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Section	1	
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c d
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Figure S1 | Fermi surface of the four cuprates. 

Fermi surface of four different cuprates, as measured by ARPES: a) LSCO at four dopings 

as indicated (from ref. 20); b) Nd-LSCO at p = 0.24 (from ref. 19); c) Bi2212 at p = 0.23 

(from ref. 21); d) NCCO at x = 0.17 (from ref. 28). Note that all are single-layer materials 

and so have only a single Fermi surface, except for Bi2212, which is a bi-layer material, 

with two Fermi surfaces, one of which is hole-like (blue), the other electron-like (red). 

	

The	Fermi	surface	area	of	NCCO	(Fig.	S1d)	is	known	precisely	from	the	frequency	F	of	quantum	

oscillations.	For	the	following	nominal	x	values,	the	following	values	of	F	and	associated	m*	were	

measured	[44]:	x	=	0.15,	0.16,	0.165,	0.17;	F	=	10.96	±	50,	11.10	±	50,	11.17	±	100,	11.25	±	100	kT;	

m*	=	3.0	±	0.3,	2.7	±	0.1,	2.5	±	0.1,	2.3	±	0.05.	The	precise	values	of	x	obtained	from	the	measured	

F	via	the	Luttinger	rule,	x	=	1	–	(2eFa2/h),	are	listed	in	Table	S3	below.
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Section	2 

a b

 

Figure S2 | Phase diagram of hole-doped cuprates. 

Temperature-doping phase diagrams: (a) Nd-LSCO (red) and LSCO (black) (from ref. 45); 

(b) Bi2212 (adapted from ref. 46, neutron data come from ref. 47, Raman data from ref. 22 

and c-axis resistivity data from ref. 48). The pseudogap phase ends at the critical doping             

p* = 0.23 in Nd-LSCO, p* = 0.18-0.19 in LSCO, and p* = 0.22 in Bi2212. 
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Section	3	

a b

c d

 

Figure S3 | Correcting for the magneto-resistance in Bi2212. 

a) Magnetic field dependence of the resistivity ρ in our sample of Bi2212, plotted vs H2,    

at different temperatures as indicated. The dashed lines are linear fits to the data at high 

H, i.e. ρ(H) = ρ(H2→0) + cH2. b) Temperature dependence of ρ: at H = 0 (black dots), at           

H = 55 T (green squares), and ρ(H2→0) (red diamonds) obtained from the fits in panel a). 

The error bars on the back-extrapolated H2→0 values are estimated as being [ρ(H	=	55	T)	-	

ρ(H2→0)]	/	2. The green line is a linear fit to ρ(55T); the dashed black line a linear fit to the 

H = 0 data between 80 K and 130 K. c) Magnetic field dependence of the resistivity ρ in 

Bi2212 at different temperatures. The dashed lines are a linear fit to the data at high H, 

over the same field ranges as in panel a). d) Same as panel b) but including the value of 

the resistivity back extrapolated to H = 0 with the linear fits shown in panel c) (blue 

triangles). The error bar on the blue triangles grows as the fit range decreases. 
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In	Fig.	2a,	isotherms	in	Bi2212	exhibit	a	small	normal-state	magnetoresistance	(MR).		In	Fig.	S3a,	

we	see	that	this	MR	grows	as	H2,	at	T	=	84	K.	To	correct	for	the	MR	at	lower	T,	we	fit	the	data	to	

ρ(H)	=	ρ(H2→0)	+	cH2	above	a	threshold	field	(dashed	lines	in	Fig.	S3a),	namely	:		40	T	for	T	=	68,	57	

and	46	K;	50	T	for	T	=	35	and	23	K;	55	T	for	T	=	18	K.	In	Fig.	S3b,	we	plot	ρ(H2→0)	vs	T	(red	

diamonds)	and	observe	that	ρ(H2→0)	is	the	linear	continuation	(dashed	line)	of	the	H	=	0	data	at	

high	T	(black	dots),	within	error	bars.	This	shows	that	in	the	absence	of	MR,	the	normal-state	

resistivity	of	Bi2212	is	T-linear	from	T	~	120	K	down	to	at	least	T	=	18	K.	The	slope	of	ρ(H2→0)	vs	T	

(red	diamonds,	Figs.	2b	and	S3b)	is	A1	=	0.62	μΩ	cm	/	K	(Table	S2	below),	while	the	slope	of	

ρ(H=55T)	vs	T	(red	squares,	Fig.	1a)	is	A1	=	0.50	μΩ	cm	/	K.	Note	that	the	same	approach	was	used	

to	correct	for	the	MR	in	LSCO	(see	ref.	8).	Motivated	by	the	recent	claim	of	linear	

magnetoresistance	at	the	quantum	critical	point	of	LSCO	(ref.	49),	we	show	in	Fig.	S3c	a	linear	fit	of	

the	magnetoresistance	using	the	same	field	ranges	as	in	panel	a).	In	Fig.	S3d,	we	compare	the	

temperature	dependence	of	the	resistivity	using	linear	(blue	triangles)	and	quadratic	(red	

diamonds)	back	extrapolation	of	the	magnetoresistance.	We	see	that	the	two	methods	agree	

within	error	bars,	and	both	are	consistent	with	the	simple	linear	extension	of	the	zero-field	ρ(T)	

curve.	
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Section	4	
	

a b

 

Figure S4 | Resistivity of Nd-LSCO under pressure. 

