ) exhibits
a minimum, at a temperature Tmin (shown here for x = 0.13; green
arrow). Below Tmin, ρ(T ) rises as T → 0, a signature of Fermi-surface
reconstruction.

[22,27]. The FSR is also responsible for the upturn in ρ(T )
at low T . The resistivity at x = 0.17 is strictly linear in T

below 40 K, in agreement with previous reports [28,29]. The
absence of any upturn shows that x = 0.17 is above the critical
doping xc; the linearity shows that it is close to the QCP. Our
resistivity data as presented in Figs. 1 and 2 provide a guide
to the reconstruction of the Fermi surface in PCCO and form
the basis of our discussion in Sec. V A, where we elaborate
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FIG. 2. (Color online) Temperature-doping phase diagram of
PCCO, showing the superconducting dome delineated by the zero-
field critical temperature Tc (black circles). Also shown is Tmin

(red squares), the temperature at which the resistivity ρ(T ) has a
minimum (see Fig. 1). The red line is a linear fit to the Tmin data,
extrapolated to T = 0 (open square). The corresponding doping
xc = 0.16 is the quantum critical point below which the Fermi-surface
reconstruction (FSR) onsets, in agreement with the critical doping
where the normal-state Hall coefficient RH at T → 0 exhibits a sharp
drop to negative values [22]. Throughout our discussion in Sec. V,
we will use this figure as a map of FSR in PCCO that is derived from
resistivity.

on the QCP and the FSR, phenomena that are fundamental for
understanding the superconducting phase diagram.

B. Vortex-solid melting field Hvs

Having displayed the doping dependence of the critical
temperature Tc, we now turn our attention to a second
fundamental quantity, the critical magnetic field needed to
suppress superconductivity. We call Hvs(T ) the critical field
above which the electrical resistance of the sample ceases to
be zero. In a type-II superconductor such as PCCO, this is
the field at which the vortex solid melts, hence the labeling.
We measured the resistivity of our PCCO films at different
temperatures below Tc to track the temperature dependence
of Hvs at each doping. The resulting field-temperature phase
diagram is shown in Fig. 3. At all dopings, Hvs has the typical
behavior of cuprate superconductors, with positive curvature.

Above the Hvs(T ) line, the electronic state is a vortex liquid.
The question of where this vortex liquid ends in cuprates has
been the subject of much debate [30]. Recently, it was shown
that measurements of the thermal conductivity can be used to
answer that question [31]. In three hole-doped cuprates, it was
found that there is no vortex-liquid phase at T → 0 [31]. In
other words, with decreasing field, at T = 0, vortices appear
precisely at Hvs(0). This provides a convenient empirical
procedure for determining the upper critical field Hc2, namely,
Hc2 = Hvs(0). Of course, with increasing temperature, the
vortex-liquid phase grows.

To extrapolate to T = 0, we use the standard expression for
the temperature dependence of Hvs(T ) [32–34]:

√
bm(T )

1 − bm(T )

t√
1 − t

[
4(

√
2 − 1)√

1 − bm(T )
+ 1

]
= 2πc2

L√
Gi

, (1)
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FIG. 3. (Color online) Vortex-solid melting lines as a function of
temperature, plotted as Hvs(T ) vs T /Tc, for dopings as indicated.
Hvs(T ) is the field below which the sample resistance is zero (full
circles). Solid lines are fits to Eq. (1), used to extrapolate Hvs(T ) to
T = 0 and obtain Hvs(0), whose value is listed in Table I. The open
circle in the top right panel marks the value of the upper critical field
Hc2 obtained from thermal conductivity data at x = 0.15 (see Fig. 4).
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FIG. 4. (Color online) Thermal conductivity κ as a function of
magnetic field H , measured at T = 0.2 K on a single crystal of PCCO
with x = 0.15 (Tc = 20 K) (data from Ref. [35]). The saturation of κ

vs H marks the end of the vortex state, providing a direct measurement
of the upper critical field Hc2, defined as the field above which vortices
disappear [31], giving Hc2 = 8 ± 1 T.

in terms of the reduced field bm = Hvs/Hvs(0) and reduced
temperature t = T/Tc. We use the same definitions for the
Ginzburg and Lindemann parameters (Gi and cL) as in
Ref. [34]. In Fig. 3, we see that Eq. (1) fits the data well
and allows us to obtain Hvs(0), whose value at each doping is
listed in Table I. The same expression was also found to fit the
Hvs data of hole-doped cuprates very well, in both underdoped
and overdoped regimes [31,34].

We can use existing thermal conductivity data to confirm
that Hc2 is indeed equal to Hvs(T → 0) in PCCO. In Fig. 4,
we reproduce published data taken at T = 0.2 K on a single
crystal of PCCO at optimal doping (x = 0.15, Tc = 20 K)
[35]. We see from those data that Hc2 = 8 ± 1 T, in excellent
agreement with the value of Hvs(0) = 8.9 ± 0.4 T we obtain
by extrapolating Hvs(T ) to T = 0 (Fig. 3). A similar value for
Hvs(0) is reported in prior studies [36].

C. Nernst effect: Overdoped sample (x = 0.17)

In presenting our Nernst data on PCCO, we begin with
the overdoped sample at x = 0.17. There are two reasons for
this initial focus. First, this sample provides a fundamental
reference point for all Nernst studies of cuprate superconduc-
tors, missing until now. In an overdoped sample, the Fermi
surface is neither reconstructed nor altered by a pseudogap:
it is simply a single large holelike cylinder, whose area is
precisely given by the doping. In hole-doped cuprates, this
k-space area is proportional to 1 + p [37]; in PCCO, it is
proportional to 1 − x [23]. Moreover, in PCCO, we have a
particularly simple crystal structure, which is tetragonal and
free of bilayers, buckling, oxygen order, or chains [38]. The
Nernst data we report here can therefore be regarded as the
archetype of an overdoped cuprate, the property of a single
pristine CuO2 plane. Second, having data in the overdoped
regime will enable us to make the first direct comparison of
superconducting fluctuations on the left and right sides of the
Tc dome, and establish the differences, if any.
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FIG. 5. (Color online) Resistivity of our PCCO sample with x =
0.17. The critical temperature is defined as the temperature where
the zero-field data (red) go to zero: Tc = 13.4 K. The normal-state
behavior is given by the data in a field H = 15 T (blue), which
includes a slight rigid upward shift due to positive magnetoresistance.
A regime of paraconductivity is detectable below T � 2 Tc, due to
superconducting fluctuations that gradually decrease ρ(T ), before
its rapid drop to zero at Tc. Inset: zoom on paraconductivity: �ρ ≡
ρ(0) − ρ(15T) vs T .

