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1. ECHO PATTERN
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FIG. S1: Echo pattern for the transverse sound mode
c66 measured in Toronto, in the superconducting state
(H = 0), corresponding to the data shown in Fig. 2a

(red circles). The frequency was f = 169 MHz and the
temperature T = 40 mK. The sample length was

4.0 mm and 58 echoes were recorded.

2. REPRODUCIBILITY

Fig. S2 shows data taken in Toulouse for the trans-
verse mode c66 in the superconducting state, at H = 0
(red dots). The same sample was used but the faces
were re-polished and a different bonding agent was used
to attach the transducer. As for the Toronto data [1], we
again observe a precipitous drop immediately below Tc,
but we now also see a gradual decrease, apparent below
∼ 1.3 K, not present in the Toronto data (Fig. 2). We
attribute this, and the somewhat larger total change in
c66 (1.0 ppm vs 0.2 ppm), to a slight contribution com-
ing from other modes mixed in. Indeed, in the Toulouse
experiment, the echo pattern was not as clean as in the
Toronto experiment (Fig. S1). This may be due to ring-
ing of the transducer, a spurious effect that leads to a
non-zero background of the echo amplitude. Moreover,
we saw the mixing of another acoustic mode in the echo
pattern, whose sound velocity was close to the c66 mode.
This could be the c44 mode, for example, if the polar-
ization of the transducer was not exactly aligned in the
RuO2 plane. This effect could explain the softening be-
low Tc but not the discontinuity since no discontinuity is
expected in the shear c44 mode at Tc by symmetry. As
shown in Fig. S2, a softening alone, such as seen in the
(c11−c12)/2 mode (Fig. 1d), yields a much more gradual
decrease below Tc than that seen in our c66 data.
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FIG. S2: Relative change in sound velocity for the
transverse mode c66, measured in Toulouse at a

frequency f = 201 MHz, at H = 0 (red dots, right axis).
The open blue diamonds (left axis) show the

corresponding data for the mode (c11 − c12)/2 (from
Fig. 1d). The drop in c66 below Tc is much more abrupt

than the softening seen in (c11 − c12)/2, for example.

3. EHRENFEST RELATION

The Ehrenfest relation is a general and thermodynamic
relation that links the jump of the sound velocity with
the jump of the specific heat and the strain dependence
of Tc [2],

∆cnm
cnm

= −∆Cp
Tc

(
1

vs

∂Tc
∂un

)(
1

vs

∂Tc
∂um

)
(1)

where Cp is the heat capacity jump (by mass) between
the normal and the superconducting states. vs is the
sound velocity of the cnm mode and un is the strain,
both using the Voigt notation.
First we estimate the jump in c11. Since we don’t know
experimentally the strain dependence of Tc along [100] in
the linear regime, we will rely on the hydrostatic pressure
effect on Tc [3]. In order to use equation 1 to evaluate
∆c11, we need to estimate ∂Tc

∂u1
. The effect of pressure on

Tc can be decompose as the effect of ui (i = 1...6) on Tc,

∂Tc
∂P

=
∂Tc
∂ui

∂ui
∂P

where each deformation ui could contribute differently.
Unfortunately, we don’t readily have access to each ∂Tc

∂ui

individually. Nevertheless, we can estimate the contribu-
tion of u1 as,

∂Tc
∂P

=
1

w1

∂Tc
∂u1

∂u1

∂P

where w1 is the weight of the u1 contribution. If all three
normal deformations (i = 1, 2, 3) have an equal effect,
w1 = 1

3 .

Using this weighted contribution we can write an esti-
mation of the effect of u1 on Tc,

∂Tc
∂u1

= w1
∂Tc
∂P

(
∂u1

∂P

)−1

(2)

We are only missing the last term, say how u1 is affected
by an hydrostatic pressure. To express that, we need to
use Hooke’s law,

σi = cijuj

and remember that an hydrostatic pressure applies an
isotropic strain,

σ1 = σ2 = σ3 = P σ4 = σ5 = σ6 = 0.

