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The thermal conductivity κ of the iron-based superconductor FeSe was measured at temperatures down
to 75 mK in magnetic fields up to 17 T. In a zero magnetic field, the electronic residual linear term in the
T ¼ 0 K limit, κ0=T, is vanishingly small. The application of a magnetic field B causes an exponential
increase in κ0=T initially. Those two observations show that there are no zero-energy quasiparticles
that carry heat and therefore no nodes in the superconducting gap of FeSe. The full field dependence of
κ0=T has the classic two-step shape of a two-band superconductor: a first rise at very low field, with a
characteristic field B⋆ ≪ Bc2, and then a second rise up to the upper critical field Bc2. This shows that
the superconducting gap is very small (but finite) on one of the pockets in the Fermi surface of FeSe.
We estimate that the minimum value of the gap, Δmin, is an order of magnitude smaller than the maximum
value, Δmax.
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Amongst iron-based superconductors, the simple
material FeSe has attracted much attention because, when
made in thin-film form, its superconductivity appears to
persist to a critical temperature Tc ≃ 100 K [1]. In bulk
form, FeSe is unusual in that it undergoes the standard
tetragonal-to-orthorhombic structural transition without the
usual accompanying antiferromagnetic transition [2,3].
This raises fundamental questions about the role of magnet-
ism in causing superconductivity and nematicity.
A basic property of any superconductor is its gap structure,

which is related to the symmetry of its pairing state.
Theoretical calculations for FeSe within a model where
pairing proceeds via spin excitations yield a superconducting
gap with accidental nodes on one of the Fermi surface
pockets [4]. However, experimentally, there is no consensus
on the gap structure of FeSe. A thermal conductivity study of
nonstoichiometricFeSex revealed a small residual linear term
at T → 0 K, interpreted as evidence against nodes in the gap
[5]. In a subsequent study on stoichiometric FeSe, a huge
residual linear term was reported [6], viewed as evidence of
nodes. Specific heatmeasurements down toT ¼ 0.5 K show
that there are low-lying excitations but cannot distinguish
between nodes and just a small minimum gap [7]. A
penetration depth study of nonstoichiometric FeSex revealed
a two-band behavior with a small minimum gap Δmin [8],
whereasmeasurements on FeSe show a nearly linear temper-
ature dependence [6], pointing to nodes. Scanning tunneling
microscopy (STM) on films [9] and crystals [6] detects a
V-shaped density of states at low energy, suggestive of
nodes, but not always [10].

In this Letter, we investigate the gap structure of
stoichiometric FeSe using thermal conductivity, a bulk
probe of the superconducting gap highly sensitive to the
presence or absence of nodes [11]. Measurements were
performed on two single crystals, grown by two different
groups, and the results are in excellent agreement. We find
that the residual linear term in κðTÞ as T → 0 K, κ0=T,
is negligible at B ¼ 0 T and it rises exponentially with
magnetic field B at first, clear evidence that there are no
nodes in the gap. The full field dependence reveals a classic
two-band behavior, with a very small gap on one part of
the Fermi surface, an order of magnitude smaller than the
large gap on the other Fermi surface. This small gap is
responsible for low-energy quasiparticle excitations that
will make the specific heat, penetration depth, and STM
spectrum of FeSe appear nodal in character unless mea-
sured down to a very low temperature.
Methods.—High-purity stochiometric single crystals of

FeSe were grown by vapor transport [12]. (Note that in the
early study by Dong et al. [5], the samples of FeSex were
not stoichiometric, and this introduces some uncertainty
as to what would be the intrinsic properties of FeSe.)
Our sample A was prepared at the University of British
Columbia in Vancouver, Canada; our sample B was pre-
pared at Karlsruhe Institute of Technology in Karlsruhe,
Germany. They have similar characteristics, with Tc¼9.3K
(A) and 8.6 K (B) (Fig. 1). The contacts were made using
silver paste. The thermal conductivity was measured in a
dilution refrigerator down to 75 mK (≃Tc=100), for a
heat current in the basal plane of the orthorhombic crystal
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structure, as described elsewhere [13]. A magnetic field up
to 17 T was applied along the c axis and always changed
at T > Tc.
Resistivity.—The in-plane resistivity ρðTÞ of our two