In Fig. 5, we show the in-plane resistivity ρ(T ) of our
x = 0.17 sample, below 30 K. With increasing temperature, ρ
rises suddenly at Tc = 13.4 K. Above Tc, there is a regime of
paraconductivity, where superconducting fluctuations reduce
the resistivity from its normal-state value. The data at H =
15 T provide the normal-state reference, modulo a small rigid
shift in ρ(T ) due to a positive orbital magnetoresistance. Note
that paraconductivity can be seen up to 2 Tc or so (see inset of
Fig. 5).

The raw Nernst signal N as a function of field is shown in
Fig. 6(a), at T = 1.08 Tc. N (H ) shows an initial rise with a
subsequent fall on top of a smoothly increasing background.
The peak at low field is due to superconducting fluctuations
Nsc, while the background is the normal-state quasiparticle
signal Nqp. The total Nernst signal is the sum of these two
components:

N = Nsc + Nqp. (2)

To establish the background for each isotherm, we fit the data
above 10 T to a power law:

Nqp = a(T )H + b(T )H 3. (3)

The dotted line in Fig. 6(a) is a fit to Eq. (3). We see that it
describes the raw data very well from ∼6 T all the way to
15 T. Note that a cubic term is essential to capture the correct
H dependence of Nqp. In previous work, limited to lower fields
[15], Nqp was assumed to have a purely linear dependence, but
in principle all odd powers of H are allowed by symmetry.

In Fig. 6(b), we plot the superconducting signal Nsc =
N− Nqp. It rises rapidly from zero, goes through a peak, and
then decreases gradually, to eventually become vanishingly
small at high field, for H > 2 Hc2 or so. [It has been
suggested that there may be an intrinsic limit to how high
superconducting fluctuations can extend above Hc2 (or Tc),
associated with the uncertainty principle [39,40].] This is a
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FIG. 6. (Color online) Nernst response of PCCO as a function of
magnetic field H in our sample with x = 0.17, at T = 1.08 Tc. (a)
Raw Nernst signal N vs H (red). The black dotted line is a polynomial
fit to the data above 10 T, of the form Nqp = a(T )H + b(T )H 3.
Nqp is the quasiparticle background of the underlying normal state.
(b) Superconducting contribution to the Nernst signal, defined as
Nsc ≡ N−Nqp [Eq. (2)]. For any given temperature above Tc, Nsc vs
H exhibits a peak, at a field labeled H� (arrow).

typical signal for a superconductor. In fact, Nsc displays these
same features in all superconductors, at T > Tc. In particular,
there is always a peak field, which we label H�. We see
that H� is a characteristic field scale for superconductivity
in a given material that is directly and immediately obtain-
able from the data, with no assumptions and no model or
theory.

As a function of temperature, Nsc decreases in magnitude,
but the peak field H� increases. In Fig. 7, we show on a
field-temperature phase diagram the temperature dependence
of H� above Tc, and also Hvs(T ) measured on the same sample,
below Tc. In addition, we sketch the temperature dependence of
the upper critical field Hc2(T ). H�(T ) and Hc2(T ) are images
of each other on either side of Tc, and for this reason H� has
been called the “ghost critical field” [41]. The H� data can be
fit to a logarithmic dependence, such that

H� = H�
c2 ln(T/Tc). (4)

The prefactor H�
c2 is a single empirical parameter that

characterizes the strength of superconductivity.
The ln(T/Tc) dependence in Eq. (4) was explained intu-

itively by Pourret et al. in the context of NbxSi1−x thin films
[17]. They proposed that the crossover from increasing to
decreasing Nsc occurs because the length scale for super-
conducting fluctuations at low H is set by the coherence
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FIG. 7. (Color online) Magnetic field-temperature phase dia-
gram of PCCO at x = 0.17. The peak field H� (full red dots) is
plotted above Tc (vertical black line). The solid red line is a fit
of the H� vs T data, to the formula H� = H�

c2ln(T/Tc) [Eq. (4)].
The vortex-solid melting field Hvs(T ) (open circles) is the boundary
between the vortex-solid phase (VS), where the electrical resistance
is zero, and the vortex-liquid phase (VL), where the resistance is
nonzero. The upper critical field Hc2 (green dotted line) is the
boundary between the vortex liquid and the normal state, where there
are no vortices. At T = 0, there is no vortex liquid since Hc2(0) =
Hvs(0), as reported for hole-doped cuprates [31], and shown here
for PCCO at x = 0.15 (Figs. 3 and 4). The green dotted line is
a schematic representation. Note that the two characteristic field
scales for superconductivity, obtained, respectively, at T → 0 and
at T > Tc, are equal for x = 0.17, namely, Hc2(0) = H�

c2 = 3.0 T
(Table I).

length ξ (T ), while at high H it is set by the magnetic
length 	B= √

�/eH . H� would be the field where the two
length scales become comparable, i.e., ξ (H�) � 	B(H�). Since
ξ (T ) ∝ 1/