Let’s rewrite Hooke’s law for this case as,

Pηi = cijuj

where ηi are the component of the vector (1,1,1,0,0,0).
Inverting this equation and taking the derivative with
respect to P , we can explicitly write,

∂ui
∂P

=
[
c−1
]
ij
ηj

For a tetragonal system we get,

∂ui
∂P

=
1

(c11 + c12) c33 − 2c213


c33 − c13

c33 − c13

c11 + c12 − 2c13

0
0
0


Usually, diagonal elastic constants are larger then off-
diagonals one. If one neglect c13 in front of c11 and c33,
we get a simplified estimation for the jump on c11,

∆c11

c11
≈ −∆CNS

Tc

(
w1

vs

∂Tc
∂P

(c11 + c12)

)2

Using ∆CNS

Tc
= 0.1 J K−2 kg−1 [4], v = 6 km s−1, ∂Tc

∂P =

0.2 K GPa−1 [3], c11 = 230 GPa, c12 = 130 GPa and
w1 = 1

3 , we get,

∆c11

c11
= 1.6 ppm

This estimate depends significantly on the value of ∂Tc

∂P .

Next, to estimate the jump in the shear modulus
c66 we need to deduce the value of ∂Tc

∂u6
. We rely on

the dependence of Tc on strain along [110], ε(110), that
has been reported in [5]. A strain ε(110) = u implies
uxx = uyy = uxy = uyx = u/2. From the definition

∂Tc
∂ε(110)

=
∂Tc
∂u1

∂u1

∂ε(110)
+
∂Tc
∂u2

∂u2

∂ε(110)
+
∂Tc
∂u6

∂u6

∂ε(110)
,
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where u1 ≡ uxx, u2 ≡ uyy and u6 ≡ uxy + uyx, we get

∂Tc
∂u6

=
∂Tc
∂ε(110)

− ∂Tc
∂u1

. (3)

Hicks et al. have found (∂Tc/∂ε(110)) = 10 K [5],
while in the above we estimated (∂Tc/∂u1) ≈ 1/3(c11 +
c12)(∂Tc/∂P ) = 24 K. This implies (∂Tc/∂u6) = −14 K.
Furthermore the transverse acoustic sound velocity cor-
responding to the B2g shear is v66 = 3.3 km/s. Thus, we
estimate

∆c66

c66
=

(
−∆CNS

Tc

)
1

v2
66

(
∂Tc
∂u6

)2

= 1.8 ppm. (4)

This estimate depends significantly on the previous esti-
mation of the jump in c11 and on the dependence of Tc
on strain along [110].

4. FINITE FREQUENCY EFFECT

The estimated jump is about an order of magnitude
larger than the measured jump ∆c66/c66 ≈ 0.2 ppm in
our experiments. One reason for this difference can be
due to the fact that an elastic constant determination
from ultrasound velocity is not a pure thermodynamic
measurement, and it involves effects due to finite fre-
quency ω of the sound wave. Below we look at how finite
frequency affects the mean field jump of c66 in the super-
conducting phase (∆A,∆B) = ∆0(1, 0).

To model the ultrasound experiment we consider a per-
turbation in the form of a transverse acoustic wave de-
scribed by the atomic displacement u(r, t) = u0exp[i(k ·
r − ωt)], with u0 = u0(1, 0, 0) and k = (0, k, 0). Such a
perturbation triggers only the c66 mode, with uxy(r, t) =
∂yux(r, t), while the remaining strains are zero.

The above acoustic fluctuation will lead to fluctua-
tions of the superconducting order parameters. We write
∆A = ∆0 + dA(r, t), and ∆B = dB1(r, t) + idB2(r, t),
where dA is a complex function, and (dB1, dB2) are real
functions. Our goal is to expand the free energy to
quadratic order in the fluctuations. We get

Ffluc =

∫
dr
[
l∆2

0d
2
B1 + 2c66(∂yux)2 + α4∆0(∂yux)dB1

]
,

(5)

where l = β2 +β3 +α2
4/(2c66), and the renormalized βi’s

are given later in equation (26). Thus, to quadratic or-
der the displacement fluctuation couples only to dB1(r, t).
From Newton’s law the equation of motion for the dis-
placement is ρ∂2u/∂t2 = −δFfluc/δu, where ρ is the den-
sity. This gives