Normal-state resistivity of Nd-LSCO at p = 0.22 (a) and p = 0.23 (b), measured at H = 0 

(grey) and H = 33 T at ambient pressure (blue) and at P = 2.0 GPa (red) (from ref. 12). 

The effect of pressure is to suppress the pseudogap phase, by moving p* below 0.22. This 

shows that the resistivity is then perfectly linear at low T. 

T-linear	 resistivity	 in	 Nd-LSCO	was	 first	 reported	 in	 2009,	 at	p	 =	 0.24	 (ref.	 7).	 At	 lower	 doping,							

the	resistivity	shows	an	upturn	at	 low	T,	 the	signature	of	the	pseudogap	(refs.	7,	11).	This	yields				

p*	=	0.23	in	Nd-LSCO	(ref.	11),	consistent	with	ARPES	data	that	find	the	pseudogap	in	Nd-LSCO	to	

close	at	a	doping	above	p	=	0.20	and	below	p	=	0.24	(ref.	19).		

It	was	recently	found	that	p*	can	be	lowered	by	the	application	of	hydrostatic	pressure	(ref.	12).				

A	 pressure	 of	 2	 GPa	moves	p*	 below	 0.22,	 i.e.	 it	 removes	 the	 resistivity	 upturn	 in	 Nd-LSCO	 at												

p	 =	 0.22	 and	 p	 =	 0.23	 (Fig.	 S4).	 Having	 removed	 the	 pseudogap,	 one	 finds	 a	 perfectly	 linear														

T	dependence	as	T	→ 0	(Fig.	S4).	We	then	see	that	the	regime	of	T-linear	resistivity	 is	stretched	

from	p	=	0.24	down	to	p*,	producing	an	anomalous	range	similar	 to	that	 found	 in	LSCO	(ref.	8).							

In	that	range,	we	again	observe	that	A1	increases	with	decreasing	p	(Figs.	1c	and	3b).	
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Section	5	
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Figure S5 | Resistivity of our PCCO films.  

a) Temperature dependence of the resistivity in our three PCCO films with x = 0.17, in zero 

field. b) Zoom on the low-temperature regime, at H = 0 (pale) and H = 16 T (dark). The    

16 T curve for sample C is also shown in Fig. 1d. 

	

To	double-check	the	value	of	A1	in	PCCO	at	x	=	0.17,	we	have	grown	and	measured	three	films	of	

PCCO	at	x	=	0.17,	with	Tc	=	13.1	K	(sample	A),	13.0	K	(sample	B)	and	13.4	K	(sample	C).	These	films	

have	a	very	similar	residual	resistivity	ratio,	RRR	=	ρ(300K)/ρ(T→0)	=	8.2,	8.8	and	9.1,	respectively.	

The	 sample	 thickness	 t	 =	 230	 ±	 30	 um	 is	measured	 by	 the	width	 of	 the	 x-ray	 diffraction	 peak.								

For	 films	 of	 that	 thickness,	 the	 uncertainty	 is	 roughly	 ±	 15%.	 As	 shown	 in	 Fig.	 S5,	 we	 obtain														

A1	=	0.10	μΩ	cm	/	K	on	all	three	films	(at	H	=	0),	in	good	agreement	with	published	data.	Applying	a	

field	of	16	T	 suppresses	 superconductivity	 completely	 (Hc2	 =	3	T;	 ref.	17)	and	extends	 the	 linear							

T	dependence	 to	 the	 lowest	T.	 The	 slope	at	H	=	16	T	 is	 the	 same	as	 in	 zero	 field	 (see	Table	 S4	

below).	We	conclude	that	A1
☐
	=	1.7	±	0.3	Ω	/	K	in	PCCO	at	x	=	0.17	(Fig.	4b	and	Table	1).	
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Section	6 

 

Figure S6 | Resistivity of LCCO films. 

Temperature dependence of the resistivity in LCCO in zero field at three dopings, as 

indicated (from ref. 14, and courtesy of R.L. Greene). Lines are a linear fit to low-T data. 

In	 electron-doped	 cuprates,	 T-linear	 resistivity	 was	 first	 observed	 in	 PCCO	 at	 x	 =	 0.17	 in	 1998										

(ref.	2).	At	the	time,	thin	films	contained	traces	of	an	extra	phase,	and	so	the	absolute	value	of	the	

resistivity	was	not	reliable.	Since	2009	(ref.	41),	 this	has	been	resolved.	 In	recent	measurements	

on	PCCO	(refs.	17,41)	and	on	LCCO	(refs.	13,14),	a	T-linear	resistivity	at	low	T	with	reliable	absolute	

value	has	been	reported,	giving	A1	=	0.1	μΩ	cm	/	K	in	both	PCCO	and	LCCO	at	x	=	0.17	(Table	S4).	