√
ln(T/Tc) and 	B(H�) ∝ 1/

√
H�, this yields H�

∝ ln(T/Tc).
The one-parameter fit to the x = 0.17 data in Fig. 7

using Eq. (4) yields H�
c2 = 3.0 ± 0.3 T (Table I). (Note

that the data deviate from the fit close to Tc, an intrinsic
effect explained in Sec. V C.) This value can be compared
with our estimate of Hc2 for that same sample, obtained as
the T = 0 limit of the resistive critical field Hvs(T ), whose
value is Hvs(0) = 3.0 ± 0.2 T (see Table I and Figs. 3 and
7). We arrive at a useful empirical result: The characteristic
field scale encoded in superconducting fluctuations above Tc,
when defined as in Eq. (4), is equal to the field needed to
kill superconductivity at T = 0. In other words, we now
have a straightforward empirical procedure for measuring
the fundamental field scale for superconductivity Hc2, from
superconducting fluctuations above Tc. Note that this is for a
single-band d-wave superconductor.

In summary, superconducting fluctuations in overdoped
PCCO, at x = 0.17, are detectable in Nsc up to T � 2 Tc

and H � 2 Hc2, and they can be used to measure Hc2.
What is the nature of these fluctuations? As we show in
Sec. V, not only does Nsc have precisely the field dependence
predicted by Gaussian theory, its magnitude is in excellent
agreement with theoretical expectations. We conclude that the
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FIG. 8. (Color online) Left panels: Raw Nernst data as a function
of field for our four samples, at dopings as indicated. For each doping,
we present seven isotherms, at ε = 0.0, 0.05, 0.1, 0.2, 0.4, 0.8,
and 1.4, where ε ≡ (T −Tc)/Tc, with Tc as indicated. Right panels:
Superconducting contribution to the Nernst signal Nsc, obtained by
subtracting the normal-state background Nqp, as shown in Figs. 6 and
9, according to Eqs. (2) and (3). Note that with increasing temperature,
the magnitude of Nsc decreases and the peak field H� moves up. H�

is plotted vs ε in Fig. 10.

superconducting fluctuations of an overdoped cuprate are now
well understood.

D. Nernst effect: All dopings (0.13 � x � 0.17)

The left panels of Fig. 8 present a selection of raw Nernst
isotherms, labeled by their reduced temperature ε ≡ (T −
Tc)/Tc, for each of the four samples. The superconducting
Nernst signal Nsc is shown in the corresponding right panels.
Examples of background subtraction are given in Fig. 9, for
x = 0.13 and 0.14. As in the x = 0.17 sample, there is a large
positive Nqp, mostly linear in H , but with a small additional
H 3 term. The peak field H� obtained from Nsc versus H is
plotted versus ε in Fig. 10 for the four dopings. A fit to Eq. (4)
yields the H�

c2 values listed in Table I, and plotted versus x in
Fig. 11. For all x, the data deviate from the fit as T → Tc, for
reasons given in Sec. V C. In Fig. 12(a), we plot the Nernst
coefficient ν, defined as ν ≡ N/H , versus H . We see that it is
flat at low H , i.e., N is linear as H → 0. In Fig. 12(b), we plot
the initial value of ν(H ), which we call ν0, versus ε. In Table II,
we list the values of ν0 for the four dopings, at ε = 0.1, and
compare these to theoretical expectations in Sec. V C.
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FIG. 9. (Color online) Nernst response of PCCO vs magnetic
field, for x = 0.13 (green) and x = 0.14 (magenta), at T = 1.08 Tc.
(a) Raw Nernst signal N vs H . The black dotted line is a polynomial fit
to the data above 10 T, of the form Nqp = a(T )H + b(T )H 3 [Eq. (3)].
(b) Superconducting contribution to the Nernst signal, defined as
Nsc ≡ N−Nqp [Eq. (2)].
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FIG. 10. (Color online) Temperature dependence of the peak
field H� in PCCO, at dopings as indicated, plotted as a function
of ε ≡ (T −Tc)/Tc. H� is the field at which Nsc peaks, in isotherms of
Nsc vs H as shown in the right panels of Fig. 8. The lines are a fit of
the data to the function H� = H�

c2ln(T/Tc) [Eq. (4)]. The fit allows us
to extract a single characteristic field H�

c2 from the superconducting
fluctuations at each doping, directly from the data. The values of the
single fit parameter H�

c2 are listed in Table I and plotted vs x in Fig. 11.
At low ε, the data deviate from the fit for reasons given in Sec. V C.
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given by the dashed line. (b) Temperature dependence of ν0 (dots), at
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normal-state contribution to ν0, i.e., νqp ≡ Nqp/H in the limit H → 0.
Note that ν0 saturates below ε � 0.1, as expected from Gaussian
theory in the limit T → Tc (see Sec. V C).

TABLE II. Superconducting contribution to the off-diagonal
Peltier coefficient αxy of PCCO at H → 0, given per CuO2 plane
by αsc

xy/H = νsc
0 /ρ�, as a function of x. ν0 is the value of the raw

Nernst coefficient ν ≡ N/H at H → 0 (Fig. 12); νsc
0 = ν0 − ν

qp
0

is the superconducting contribution obtained by subtracting the
quasiparticle contribution ν

qp
0 (Fig. 12); ρ is the electrical resistivity

at H = 0 (Fig. 1), and ρ� = ρ/s, with s = 6.1 Å. All values are
measured at ε = 0.1 (i.e., at T = 1.1 Tc).

x ν0 νsc
0 ρ αsc

xy/H

(nV/KT) (nV/KT) (μ
 cm) (nA/KT)

0.13 4560 4540 65 ± 15 4.3 ± 1.0
0.14 1890 1790 45 ± 10 2.4 ± 0.5
0.15 1060 960 25 ± 3 2.3 ± 0.3
0.17 1000 940 18 ± 5 3.2 ± 0.9

V. DISCUSSION

Having presented our data for the Nernst signal in PCCO
as a function of H , T , and x, we now examine what they tell
us about the nature of the superconducting fluctuations and the
mechanisms that control the strength of superconductivity in
cuprates.