ρ
∂2ux
∂t2

= 4c66∂
2
yux + α4∆0∂ydB1. (6)

For superconducting fluctuation we postulate a damped
dynamics given by τ0∂dB1/∂t = −δFfluc/δdB1, where τ0
is a microscopic timescale [6]. This gives

τ0
∂dB1

∂t
= −(l/2)∆2

0dB1 − α4∆0∂yux. (7)

Solving the above two equations we get

ρω2 = k2

[
4c66 +

α2
4∆2

0

iωτ0 −∆2
0l/2

]
. (8)

From the above the frequency dependence of the jump in
c66 can be read off as

δc66 = Re
−α2

4/(2l)

1− iωτ1
=
−α2

4/(2l)

1 + ω2τ2
1

, (9)

where τ1 = 2τ0/∆
2
0. The above result is to be compared

with the jump measured in a purely thermodynamic mea-
surement (see equation (44)). Thus, at finite frequency
the jump reduces by a factor 1/(1 + ω2τ2

1 ) [6], where τ1
formally diverges at Tc in the thermodynamic limit. In
our experiment, we used sound frequency f ≡ ω/(2π) =
200 MHz, from which we estimate τ1 ∼ 2 ns. Note
that such effect has also been observed in La2−xSrxCuO4,
where the jump of the longitudinal elastic constant c11

at Tc has been measured at different frequencies [7]. In
this case, the estimated τ1 ∼ 1 ns, i.e. the same order of
magnitude as in Sr2RuO4.

5. THERMAL CONDUCTIVITY

The results of Ref. [8] reveal that Sr2RuO4has vertical
line nodes, i.e. lines of zeros that are parallel to the
c-axis. All aspects of the data are consistent with a d-
wave state, with vertical line nodes either along the a-axis
or along the diagonal. The thermal conductivity study
cannot distinguish between these two variations. Now
the (1, 0) state we proposed goes as ∆0(kxkz, kykz), so
in addition to have vertical line nodes (at kx = 0 or ky
= 0), it also has horizontal line node (kz = 0). The
latter line will introduce extra a − c anisotropy in the
thermal conductivity. It is difficult to say whether this
extra anisotropy is quantitatively compatible or not with
the data of Ref. [8].
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6. PRODUCT TABLE FOR THE D4h POINT
GROUP

Γ A1g A2g B1g B2g Eg

A1g A1g A2g B1g B2g Eg

A2g A2g A1g B2g B1g Eg

B1g B1g B2g A1g A2g Eg

B2g B2g B1g A2g A1g Eg

Eg Eg Eg Eg Eg A1g+A2g+B1g+B2g

TABLE I: Product table for the D4h point group.

7. DETAILS OF THE THEORETICAL
COMPUTATIONS

The unit cell of Sr2RuO4 is tetragonal with D4h sym-
metry. The only irreducible representation of this group
which has dimensionality more than one is the two-
dimensional representation E. In this representation
the superconducting order parameter is a two-component
(∆A,∆B) complex variable. At this point there are two
distinct possibilities based on inversion symmetry of the
unit cell. (i) First, the order parameter is odd under par-
ity transformation. In this case the Eu irreducible rep-
resentation is relevant and (∆A,∆B), transform as (x, y)
under point group operations. (ii) The second possibil-
ity is that the order parameter is even under parity. In
this case the Eg irreducible representation is relevant and
(∆A,∆B), transform as (xz, yz).

Beyond the even/odd classification it is difficult to
make definite statements about the orbital and spin con-
tents of the Cooper pairs since the system is multi-
orbital (and multi-band) and also spin-orbit coupling is
strong. It is a priori not clear whether the pairing is best
viewed in spin and orbital basis, or in the Bloch diago-
nal band basis, where the bands are doubly degenerate
(pseudospin). In case the pairing is essentially intraband,
then overall antisymmetry of the wavefunction will im-
pose that in case (i) the Cooper pairs are singlets in pseu-
dospin basis, and in case (ii) they are pseudospin triplets
(the pseudospin content will be described by a d vec-
tor). If interband pairing is important, then pseudospin
singlet-triplet mixing is possible. Similar considerations
will hold if the problem is analyzed in orbital and spin
basis.