samples is in excellent agreement with published data [6],
when normalized to 410 μΩ cm at T ¼ 300 K. Differences
are only visible when zooming at low temperature, as
in Fig. 1. We see that the curve for sample B is shifted
up relative to that of sample A, so that ρðT ¼ 15 KÞ ¼
20.0 μΩ cm (A) and 25.5 μΩ cm (B). For comparison,
the sample of FeSe in Ref. [6] has Tc ≃ 9.4 K and
ρðT ¼ 15 KÞ≃ 18 μΩ cm, showing that its disorder level
is similar to, perhaps slightly lower than, that of sample A.
The sample of FeSex in Ref. [5] has Tc ≃ 8.8 K and
ρðT ¼ 15 KÞ≃ 80 μΩ cm, pointing to a much lower
quality.
Owing to its semimetal-like Fermi surface made of small

holelike and electronlike pockets, FeSe displays a strong
orbital magnetoresistance (MR) [14], which goes approx-
imately as ρðT → 0 KÞ ∝ B2. The level of disorder is likely
to affect the magnitude of the MR, with lower disorder
giving a larger MR. In the inset of Fig. 1, we compare
the MR measured just above T ¼ 15 K in our two samples
and that of Ref. [6]. As expected, the MR increases with
decreasing ρ.
Thermal conductivity.—The thermal conductivity κðTÞ

of FeSe at low temperature is shown in the four panels of
Fig. 2 for 26 different values of the magnetic field B,
ranging from B ¼ 0 T to B ¼ 17 T. Data taken at B ¼ 1.5,
3.0, 4.5, 6.0, 7.5, and 10.0 mT are not shown. At low field
(B < 1.0 T), the data are well described by the form

κ=T ¼ aþ bT2 below T ≃ 0.4 K [Figs. 2(a) and 2(b)].
The residual linear term, a≡ κ0=T, is purely electronic,
and the second term, bT2, is due to phonon conduction
[11]. In that regime, phonons are scattered by the sample
boundaries, and the phonon mean free path is constant. In
this Letter, our focus is entirely on κ0=T, the electronic
transport due to zero-energy quasiparticles. At higher field,
κðTÞ gradually becomes more linear [Fig. 2(c)], as in the
normal state above Bc2 ¼ 14 T [Fig. 2(d)]. In that regime,
phonons are predominantly scattered by electrons, and their
mean free path goes as 1=T. Above 10 T, a fit to the form
κ=T ¼ aþ bT below T ≃ 0.4 K is used to extract κ0=T
[Figs. 2(c) and 2(d)].
At B ¼ 0 T, κ0=T ¼ 6� 2 μW=K2 cm [Fig. 2(a)], a

very small value. To put it in perspective, this value should
be compared to the value in the normal state, κN=T, which
we estimate by applying the Wiedemann-Franz law to
the residual resistivity ρðT → 0 KÞ ¼ 2.8 μΩ cm (Fig. 1),
giving κN=T ¼ L0=ρðT → 0 KÞ ¼ 8.8 mW=K2 cm, where
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FIG. 1. In-plane electrical resistivity ρðTÞ of FeSe for our
samples A (red) and B (blue). The dashed lines are a linear fit
to ρðTÞ between 15 and 20 K, extended to T ¼ 0 K, giving
the residual resistivity ρðT → 0 KÞ. (Inset) Dependence of ρ on
magnetic field B, at T ¼ 15 K, plotted as ρ vs B2, for samples A
(red circles) and B (blue squares), compared with corresponding
data in Ref. [6] (green triangles).
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FIG. 2. Temperature dependence of the in-plane thermal
conductivity κðTÞ of FeSe, measured on sample A, with an
applied magnetic field B∥c. (a) Plotted as κ=T vs T2 for B ¼ 0,
0.02, 0.04, 0.06, 0.08, and 0.1 T (from bottom to top). Lines are a
fit to κ=T ¼ aþ bT2, used to obtain the residual linear term at
T ¼ 0 K, a≡ κ0=T. (b) Plotted as κ=T vs T2 for B ¼ 0, 0.1, 0.2,
0.3, 0.5, 0.75, and 1.0 T (from bottom to top). Lines are a fit to
κ=T ¼ aþ bT2. (c) Plotted as κ=T vs T for B ¼ 1, 2, 4, 8, 10, 12,
13, and 14 T (from bottom to top). The lower line is a fit to
κ=T ¼ aþ bT2 (B ¼ 1 T) and the upper line a fit to κ=T¼aþbT
(B ¼ 14 T). (d) Plotted as κ=T vs T for B ¼ 14, 15, 16, and 17 T
(from top to bottom). Lines are a fit to κ=T ¼ aþ bT. The values
of a≡ κ0=T obtained from a fit to either κ=T ¼ aþ bT2