A. Fermi-surface reconstruction

To make sense of the doping dependence of superconduc-
tivity in PCCO, it is essential to first describe the underlying
normal state and how it evolves with doping. The key
organizing principle is a quantum critical point xc at which
the Fermi surface undergoes a major transformation. The
evolution is sketched in Fig. 13. Above xc, the Fermi surface
of PCCO is a single large closed holelike cylinder, with a
k-space area given by 1 − x. This is confirmed experimentally
in several ways. First, in the limit of T = 0 the Hall coefficient
RH= +1/ne, where the carrier density n = 1 − x carriers
per Cu atom [22]. Second, the frequency F of quantum
oscillations detected in overdoped Nd2−xCexCuO4 (NCCO),
a closely related material, is such that F = n�0 [44]. Third,

x
FIG. 13. (Color online) Sketch of the doping evolution of the

Fermi surface in PCCO, based on ARPES measurements performed
on NCCO, a closely related material [42,43]. At high x, in the
overdoped regime, the Fermi surface is a single large holelike nearly
circular Fermi cylinder (drawn in red). Below a critical doping
xc � 0.16, the Fermi surface undergoes a reconstruction, into small
hole (red) and electron (blue) pockets. At low x, the small hole pockets
eventually disappear, leaving only the electron pockets centered at
(±π,0) and (0, ± π ).
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measurements of angle-resolved photoemission spectroscopy
(ARPES) in NCCO see a large closed Fermi surface of the
right area [42,43].

In the normal state at T → 0, achieved by applying a field
H > Hc2, RH undergoes a sudden and dramatic change below
xc= 0.16. It goes from small and positive to large and negative
[22]. ARPES measurements on NCCO reveal a transformation
as sketched in Fig. 13, whereby the large holelike cylinder of
the overdoped regime is reconstructed into two small pockets,
respectively located at (π,0) and (π/2,π/2), as the doping is
reduced below x � 0.16 [43]. This reconstruction is consistent
with the observation of low-frequency quantum oscillations
in NCCO [44], which reveal the existence of a small closed
pocket in the Fermi surface, tentatively attributed to the pocket
seen by ARPES near (π/2,π/2).

The evidence so far is consistent with a Fermi-surface
reconstruction caused by the onset of a density-wave order
with a wave vector Q = (π,π ) [23], which could well be
the commensurate Néel antiferromagnetic order observed by
neutrons at low x [45]. In this case, the pocket at (π,0) is
electronlike and the pocket at (π/2,π/2) is holelike. One
generically expects a Lifshitz transition to occur at a doping
well below xc, where the holelike pocket disappears, leaving
only the electronlike pocket at (π,0) (see Fig. 13) [23].

The FSR described here will affect all transport properties.
In addition to the dramatic changes in RH , the resistivity ρ

also shows signatures of FSR, in particular the upturn in ρ(T )
seen at low temperature (Fig. 1), which we attribute to the loss
of carrier density. The temperature Tmin of the minimum in
ρ(T ) may then be viewed roughly as the onset of FSR as a
function of temperature (Fig. 2). In the resistivity, the onset
of FSR at T = 0 also occurs at xc = 0.16, where Tmin→ 0, in
agreement with the RH (0) data, but at T = 20 K it only occurs
at x = 0.15 (see Fig. 2). In other words, the Fermi surface
of PCCO at x = 0.15 may be considered unreconstructed for
T > Tc.

For our study of superconductivity, what we immediately
note is that Tc falls with underdoping as soon as it crosses
the Tmin line (Fig. 2). This strongly suggests that the cause
of the Tc dome is the FSR or, more fundamentally, whatever
causes the FSR. In the following sections, we bring support to
this scenario of phase competition in two different ways: first,
by showing that the characteristic field H�

c2 also falls below
x = 0.15, forming a dome just like the Tc dome; second, by
showing that the superconducting fluctuations on both sides
of the dome are not qualitatively different. These observations
remove the need to invoke the emergence of phase fluctuations
on the underdoped side.

B. Characteristic field H�
c2 and critical field Hc2

In Fig. 11, we plot H�
c2 as a function of x. This is the field

scale encoded in the superconducting fluctuations just above
Tc. We see that H�

c2 tracks Tc, both showing a dome peaking
at the same doping, namely, x = 0.15. As already mentioned,
this is the doping where FSR onsets for T � 20 K (see Fig. 2).
This shows that what causes Tc to fall below x = 0.15 also
causes H�

c2 to fall, i.e., the coherence length ξ to increase.
Note that ξ is an average of vF /� over the Fermi surface,
where vF is the Fermi velocity and � is the gap magnitude,
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FIG. 14. (Color online) Hvs(0) divided by Tc
2 vs doping, for the

electron-doped cuprate PCCO (red circles, top horizontal axis) and
the hole-doped cuprates (bottom horizontal axis; data from Ref. [31])
YBCO (full blue squares) and Tl-2201 (open blue squares).

so that changes in either vF or � (or both) will affect ξ , and
hence H�

c2.
Let us examine the evolution of H�

c2 more closely. At
T = 20 K, the Fermi surface is not reconstructed in going from
x = 0.17 to 0.15, so the Fermi-surface average of vF should
be mostly unchanged. Therefore, the increase in H�

c2 from 3.0
to 5.4 T must be due to an increase in �. We can check that
by looking at the ratio H�

c2/Tc
2, which should remain constant

if only � changes since (in a simple model) H�
c2 ∼ �2 and

Tc ∼ �. At x = 0.17 and 0.15, H�
c2/Tc

2 = 17 ± 2 mT/K2 and
14 ± 1 mT/K2, respectively. We see that within error bars,
the rise in both H�

c2 and Tc is driven entirely by an increase
in �. Moreover, the magnitude of H�

c2 is consistent with
expectation for a dirty d-wave superconductor. Indeed, using
H�

c2 � �0/2πξ 2
0 and expressions for ξ0 given in Appendix A,

we estimate that H�
c2 = 2.3 and 5.1 T for x = 0.17 and 0.15,

compared to measured values of 3.0 ± 0.3 T and 5.4 ± 0.3 T,
respectively. In summary, we understand the magnitude and
doping dependence of H�

c2 in PCCO when its Fermi surface is
not reconstructed.

