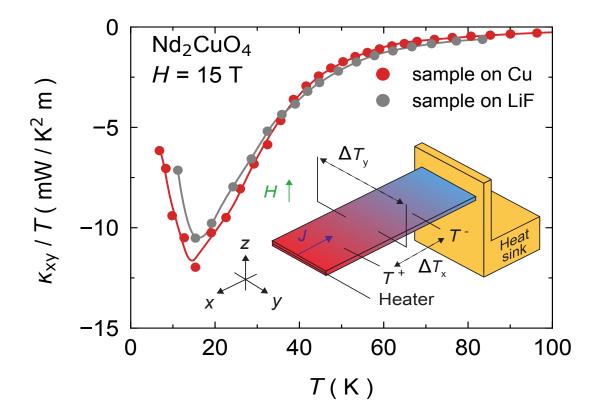
Thermal Hall conductivity in the cuprate Mott insulators Nd₂CuO₄ and Sr₂CuO₂Cl₂

Supplementary information

Marie-Eve Boulanger^{1,*}, Gaël Grissonnanche^{1,*}, Sven Badoux¹, Andréanne Allaire¹, Étienne Lefrançois¹, Anaëlle Legros^{1,2}, Adrien Gourgout¹, Maxime Dion¹, C. H. Wang³, X. H. Chen³, R. Liang⁴, W. N. Hardy⁴, D. A Bonn⁴ and Louis Taillefer^{1,5}

1 Institut Quantique, Département de physique & RQMP, Université de Sherbrooke, Sherbrooke, Québec J1K 2R1, Canada


2 SPEC, CEA, CNRS-UMR3680, Université Paris-Saclay, Gif-sur-Yvette, France

3 Hefei National Laboratory for physical Science at Microscale and Department of Physics, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China

4 Department of Physics & Astronomy, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada

5 Canadian Institute for Advanced Research, Toronto, Ontario M5G 1M1, Canada

* contributed equally to this work.

Thermal Hall conductivity κ_{xy} of our Nd₂CuO₄ sample, measured in a magnetic field H = 15 T, plotted as κ_{xy}/T vs *T*. Two measurements were carried out: one with the heat sink made of copper (red data points) and the other one with the heat sink made of LiF (gray data points). Inset: Sketch of the measurement setup. One end of the thin sample is glued to a heat sink, while the other end is heated using a resistive heater attached to the sample by a silver wire. The heat current *J* generates a longitudinal temperature difference ΔT_x , both along the length of the sample (*x* direction). A magnetic field H applied along the *z* direction produces a transverse temperature difference ΔT_y between the two sides of the sample, along the *y* direction.