In the format provided by the authors and unedited.

Thermodynamic signatures of quantum criticality in cuprate superconductors

B. Michon^{1,2,3}, C. Girod^{1,2,3}, S. Badoux², J. Kačmarčík⁴, Q. Ma⁵, M. Dragomir⁶, H. A. Dabkowska⁶, B. D. Gaulin^{5,6,7}, J.-S. Zhou⁸, S. Pyon⁹, T. Takayama⁹, H. Takagi⁹, S. Verret², N. Doiron–Leyraud², C. Marcenat¹⁰, L. Taillefer^{2,7}* & T. Klein^{1,3}*

¹Institut Néel, Université Grenoble Alpes, Grenoble, France. ²Institut quantique, Département de physique and RQMP, Université de Sherbrooke, Sherbrooke, Québec, Canada. ³CNRS, Institut Néel, Grenoble, France. ⁴Institute of Experimental Physics, Slovak Academy of Sciences, Košice, Slovakia. ⁵Department of Physics and Astronomy, McMaster University, Hamilton, Ontario, Canada. ⁶Brockhouse Institute for Materials Research, McMaster University, Hamilton, Ontario, Canada. ⁷Canadian Institute for Advanced Research, Toronto, Ontario, Canada. ⁸Materials Science and Engineering Program, Department of Mechanical Engineering, University of Texas at Austin, Austin, Texas, USA. ⁹Department of Advanced Materials Science, University of Tokyo, Kashiwa, Japan. ¹⁰Université Grenoble Alpes, CEA, INAC, PHELIQS, LATEQS, Grenoble, France. *e-mail: louis.taillefer@usherbrooke.ca; thierry.klein@neel.cnrs.fr

SUPPLEMENTARY INFORMATION

Thermodynamic signatures of quantum criticality in cuprate superconductors

B. Michon *et al*.

CONTENTS

Supplementary Figure 1

Supplementary Figure 2

Supplementary Figure 3

Supplementary Fig. 1 | Specific heat data for all crystals of Eu-LSCO and Nd-LSCO.

a) Specific heat of our five Eu-LSCO crystals measured in a field H = 8 T, down to 0.4 K. The rapid rise below 1 K is a nuclear Schottky anomaly ($C_{nuclear}$). **b)** Electronic specific heat $C_{el}(T)$ of those five Eu-LSCO crystals, plotted as C_{el}/T vs log*T*, from data at H = 8 T (p = 0.08, 0.11, 0.16, and 0.24) and at H = 18 T (p = 0.21). $C_{el}(T)$ is defined as $C_{el}(p; T) = C(p; T) - C(p=0.16; T) + \gamma$, where $\gamma = 4.2$ mJ /K² mol is the residual linear term of the p = 0.16 reference data ($C / T = \gamma + \beta T^2$, in Fig. 2a). Dashed lines are a linear extrapolation of the data (p = 0.21, orange; p = 0.08, purple). **c)** Same as panel **a**, for our seven Nd-LSCO crystals (H = 8 T, below the dashed line; H = 18 T, above the dashed line). **d)** Same as panel **b**, for those seven crystals, using data at p = 0.12 as the reference curve for subtraction, with $\gamma = 3.6$ mJ /K² mol (Fig. 2c).

Supplementary Fig. 2 | Experimental setup for the measurement of heat capacity.

Sketch of our experimental setup, showing the bare Cernox chip (black square) suspended by four PtW wires. A shallow groove is made with a wire saw to obtain two independent sides, one for the heater (H, right side) and one for the thermometer (T, left side). The sample is glued with a minute amount of Apiezon grease on the back of the sapphire substrate. An AC current I_{ac} at a frequency ω is applied across the heater to induce temperature oscillations of the small platform (sample + Cernox). A DC current I_{dc} is applied across the thermometer whose voltage is demodulated at 2ω (see METHODS – Specific heat measurements).

Supplementary Fig. 3 | Test of our specific heat measurement on a Cu sample.

Specific heat C_{exp} of a sample of copper measured using the same setup and analysis as used for our samples of Eu-LSCO and Nd-LSCO, plotted as C_{exp} / C_{NBS} vs *T*, where C_{NBS} is the standard value of the specific heat of copper established by the National Bureau of Standards. The measured data never deviate by more than 2-3 % from the standard, over the full temperature range from 0.5 K to 10 K, whether taken in the ⁴He refrigerator at H = 0, 8 and 18 T (using a Cernox 1050 thermometer) or the ³He refrigerator at H = 0 and 8 T (using a Cernox 1010 thermometer).