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Linear-in temperature resistivity from an 
isotropic Planckian scattering rate

Gaël Grissonnanche1,2,3, Yawen Fang2, Anaëlle Legros1,4, Simon Verret1, Francis Laliberté1, 
Clément Collignon1, Jianshi Zhou5, David Graf6, Paul A. Goddard7, Louis Taillefer1,8 ✉ & 
B. J. Ramshaw2,8 ✉

A variety of ‘strange metals’ exhibit resistivity that decreases linearly with 
temperature as the temperature decreases to zero1–3, in contrast to conventional 
metals where resistivity decreases quadratically with temperature. This 
linear-in-temperature resistivity has been attributed to charge carriers scattering at a 
rate given by ħ/τ = αkBT, where α is a constant of order unity, ħ is the Planck constant 
and kB is the Boltzmann constant. This simple relationship between the scattering rate 
and temperature is observed across a wide variety of materials, suggesting a 
fundamental upper limit on scattering—the ‘Planckian limit’4,5—but little is known 
about the underlying origins of this limit. Here we report a measurement of the 
angle-dependent magnetoresistance of La1.6−xNd0.4SrxCuO4—a hole-doped cuprate 
that shows linear-in-temperature resistivity down to the lowest measured 
temperatures6. The angle-dependent magnetoresistance shows a well defined Fermi 
surface that agrees quantitatively with angle-resolved photoemission spectroscopy 
measurements7 and reveals a linear-in-temperature scattering rate that saturates at 
the Planckian limit, namely α = 1.2 ± 0.4. Remarkably, we find that this Planckian 
scattering rate is isotropic, that is, it is independent of direction, in contrast to 
expectations from ‘hotspot’ models8,9. Our findings suggest that 
linear-in-temperature resistivity in strange metals emerges from a 
momentum-independent inelastic scattering rate that reaches the Planckian limit.

Immediately following the discovery of high-temperature supercon-
ductivity in the cuprates, it was noted that their normal-state resistiv-
ity is linear over a broad temperature range10. Linear-in temperature 
(T-linear) resistivity extending to low temperatures indicates a strongly 
correlated metallic state, and it was recognized early on that under-
standing T-linear resistivity may be the key to unravelling the mystery 
of high-temperature superconductivity itself11. Since then, T-linear 
resistivity has become a widespread phenomenon in strongly corre-
lated metals, occurring in systems as diverse as organic and iron-based 
superconductors3 and magic-angle twisted bilayer graphene12. The fact 
that T-linear resistivity is often found in proximity to unconventional 
superconductivity is highly suggestive of a common underlying origin, 
but T-linear resistivity at low temperatures lies outside the standard 
Fermi-liquid description of metals and thus remains a central unsolved 
problem in quantum materials research.

The difficulty in developing a controlled, microscopic theory 
of T-linear resistivity has led to the creation of new theoretical 
approaches that draw on techniques developed for the study of 
quantum gravity, including holography and the Sachdev–Ye–Kitaev 
model13–17. Although these theories are not microscopically moti-
vated, they explicitly account for strong quasiparticle interactions 
in a controlled way and suggest that T-linear resistivity might emerge 

as a universal principle—independent of microscopic details. The 
transport scattering rate 1/τ in these models obeys the so-called  
Planckian limit:

ħ
τ

αk T= , (1)B

where kB and ħ are the Boltzmann and Planck constants, respectively, 
and α is a constant of order unity. Simple estimates of α, based on the 
Drude model, from a wide variety of metals with T-linear resistivity 
are consistent with Planckian-limit scattering4,5,18. The Planckian limit 
even applies to conventional metals such as gold and copper, where 
T-linear resistivity at high temperatures is caused by electron–phonon 
scattering. Phonons, however, cannot explain T-linear resistivity in 
the T → 0 limit, suggesting that the Planckian limit is independent of 
microscopic origin. Estimates based on the Drude model provide no 
information about how the scattering rate varies in momentum space. 
Angle-resolved photoemission spectroscopy (ARPES) does provide the 
momentum dependence19, but only for the single-particle scattering 
rate and not for the transport scattering rate that determines the resis-
tivity. What has been missing is a full momentum-space description of 
the transport scattering rate.
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Technique
To measure the transport scattering rate in a metal with T-linear resis-
tivity, we turn to the high-temperature cuprate La1.6−xNd0.4SrxCuO4 
(Nd-LSCO) at a hole doping of p = 0.24. Strange metals are often found 
in proximity to a quantum critical point and the pseudogap critical 
point in Nd-LSCO terminates at a hole doping of p* = 0.23 as determined 
by both transport20 and ARPES7 measurements (Fig. 1a). At p = 0.24, 
Nd-LSCO shows perfectly T-linear resistivity6,20 down to the lowest 
measured temperatures once superconductivity is suppressed by a 
magnetic field (Fig. 1b).

The technique we use to access the quasiparticle scattering rate is 
angle-dependent magnetoresistance (ADMR), which measures varia-
tions in the c-axis resistivity (ρzz) as the sample is rotated to different 
azimuthal (ϕ) and polar (θ) angles with respect to an external magnetic 
field B (Fig. 1c). The intuitive way of understanding ADMR is to consider 
that resistivity depends only on the lifetimes and velocities of quasi-
particles at the Fermi surface. The application of a magnetic field alters 
quasiparticle velocities through the Lorentz force, producing variations 
in the c-axis resistivity that depend sensitively on the direction of the 

magnetic field, hence angle-dependent magnetoresistance. We com-
pare the measured ADMR to calculations made using Chambers’ exact 
solution to the Boltzmann transport equations in a magnetic field21 and 
adjust the Fermi surface geometry and the momentum dependence 
of the quasiparticle scattering rate in our model until the calculations 
match the experimental data. This procedure does not assume the pres-
ence of a Fermi liquid: Boltzmann transport has been shown to be valid 
even in cases where Fermi-liquid quasiparticles are not well defined22,23.