The form of the Landau-Ginzburg free energy describ-
ing the transition is the same for the above two possibil-
ities. The order parameter dependence to fourth order is
given by

F∆ = a (∆∗A∆A + ∆∗B∆B) + β0
1 (∆∗A∆A + ∆∗B∆B)

2

+
β0

2

2

(
(∆∗A)2∆2

B + h.c.
)

+ β0
3∆∗A∆A∆∗B∆B . (10)

The elastic energy associated with the relevant strains is

Fu =
1

2
c11

(
u2
xx + u2

yy

)
+ c12uxxuyy + 2c66u

2
xy

+
1

2
c33u

2
zz + c13 (uxx + uyy)uzz, (11)

where c’s are the elastic constants. The symmetry al-
lowed terms to linear order in strain are

F∆−u = [α1(uxx + uyy) + α2uzz] (∆∗A∆A + ∆∗B∆B)

+ α3(uxx − uyy)(∆∗A∆A −∆∗B∆B)

+ α4uxy(∆∗A∆B + ∆∗B∆A). (12)

The overall free energy of the system is

F = F∆ + Fu + F∆−u. (13)

We define u1 ≡ uxx+uyy (strain describing changes to
basal plane area of the unit cell), u2 ≡ uzz (strain related
to c-axis length changes), u3 = uxx − uyy (orthorhombic
shear) and u4 ≡ uxy (monoclinic shear). We also define
cA ≡ (c11 + c12)/2 and cO ≡ (c11 − c12)/2. It is con-
venient to rewrite the part of the free energy involving
the longitudinal strains in a diagonal form by means of
a unitary transformation as

(Fu)long ≡
1

2
cAu

2
1 +

1

2
c33u

2
2 + c13u1u2

=
1

2
D1v

2
1 +

1

2
D2v

2
2 . (14)

In the above

D1,2 =
1

2

[
cA + c33 ±

√
(cA − c33)2 + 4c213

]
(15)

are the eigenvalues of the 2 × 2 matrix
((cA, c13), (c13, c33)), and (v1, v2) are the longitudi-
nal eigenmodes given by

v1 = e1u1 + e2u2, v2 = −e2u1 + e1u2, (16)

with e1 ≡ c13/N , e2 ≡ (D1 − cA)/N , N = [c213 + (D1 −
cA)2]1/2. Also, the couplings (α1, α2) need to be trans-
formed as (α1, α2)→ (r1, r2) with

r1 = e1α1 + e2α2, r2 = −e2α1 + e1α2. (17)

The two complex valued order parameters can be writ-
ten as (∆A,∆B) = ∆(cos θ, eiγ sin θ). The total free en-
ergy now has the form
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F (∆, θ, γ, v1, v2, u3, u4) = a∆2 +
[
4β0

1 + sin2 2θ
(
β0

2 cos 2γ + β0
3

)] ∆4

4
+

1

2
D1v

2
1 +

1

2
D2v

2
2 +

1

2
cOu

2
3 + 2c66u

2
4

+ (r1v1 + r2v2) ∆2 + α3u3∆2 cos 2θ + α4u4∆2 sin 2θ cos γ. (18)

As usual, we take a = a′(T − Tc), and the remain-
ing parameters are T -independent. The above free en-
ergy is to be minimized with respect to the variables
(∆, θ, γ, v1, v2, u3, u4). This results in the following equa-
tions.