(B < 11 T) or κ=T ¼ aþ bT (B > 11 T) are plotted as κ0=T
vs B in Fig. 3.
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L0 ≡ ðπ2=3ÞðkB=eÞ2. We see that κ0=T is ∼0.07% of the
normal-state conductivity, a negligible value. This shows
that there are no zero-energy quasiparticles in the super-
conducting state of FeSe at B ¼ 0 T. Note that the value
reported in Ref. [5], κ0=T ¼ 16� 2 μW=K2 cm, is 4% of
κN=T in their sample, a fraction similar to that found in
KFe2As2 [15], a well-established nodal superconductor. By
achieving a ratio ðκ0=TÞ=ðκN=TÞ 50 times smaller than in
Ref. [5], our data make a compelling case for the absence
of nodes.
The unambiguous confirmation for the absence of nodes

comes by applying a magnetic field, a controlled way of
exciting quasiparticles in the superconducting ground state
at T ≃ 0 K. Looking at the full B dependence of κ0=T
up to 17 T [Fig. 3(a)], we see the typical behavior of a two-
band superconductor like MgB2 [16] or NbSe2 [17]. Two
features are striking. The first is the sharp cusp at
B ¼ 14 T. This is the upper critical field Bc2, below which
vortices appear in the sample. The appearance of vortices
introduces an additional scattering process, which suddenly
curtails the mean free path, causing an abrupt drop in
conductivity below Bc2, in samples with a long electronic
mean free path. This happens in any clean type-II super-
conductor, whether the gap is nodeless—as in Nb or LiFeAs

[18]—or nodal—as in KFe2As2 [15] or YBa2Cu3Oy [19],
provided the elastic normal-state mean free path is much
longer than the T ¼ 0 K coherence length ξ (i.e., the
intervortex separation at Bc2) [20].
Note that the decrease in κ0=T above Bc2 [Fig. 3(a)] is

due to the strong magnetoresistance of the normal state
(inset of Fig. 1). As discussed below, the B dependence of
κ0=T is in quantitative agreement with the known B
dependence of ρ [14]. This proves that the cusp indeed
corresponds to the end of the vortex state and it rules out its
previous interpretation as an internal phase transition inside
the vortex state [6]. The values of Bc2 thus obtained are
13.3� 0.2 T (Ref. [6]), 14.0� 0.2 T (sample A), and
15.2� 0.2 T (sample B).
The second striking feature of κ0=T vs B is the rapid rise

at low B [Fig. 3(a)]. To investigate this closely, the field was
increased in very small steps, starting with B ¼ 1.5 mT,
then 3.0 mT, and so on [Fig. 3(b)]. In FeSe, the lower
critical field above which vortices first enter the sample
at T → 0 K is Bc1 ≃ 3 mT [21]. We find that increasing B
up to 20 mT, a field 7 times larger than Bc1, causes little
increase in quasiparticle conduction. This confirms that
there are no nodes in the gap, for if there were, a field
greater than Bc1 would rapidly excite nodal quasiparticles,
through the Volovik effect associated with vortices [20].
In Fig. 3(b), we see that the initial rise in κ0=T vs B is

exponential, so that the field-induced quasiparticle heat
conduction in FeSe is an activated process (at low B), very
different from the rapid rise characteristic of nodal super-
conductors [11,20]. This shows that there is a minimum gap
for quasiparticle excitations; i.e., there are no nodes any-
where in the gap. However, that minimum gap (Δmin) is
much smaller than the maximum gap (Δmax) responsible for
setting Bc2. Indeed, the characteristic field for the initial rise
is roughly B⋆ ≃ Bc2=100, if we define B⋆ as the inflection
point in κ0=T vs B, where κ0=T goes from a positive to a
negative curvature [Fig. 3(c)], giving B⋆ ≃ 0.15 T.
The quantity that controls how fast κ0=T rises with B is

not the superconducting gap Δ but the coherence length
ξ ∝ vF=Δ, where vF is the Fermi velocity. In a single-band
situation, the upper critical field is set by ξ: Bc2 ∝ 1=ξ2 ∝
ðΔ=vFÞ2. In a two-band model, the Fermi surface with the
smaller ξ will set Bc2, while the surface with the larger ξ
will control B⋆. In the two-band superconductor MgB2,
B⋆ ≃ Bc2=10 because the small gap is 3 times smaller than
the large gap [16]. Now, the Fermi surface of FeSe consists
of two distinct pockets: a small Γ-centered hole pocket and
a small electron pocket at the corner of the Brillouin zone
[6,22]. Since the two pockets have comparable values of vF
[22], we conclude that the superconducting gaps on the two
pockets differ by an order of magnitude.
Effect of disorder.—It is instructive to compare samples

