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Reconciling scaling of the optical
conductivity of cuprate superconductors
with Planckian resistivity and specific heat

Bastien Michon 1,2,3, Christophe Berthod 1, Carl Willem Rischau1,
Amirreza Ataei 4, Lu Chen 4, Seiki Komiya5, Shimpei Ono 5,
Louis Taillefer 4,6, Dirk van der Marel 1 & Antoine Georges 1,7,8,9

Materials tuned to a quantumcritical point display universal scaling properties
as a function of temperature T and frequency ω. A long-standing puzzle
regarding cuprate superconductors has been the observed power-law
dependence of optical conductivity with an exponent smaller than one, in
contrast to T-linear dependence of the resistivity and ω-linear dependence of
the optical scattering rate. Here, we present and analyze resistivity and optical
conductivity of La2−xSrxCuO4 with x =0.24. We demonstrate ℏω/kBT scaling of
the optical data over a wide range of frequency and temperature, T-linear
resistivity, and optical effective mass proportional to ∼ lnT corroborating
previous specific heat experiments. We show that a T,ω-linear scaling Ansatz
for the inelastic scattering rate leads to a unified theoretical description of the
experimental data, including the power-law of the optical conductivity. This
theoretical framework provides new opportunities for describing the unique
properties of quantum critical matter.

The linear-in-temperature electrical resistivity is one of the remarkable
properties of the cuprate high temperature superconductors1–4. By
means of chemical doping, it is possible to tune these materials to a
carrier concentration where ρ(T) = ρ0 +AT in a broad temperature
range. For Bi2+xSr2−yCuO6±δ, it has been possible to demonstrate this
from 7 to 700 K5 by virtue of the low Tc of this material. For the
underdoped cuprates, the linear-in-T resistivity is ubiquitous for tem-
peratures T > T*, where T* is a doping-dependent cross-over tempera-
ture that decreases as a function of doping and vanishes at a critical
doping p*. From one cuprate family to another, the exact value of
p* varies widely within the range 0.19 < p* < 0.406–10. For doping levels
p < p*, many of the physical properties indicate the presence of a
pseudogap that vanishes at p*11,12. When p is tuned exactly to p*, the
T-linear resistivity persists down to T =0 K if superconductivity is

suppressed e.g. by applying amagneticfield13–15. The conundrumof the
T-linear resistivity has been associated to the idea that themomentum
relaxation rate cannot exceed the Planckian dissipation kBT/ℏ16–19, a
state of affairs for which there exists now strong experimental
support20,21.

As expected for a system tuned to a quantum critical point22,
ℏω/kBT scaling has been observed in the optical properties of high-Tc
cuprates23,24 over some range of doping. The optical scattering rate
obtained from an extended Drude fit to the data was found to obey a
T-linear dependence 1/τ ~ kBT/ℏ in the low-frequency regime
(ℏω≲ 1.5kBT) as well as a linear dependence on energy over an exten-
ded frequency range24–29. A direct measurement of the linear tem-
perature dependence of the single-particle relaxation rate extending
over 70% of the Fermi surface was obtained with angle resolved
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photoemission spectroscopy (ARPES)30. These observations are qua-
litatively consistent with the T-linear dependence of the resistivity and
Planckianbehavior. In contrast, by analyzing themodulus andphaseof
the optical conductivity itself, a power-law behavior σðωÞ = C=ð�iωÞν*
with an exponent ν* < 1 was reported at higher frequencies
ℏω ≳ 1.5kBT

23,24,28,29,31,32. The exponent was found to be in the range
ν* ≈0.65 with some dependence on sample and doping level23,26,28,29.
Hence, from these previous analyses, it would appear that different
power laws are needed to describe optical spectroscopy data: one at
low frequency consistent with ℏω/kBT scaling and Planckian behavior
(ν = 1) and another one with ν* < 1 at higher frequency, most apparent
on the optical conductivity itself in contrast to 1/τ. A number of the-
oretical approaches have considered a power-law dependence of the
conductivity33–42 without resolving this puzzle. A notable exception is
the work of Norman and Chubukov43. The basic assumption of this
work is that the electrons are coupled to a Marginal Fermi Liquid
susceptibility3,4,44,45. The logarithmic behavior of the susceptibility and
corresponding high-energy cut-off observed to be ~ 0.4 eV with
ARPES46, is responsible for the apparent sub-linear power law behavior
of the optical conductivity. Our work broadens and amplifies this
observation. A quantitative description of all aspects at low and high
energy in one fell swoop has, to the best of our knowledge, not been
presented to this day.