2∆
[
a+ 2β0

1∆2 + (β0
2/2)∆2 sin2 2θ cos 2γ

+ (β0
3/2)∆2 sin2 2θ + r1v1 + r2v2 + α3u3 cos 2θ

+ α4u4 sin 2θ cos γ] = 0, (19)

∆2
[
∆2 sin 4θ

(
β0

2 cos 2γ + β0
3

)
/2− 2α3u3 sin 2θ

+ 2α4u4 cos 2θ cos γ] = 0, (20)

(
β0

2∆2 sin 2θ cos γ + α4u4

)
∆2 sin 2θ sin γ = 0, (21)

∂F

∂v1
= D1v1 + r1∆2 = 0, (22)

∂F

∂v2
= D2v2 + r2∆2 = 0, (23)

∂F

∂u3
= cOu3 + α3∆2 cos 2θ = 0, (24)

∂F

∂u4
= 4c66u4 + α4∆2 sin 2θ cos γ = 0. (25)

7.1. Phase diagram

From Eqs. (22) - (25) we get

v1 = r1∆2/D1, v2 = r2∆2/D2,

u3 = α3∆2 cos 2θ/cO,

u4 = α4∆2 sin 2θ cos γ/(4c66).

This leads to a renormalization of the fourth order coef-
ficients β0

i → βi with

β1 = β0
1 − (r2

1/D1 + r2
2/D2 + α2

3/cO)/2, (26a)

β2 = β0
2 − α2

4/(4c66), (26b)

β3 = β0
3 − α2

4/(4c66) + 2α3
3/cO. (26c)

Note, the combination

r2
1/D1 + r2

2/D2 =
α2

1c33 + α2
2cA − 2α1α2c13

cAc33 − c213

. (27)

In terms of the renormalized fourth order coefficients
Eqs. (19), (20) and (21) can be rewritten as

2∆

[
a+ 2β1∆2 +

1

2
β2∆2 sin2 2θ cos 2γ +

1

2
β3∆2 sin2 2θ

]
= 0, (28)

(β2 cos 2γ + β3) ∆4 sin 2θ cos 2θ = 0, (29)

β2∆4 sin2 2θ sin 2γ = 0. (30)

For the stability of the system we need β1 > 0, and
4β1 ± β2 + β3 > 0. Within this range the following three
superconducting phases are possible.

(1) In the region β2 > (0, β3) we get ∆ = ∆0 ≡
[−2a/(4β1 − β2 + β3)]1/2 , θ = θ0 ≡ π/4 and γ =
γ0 ≡ ±π/2. Thus, (∆A,∆B) = ∆0(1,±i), and it is the
time reversal symmetry broken chiral state. The phase
transition is accompanied by finite longitudinal strains
v0

1 = −r1∆2
0/D1 and v0

2 = −r2∆2
0/D2, while the shear

strains are zero. Thus, the tetragonal symmetry is pre-
served.

(2) In the region β2 < (0,−β3) we get ∆ = ∆0 ≡
[−2a/(4β1 + β2 + β3)]1/2 , θ = θ0 ≡ π/4 and γ = γ0 ≡
(0, π). Thus, (∆A,∆B) = ∆0(1,±1), and it is a phase
that preserves time reversal symmetry. As in case (1),
the phase transition is accompanied by finite longitudi-
nal strains v0

1 = −r1∆2
0/D1 and v0

2 = −r2∆2
0/D2. But,

unlike in case (1), now the transition is accompanied by a
spontaneous monoclinic distortion u0

4 = −α4∆2
0/(4c66).

Thus the state breaks the tetragonal symmetry sponta-
neously. On the other hand, there is no spontaneous
orthorhombic distortion, i.e., u0

3 = 0.