In	Fig.	S6,	we	reproduce	the	zero-field	resistivity	of	LCCO	at	x	=	0.15,	0.16	and	0.17,	from	ref.	14	

(and	courtesy	of	R.	L.	Greene).	Linear	fits	at	low	T	yield	the	values	of	A1	listed	in	Table	S4	below,	

which	give	A1
�
	=	3.0,	2.4	and	1.7	Ω	/	K	at	x	=	0.15,	0.16	and	0.17,	respectively.		

In	Fig.	1d,	we	reproduce	the	in-field	resistivity	of	LCCO	at	x	=	0.15,	0.16	and	0.17,	from	ref.	14	(and	

courtesy	of	R.	L.	Greene).	Linear	fits	at	 low	T	yield	values	of	A1	that	are	very	similar	to	the	zero-

field	values	(see	Table	S4	below).	
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Section	7	
	

 

Figure S7 | Resistivity of LSCO corrected for MR. 

Temperature-dependent part of the normal-state resistivity of LSCO, ρ(T) - ρ0, at p = 0.21 

(green) and p = 0.23 (orange), from ref. 8, and at p = 0.26 (blue, H = 18 T; from ref. 42). 

The green and orange dots are the MR-corrected resistivity, ρ(H2→0), obtained in ref. 8 

from a fit of ρ vs H isotherms to ρ(H) = ρ(H2→0) + cH2. The green and orange lines are a 

linear fit to ρ(H2→0) vs T, whose slope A1 is given in Table S2 below. 

	

The	 low-T	 resistivity	 of	 LSCO	was	measured	 by	 Cooper	 et	 al.	 from	p	=	 0.18	 up	 to	p	=	 0.33,	 by	

applying	 a	 magnetic	 field	 up	 to	 60	 T	 (ref. 8).	 At	 p	 =	 0.21,	 0.23	 and	 0.26,	 48	 T	 is	 sufficient	 to	

suppress	superconductivity	down	to	(at	least)	2	K.	At	those	three	dopings,	the	resistivity	is	linear	as	

T	→ 0,	below	a	certain	temperature	T0.	At	p	=	0.23,	for	example,	a	perfect	linearity	is	observed	in	

the	raw	data	at	48	T	below	50	K	(down	to	at	least	2	K).	The	slope	A1	in	48	T	is	the	same	as	the	slope	

in	 zero	 field	 observed	 between	 Tc	 and	 T0	 ~	 75	 K.	 At	 p	 =	 0.21,	 T0	 ~	 150	 K,	 while	 at	 p	 =	 0.26,																
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T0	~	30	K	(ref. 42).	The	value	of	A1	 increases	with	decreasing	p	(Fig.	1b,	Fig.	3b).	At	p	>	0.26,	the	

resistivity	is	no	longer	purely	T-linear	at	low	T.	Instead,	it	can	be	fit	to	A1	T	+	A2	T2	at	p	=	0.29	and			

to	A2	T2	 at	p	=	 0.33	 (i.e.	A1	 =	 0).	 So	 the	T-linear	 resistivity	 as	T	→ 0	 is	 observed	 in	 LSCO	 from													

p	=	0.26	down	to	at	least	p	=	0.21,	possibly	down	to	p	=	0.18	(where	it	is	more	difficult	to	suppress	

superconductivity),	i.e.	down	to	p*	~	0.18-0.19.	In	LSCO,	p*	is	identified	as	the	doping	below	which	

the	resistivity	is	no	longer	T-linear	at	low	T,	and	p*	=	0.18-0.19	is	consistent	with	ARPES	data	that	

find	 the	pseudogap	 in	 LSCO	 to	 close	above	p	=	0.15	and	below	p	=	0.22	 (ref.	 20).	 The	 fact	 that											

T-linear	resistivity	is	observed	over	a	sizable	range	of	doping	is	considered	anomalous	and	requires	

an	explanation.	
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Section	8	
	
	

circles) and the normal states (open circles). Note that, the
ratios in the two phases are nearly the same, thereby
indicating that IB1g

=IB2g
is unaffected by the superconduct-

ing gap. Most importantly, the ratios change nonmonotoni-
cally as a function of p, and they reveal a sharp peak
located at pc ¼ 0.22, the doping where the normal-state
pseudogap closes (black stars). We confirmed that the sharp
peak is not a resonance effect, since it is visible with two
distinct laser lines (532 nm and 647.1 nm).
Note that the peak in IB1g