Let us now see what happens when the Fermi surface is
reconstructed. The Fermi surface changes from a single large
pocket with a large vF to two small pockets with a much
smaller vF [44]. This will boost H�

c2 and Hvs(0), so the fact
that H�

c2 nevertheless falls below x = 0.15 implies that � must
necessarily decrease. In Fig. 14, a plot of the ratio Hvs(0)/Tc

2

versus x reveals that the enhancement of Hvs(0) due to the
smaller vF gets gradually stronger with underdoping.

Note that when the Fermi surface changes we expect the
ratio Hvs(0)/H�

c2 to change because Hvs(0) is controlled by
those k-space regions with the smallest ξ , while Nsc, and hence
H�

c2, is dominated by those regions with the largest ξ [see
Eq. (6) in Sec. V C and the discussion that follows], and the
relative proportion of these regions will change. In Fig. 11, we
see that while Hvs(0) = H�

c2 at x = 0.17, the FSR causes Hvs(0)
to become larger than H�

c2 and drop at slightly lower doping
compared to H�

c2 due to the details of FSR. Nevertheless, the
main point is that the low value of Hc2 at x = 0.13 is clear
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evidence that the gap is smaller at that doping (x = 0.13), than
it is at x = 0.15.

The emerging picture is the following. With decreasing
x, starting at x � 0.2, the d-wave gap �0 grows, causing
Tc and Hc2 to grow, until a critical doping where FSR sets
in, whereupon superconductivity is weakened, and both Tc

and Hc2 fall. The FSR is due to the onset of a density-wave
state that breaks translational symmetry, and fundamentally
it is this second phase that competes with superconductivity
[46,47]. This type of phase competition scenario is observed in
several families of unconventional superconductors, including
the quasi-1D organic metals [48,49], the quasi-2D iron-based
superconductors [50], and the quasi-3D heavy-fermion metals
[51,52], where in all cases the competing phase is a spin-
density wave. The organizing principle in such a scenario is the
QCP where the second phase sets in, invariably located inside
the Tc dome. We conclude that the fundamental mechanism
for a dome of Tc versus doping in PCCO is again phase
competition, most likely also with a phase of antiferromagnetic
order [38].

C. Comparison to theory of Gaussian fluctuations

Until now, we have extracted information from Nsc without
having recourse to any theory or model or assumption. We
simply obtained H� directly from the data of Nsc versus H ,
and then obtained H�

c2 directly from the T dependence of H�.
In this section, we compare our data in PCCO to the standard
(Aslamazov-Larkin) theory of superconducting fluctuations
[53].

The calculated quantity is the superconducting contribution
to the transverse thermoelectric conductivity αsc

xy , while the
measured quantity is Nsc. The two are related as

αsc
xy � Nsc

ρ
, (5)

assuming |S tan θH | 	 N (see Appendix B). In 2002, Us-
sishkin, Sondhi, and Huse calculated the thermoelectric
response of a quasi-2D type-II superconductor in the Gaussian
approximation, in the limits of H → 0 and T → Tc [18]. In
2009, calculations of αsc

xy in a dirty 2D type-II superconductor
were extended to arbitrary T and arbitrary H by two groups
independently [19,20], who arrived at similar results. We now
compare the magnitude and field dependence of Nsc measured
in PCCO with the latest predictions of Gaussian theory.

1. Magnitude

In the limit of H → 0 and T → Tc, αsc
xy above Tc is given,

in two dimensions, by [19]

αsc
xy = 2

3

kBe

h

H

H̃c2(0)

1

ε
, (6)

where kBe/h = 3.33 nA/K is the quantum of thermoelectric
conductance [16,54] H̃c2(0) = �0/2πξ 2(0), and ε = (T −
Tc)/Tc. The magnitude of αsc

xy is seen to depend on one quantity
only, the Ginzburg-Landau coherence length ξ (0), so that αsc

xy

∼ ξ 2(0) as mentioned in Sec. V B. To make contact with
experiment, we use the relation Hc2 � 0.59H̃c2(0) [53], and
the empirical facts that Hc2(0) = Hvs(0) and Hvs(0) = H�

c2 (for
a single large circular Fermi surface). This yields a theoretical
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FIG. 15. (Color online) Comparison of measured [full red cir-
cles; Eq. (8)] and calculated [full blue squares; Eq. (7)] values of
αsc

xy/H vs x. Open blue squares are the values calculated using Hvs(0)
instead of H�

c2 in Eq. (7). The agreement between experiment and
theory, with no adjustable parameter, is remarkable.

expression where the only input parameter is H�
c2:

Theory:
αsc

xy

H
� 0.4

kBe

h

1

H�
c2

1

ε
. (7)

The measured value of αsc
xy is determined using

Experiment:
αsc

xy

H
� νsc

0

ρ�
, (8)

where νsc
0 = ν0 − ν

qp
0 is the superconducting Nernst coefficient

in the H → 0 limit (Fig. 12), and ρ� = ρ/s, in terms of the
zero-field electrical resistivity ρ (Fig. 1) and the interlayer
separation s = 6.1 Å.

In Fig. 15, we plot the theoretical and experimental values of
αsc

xy/H at ε = 0.1, using the values of H�
c2 given in Table I and

the measured values of νsc
0 and ρ given in Table II, respectively.