(3) In the region β3 > (0, |β2|) we get ∆ = ∆0 ≡
[−a/(2β1)]1/2 , θ = θ0 ≡ (0, π/2) and γ = γ0, where
γ0 ≡ 0 for β2 < 0 and γ0 ≡ π/2 for β2 > 0. Note, γ
is a meaningful variable only if θ is non-zero (say, in the
presence of external strain, or if nonzero fluctuations of θ
are relevant. Thus, (∆A,∆B) = ∆0(0, 1) or equivalently
∆0(1, 0), and it is a phase that preserves time reversal
symmetry as well. The spontaneous strains generated in
this phase are v0

1 = −r1∆2
0/D1, v0

2 = −r2∆2
0/D2, u0

3 =
−α3∆2

0/cO, and u0
4 = 0. Thus, this state also breaks

tetragonal symmetry spontaneously and the transition is
accompanied by finite orthorhombic distortion.
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7.2. Jumps in elastic constants in the phase
(∆A,∆B) = ∆0(1,±i)

(a) In order calculate the jump in c66 we consider a
finite external monoclinic stress σ4 such that Eqn (25) is
replaced by

∂F

∂u4
= 4c66u4 + α4∆2 sin 2θ cos γ = σ4, (31)

while all the other Eqns from minimizing F remain the
same as before. From Eqn (21) we get

β0
2∆2 sin 2θ cos γ + α4u4 = 0.

Using the above two eqns we deduce that u4 = σ4/(4c66−
α2

4/β
0
2). On the other hand in the metallic phase (∆ = 0)

we would have obtained u4 = σ4/(4c66). Thus, the jump
in c66 is given by

δc66 =
−α2

4

4β0
2

=
−α2

4

4β2 + α2
4/c66

. (32)

(b) To calculate the jump in cO we consider a finite
external orthorhombic stress σ3 such that Eq. (24) is re-
placed by

∂F

∂u3
= cOu3 + α3∆2 cos 2θ = σ3, (33)

while the remaining equations are unchanged. From
Eq. (21) we deduce that γ = π/2, and that u4 = 0.
Putting this back in Eq. (20) we get

∆2 cos 2θ =
−2α3u3

β0
2 − β0

3

. (34)

From the above two equations we get u3 = σ3/[cO −
2α2

3/(β
0
2 − β0

3)]. This implies that the jump is

δcO =
−2α2

3

β0
2 − β0

3

=
−2α2

3

β2 − β3 + 2α2
3/cO

. (35)

(c) To calculate the jump in D1 we consider an external
longitudinal stress σ1 that couples to v1. Eq. (22) is
modified to

∂F

∂v1
= D1v1 + r1∆2 = σ1. (36)

From Eq. (21) we get that γ = π/2 and from Eq. (20)
we get that θ = π/4. These also imply that (u3, u4) =
0. Using these values in Eq. (19) we get ∆2(T−c ) =
−2r1v1/[4β

0
1 − β0

2 + β0
3 − 2r2

2/D2]. Here T−c implies ap-
proaching Tc from below, and for which a = 0. using this
in the above equation we deduce that the jump in D1 is

δD1 = −2r2
1/(4β

0
1 − β0

2 + β0
3 − 2r2

2/D2)

= −2r2
1/(4β1 − β2 + β3 + 2r2

1/D1). (37)

(d) From a very similar calculation we get that the
jump in D2 is

δD2 = −2r2
2/(4β

0
1 − β0

2 + β0
3 − 2r2

1/D1)

= −2r2
2/(4β1 − β2 + β3 + 2r2

2/D2). (38)

From the relations

cA = e2
1D1 + e2

2D2, c33 = e2
2D1 + e2

1D2, (39)

we can calculate δcA = e2
1δD1 + e2

2δD2, and δc33 =
e2

2δD1 + e2
1δD2.

7.3. Jumps in elastic constants in the phase
(∆A,∆B) = ∆0(1,±1)

(a) To calculate the jump in c66 we consider a fi-
nite external monoclinic stress σ4 such that Eq. (25) is
replaced by Eq. (31). From Eq. (20) we deduce that
θ = π/4, from Eq. (21) γ = 0, and from Eq. (24)
u3 = 0. Using these values in Eq. (19) we get ∆2(T−c ) =
−2α4u4/[4β

0
1 + β0

2 + β0
3 − 2r2

1/D1 − 2r2
2/D2]. Using this

in Eq. (31) we get

δc66 =
−α2

4/2

4β0
1 + β0

2 + β0
3 − 2r2

1/D1 − 2r2
2/D2

=
−α2

4/2

4β1 + β2 + β3 + α2
4/(2c66)

. (40)

(b) To calculate the jump in cO we consider a finite
external orthorhombic stress σ3 such that Eq. (24) is re-
placed by Eq. (33). From Eq. (21) we get γ = 0, while
Eq. (20) gives

∆2 sin 2θ
[
∆2 cos 2θ

(
β0

2 + β0
3 − α2

4/(2c66

)
− 2α3u3

]
= 0.