=IB2g
cannot be attributed to the

doping dependence of the pseudogap which is monotonic.
Instead, the temperature independence of the sharp peak
position indicates that it is related to enhanced density of
states of the underlying band structure around theAN region
of the Brillouin zone. This invariably leads to the possibility
of a doping induced Lifshitz transition wherein, as a van
Hove singularity crosses the chemical potential, the open
holelike antibonding Fermi surface closes around the
ð#π; 0Þ and ð0;#πÞ points and becomes electronlike.
An electronlike antibonding band in Bi-2212 at p > 0.22
has been reported by ARPES data [21], but this change of
topology was not linked with the closing of the pseudogap.
In order to support this scenario we perform a theoretical

calculation of the Raman response function using a minimal

tight-binding model with the normal-state dispersion [33]:
ϵk;α ¼ −2tðcoskx þ coskyÞ þ 4t0 coskx cosky # toðcoskx−
coskyÞ2=4− μ. Here α ¼ # refer to the antibonding (AB)
and the bonding (B) bands. The superconducting dispersion

is Ek ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵ2k þ Δ2

k

q
, with Δk ¼ Δ0ðcos kx − cos kyÞ=2. We

take t0 ¼ −0.3t, to ¼ 0.084t, and a doping independent
Δ0 ¼ 0.0025t. We change p by varying the chemical
potential μ. As shown in Figs. 4(a)–4(c), this model under-
goes a Lifshitz transition at pc ¼ 0.22 where the AB band
changes from being holelike to electronlike (the B band
remains holelike in this doping range, see the Supplemental
Material [22]). For simplicity we take a constant electron
scattering rate ΓN ¼ 0.01t and ΓS ¼ 0.0025t in the normal
and the superconducting states, respectively. An earlier
work has shown that the scattering rates measured from
the slopes of the Raman responses become isotropic around
p ≈ 0.22 [23]. The calculation of χ00νðωÞ and Iν are standard
(for details, cf. Ref. [22]). The doping dependence of
the calculated ratio IB1g

=IB2g
shows prominent peaks at

p ¼ 0.22 [see Fig. 4(d)], both in the normal and the
superconducting states, and reproduces qualitatively the
experimental trend of Fig. 3.
The origin of the peak can be captured conveniently by

tracking the doping dependence of the Raman vertex γνk;α-
weighted density of states NνðωÞ≡

P
k;αðγνk;αÞ2δðω − ϵk;αÞ

which enter the calculation of Iν. As shown in
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FIG. 2 (color online). B1g (red/grey) and B2g (black) Raman
responses of Bi-2212 at 10 K (superconducting state) and 110 K
(normal state) in the overdoped range using a 532 nm laser. The
[red (grey)] and black hatched areas indicate the magnitudes of
the B1g and the B2g responses, respectively. The former increases
compared to the latter as a function of doping up to pc ¼ 0.22.

FIG. 3 (color online). Doping evolution of (i) the ratio IB1g
=IB2g

of the integrated intensity [defined in Eq. (1)] in the super-
conducting and the normal states (filled and open circles respec-
tively) with cutoff Λ ≈ 3Δ0, (ii) the loss of spectral weight related
to the pseudogap (black stars). The peak in the ratio IB1g

=IB2g
, both

for the superconducting and the normal phases, coincides with the
critical doping pc ¼ 0.22 where the pseudogap disappears. The
peak is a consequence of a Lifshitz transition where the holelike
Fermi surface of the dominant antibonding band becomes elec-
tronlike as the chemical potential crosses a van Hove singularity.
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Figure S8 | Specific heat and Raman intensity in Bi2212. 

a) Normal-state specific heat coefficient γ of Bi2212 vs temperature, at various dopings as 

indicated, estimated from an analysis of data up to high temperature (from ref. 33).           

b) Ratio of Raman intensities in Bi2212 vs doping, for the modes that select anti-nodal 

(B1g) vs nodal (B2g) regions in k-space (from ref. 22).	

	

In	 the	 T	 =	 0	 limit,	 γ	 in	 Bi2212	 is	 seen	 to	 increase	 from	 1.2	 at	 p	 =	 0.187	 to	 1.5	mJ	 /	 gat.	 K2	 at																	

p	=	0.209.	A	linear	extrapolation	up	to	p	=	0.22	yields	γ	=	1.65	±	0.15	mJ	/	gat.	K2	at	p	=	0.22,	which	

converts	 to	 γ	=	12	±	2	mJ	 /	K2	mol-Cu	 (Table	 S1	below).	 The	peak	 in	 the	Raman	 intensity	 ratio,	

which	 is	 sensitive	 to	 the	 opening	 of	 the	 anti-nodal	 pseudogap	 (PG),	 shows	 that	 the	 pseudogap	

critical	point	 in	Bi2212	 is	p*	=	0.22.	Our	sample	has	a	doping	of	p	=	0.23,	and	so	 is	very	slightly	

above	 p*.	 It	 is	 reasonable	 to	 assume	 that	 γ	 at	 T	 =	 0	 (panel	 a)	 will	 continue	 to	 increase	 until																

p	reaches	p*.	
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Section	9	

Planckian limit in the organic conductors 

The	organic	conductor	 (TMTSF)2PF6	 is	a	well-characterized	single-band	metal.	When	tuned	to	 its	

QCP	(by	pressure),	(TMTSF)2PF6	exhibits	a	resistivity	that	is	perfectly	T-linear	below	8	K,	down	to	

the	 lowest	 measured	 temperature	 (~	0.1	 K),	 with	 a	 slope	A1	 =	 0.38	 ±	 0.04	 μΩ	 cm	 /	 K	 (ref.	 4).												