Results
The left panels of Fig. 2a show the ADMR of Nd-LSCO at p = 0.24 for T = 6 K, 
T = 12 K, T = 20 K and T = 25 K. These measurements were performed at 
the National High Magnetic Field Laboratory using a single-axis rota-
tor to vary the polar angle θ in a fixed field of 45 T (see Fig. 1c for the 
experimental geometry). We determine the Fermi surface geometry 
and the quasiparticle scattering rate by fitting the data simultaneously 
at all temperatures to a one-band tight-binding model that is commonly 
used for LSCO-based cuprates (Methods.) We optimize the tight-binding 
and scattering-rate parameters using a genetic algorithm, taking initial 
parameter estimates from previous ARPES measurements7,24. We set the 
overall energy scale of the model to be t = 160 ± 30 meV based on the 
measured specific heat25 (Methods). Note that, below 10 K, the specific 
heat of Nd-LSCO at p = 0.24 increases as log(1/T) as T → 0. The resistivity, 
however, remains linear to low temperature, suggesting that either this 
correction renormalizes the scattering rate and the bandwidth equally 
and thus cancels, or the log(1/T) factor is not associated with the con-
duction electrons. As our measurements cannot distinguish between 
these two scenarios, we omit the log(1/T) factor (which would reduce 
the bandwidth by about 20% at 6 K; Methods).

The simulated ADMR curves produced by these fits are shown in the 
right panels of Fig. 2a. Key features reproduced by the fit include the 
position of the maximum near θ = 40°, the onset of ϕ dependence 
beyond θ = 30°, the ϕ-dependent peak/dip near θ = 90° and the abso-
lute value of ρzz. The Fermi surface produced by this fit, shown in Fig. 1d, 
agrees with ARPES measurements7,24. The best-fit tight-binding param-
eters are the same as those determined by ARPES to within our uncer-
tainty (Extended Data Table 1), demonstrating remarkable consistency 
between the two techniques.

We now consider the scattering rate obtained from the fit. We sepa-
rate the scattering rate in our model into two components—one iso-
tropic and one anisotropic: 1/τ(k) = 1/τiso + 1/τaniso(k) (where k is the 
quasiparticle momentum). We find that the ADMR is best described by 
a highly anisotropic scattering rate that is largest near the ‘anti-nodal’ 
(ϕ = 0°, ϕ = 90°, ϕ = 180° and ϕ = 270°) regions of the Brillouin zone 
and smallest near the ‘nodal’ (ϕ = 45°, ϕ = 135°, ϕ = 225° and ϕ = 315°) 
regions (Fig. 2b). In Extended Data Fig. 3, we show that three different 
phenomenological models of 1/τ(k) all converge to the same shape as 
a function of ϕ, indicating that our fit is independent of the specific 
function chosen (Fig. 2b).

We extract the scattering rate at each temperature by fitting the 
full θ- and ϕ-dependent ρzz, and we a priori assume no particular tem-
perature dependence—the scattering-rate parameters are determined 
independently at each temperature, while the Fermi surface geometry 
parameters are held constant. We extract the temperature dependence 
of both the isotropic and anisotropic components of the quasiparticle 
scattering rate from these fits, shown in Fig. 2c. Remarkably, we find 
that the anisotropic scattering rate is temperature independent, while 
the isotropic scattering rate is linear in temperature.

To check the validity of these scattering rates, we use our fit param-
eters and Boltzmann transport to calculate the temperature depend-
ence of ρxx and the Hall coefficient RH ≡ ρxy/B (where ρxx and ρxy are the 
longitudinal and transverse in-plane resistivities, respectively). We 
reproduce the temperature dependence of all three transport coef-
ficients, as shown in Fig. 3. Although the Fermi surface at p = 0.24 is 
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Fig. 1 | T-linear resistivity and the angle-dependent magnetoresistance 
technique. a, Temperature-doping phase diagram of the hole-doped cuprate 
Nd-LSCO. The pseudogap phase (PG), which onsets below a critical doping of 
p* = 0.23 in Nd-LSCO, is highlighted in grey (the onset temperature T* of the 
pseudogap phase is taken from refs. 6,20 and defined as an upturn in the 
resistivity. The error bars, taken from ref. 6, reflect the uncertainty in 
pinpointing that upturn). The superconducting dome is not represented as it 
can be suppressed with a magnetic field B∥c ≥ 20 T. The red stripe indicates 
Nd-LSCO at p = 0.24 measured in the ADMR experiment and the violet stripe 
represents Tl2201 at p = 0.29. b, In-plane resistivity per copper-oxide plane as a 
function of temperature for Nd-LSCO at p = 0.24 at B = 35 T (ref. 6; red) and 
Tl2201 at p = 0.29 at B = 13 T (ref. 37; violet). For both sets of data, the elastic part 
of the resistivity ρ0 has been subtracted from the total resistivity ρ (ρxx) and 
divided by the distance d between the CuO2 planes. The black dashed line is the 
T-linear component of the resistivity of Tl2201 p = 0.29. c, Geometry of the 
ADMR measurement. The sample is represented in grey. The black arrow on the 
left identifies the direction of the electric current, J, along the c axis. The angles 
ϕ and θ describe the direction of the magnetic field B with respect to the 
crystallographic a and c axes. d, The three-dimensional Fermi surface of 
Nd-LSCO at p = 0.24 obtained from the ADMR. A single cyclotron orbit, 
perpendicular to the magnetic field B, is drawn in blue, with the Fermi velocity 
indicated with the small blue arrow at a particular instant in time.
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electron-like (that is, it is centred on the Γ point in the first Brillouin 
zone), both the measured and calculated RH are hole-like due to the 
Fermi surface curvature26 (Fig. 3b). An anisotropic scattering rate, 
highly enhanced near the anti-nodal regions of the Fermi surface 
(Figs. 2b, 3), is therefore not only required to correctly model the ADMR 
but also required to obtain the correct sign and magnitude of the Hall 
coefficient. To ensure that our fits are not fine-tuned for B = 45 T, we 
fit a second dataset taken at B = 35 T (Extended Data Fig. 5). We fix the 
tight-binding parameters to those obtained from the 45-T fits and we 
find that the same scattering-rate parameters emerge at 35 T, demon-
strating the consistency of the model.