The agreement between theory and experiment is remarkable.
Although a number of factors not considered here (e.g., s

wave versus d wave) could alter this quantitative agreement
somewhat, it is nevertheless evident that Gaussian theory can
reliably explain not only the magnitude of Nsc in PCCO, but
also its detailed doping dependence. In particular, it shows
that there is no qualitative difference between the supercon-
ducting fluctuations of the underdoped regime relative to the
overdoped regime. The fluctuations are Gaussian everywhere,
meaning that the superconducting order parameter fluctuates
in both amplitude and phase in the same way across the
phase diagram. This therefore rules out the long-held notion
that phase fluctuations play a special role in underdoped
cuprates [2].

2. Field dependence

One may ask whether the fluctuations at high field might
be different from those close to H = 0 that were considered
in the previous section. In the conventional superconductor
NbxSi1−x , direct comparison [20] of the calculated αsc

xy and
the measured Nsc (Refs. [16,17]) showed detailed quantitative
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agreement, validating the theory of Gaussian fluctuations at
arbitrary H .

In Fig. 16, we reproduce the calculated curve of αsc
xy versus

H at T = 1.08 Tc [20]. It shows the characteristic rise and
fall, with a peak at some field H�. The curve is normalized
at H� for both axes, allowing us to compare with our data
for Nsc versus H , normalized in the same way. In Fig. 16,
we perform this comparison for the two dopings at which the
Fermi surface is not reconstructed, namely, x = 0.15 and 0.17.
The data are seen to be in perfect agreement with the theoretical
curve, for both dopings. This shows that the theory of Gaussian
fluctuations continues to be valid in PCCO well beyond the
limit of small fields. We conclude that all aspects of our data
in PCCO agree with the theory of Gaussian fluctuations.

Before moving on to the next section, let us comment on
the behavior of H� close to Tc. At all dopings, we see that H�

deviates from its ln(T/Tc) dependence as T → Tc, in such a
way that H� saturates to a nonzero value at T = Tc or ε = 0
(Fig. 10). This is a reflection of the fact that the initial rise in
Nsc vs H never becomes infinitely rapid, even at ε = 0 (Fig. 8,
right panels). As can be seen in Fig. 12, the initial slope ν0

does not diverge as T → Tc, for any doping. On the contrary,
ν0 saturates to a constant value below ε � 0.1. This saturation
is entirely expected on theoretical grounds since ν ∼ αsc

xy/σ is
the ratio of two coefficients that both diverge in the same way
as ε → 0. Indeed, just as αsc

xy ∝ 1/ε [Eq. (6)], so is σ ∝ 1/ε

[53].

D. Comparison with hole-doped cuprates

We have shown that in the electron-doped cuprate PCCO
the superconducting fluctuations are Gaussian throughout the
doping phase diagram, ruling out phase fluctuations as a
mechanism for the Tc dome, and superconductivity weakens as
soon as Fermi-surface reconstruction sets in, below a critical

doping xc. The origin of the Tc dome is therefore an underlying
growth in the gap �0 with decreasing x, curtailed by the onset
of a competing phase. This is why the dome is centered around
xc. In this section, we investigate to what extent a similar
scenario applies to hole-doped cuprates.

1. FSR and the origin of the Tc dome

The first thing to note is that hole-doped cuprates also
undergo a FSR below some critical doping pc [46,47]. This was
revealed unambiguously by the discovery of low-frequency
quantum oscillations in YBCO [55], shown to come from a
small electronlike pocket in the Fermi surface of underdoped
YBCO, because of the large negative Hall coefficient RH at low
temperature [56]. In the normal state, once superconductivity
has been removed by application of a large magnetic field, the
electron pocket is seen to persist as a function of doping up to
at least p = 0.15 [57]. Given that hole-doped cuprates above
p � 0.25 are known to have a single large holelike Fermi
surface [37,58,59] (very similar to that of electron-doped
cuprates at high x), the FSR in the normal state at T = 0 must
take place at a critical doping pc such that 0.15 < pc< 0.25.

In YBCO, the onset of this FSR upon cooling is rather
gradual, as it is in PCCO, and it may be said to occur at the
temperature Tmax below which RH (T ) starts to fall towards
negative values [57]. The fact that the Tmax line and the Tc line
cross where the latter peaks is strong evidence that the the drop
of Tc on the underdoped side is linked to the FSR [31,57].

The temperature-doping phase diagram of YBCO is there-
fore similar to that of PCCO (Fig. 2), in the sense that the onset
of FSR extrapolates to a critical point at T = 0 which lies just
above optimal doping (where Tc peaks). So, the origin of the Tc

dome in hole-doped cuprates appears to be fundamentally the
same as in electron-doped cuprates, namely, phase competition
and FSR below a quantum critical point located inside the
dome. Note, however, that the competing order itself may be
different.

2. Critical field Hc2 and critical doping pc

To investigate the comparison further, we examine the
doping dependence of critical fields in hole-doped cuprates.
The upper critical field Hc2 was recently determined by
thermal conductivity measurements in YBCO, YBa2Cu4O8,
and Tl2Ba2CuO6 (Tl-2201) [31]. The data revealed that
Hc2 = Hvs(0), as confirmed here in PCCO at x = 0.15. Using
high-field measurements of Hvs(T ), the complete doping
dependence of Hc2 was reported; the data are reproduced in
Fig. 17. We see that Hc2 versus p exhibits two peaks, pointing
to two underlying quantum critical points, possibly associated
with the onset of two distinct competing phases [31]. Here,
we focus on the higher peak, at pc = 0.18. Starting from high
doping, we see that Hc2 rises from zero at p � 0.27 up to
Hc2 = 150 ± 20 T at pc. In this overdoped regime, the ratio
Hc2/Tc

2 is roughly constant (Fig. 14), showing that the growth
in the gap magnitude �0 controls the rise of Tc and Hc2, as we
found in overdoped PCCO.