With	a	carrier	density	n	=	1.4×1027	m-3	(ref.	50)	and	an	effective	mass	m*	=	1.0	–	1.3	m0	(ref.	51),	

we	get	A1	=	α	(m*	/	n)	(kB	/	e2	ħ)	=	α	(0.33	–	0.43	μΩ	cm	/	K),	so	that	α	=	1.0	±	0.3	(Table	1).	

To	 calculate	 the	2D	 sheet	 resistance	 listed	 in	Table	1,	we	divide	A1	by	 the	 interlayer	 separation	

along	the	c	axis,	d	=	1.35	nm,	yielding	A1
� =	A1	/	d	=	2.8	±	0.3	Ω	/	K.	

Section	10	

Planckian limit in the single-layer cuprate Bi2201 

In	the	single-layer	cuprate	Bi2201,	the	pseudogap	critical	point	is	located	at	very	high	doping,	near	

the	end	of	the	superconducting	dome,	namely	where	Tc	~	10	K	[52].	The	Fermi	surface	measured	

by	 ARPES	 is	 also	 found	 to	 change	 topology	 from	 hole-like	 to	 electron-like	 near	 the	 end	 of	 the	

superconducting	dome	[53].	The	volume	of	the	Fermi	surface	at	that	doping	 is	such	that	p	~	0.4	

[53],	so	that	the	carrier	density	contained	in	the	electron-like	Fermi	surface	is	n	=	1	–	p	~	0.6.		

Near	 the	 end	 of	 the	 superconducting	 dome,	 at	Tc	 ~	 7	 K,	 the	 resistivity	 is	 found	 to	 be	 perfectly									

T-linear	 [6].	 In	 two	crystals	with	nearly	 the	 same	doping	 (Tc),	A1
 =	0.74	and	1.06	μΩ	cm	/	K	 [6].	

Taking	 the	 average	of	 those	 two	 values,	 consistent	with	 typical	 error	 bars	 on	 geometric	 factors	

(±15%),	we	get	A1	=	0.9	±	0.2	μΩ	cm	/	K.	Dividing	by	 the	 interlayer	 spacing,	which	 is	 two	 times	

larger	in	Bi2201	than	in	LSCO,	we	get	A1
� =	8	±	2	Ω	/	K.	Remarkably,	this	is	the	same	value,	within	

error	 bars,	 as	 in	 Bi2212	 and	Nd-LSCO,	 all	 at	 their	 respective	 critical	 dopings,	 namely	p*	 =	 0.22,	

0.23,	and	0.4	(Table	1).	

We	can	estimate	m*	from	specific	heat	data	measured	on	a	Bi2201	crystal	with	Tc	=	19	K	[54],	at	a	

doping	 slightly	 below	 p*	 [52].	 With	 increasing	 field	 to	 suppress	 superconductivity,	 γ	 increases			

from	6	mJ	/	K2	mol	at	H	=	0	to	8	mJ	/	K2	mol	at	H	=	6	T,	and	is	estimated	to	reach	10	mJ	/	K2	mol										

at	 the	 critical	 field	 Hc2	 =	 18	 T	 [54].	 Given	 the	 uncertainty	 in	 the	 latter	 estimation,	 we	 take																			
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γ	=	10	±	2	mJ	/	K2	mol	,	which	yields	m*	=	7	±	1.5	m0.	Note	that	γ	may	be	somewhat	larger	at	the	

slightly	higher	doping	(p	~	p*)	where	T-linear	resistivity	was	measured	(see	Supplementary	Section	

8	for	a	similar	situation	with	respect	to	the	specific	heat	data	in	Bi2212.)	

Using	 n	 =	 0.6	 and	m*	 =	 7	 ±	 1.5	m0,	 we	 calculate	 the	 value	 predicted	 for	 the	 Planckian	 limit:																	

A1
� =	 (m*	/	n	d)	 (kB	 /	e2	ħ)	=	8	±	2	Ω	 /	K.	The	 ratio	of	experimentally	measured	 to	 theoretically	

predicted	values	of	A1
� 	is	therefore	α	=	1.0	±	0.4	(Table	1).	



 

14 

 

Section	11	
	

a b

c d

Ba122
x = 0.31

	

Figure S9 | H-T scaling in Bi2212 at p = 0.23. 

a) Resistivity of Bi2212 at p = 0.23 normalized at 300 K, plotted as a function of H / T, at 

different temperatures. b) Same plot as in panel a) but for the compound BaFe2(As1-XPx)2 

at x = 0.31 (from ref. 27). c) Resistivity of Bi2212 at p = 0.23, normalized at 300 K, plotted 

as a function of the energy scale Γ (defined in Eq. S1) divided by α kB. The black solid line 

corresponds to zero-field data and the curves in colour refer to the pulsed-field isotherms. 