Discussion
We have measured the momentum dependence of the scattering 
rate responsible for the T-linear resistivity of Nd-LSCO at p = 0.24. We 
can write the total scattering rate as a sum of an elastic (temperature 
independent) component plus an inelastic (temperature dependent) 
component:

τ ϕ T τ τ T1/ ( , ) = 1/ + 1/ ( ). (2)elastic inelastic

We use the working definitions of ‘elastic scattering’ to mean 
temperature-independent scattering and ‘inelastic scattering’ to 
mean temperature-dependent scattering. There are exceptions to 
these definitions but they hold under most cases, particularly in the 
low-temperature limit. We find that 1/τelastic = 1/τaniso(ϕ) + 1/τiso(T = 0), 
that is, the elastic scattering contains all of the anisotropic scattering, 

plus the T = 0 offset from the isotropic scattering. The elastic term is, by 
definition, temperature independent, and its angle dependence resem-
bles the strongly ϕ-dependent density of states at p = 0.24 (Fig. 4c, e). It 
was previously suggested that similar anisotropy in the single-particle 
scattering rate (that is, the scattering rate measured by ARPES) may 
arise due to the proximity of the anti-nodal Fermi surface to the van 
Hove singularity27. Our data suggest that similar anisotropy extends 
to the two-particle, transport scattering rate. Indeed, the momentum 
dependence of the elastic scattering rate we measure is reminiscent 
of the elastic scattering rate extracted by ARPES in LSCO at p = 0.23  
(ref. 28), as shown in Supplementary Fig. 2.

We find that the inelastic term in equation (2) has a pure T-linear 
dependence whose strength is consistent with Planckian dissipation, 
that is, τ T α1/ ( ) =

k T
ħinelastic
B , with α close to 1 (Fig. 4f). This unambiguo

usly demonstrates that T-linear resistivity is caused by a T-linear scat-
tering rate and not, for example, by a T-dependent carrier density29. 
Remarkably, we discover that this Planckian scattering is isotropic—the 
same for all directions of electron motion. Isotropic, T-linear scattering 
has been hypothesized in the context of a marginal Fermi liquid descrip-
tion of the normal state of cuprates11. The marginal Fermi liquid also 
hypothesizes an ω-linear scattering rate (where ω is the angular fre-
quency), and this was observed by ARPES in LSCO19. The absence of 
momentum-space structure to the scattering rate implies that the 
microscopic mechanism of T-linear resistivity is length-scale invariant, 
that is, it does not depend on scattering from a particular wavevector, 
such as the fluctuations of a finite-q order parameter (where q is the 
ordering wavevector). The fact that the inelastic scattering rate appears 
to reach a limit dictated by Planck’s constant suggests that a 
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Fig. 2 | ADMR and quasiparticle scattering rate of Nd-LSCO at p = 0.24.  
a, Left: the ADMR of Nd-LSCO at p = 0.24 as a function of θ for four different 
temperatures, T = 25 K, T = 20 K, T = 12 K and 6 K, and at B = 45 T. The grey area 
near θ = 90° for T = 6 K and T = 12 K indicates the region where the sample 
becomes superconducting (SC). Right: simulations obtained from the 
Chambers formula using the tight-binding parameters of Extended Data Table 1 
and the scattering-rate model of equation (7). b, Log-scale polar plot of the 
scattering rate at T = 25 K. Note the large scattering rate near the anti-nodes 
where the Fermi surface passes close to the van Hove point. The isotropic part 
of the scattering rate, 1/τiso, is shown as a dashed red line. The anisotropic part, 

1/τaniso is shown in violet. The total scattering rate, 1/τaniso + 1/τiso is the entire 
solid line, shaded red or violet depending on whether it is dominated by 1/τaniso 
or 1/τiso, respectively. c, Temperature dependence of the two components of 
the scattering rate. A linear fit to 1/τiso using 1/τ = A + αkBT/ħ, yields α = 1.2 ± 0.4, a 
value consistent with the Planckian limit (α ≈ 1). The error bar on α accounts for 
the uncertainty in the fit as well as a ±10% uncertainty in the distance between 
the electrical contacts on the ADMR sample. By contrast, 1/τaniso is seen to be 
temperature independent, showing that it comes entirely from elastic 
scattering off defects and impurities.
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fundamental quantum principle is at play, akin to that involved in the 
maximal rate of entropy production at a black hole event horizon30. As 
was found in previous studies4, the Planckian limit constrains only the 
temperature-dependent part of the scattering rate.