Since ∆ 6= 0, and sin 2θ 6= 0, we get ∆2 cos 2θ =
−2α3u3/(|β0

2 | − β0
3 + α2

4/(2c66)). Using this in Eq. (33)
we get the jump to be

δcO =
−2α2

3

|β0
2 | − β0

3 + α2
4/(2c66)

=
−2α2

3

|β2| − β3 + 2α2
3/cO

.

(41)
(c) To calculate the jump in D1 we consider an exter-

nal longitudinal stress σ1 that couples to v1. Eq. (22) is
modified to Eq. (36). From Eq. (20) we deduce that
θ = π/4, from Eq. (21) γ = 0, and from Eq. (24)
u3 = 0. Using these values in Eq. (19) we get ∆2(T−c ) =
−2r1v1/[4β

0
1 + β0

2 + β0
3 − 2r2

2/D2−α2
4/(2c66)]. Thus, the

jump is

δD1 = −2r2
1/(4β

0
1 + β0

2 + β0
3 − 2r2

2/D2 − α2
4/(2c66))

= −2r2
1/(4β1 + β2 + β3 + 2r2

1/D1). (42)

(d) A similar calculation gives

δD2 = −2r2
2/(4β

0
1 + β0

2 + β0
3 − 2r2

1/D1 − α2
4/(2c66))

= −2r2
2/(4β1 + β2 + β3 + 2r2

2/D2). (43)

As before, the jumps (δcA, δc33) can be evaluated using
Eq.(39).
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7.4. Jumps in elastic constants in the phase
(∆A,∆B) = ∆0(1, 0) or ∆0(0, 1)

(a) To calculate the jump in c66 we consider a finite
external monoclinic stress σ4 such that Eq. (25) is re-
placed by Eq. (31). Note, a priori, Eq. (21) has three
possible solutions. It is simple to check that the solu-
tion β0

2∆2 sin 2θ cos γ + α4u4 = 0 leads to unphysical
solution. Then, either (i) θ = 0, which also leads to
γ = π/2, or (ii) γ = 0 and θ 6= 0. A bit of algebra
shows that the solution (ii) has lower free energy, and
therefore is the correct choice. From Eq. (20) we get
∆2 sin 2θ = −2α4u4/(β

0
2 + β0

3 + 2α2
3/cO). This, along

with Eq. (31) implies that the jump is

δc66 =
−α2

4/2

β0
2 + β0

3 + 2α2
3/cO

=
−α2

4/2

β2 + β3 + α2
4/(2c66)

. (44)

(b) To calculate the jump in cO we consider a finite
external orthorhombic stress σ3 such that Eq. (24) is re-
placed by Eq. (33). From Eq. (25) we get θ = 0, while
Eq. (25) gives u4 = 0. From Eq. (19) we conclude that
∆2(T−c ) = −α3u3/(2β

0
1 − r2

1/D1 − r2
2/D2). Thus, the

jump is

δcO =
−α2

3

2β0
1 − r2

1/D1 − r2
2/D2

=
−α2

3

2β1 + α2
3/cO

. (45)

(c) A similar calculation gives the jump

δD1 =
−r2

1

2β0
1 − r2

2/D2 − α2
3/cO

=
−r2

1

2β1 + r2
1/D1

. (46)

(d) Likewise, the jump in D2 is given by

δD2 =
−r2

2

2β0
1 − r2

1/D1 − α2
3/cO

=
−r2

2

2β1 + r2
2/D2

. (47)

As before, the jumps (δcA, δc33) can be evaluated using
Eq.(39).