Moreover, the value of the ratio is roughly the same in both
hole-doped and electron-doped materials, namely, Hc2/Tc

2 �
18 mT/K2 (Fig. 14). This may be somewhat coincidental since
Hc2 depends on the Fermi velocity vF and the mean-free path
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FIG. 17. (Color online) Upper critical field Hc2 in the hole-doped
cuprate YBCO, obtained in two different ways. First, directly from
resistive measurements of Hvs(T ) at low temperature in high magnetic
fields, extrapolated to T = 0, giving Hc2 = Hvs(0) (blue symbols)
[31]. The open circles are for YBa2Cu4O8 (p = 0.14) and Tl-2201
(p > 0.21) [31]. Second, we plot 0.59H̃c2(0) (red symbols) with
H̃c2(0) = �0/2πξ 2(0), where the coherence length ξ (0) is obtained
from Gaussian Aslamazov-Larkin theory applied above Tc to either
the conductivity (full squares from Ref. [60], open squares from
Ref. [61]) or the magnetization (open diamonds, from Ref. [62]). The
agreement between the two ways of determining Hc2 is remarkable.

l (see Appendix A), and these parameters may not be identical
in YBCO or Tl-2201 and in PCCO, but it nevertheless explains
why Hc2 in PCCO is so much smaller than in YBCO. Indeed,
a factor 5 smaller Tc, from Tc � 100 K to Tc � 20 K, will yield
a factor 25 smaller Hc2, from Hc2 � 150 T to Hc2 � 6 T, as
roughly observed.

Below pc = 0.18, Hc2 in YBCO drops by a factor 6, down
to Hc2 = 24 ± 2 T at p = 0.11 [31]. The condensation energy
δE drops by a factor 20, and the ratio δE/T 2

c by a factor 8 [31].
This dramatic suppression of superconductivity is attributed
to phase competition, involving the onset of charge order
[31,63,64]. The value of pc is consistent with the onset of
FSR at T = 0, as estimated from RH [57].

As seen in Fig. 14, the FSR in YBCO causes a drop
in the ratio Hc2/Tc

2, at least initially, whereas the FSR in
PCCO causes an increase. The difference is likely to come
at least in part from the different effect of FSR on the Fermi
velocity vF . We mentioned that in PCCO vF undergoes a
large change, by an order of magnitude. In YBCO, however,
quantum oscillation measurements give only a factor 2 drop in
vF upon FSR, if we compare overdoped Tl-2201 (p � 0.25;
Ref. [65]) and underdoped YBCO (p = 0.11; Ref. [66]). The
difference could also come from a different topology of the
reconstructed Fermi surface. While the electron pocket in the
Fermi surface of PCCO is located at (π,0), where the d-wave
gap is maximal, the electron pocket in the Fermi surface of
YBCO is quite possibly located at (π/2,π/2), where the gap
goes to zero [67].

3. Superconducting fluctuations

Superconducting fluctuations in hole-doped cuprates have
been studied extensively, mostly via measurements of the
electrical resistivity, the magnetization, and the Nernst effect.

 0

 0.5

 1

 0  2  4  6

N
sc

(H
) 

/ N
sc

(H
* )

H / H*

PCCO x = 0.15
Eu-LSCO p = 0.11

T / Tc = 1.08

FIG. 18. (Color online) Superconducting Nernst signal of
electron-doped PCCO (blue) and hole-doped Eu-LSCO (red),
measured at T = 1.08 Tc in both cases, for dopings as indicated. The
x axis is normalized by the peak field H� and the y axis is normalized
by the magnitude of the superconducting Nernst signal at H�. The
agreement between the two is excellent, showing that the nature of
superconducting fluctuations is basically the same whether cuprates
are electron doped or hole doped, and both are well described by
Gaussian theory (see Fig. 16).

An exhaustive study of paraconductivity in YBCO by Ando
and co-workers showed that Gaussian theory (Aslamazov-
Larkin) accounts well for the effect of superconducting
fluctuations above Tc [60]. From their analysis, justified in
light of other works [68,69], they extract a coherence length ξ

as a function of doping, and use it to estimate the critical field
H̃c2(0) = �0/2πξ 2. A later study by Rullier-Albenque and
co-workers, based on a similar analysis, yielded H̃c2(0) values
in good agreement with the earlier work, at least for p < 0.15
[61]. For p > 0.15, the use of higher magnetic fields in the
more recent study may have improved the estimate of the
underlying normal-state magnetoresistance [70]. In Fig. 17,
we plot Hc2 � 0.59H̃c2(0) obtained from the data of both
groups on the H -p diagram of YBCO. We also plot Hc2

obtained from recent magnetization measurements analyzed
using Gaussian theory to extract the coherence length [62]. The
agreement between Hc2 obtained from direct measurements
of Hvs at low temperature and high fields and Hc2 encoded
in the superconducting fluctuations above Tc is remarkable.
In particular, it exhibits the same two-peak structure and the
same sixfold drop between p = 0.18 and 0.11.

The Nernst response of hole-doped cuprates was recently
revisited and shown to be in excellent agreement with the
Gaussian theory [21]. Figures 18 and 19 show how the behavior
of Nsc in the hole-doped cuprate Eu-LSCO is qualitatively
identical to that of electron-doped PCCO, as a function of
field and temperature, respectively.

We conclude that superconducting fluctuations in cuprates
are well described by Gaussian theory, whether in electron-
doped or hole-doped materials, whether in the overdoped or
underdoped regimes. This may no longer be true at very low
doping, i.e., p < 0.08 and x < 0.13, when close to the Mott
insulator, but otherwise it appears that using the standard
theory is a reliable way to extract fundamental information
about superconductivity in the cuprates. Previous analyses of
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FIG. 19. (Color online) Comparison of H� vs ε for electron-
doped PCCO (green circles) and hole-doped Eu-LSCO (red circles),
at dopings as indicated. The PCCO data are multiplied by a factor
3. The black dotted line is a fit of the data to the function H� =
H�

c2ln(T/Tc) [Eq. (4)].

paraconductivity and diamagnetism in hole-doped cuprates
such as YBCO have also found Gaussian theory to be a good
description of the superconducting fluctuations [69,71,72].