Detailed knowledge of the Fermi surface and the scattering rate 
allows us to examine other transport properties in more quantitative 
detail than was previously possible. In Fig. 3d, we plot the calculated 
isotherms of ρxx versus B up to 100 T. We see that a strong B-linear com-
ponent is present at low T above a threshold field, whereas a quadratic 
B2 dependence dominates at high T and low B—strikingly similar to 
what was recently measured in LSCO31 (Fig. 3c). This B-linear mag-
netoresistance occurs naturally at intermediate fields between the 
low-field B2 regime and the field-independent regime that occurs once 
ωcτ ≫ 1, where ωc is the cyclotron frequency (ref. 32; see Supplementary 
Information for more details). When vF, the Fermi velocity, or τ are 
highly anisotropic, as is the case for Nd-LSCO at p = 0.24 and LSCO at 
p = 0.19, the high-field regime is pushed up to extremely high fields, 
resulting in a broad region of B-linear magnetoresistance. This mecha-
nism may explain B-linear magnetoresistance without any need for a 
B-dependent scattering rate. This is further supported by our fits to a 
second dataset taken at B = 35 T, which yield the same scattering rates 
we find at 45 T (Extended Data Fig. 5). It remains to be seen whether this 
mechanism can explain B-linear magnetoresistance more generally, for 
example, as found in iron pnictide superconductors33, where the Fermi 
surface and scattering rate are unlikely to be as anisotropic as they  
are in Nd-LSCO.

In the context of our discovery that the inelastic scattering rate at p* 
is both Planckian and isotropic, it is interesting to consider how this 
scattering rate evolves into the overdoped regime. Far above p*, for 

example in LSCO at p = 0.33 (ref. 34), the resistivity is T2 as expected for 
a Fermi liquid. As the doping is lowered towards p*, the T2 component 
of the resistivity shrinks while a T-linear contribution grows35. Previous 
ADMR studies on overdoped Tl2Ba2CuO6+δ (Tl2201), at p = 0.29 (critical 
temperature Tc = 15 K)36, have found coexistence between an isotropic 
T2 scattering rate and an anisotropic T-linear scattering rate (Fig. 4d–f), 
agreeing with the temperature dependence of the resistivity in Tl2201 
(Fig. 4b). Although ADMR has not been performed in a single material 
at both p* and in the highly overdoped regime, a useful comparison can 
be made between Tl2201 and Nd-LSCO.

First, we compare the elastic scattering rate, which is isotropic in 
Tl2201 versus strongly anisotropic in Nd-LSCO (Fig. 4e). We attribute 
this to a difference in the density of states: nearly isotropic in Tl2201 
(Fig. 4b, d) versus strongly anisotropic in Nd-LSCO due to the proximity 
of its Fermi surface to the van Hove point (Fig. 4a, c). The second, more 
interesting, difference between the two materials is in the inelastic scat-
tering rate. In Nd-LSCO, the inelastic scattering rate is entirely T-linear 
and saturates the Planckian limit for all k directions (Fig. 4f). By contrast, 
the inelastic scattering in Tl2201 is only in part T-linear, and the magni-
tude of the T-linear component is only Planckian along the anti-nodal 
directions (Fig. 4f). As a result, the resistivity of Tl2201 is not T-linear, 
varying as aT + bT2 (where a and b are temperature-independent coef-
ficients), with a T-linear component one order of magnitude smaller 
than in Nd-LSCO (Fig. 1b). This comparison suggests that for a metal to 
display a pure T-linear resistivity, its scattering rate must grow to reach 
the Planckian limit for all directions. This could explain why a pure 
T-linear resistivity can be found in metals with vastly different Fermi 
surfaces, for example, quasi-one-dimensional single-band organic 
metals such as the Bechgaard salts3 and three-dimensional multiband 
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determined by the uncertainties in the fit parameters defined in Extended Data 
Tables 1 and 2. The ρxx data are taken on a different sample6 to that used in the 
AMDR measurements and from which the scattering rates are extracted. 
Although systematic errors on geometric factors are expected from sample to 
sample, it is seen that a constant factor of 0.8 on the data are sufficient to give 
excellent agreement between calculation and data. The dashed blue line in  
b represents the high-field (ωcτ → ∞) limit for the Fermi surface of Nd-LSCO at 

p = 0.24. The difference between this limit and the data comes from the small 
value of ωcτ = 0.024 at T = 25 K and B = 45 T and the fact that the conductivity is 
highest in the nodal directions where the Fermi surface has hole-like curvature 
(Fig. 4a). c, d, In-plane resistivity as a function of magnetic field, with data from 
LSCO at p = 0.19 ( just above its own pseudogap critical point at p* = 0.18)31 on 
the left and calculations using the scattering-rate values obtained from the 
ADMR data on Nd-LSCO at p = 0.24 (extrapolated linearly to 100 K) on the right. 
In our calculations, we find B-linear magnetoresistance at low temperature 
(dashed line) that becomes B2 at high temperature (dashed line), as observed in 
LSCO p = 0.19.
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f-electron metals such as CeCu5.9Au0.1 (ref. 2). ADMR studies on Tl2201 
at lower doping would prove invaluable: we predict that the T-linear 
component of the scattering rate will grow in the nodal directions to 
become isotropic at p*, while the T2 component will decrease and then 
vanish at that same doping.
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Fig. 4 | Comparison of two overdoped cuprates: Nd-LSCO and Tl2201.  
a, b, Fermi surfaces at kz = π/c (where c is the c-axis lattice constant). In Nd-LSCO 
at p = 0.24 (a, red), the Fermi surface is electron-like and contained inside the 
antiferromagnetic zone boundary (black dotted lines). In Tl2201, with Tc = 15 K 
(b, violet), the hole-like Fermi surface crosses the antiferromagnetic zone 
boundary at so-called hotspots (violet points). c, d, Density of states (DOS) 