The dotted black line is a linear fit to zero-field data between 80 K and 130 K. At zero field, 

Γ / α kB is simply equal to T. When H ≠ 0, Γ / α kB is given by the quadrature sum of 

temperature and applied field modulo the ratio γ / α (see Eq. S1). In this panel, γ / α = 1, as 

in panel b (ref. 27). d) Same as in panel c), but with γ / α = 0.68, obtained by assuming a 

linear magnetoresistance at T = 18 K (see Fig. S3c).  
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Scaling between magnetic field and temperature 

Near	 the	 quantum	 critical	 point	 of	 the	 iron-based	 superconductor	 BaFe2(As1-XPx)2,	 at	 x	 =	 0.31,	

Hayes	et	al.	highlighted	a	specific	scaling	between	temperature	and	magnetic	field	dependences	of	

the	resistivity	[27].	 Indeed,	the	resistivity	 looks	 linear	both	in	temperature	and	in	magnetic	field.	

By	 plotting	 the	 temperature	 dependence	 of	 the	 resistivity	 (normalized	 at	 room	 temperature),	

divided	by	T,	as	a	function	of	H	/	T,	all	 the	 isotherms	fall	on	the	same	curve	 in	the	normal	state	

(Fig.	S9b).	This	 led	Hayes	et	al.	 to	suggest	 the	 following	ansatz	 for	 the	 (T,	H)	dependence	of	 the	

resistivity	at	the	quantum	critical	point	of	BaFe2(As1-XPx)2:	

ρ	(H,T)	–	ρ(0,0)	∝	[(α	kB	T)2	+	(γ	µB	µ0	H)2)]1/2	≡	Γ	,	 	 									(S1)	

where	Γ	 is	a	new	energy	scale,	and	α	and	γ	are	dimensionless	parameters	that	can	be	obtained	

from	 the	 linear	 slope	 of	 the	 resistivity	 at	 zero	 field	 above	 Tc	 and	 from	 the	 linear	 slope	 of	 the	

magnetoresistance	as	T	→	0,	respectively.	 If	we	perform	the	same	analysis	 in	Bi2212	at	p	=	0.23	

(Fig.	S9a),	we	notice	that	the	isotherms	do	not	lie	on	the	same	curve	in	the	normal	state,	unlike	in	

BaFe2(As1-XPx)2.	This	may	simply	be	explained	by	the	fact	that	the	magneto-resistance	is	not	purely	

linear	in	this	sample	(see	Section	3).	

The	 disagreement	 with	 the	 scaling	 of	 Hayes	 et	 al.	 for	 Bi2212	 is	 confirmed	 by	 plotting	 the	

normalized	 resistivity	 as	 a	 function	 of	Γ	 /	 (kB	 T)	 (Figs.	 S9c	 and	 S9d).	 If	we	 take	 the	 same	 ratio,												

γ	 /	 α	 =	 1,	 as	 in	 ref.	 27	 (Fig.	 S9b),	 we	 do	 not	 observe	 in	 Bi2212	 (Fig.	 S9c)	 that	 the	 isotherms	

asymptotically	approach	a	single	line	that	would	be	the	extrapolated	T-linear	resistivity	above	Tc.	

Assuming	 that	 the	magnetoresistance	 is	 linear	 in	 field	 at	 the	 lowest	 temperature	 (see	 Fig.	 3c),						

we	obtain	γ	/	α	=	0.68.	Fig.	S9d	displays	the	resistance	of	Bi2212	as	a	function	of	Γ	with	this	ratio,	

and	we	see	that	the	scaling	does	not	work	very	well.	

In	 conclusion,	 the	empirical	 scaling	between	magnetic	 field	and	 temperature	 found	close	 to	 the	

quantum	critical	point	 in	BaFe2(As1-XPx)2	does	not	appear	 to	work	 in	Bi2212.	 (Giraldo-Gallo	et	al.	

recently	showed	that	the	resistivity	of	LSCO	at	p	=	0.19,	near	the	critical	doping,	behaves	linearly	

as	a	function	of	field	and	temperature,	but	they	didn’t	show	any	scaling	relation	[49].)	
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Section	12	

	

Figure S10 | Resistivity vs temperature for various cuprates near their critical point. 

Resistivity as a function of temperature for different cuprates, in zero field: Bi2201 at          

p ≈ 0.4 (green; ref. 6); Bi2212 at p = 0.23 (blue; this work); Nd-LSCO at p = 0.24 (red;         

ref. 11); PCCO at x = 0.17 (orange; this work). The black dotted lines are linear fits of the 

data just above Tc.	

Temperature range of T-linear resistivity 

In	this	paper,	our	focus	has	been	on	the	T-linear	resistivity	in	the	low	T	limit.	The	question	of	how	

high	 in	temperature	the	T-linear	regime	extends	 is	an	 interesting	one,	to	which	there	 is	no	clear	

answer	at	present.	As	seen	in	Fig.	S10,	in	some	cuprates	that	range	is	short	(limited	below	~	50	K	in	

PCCO)	 while	 in	 other	 cuprates	 it	 is	 very	 long	 (beyond	 300	 K	 in	 Bi2201).	 As	 shown	 for	 LSCO	 in									

ref.	8,	the	range	does	appear	to	stretch	as	the	system	gets	closer	to	its	p*:		at	p	=	0.23,	the	T-linear	

regime	is	limited	to	T	<	80	K	or	so,	while	at	p	=	0.19,	it	extends	up	to	T	~	300	K	(see	also	ref.	49).	
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Section	13	

Tables 

�1

FINAL Tables

Anaëlle Legros : 13 septembre 2018

Table 2  |  Effective mass and Planckian limit in hole-doped cuprates.