8. EFFECT OF UNIAXIAL STRAIN AT
QUADRATIC ORDER ON Tc

In this section we study the effect of uniaxial strain
ε(100) along the (1, 0, 0) direction and how it modifies Tc
at order ε2(100) within the scenario of a two-component

order parameter belonging to the E irreducible represen-
tation.

We consider the external uniaxial stress σxx = σ,
which couples to the strain uxx = (u1 +u3)/2. Following
the notation of the last Section, u1 ≡ (uxx + uyy) is the
in-plane A1g longitudinal strain, and u3 ≡ (uxx − uyy) is
the in-plane B1g shear strain. To simplify the discussion
we ignore the elastic constant c13 in Eq. (11), and write
the elastic free energy of the above two in-plane modes
as

Fu,plane =
1

2
cAu

2
1 +

1

2
cOu

2
3 −

σ

2
(u1 + u3).

As defined in the last Section, cA = (c11 + c12)/2 and
cO = (c11 + c12)/2. Minimizing Fu,plane we get u1 =
σ/(2cA) and u3 = σ/(2cO) For Sr2RuO4 the relevant
elastic constants are c11 = 233 GPa and cO = 51 GPa [1],
which implies cA ≈ 3.5cO. Using this estimate we get

u1 =
4

9
ε(100), u3 =

14

9
ε(100). (48)

In other words, the uniaxial strain is not a pure B1g

shear, but has a non-negligible A1g component.
The coupling of the superconducting variables to

quadratic order in the strains (u1, u3) can be written as

F∆−u2 =
1

2
(λ11u

2
1 + λ33u

2
3)(∆∗A∆A + ∆∗B∆B)

+ λ13u1u3(∆∗A∆A −∆∗B∆B). (49)

In the above, the first line describes an A1g perturbation
proportional to ε2(100), and the second line describes a B1g

perturbation also proportional to ε2(100). To simplify the

discussion we take λ11 = λ33 = λ13 = −λ, with λ > 0.
Note, taking a negative λ leads to decrease in Tc as a
function of ε2(100), which is opposite to what is observed.

For convenience we define

p ≡ λu1u3 = (56/81)λε2(100). (50)

Then, λ(u2
1 + u2

3)/2 ≈ 2p. Since linear strain variation of
Tc has not been observed, we can ignore F∆−u. Writing
F = F∆ + F∆−u2 we get

F (∆, θ, γ) = (a− 2p− p cos 2θ)∆2

+
[
4β1 + sin2 2θ (β2 cos 2γ + β3)

] ∆4

4
. (51)

We take a = a′(T − T 0
c ), where T 0

c is the transition tem-
perature in the absence of external strain. The above
free energy is to be minimized with respect to (∆, θ, γ).

To be concrete we first assume that βi are such that
the ground state is the (∆A,∆B) = ∆0(1,±i) phase. In
this case one can show that there are two split transitions
at temperatures (Tc1, Tc2). Lowering T the system first
undergoes the U(1) symmetry breaking superconducting
transition at

Tc1 = T 0
c + 3(p/a′). (52)

For Tc1 > T > Tc2 the B1g component of the ε2(100)

perturbation stabilizes the (1, 0) state characterized by
θ = 0. The second transition, where time reversal sym-
metry is broken, occurs at

Tc2 = T 0
c + (2− η)(p/a′), (53)

where η ≡ 4β1/(β2− β3)− 1 > 0. Below Tc2 the phase is
characterized by θ 6= 0 and γ = π/2.

Thus, both the increase of the superconducting transi-
tion (Tc1−T 0

c ) and the split between the two transitions
(Tc1 − Tc2) are of comparable magnitudes if we assume
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that the ground state is the (1,±i) phase. Analogously,
the same is true also if we assume that the ground state is
the (1,±1) phase. On the other hand, if the ground state
is the (1, 0) [or equivalently the (0, 1)] phase, then there
is a single transition at the enhanced temperature Tc1.

Experimentally, only the Tc enhancement proportional
to ε2(100) has been reported [5], but the splitting between

the two transitions has not been seen in thermodynamic
measurements. This observation is consistent with the
(1, 0) phase.
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