ε kk1/|∇ ( )|kk  as a function of the azimuthal angle ϕ, at kz = π/c. In Nd-LSCO (c), the 
DoS is large at the antinodes due to proximity to the van Hove singularity. By 
contrast, in Tl2201 (d), the DOS is nearly isotropic. e, Elastic part of the 
scattering rate versus azimuthal angle ϕ. In Nd-LSCO (red), the elastic 
scattering rate tracks the strong angle dependence of the DoS. By contrast, the 

elastic scattering rate in Tl2201 (violet; from ref. 36) is isotropic, in accordance 
with the relatively isotropic DOS. f, Inelastic part of the scattering rate, 
multiplied by ħ/(kBT), versus azimuthal angle ϕ. The inelastic scattering rate in 
Nd-LSCO is isotropic and consistent with ‘Planckian dissipation’ in the sense 
that ħ/τ = αkBT with α of order 1 (the uncertainty in α is indicated by the red 
shading.) The inelastic T-linear scattering rate of Tl2201 is strongly anisotropic, 
going from zero at ϕ = 45° (nodal region) to a near-Planckian magnitude at 
ϕ = 0° (anti-nodal region, near the hotspots). Note that in Tl2201, there is also 
an isotropic T2 part to the inelastic scattering rate, in addition to the 
anisotropic T-linear part shown here36. This results in a resistivity that varies as 
aT + bT2 (Fig. 1b)37.
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Methods

Samples and transport measurements
Single-crystal La2−y−xNdySrxCuO4 (Nd-LSCO) was grown at the University 
of Texas at Austin using a travelling-float-zone technique, with a Nd 
content y = 0.4 and nominal Sr concentration x = 0.25. The hole con-
centration is p = 0.24 ± 0.005 (for more details, see ref. 20). The value of 
Tc, defined as the point of zero resistance, is Tc = 11 K. The pseudogap 
critical point in Nd-LSCO is at p* = 0.23 (ref. 20).

Resistivity measurements were performed in the 45-T hybrid magnet 
at the National High Magnetic Field Laboratory in Tallahassee, USA. The 
sample resistance was measured with a standard four-point contact 
geometry using a Stanford Research 830 Lock-In Amplifier. The samples 
were driven with a current of IRMS = 1 mA from a Keithley 6221 Current 
Source. Temperature was stabilized to within ±1 mK around the target 
temperature at each angle. The uncertainty of the absolute tempera-
ture due to thermometer magnetoresistance is approximately ±1 K at 
both T = 6 K and T = 12 K (horizontal error bars in Figs. 2c, 3a, b), but 
negligible at T = 20 K and above.

At p = 0.24, the upper critical field of Nd-LSCO is 10 T for B∥c (ref. 25). 
By applying a magnetic field of B = 45 T at both T = 25 K and T = 20 K, 
the sample remains in the normal state while rotating the field from 
B∥c to B∥a. At T = 12 K and T = 6 K the p = 0.24 sample is in the normal 
state when B∥c, but superconductivity onsets when the field is rotated 
towards B∥a, as shown in Fig. 2a.

The polar angle θ between the crystalline c-axis and the magnetic 
field was changed in situ continuously from about −15° to about 110° 
using a single-axis rotator (Extended Data Fig. 1a). A voltage propor-
tional to the angle was recorded with each angle sweep. The angle θ was 
calibrated by finding symmetric points in the resistivity and scaling the 
measured voltage such that the symmetric points lie at θ = 0° and θ = 90° 
(Extended Data Fig. 1b). This procedure resulted in an uncertainty in 
θ of ±0.5°. The azimuthal angle ϕ was changed by placing the sample 
on top of G-10 wedges machined at different angles: 15°, 30° and 45°. 
An illustration of the sample mounted on the rotator stage, with a G-10 
wedge to set the azimuthal angle to be 30°, is shown in Extended Data 
Fig. 1. The samples and wedges were aligned under a microscope by 
eye to an accuracy in ϕ of ±2°.

Fitting method
Genetic algorithm. Computing the conductivity as described above 
involves free parameters (for example, t′, t″, tz, μ, τiso, τaniso, ν, defined 
below), which can be written as a vector x. The optimal x, which we 
refer to as x*, minimizes the chi-square (χ2) statistic between the resis-
tivity from the model ρ θ ϕ( , , )zz

model x  and the measured resistivity 
ρ θ ϕ( , )zz

data  at all magnetic field orientations (θ, ϕ):

x x( )∑χ ρ θ ϕ ρ θ ϕ( ) = ( , , ) − ( , ) , (3)
θ ϕ

zz zz
2

( , )

model data 2

We thus seek x* such that:

x x
x

χ= arg min ( ). (4)
⁎ 2

Using the Chambers formula to fit the ADMR measurements can be 
tricky for standard optimization algorithms such as gradient-based 
methods. They are either slow to converge, highly sensitive to the 
initial conditions or they tend to get stuck in local minima of the 
χ(x) landscape. That is the reason why we turned to a genetic algo-
rithm (or ‘differential evolution’) as a global optimization method, 
which can avoid these issues. The genetic algorithm has become a 
standard fitting routine in science and it is carefully detailed in the 
supplementary information of ref. 38. For this study, we used the dif-
ferential evolution algorithm from the Python package lmfit39 and 
our own C++ implementation. We back checked the efficiency of the  

genetic algorithm with two other global optimizers, such as AMPGO 
(Adaptive Memory Programming for Global Optimization) and SHGO 
(Simplicial Homology Global Optimization) also made available in 
lmfit39. The three optimizers all converged to the same results, confirm-
ing the robustness of our fit procedure.

Convergence criteria. The χ2 values of each member of the population 
are calculated after each generation of optimization. The distribution 
of all these χ2 values follows a Gaussian-like distribution. The genetic 
algorithm stops when the standard deviation of this distribution has 
reached less than 1% of the mean value of the distribution.