Table 3  |  Slope of T-linear resistivity in hole-doped cuprates.

Material p ! 
(mJ / K2 mol)

m* / m0 Ref. h / (2e2 TF)
(" / K)

Bi2212 0.22 12 ± 2 8.4 ± 1.6 33 7.4 ± 1.4

LSCO 0.26 ± 0.005 14 ± 2 9.8 ± 1.7 35 8.9 ± 1.8

0.29 ± 0.01 11 ± 1 7.7 ± 0.9 35 7.3 ± 1.2

0.33 ± 0.01 6.9 ± 1 4.8 ± 0.8 34 4.9 ± 1.0

Nd-LSCO 0.24 ± 0.005 17 ± 5 12 ± 4 36 10.6 ± 3.7

0.27 ± 0.01 11 ± 1 7.7 ± 0.9 36 7.1 ± 1.1

0.36 ± 0.01 6.2 ± 1 4.3 ± 0.8 36 4.6 ± 1.0

0.40 ± 0.01 5.4 ± 1 3.8 ± 0.8 36 4.2 ± 1.1

Material p A1 
(#" cm / K)

d 
(Å)

A1� 
(" / K)

H
(T)

Ref.

Bi2212 0.23 0.62 ± 0.06 7.73 ± 0.05 8.0 ± 0.9 → 0 this work

LSCO 0.21 ± 0.005 1.0 ± 0.09 6.57 ± 0.05 15.2 ± 1.5 → 0 8

0.23 ± 0.005 0.75 ± 0.08 6.57 ± 0.05 11.4 ± 1.3 → 0 8

0.26 ± 0.005 0.54 ± 0.06 6.57 ± 0.05 8.2 ± 1.0 18 40

Nd-LSCO 0.22 ± 0.003 0.81 ± 0.08 6.64 ± 0.05 12.2 ± 1.3 33 12

0.23 ± 0.003 0.68 ± 0.07 6.64 ± 0.05 10.2 ± 1.1 33 12

0.24 ± 0.005 0.49 ± 0.05 6.64 ± 0.05 7.4 ± 0.8 16 7, 11

 

Table S1 | Effective mass and Planckian limit estimates in hole-doped cuprates.  

Values of p and m* used in Fig. 3a and described in the text and Methods. The effective 

mass m* is obtained from the measured specific heat γ via Eq. 2, except for Nd-LSCO       

p = 0.24. At this doping, Ce / T is not constant at low T (ref. 36). Therefore, we take the 

average between Ce / T at T = 10 K (12 mJ / K2 mol) and at T = 0.5 K (22 mJ / K2 mol)      

as representative of the residual γ, with appropriate error bars. The last column shows    

the Planckian limit prediction for the resistivity slope A1
☐

  = h / (2e2 TF), calculated using      

p and m* values. Error bars are explained in the Methods. 
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FINAL Tables

Anaëlle Legros : 13 septembre 2018

Table 2  |  Effective mass and Planckian limit in hole-doped cuprates.

Table 3  |  Slope of T-linear resistivity in hole-doped cuprates.

Material p ! 
(mJ / K2 mol)

m* / m0 Ref. h / (2e2 TF)
(" / K)

Bi2212 0.22 12 ± 2 8.4 ± 1.6 33 7.4 ± 1.4

LSCO 0.26 ± 0.005 14 ± 2 9.8 ± 1.7 35 8.9 ± 1.8

0.29 ± 0.01 11 ± 1 7.7 ± 0.9 35 7.3 ± 1.2

0.33 ± 0.01 6.9 ± 1 4.8 ± 0.8 34 4.9 ± 1.0

Nd-LSCO 0.24 ± 0.005 17 ± 5 12 ± 4 36 10.6 ± 3.7

0.27 ± 0.01 11 ± 1 7.7 ± 0.9 36 7.1 ± 1.1

0.36 ± 0.01 6.2 ± 1 4.3 ± 0.8 36 4.6 ± 1.0

0.40 ± 0.01 5.4 ± 1 3.8 ± 0.8 36 4.2 ± 1.1

Material p A1 
(#" cm / K)

d 
(Å)

A1� 
(" / K)

H
(T)

Ref.