VI. SUMMARY

Our measurements of the Nernst effect in the electron-
doped cuprate superconductor PCCO elucidate the nature of
superconducting fluctuations above the critical temperature
Tc. We find that the superconducting Nernst signal Nsc is
in qualitative and quantitative agreement with the theory of
Gaussian fluctuations in dirty 2D superconductors [18–20] at
all dopings. Indeed, Nsc(T ,H ) in PCCO behaves as it does
in the conventional superconductor NbxSi1−x [16,17]. This
implies that there is nothing unusual about the fluctuations in
PCCO, even in the underdoped regime. There is no evidence
of any vortexlike excitations, or preformed pairs, above Tc.

The characteristic magnetic field scale H�
c2 extracted di-

rectly from the data independent of any theoretical assump-
tions displays a domelike dependence on doping, showing the
same x dependence as Tc, both peaking at x = 0.15. This
shows that the pairing strength drops below optimal doping.
This weakening of superconductivity occurs at the critical
doping where the Fermi surface undergoes a reconstruction
[22]. The scenario is therefore one of competition with another
ordered phase that causes both the Fermi-surface reconstruc-
tion and the suppression of Tc and H�

c2 [31,46,47,73,74]. Most
likely, the competing phase in PCCO is antiferromagnetic
order [23].

The emerging picture for PCCO is therefore the same as
in quasi-1D organic superconductors, where an antiferromag-
netic quantum critical point is clearly the organizing principle
[47,49]. The magnetic fluctuations cause d-wave pairing,
while the magnetic order competes with superconductivity.
The first effect increases Tc, the second decreases Tc, and the
two together produce the Tc dome that straddles the critical
point. By analogy, we infer that the same two mechanisms
are at play in PCCO, supporting the case for magnetically

mediated pairing in cuprates [29,47]. This is also the likely
scenario in iron-based superconductors [50].

A comparison of our Nernst data on PCCO with corre-
sponding data reported for the hole-doped cuprate Eu-LSCO
(Ref. [21]) reveals a strong similarity. We conclude that
superconducting fluctuations in hole-doped cuprates are not
significantly different. This validates the use of Gaussian
fluctuation theory in previous analyses of paraconductivity
data in underdoped YBCO, which yielded an estimate of
Hc2 that decreases rapidly with underdoping [60,61], in good
agreement with direct measurements of Hc2 in YBCO [31].
These studies establish that the dominant mechanism for the
Tc dome in hole-doped cuprates is also phase competition.
Interestingly, in this case the competition does not seem to
come from magnetic order, but appears to involve charge order
[63,64].

We conclude that fluctuations in the phase of the super-
conducting order parameter, long invoked as the mechanism
responsible for the Tc dome of cuprates, do not in fact play
a prominent role in the origin of the Tc dome of either
electron-doped or hole-doped cuprates.
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APPENDIX A: ESTIMATE OF Hc2 IN PCCO

Quantum oscillations in the c-axis resistivity of overdoped
NCCO at x = 0.17 have a frequency F = 10 960 T and a
cyclotron mass m� = 2.3m0 [44]. Using the Onsager relation

F = �0

2π2
Ak (A1)

with �0 = 2.07 × 10−15 Wb, we extract the corresponding
values for the Fermi wave vector of the large Fermi surface
kF = 0.58 Å−1 and the Fermi velocity vF = �kF/m� = 2.9 ×
105 m/s. Using the following relation for the coherence length
of a clean superconductor:

ξ clean
0 = �vF

a�0
(A2)

with a = 1.5 and �0 = 2.14kBTc for a d-wave state, we extract
the clean limit coherence length ξ clean

0 = 51 nm. Disorder
affects the clean limit coherence length if the mean-free path
	 is comparable to ξ clean

0 . We estimate the mean-free path via
the relation

	 = hs

e2ρ0kF

, (A3)
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TABLE III. Comparing the magnitude of |S tan θ | relative to N

in our PCCO samples.

x Tc |S tan(θH )| N |S tan(θH )|
N

(K) (nV/K) (nV/K)

0.13 8.8 36 263 0.14
0.14 17.4 11 1394 0.01
0.15 19.5 1 1359 0.001
0.17 13.4 17 425 0.04

where ρ0 is the residual resistivity. Using the interlayer
distance s = 6.1 Å and ρ0 = 17.5 μ
 cm (Fig. 1), we get
	 = 15.5 nm. Using Pippard’s relation for the coherence length
of dirty superconductors

1

ξ
dirty
0

= 1

ξ clean
0

+ 1

	
, (A4)

we arrive at a coherence length of ξ
dirty
0 = 11.9 nm in the dirty

limit. We use this value to calculate the upper critical field

from the expression:

Hc2 = �0

2πξ 2
0

= 2.3 T. (A5)

The result is close to our measured value Hvs(T → 0) = 3.0 ±
0.2 T, as discussed in Sec. V B and presented in Table I.

APPENDIX B: MAGNITUDE OF S tan(θH)

Equation (5) is valid when |S tan θH| 	 N . To verify that
this condition is indeed satisfied in our PCCO samples, we
have measured the Seebeck effect in our thin films and used
the values of RH from Ref. [27] to calculate tan(θH ) using
tan(θH) = RHB/ρ. Table III lists the value of |S tan θH|, N ,
and the ratio of the two quantities at T = 4 K and H = 15 T
for our four samples. The condition |S tan θH| 	 N is seen to
hold at all dopings.
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Bergé, L. Dumoulin, and K. Behnia, Nat. Phys. 2, 683 (2006).
[17] A. Pourret, H. Aubin, J. Lesueur, C. A. Marrache-Kikuchi,
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