Error bars. When the fit reaches x* (the best-fit values), the error bars 
are calculated for each parameter by the statistical procedure of cal-
culating the Hessian matrix, which represents the second derivative 
of the fit quality χ2 in regard to each parameter. The error bars in Ex-
tended Data Table 2 are calculated as the square root of the diagonal 
values of the covariance matrix (inverse of the Hessian matrix) eval-
uated at x*. More details are available on the website of the Python  
package lmfit39.

Fitting procedure. To find the tight-binding and scattering-rate param-
eter values that best describe the Fermi surface of Nd-LSCO at p = 0.24 at 
all temperatures, we searched the parameter space using the following. 
(1) We fit the ADMR data at the four temperatures (6 K, 12 K, 20 K, 25 K) 
simultaneously with the genetic algorithm. All temperatures share the 
same tight-binding parameters during the optimization process, but 
the scattering-rate parameters (1/τiso, 1/τaniso and ν for the cosine model 
equation (7)) are unique for each temperature. (2) The search range of 
the genetic algorithm for the tight-binding parameters was set at ±30% 
around the ARPES values provided by Johan Chang through private 
communications for the data presented in ref. 7: μ = −0.93t, t′ = −0.136t, 
t″ = 0.068t and tz = 0.07t (this last value comes from ref. 24 for Eu-LSCO, 
which shows identical atomic structure and electronic properties). 
Only t = 190 meV was kept fixed. (3) The absolute value of ρzz at each 
temperature—not just the relative change with angle—was included 
in the optimization.

Band structure
We use a three-dimensional tight-binding model of the Fermi surface 
that accounts for the body-centred tetragonal crystal structure of 
Nd-LSCO24,

ε k k k μ t k a k a
t k a k a
t k a k a
t k a k a k c

k a k a

( , , ) = − − 2 [cos( ) + cos( )]
− 4 ′cos( )cos( )
− 2 ″[cos(2 ) + cos(2 )]
− 2 cos( /2)cos( /2)cos( /2)

×[cos( ) − cos( )] ,

(5)

x y z x y

x y

x y

z x y z

x y
2

where μ is the chemical potential, t, t′ and t″ are the first-, second- and 
third nearest-neighbour hopping parameters, tz is the interlayer hop-
ping parameter, a = 3.75 Å is the in-plane lattice constant of Nd-LSCO, 
and c/2 = 6.6 Å is the CuO2 layer spacing. The interlayer hopping has the 
form factor cos(kxa/2)cos(kya/2)[cos(kxa)−cos(kya)]2, which accounts 
for the offset copper oxide planes between layers of the body-centred 
tetragonal structure40.

The fit results of the ADMR data are presented in Fig. 2a, Extended 
Data Table 1 (for the tight-binding values) and Extended Data Table 2 
(for the scattering-rate values). Although the genetic algorithm was 
allowed to search over a wide range of parameters, we found that 
the optimal solution converged towards t′, t″ and tz values extremely 
close to the ARPES values, with a 7% deviation at most for tz. Only 
μ, and therefore the doping p, is substantially different from the 
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ARPES value. The higher doping found by ARPES may be due to the 
difficulty in accounting for the kz dispersion, or may be due to dif-
ferent doping at the surface. Nevertheless, the shape of the Fermi 
surface found by fitting the ADMR data (Fig. 1d) is electron like and 
qualitatively identical to the one measured by ARPES7, and the doping 
we find (p = 0.248) is very close to the nominal one p = 0.24 ± 0.005  
(ref. 6).

This demonstrates that the Fermi surface is correctly mapped out by 
the ADMR data. In the figures and the analysis presented in this paper, 
we use the tight-binding values from Extended Data Table 1, and for 
simplicity we refer to them as the ‘tight-binding values from ARPES’, 
as they only differ by the chemical potential value.

Determining the energy scale t
Fitting ADMR to a tight-binding model using Boltzmann transport 
determines the relative variation between the different tight-binding 
parameters. The overall scale t, however, must be determined inde-
pendently. Although ARPES can determine t by fitting the measured 
dispersion to a tight-binding model, ARPES does not necessarily have 
the sensitivity to determine all band renormalizations at the Fermi 
energy. As electrical transport is only sensitive to renormalizations 
at the Fermi energy, and not to the overall bandwidth, it is crucial to 
determine t accurately if one is to quantitatively determine the scat-
tering rate. The experimentally determined quantity that is most sen-
sitive to band renormalizations near the Fermi energy is the specific 
heat, which is sensitive to the total density of states. To determine 
t, we calculate the density of states from our tight-binding model 
and adjust t to match the experimentally determined electronic  
specific heat, Cel.

In Extended Data Fig. 2a, we compare the calculated Sommerfeld 
coefficient γ ≡ Cel/T to the measured electronic specific heat for 
Nd-LSCO. At p = 0.27, p = 0.36 and p = 0.40, Cel/T is found to be con-
stant at low T, with γ = 11 ± 1 mJ K−2 mol−1, γ = 6.5 ± 1 mJ K−2 mol−1 and 
γ = 5.5 ± 1 mJ K−2 mol−1, respectively (Extended Data Fig. 2b)25. For 
Nd-LSCO at p = 0.24, Michon et al.25 report a log(1/T) increase in the 
specific heat below 10 K. Above 10 K, this increase must terminate to 
be consistent with the specific heat at p = 0.27, as the specific heat 
generally decreases with increased doping as the band moves away 
from the van Hove points, and the mass enhancement decreases away 
from p*. The difference between the measured specific heat at 6 K and 
the lower bound set by the p = 0.27 data are 20%. As the origin of the 
log(1/T) increase is unknown, and its effect on the electrical transport 
is unclear, we take the density of states across our temperature range—
from 6 K to 25 K—to be constant. We know of at least two cases where 
the quasiparticle effective mass m* is independent of temperature 
in a metal that does exhibit T-linear resistivity. The first case is the 
electron-doped cuprates, where the mass from quantum oscillations 
in Nd2−xCexCuO4 (NCCO) at x = 0.17 obeys the standard Lifshitz–Kose-
vich form, with a constant mass of m* = 2.3me, where me is the bare 
electron mass (ref. 41). Over the same temperature range, the resistivity 
of Pr2−xCexCuO4 (PCCO) at x = 0.17 is purely T-linear42. The second case 
is Tl2201 at p = 0.30, where quantum oscillations are perfectly Lifshitz–
Kosevich-like, indicating a constant m* (ref. 43). Over the same tempera-
ture range where the quantum oscillations are measured, from 1 K to 
5 K, the resistivity of Tl2201 is dominated by the T-linear component37. 
Thus, there is no clear link between log(1/T) specific heat and T-linear  
resistivity.