with different levels of disorder. In Fig. 4 (inset), we plot
κ0=T vs B, for samples A and B, at fields below B ¼ 1.0 T.
We see in sample B the same characteristics we saw in
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FIG. 3. Field dependence of the residual linear term κ0=T in
FeSe, obtained from fits to the data in Fig. 2. (a) Over the full field
range. The vertical dashed line marks the upper critical field,
Bc2 ¼ 14 T. (b) Zoom below B ¼ 0.1 T. The vertical dashed line
marks the lower critical field, Bc1 ¼ 3 mT [21]. The full line is an
exponential fit to the data up to 0.1 T. (c) Zoom below B ¼ 1.0 T.
The vertical dashed line marks the inflection point from upward
to downward curvature at B⋆ ≃ 150 mT.
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sample A: namely, a negligible κ0=T at B ¼ 0 T (≃1% of
κN=T), a flat κ0=T at low B (up to B≃ 100 mT), and a
strong two-band character, with an inflection point at
B⋆ ≃ 0.3 T. So sample B leads us to the same qualitative
conclusions: no nodes, but a very small gap on part of the
Fermi surface. Quantitatively, the minimum gap appears to
be larger, as measured by the larger value of B⋆. It therefore
seems that disorder enhances the minimum gap. One way
to interpret this is to invoke some gap anisotropy on the
pocket with the small gap, so that Δmin is the minimum
value of an angle-dependent gap. Disorder would then
average out this anisotropy and cause Δmin to increase.
Note that, because FeSe is orthorhombic, the gap function
will involve a mixture of s-wave and d-wave components,
which naturally introduces anisotropy [23].
It is then conceivable that in samples cleaner than sample

A, the anisotropy is such that the deep minima further
deepen to produce shallow accidental nodes where the gap
changes sign [24]. This is the mechanism proposed by
Kasahara et al. [6] to explain why they see a large residual
κ0=T in their clean sample of FeSe when a small residual
term had instead been detected in the more disordered
FeSex [5]. Note, however, that the value of κ0=T that they
report at B ¼ 0 T is enormous [6], 20–40 times larger than
the value κ0=T ≃ 100–200 mW=K2 cm that we observe in
both our samples just above B⋆ (Fig. 4 inset), and a sizable
fraction of the total normal-state conductivity κN=T. Their
enormous κ0=T value at B ¼ 0 T remains a puzzle.
In Fig. 4 (main panel), κ0=T is normalized by the field-

dependent normal-state conductivity, κN=T, and B is
normalized by Bc2. We obtain κN=T by fitting the data

points above Bc2 to the relation κN=T ¼ L0=ðaþ bB2Þ
since ρ ¼ aþ bB2 in FeSe [14], given that κN=T ¼ L0=ρ
in the T ¼ 0 K limit. For sample A, a fit to the data points
at B ≥ 14 T [Fig. 3(a)] yields b≃ 50 nΩ cm=T2, in
agreement with the data in Ref. [14]. In Fig. 4, the data
for sample B show a clear shoulder in ðκ0=TÞ=ðκN=TÞ at
B=Bc2 ≃ 1=20, similar to the shoulder seen in MgB2 at
B=Bc2 ≃ 1=9 [16]. Our normalized data for κ0=T vs B on
sample B and A (Fig. 4) can be viewed as cleaner and much
cleaner versions of the data in FeSex [5], respectively, but
they bear no resemblance to the data in Ref. [6].
Summary.—In summary, our thermal conductivity mea-

surements on two high-quality crystals of FeSe reveal a
superconducting gap without nodes, but with a strong two-
band character, whereby the gap magnitude on one pocket
of the Fermi surface of FeSe is an order of magnitude
smaller than its magnitude on the other pocket. The
presence of such a small gap will make various super-
conducting properties of FeSe, such as the specific heat and
the penetration depth, appear as though they come from a
nodal gap, unless measurements are carried out to very low
temperature and/or very low energy.
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Note added.—Recently, three studies were reported that
confirm our interpretation of a nodeless gap with a strong
two-band character in FeSe, based on four different
measurements: STM and specific heat [25], penetration
depth [26,27], and microwave conductivity [27].
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