Bi2212 0.23 0.62 ± 0.06 7.73 ± 0.05 8.0 ± 0.9 → 0 this work

LSCO 0.21 ± 0.005 1.0 ± 0.09 6.57 ± 0.05 15.2 ± 1.5 → 0 8

0.23 ± 0.005 0.75 ± 0.08 6.57 ± 0.05 11.4 ± 1.3 → 0 8

0.26 ± 0.005 0.54 ± 0.06 6.57 ± 0.05 8.2 ± 1.0 18 42

Nd-LSCO 0.22 ± 0.003 0.81 ± 0.08 6.64 ± 0.05 12.2 ± 1.3 33 12

0.23 ± 0.003 0.68 ± 0.07 6.64 ± 0.05 10.2 ± 1.1 33 12

0.24 ± 0.005 0.49 ± 0.05 6.64 ± 0.05 7.4 ± 0.8 16 7, 11
 

Table S2 | Slope of T-linear resistivity in hole-doped cuprates.  

Values of p and A1 described in the text and Methods. The interlayer distance d is given, 

yielding the experimental values A1
☐

 = A1 / d that are plotted in Fig. 3b. Error bars are 

explained in the Methods. 

�2

Table 4  |  Effective mass and Planckian limit in electron-doped cuprates.

Table 5  |  Slope of T-linear resistivity in electron-doped cuprates.

* Courtesy of R. L. Greene.

Material x ! 
(mJ / K2 mol) m* / m0 Ref. h / (2e2 TF)

(" / K)
PCCO 0.15 ± 0.005 5.5 ± 0.4 3.6 ± 0.3 31 3.1 ± 0.3

NCCO 0.151 - 3.0 ± 0.3 29, 30 2.6 ± 0.3

0.157 - 2.7 ± 0.1 29, 30 2.35 ± 0.1

0.163 - 2.5 ± 0.1 29, 30 2.2 ± 0.1

0.173 -   2.3 ± 0.05 29, 30 2.05 ± 0.05

Material x A1 
(#" cm / K)

d 
(Å)

A1� 
(" / K)

H
(T) Ref.

PCCO 0.17 ± 0.005 0.10 ± 0.015 6.07 ± 0.05 1.7 ± 0.3 0 this work

0.10 ± 0.015 6.07 ± 0.05 1.7 ± 0.3 16 this work

LCCO 0.15 ± 0.005 0.18 ± 0.03 6.20 ± 0.05 3.0 ± 0.45 0 14

0.18 ± 0.03 6.20 ± 0.05 3.0 ± 0.45 8 14

0.16 ± 0.005 0.145 ± 0.02 6.20 ± 0.05 2.4 ± 0.35 0 14

0.12 ± 0.02 6.20 ± 0.05 1.9 ± 0.3 6.5 14

0.17 ± 0.005 0.10 ± 0.015 6.20 ± 0.05 1.7 ± 0.3 0 14

0.09 ± 0.015 6.20 ± 0.05 1.5 ± 0.2 4 *

 

Table S3 | Effective mass and Planckian limit estimates in electron-doped cuprates.  

Values of x and m* used in Fig. 4a and described in the text and Methods. The effective 

mass m* was measured directly using quantum oscillations in NCCO (refs. 29, 30) and 

using specific heat γ in PCCO (ref. 31). The last column shows the Planckian limit 

prediction for the resistivity slope, calculated using x and m* values. Error bars are 

explained in the Methods. 
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Table 4  |  Effective mass and Planckian limit estimates in electron-doped cuprates.

Table 5  |  Slope of T-linear resistivity in electron-doped cuprates.

* Courtesy of R. L. Greene.

Material x ! 
(mJ / K2 mol) m* / m0 Ref. h / (2e2 TF)

(" / K)
PCCO 0.15 ± 0.005 5.5 ± 0.3 3.6 ± 0.3 30 3.1 ± 0.3

NCCO 0.151 - 3.0 ± 0.3 28, 29 2.6 ± 0.3

0.157 - 2.7 ± 0.1 28, 29 2.35 ± 0.1

0.163 - 2.5 ± 0.1 28, 29 2.2 ± 0.1

0.173 -   2.3 ± 0.05 28, 29 2.05 ± 0.05

Material x A1 
(#" cm / K)

d 
(Å)

A1� 
(" / K)

H
(T) Ref.

PCCO 0.17 ± 0.005 0.10 ± 0.015 6.07 ± 0.05 1.7 ± 0.3 0 this work

0.10 ± 0.015 6.07 ± 0.05 1.7 ± 0.3 16 this work

LCCO 0.15 ± 0.005 0.18 ± 0.03 6.20 ± 0.05 3.0 ± 0.45 0 14

0.18 ± 0.03 6.20 ± 0.05 3.0 ± 0.45 8 14

0.16 ± 0.005 0.145 ± 0.02 6.20 ± 0.05 2.4 ± 0.35 0 14

0.12 ± 0.02 6.20 ± 0.05 1.9 ± 0.3 6.5 14

0.17 ± 0.005 0.10 ± 0.015 6.20 ± 0.05 1.7 ± 0.3 0 14

0.09 ± 0.015 6.20 ± 0.05 1.5 ± 0.2 4 *

  

Table S4 | Slope of T-linear resistivity in electron-doped cuprates.  

Values of x and A1 described in the text and Methods. The interlayer distance d is given, 

yielding the experimental values A1
☐

 = A1 / d that are plotted in Fig.4b. Error bars are 

explained in the Methods. 
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