We therefore take a value of t = 130 meV as a lower bound on t 
(Extended Data Fig. 2a). The upper bound on t is set by ARPES, because 
ARPES is not necessarily sensitive to all low-energy renormalizations 
near the Fermi energy. This upper bound is t = 190 meV (ref. 24). Extended 
Data Fig. 2a shows that a value of t = 160 ± 30 meV—encompassing the 
lower bound set by specific heat and the upper bound set by ARPES—
agrees well with the measured specific heat across the entire dop-
ing range, passing through all error bars, from p = 0.23 to p = 0.40. 

The fractional reduction in bandwidth from the ARPES value, that is, 
t(ARPES)/t(γ), is 1.2.

Scattering-rate models
To eliminate a possible model dependence of the scattering rate to best 
describe the ADMR data of Nd-LSCO at p = 0.24, we tested different 
scattering-rate models that we detail below.

Isotropic scattering rate. We first consider a constant scattering-rate 
model

τ τ1/ = 1/ , (6)iso

where 1/τiso is the amplitude of the isotropic scattering rate. With this, 
we try to fit the ADMR data of Nd-LSCO at p = 0.24. The best-fit result 
is shown in Extended Data Fig. 3b, which demonstrates that a constant 
scattering-rate model fails to reproduce the data. Instead, the signal 
increases monotonically out to θ = 90°. The features at θ = 40° and 
θ = 90° are present—as they reflect the topology of the Fermi surface—
but come with wrong amplitudes and proportions in respect to each 
other. Using a smaller or higher scattering rate just changes the over-
all amplitude of the curve, but not the proportions of the features in 
respect to each other.

Cosine anisotropic scattering rate. We next consider the most min-
imalistic anisotropic scattering-rate model, one based on a cosine 
function:

τ ϕ τ τ ϕ1/ ( ) = 1/ + 1/ |cos(2 )| , (7)ν
iso aniso

where 1/τiso is the amplitude of the isotropic scattering rate, 1/τaniso is 
the amplitude of the ϕ-dependent scattering rate and ν is an integer. 
The best fit using this model is plotted in Fig. 2a and Extended Data 
Fig. 3c, and parameter values are listed in Extended Data Table 2. The 
features at θ = 40° and θ = 90° are now present with the same amplitudes 
as the data. With as few parameters as possible, this model captures 
the trend of the anti-nodal regions of the Fermi surface to have shorter 
quasiparticle lifetimes in the cuprates27,44, particularly close the van 
Hove singularity at p ≈ 0.23. This is the model we used in Fig. 2—it should 
be seen as the simplest phenomenological model able to capture the 
correct shape of the real scattering rate, with the least number of free 
parameters.

Polynomial and tanh anisotropic scattering rates. To ensure that the 
cosine model captures the phenomenology of the real scattering rate 
without being a ‘fine-tuned’ model, we now turn to two other aniso-
tropic scattering-rate models based on entirely different functions. The 
first model incorporates a hyperbolic tangent function (equation (8)) 
and the second is a polynomial function (equation (9); the most ‘adap-
tive’ of the three models). The ‘tanh’ model

τ ϕ
τ

a a ϕ π
1/ ( ) =

1/
|tanh( + |cos(2( + /4))| )|

, (8)a
iso

1 2
3

and the polynomial model

τ ϕ τ a ϕ a ϕ a ϕ a ϕ a ϕ
ϕ

1/ ( ) = 1/ + | + + + + |,
with (mod π/4) ∈ [0, π/4].

(9)iso 1 2
2

3
3

4
4

5
5

The best fits for these two models are plotted in Extended Data 
Fig. 3e, f. The entire temperature dependence and the transport coef-
ficients calculated with the ‘tanh’ model are shown in Extended Data 
Fig. 4. The fits are not significantly different from the ‘cosine’ model—
slightly more refined—which demonstrates that the essential physics 
is captured by the minimalistic cosine model. Extended Data Fig. 3d 



shows that the three anisotropic models all give the same ϕ-dependence 
close to the nodes at θ = 45° and have the same slopes near θ = 90°. The 
models differ in their absolute values of the scattering rate near θ = 90°: 
we attribute this small discrepancy to the fact that the scattering rate 
at θ = 90° is so high that a small change in curvature in the model can 
make the value at θ = 90° vary. Nonetheless, this is just a quantitative 
difference, as the transport coefficients calculated remain similar, the 
anisotropic component of the scattering rate remains temperature 
independent and the isotropic part is T-linear for both the ‘cosine’ and 
‘tanh’ models as shown in Extended Data Fig. 4b. We do not present the 
temperature dependence of the ‘polynomial’ model because of the long 
time it takes to converge with many more parameters.

ADMR for B = 35 T
In Extended Data Fig. 5a, we show ADMR data measured at B = 35 T. 
Owing to the smaller magnetic field, the data are very different from 
those taken at B = 45 T, in terms of both the magnitude of the ADMR 
and the qualitative features.

By following the same fitting procedure at B = 35 T, in Extended Data 
Fig. 5b we show that we obtain scattering rates and tight-binding param-
eters that are the same to within 1% of those that describe the data at 
B = 45 T—the only parameter that changes between the two sets of fits 
is the magnetic field.

This shows that our scattering rate and tight-binding parameters are 
robust and do not rely on fine-tuning parameters to match the data at 
B = 45 T. Moreover, this shows that the scattering rate does not depend 
on field, and that all magnetoresistance arises from the orbital motion 
of electrons under the Lorentz force.

Data availability
The experimental data presented in this paper are available at http://
wrap.warwick.ac.uk/152398/. The results of the conductivity simulations 
are available from the corresponding authors upon reasonable request.

Code availability
The code used to compute the conductivity is available from the cor-
responding authors upon reasonable request.
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Extended Data Fig. 1 | ADMR experimental set up. a, A photograph of the 
sample on the rotator. The two samples here are mounted on a G-10 wedge to 
provide an azimuthal angle ϕ of 30°. Additional wedges provided angles of 

ϕ = 15° and ϕ = 45°. b, ADMR as a function of θ angle from −15° to 110° and ϕ = 0 at 
T = 20 K for Nd-LSCO p = 0.24, showing the symmetry of the data about these 
two angles.



a b

Extended Data Fig. 2 | Calculated and measured Sommerfeld coefficients 
of Nd-LSCO. a, The Sommerfeld coefficient γ for Nd-LSCO as a function of 
doping. The measured values (red circles) are obtained from measurements of 
the electronic specific heat Cel/T at T = 10 K (ref. 25). For the calculated γ (black 
dashed, dotted and solid lines), we use the tight-binding parameters from our 

ADMR analysis for three different values of t, as indicated. The grey band 
represents the region of consistency between the calculations and the data.  
b, Electronic specific heat Cel/T as a function of temperature for Nd-LSCO 
p = 0.24, 0.27, 0.36 and 0.40 (ref. 25). The data are the solid lines and the dashed 
lines represent extrapolations.
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Extended Data Fig. 3 | Fit of the Nd-LSCO p = 0.24 data with different 
scattering-rate models. a, ADMR data on Nd-LSCO p = 0.24 at T = 25 K and 
B = 45 T. b, c, e, f, Best fits for the ADMR data in a using the Fermi surface in 
Fig. 1d and an isotropic scattering-rate model (b), and three different 

anisotropic scattering-rate models: cosine (c), tanh (e) and polynomial  
(f). d, The three different anisotropic scattering rates as a function of the 
azimuthal angle ϕ at T = 25 K.
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Extended Data Fig. 4 | ADMR and quasiparticle scattering rate of Nd-LSCO at p = 0.24 for the tanh model. This figure is the same as Figs. 2a, 3a, b, except that 
the ADMR has been fitted using the tanh model instead of the cosine model (Extended Data Fig. 3).
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Extended Data Fig. 5 | ADMR and quasiparticle scattering rate of Nd-LSCO 
at p = 0.24 for B = 35 T. a, b, This figure is the same as Fig. 2a, c except that the 
ADMR data are taken at B = 35 T (a). The fit has been carried out using the cosine 

model. b shows that scattering-rate values are identical to within a percent of 
those obtained from the fit to the data at B = 45 T, shown in Fig. 2c.



Extended Data Table 1 | Tight-binding parameters from the fit to the ADMR data at p = 0.24

Best-fit tight-binding values for the Nd-LSCO p = 0.24 ADMR data (using the cosine scattering-rate model of equation (7)). The hopping parameter 
t = 160 ± 30 meV was fixed by the measured specific heat: see the section ‘Determining the energy scale t’ for more information. The results are  
extremely close to ARPES tight-binding values reported in Matt et al.7 and Horio et al.24, reproduced here on the second line. Error bars on the 
ADMR-derived values were obtained following the procedure described in Methods. The error bar on the value of tz measured by ARPES is ±0.02t  
(J. Chang and M. Horio, private communication).

t (meV) t‘/t t‘’ /t tz/t µ/t p
ADMR 160 ± 30 −0.1364 ± 0.0005 0.0682 ± 0.0005 0.0651 ± 0.0005 −0.8243 ± 0.0005 0.248
ARPES 190 -0.136 0.068 0.07 0.28
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Extended Data Table 2 | Results of the fit of the Nd-LSCO p = 0.24 data with the cosine scattering-rate 
model

Best-fit scattering rate and tight-binding values of the Nd-LSCO p = 0.24 ADMR data plotted in Fig. 2a. The fit was achieved by the multi-temperature fit  
procedure described in the Methods section. Error bars on the scattering-rate parameters were obtained following the procedure described in the ‘Fitting method’ 
section. Error bars on the tight-binding parameters are all ±0.0005t.

T (K) 1/τiso (ps−1) 1/τaniso (ps−1) ν t (meV) t‘ t‘’ tz µ p
25 12.595 ± 0.002 63.823 ± 0.257 12 ± 1 160 ± 30 −0.1364t 0.0682t 0.0651t −0.8243t 0.248
20 11.937 ± 0.003 63.565 ± 0.759 12 ± 1 160 ± 30 −0.1364t 0.0682t 0.0651t −0.8243t 0.248
12 10.663 ± 0.005 63.599 ± 0.235 12 ± 1 160 ± 30 −0.1364t 0.0682t 0.0651t −0.8243t 0.248
6 9.628 ± 0.049 63.929 ± 0.902 12 ± 1 160 ± 30 −0.1364t 0.0682t 0.0651t −0.8243t 0.248
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