Here we present systematic measurements of the optical spectra,
as well as dc resistivity, of a La2−xSrxCuO4 (LSCO) sample with x = p =
0.24 close to the pseudogap critical point, over a broad range of
temperature and frequency. We demonstrate that the data display
Planckian quantum critical scaling over an unprecedented range of
ℏω/kBT. Furthermore, a direct analysis of the data reveals a logarithmic
temperature dependence of the optical effective mass. This

establishes a direct connection to another hallmark of Planckian
behavior, namely the logarithmic enhancement of the specific heat
coefficient C=T ∼ lnT previously observed for LSCO at p = 0.2447 as
well as for other cuprate superconductors such as Eu-LSCO and Nd-
LSCO48.

We introduce a theoretical framework which relies on aminimal
Planckian scaling Ansatz for the inelastic scattering rate. We show
that this provides an excellent description of the experimental data.
Our theoretical analysis offers, notably, a solution to the puzzle
mentioned above. Indeedwe show that, despite the purely Planckian
Ansatz which underlies our model, the optical conductivity com-
puted in this framework is well described by an apparent power law
with ν* < 1 over an intermediate frequency regime, as also observed
in our experimental data. The effective exponent ν* is found to be
non-universal and to depend on the inelastic coupling constant,
which we determine from several independent considerations. The
proposed theoretical analysis provides a unifying framework in
which the behavior of the T-linear resistivity, lnT behavior of C/T,
and scaling properties of the optical spectra can all be understood in
a consistent manner.

Results
Optical spectra and resistivity
Wemeasured the optical properties and extracted the complex optical
conductivity σ(ω, T) of an LSCO single crystal with a-b orientation
(CuO2 planes). The holedoping is p = x =0.24, whichplaces our sample
above and close to the pseudogap critical point of the LSCO
family7,14,49. The pseudogap state for T < T*, p < p* is well characterized
by transport measurements12 and ARPES11. The relatively low Tc = 19 K
of this sample is interesting for extracting the normal-state properties
in optics down to low temperatures without using any external mag-
netic field. In particular, this sample is the same LSCO p = 0.24 sample
as in Ref. 50, where the evolution of optical spectral weights as a
function of doping was reported.

The quantity probed by the optical experiments of the present
study is the planar complex dielectric function ϵ(ω). The dielectric
function has contributions from the free charge carriers, as well as
interband (bound charge) contributions. In the limit ω→0, the latter
contribution converges to a constant real value, traditionally indicated
with the symbol ϵ∞:

ϵðωÞ = ϵ1 + i
σðωÞ
ϵ0ω

ð1Þ

σðωÞ = i
e2K=ð_dcÞ
_ω+MðωÞ : ð2Þ

Here the free-carrier response σ(ω) is given by the generalized Drude
formula, where all dynamical mass renormalization (m*/m) and
relaxation (ℏ/τ) processes are represented by a memory-function51,52

MðωÞ = _ω
m*ðωÞ
m

� 1
� �

+ i
_

τðωÞ : ð3Þ

The free-carrier spectral weight per plane is given by the constant K
and the interplanar spacing is dc. The scattering rate ℏ/τ(ω) deduced
using Eqs. ((1), (2), (3)) and the values of K and ϵ∞ discussed below are
displayed in Fig. 1c. It depends linearly on frequency for
kBT≪ ℏω≲0.4 eV and approaches a constant value for ℏω < kBT. This
behavior is similar to that reported for Bi221223. The sign of the
curvature above 0.4 eV depends on ϵ∞ and changes from positive to
negativenear ϵ∞ = 4.5.Our determination ϵ∞ = 2.76presented in Scaling
analysis does not take into account data for ℏω > 0.4 eV and may
therefore yield unreliable values of ℏ/τ in that range (see Supplemen-
tary Information Sec. A and B).

Fig. 1 | Optical data of La2−xSrxCuO4 atp =0.24. aReal andb imaginary part of the
optical conductivity σ deduced from the dielectric function ϵ (Supplementary
Fig. 1), using Eq. (14) and the value ϵ∞ = 2.76. c Scattering rate and d effective mass
deduced from Eqs. (16) and (17) using K = 211 meV. The values of ϵ∞ and K are
discussed and justified in the text. Inset: Temperature dependence of m*/m at
ℏω = 5kBT (see dots in d). In each panel errorbars are indicated for three repre-
sentative frequencies and pertain to the upper curve, i.e., the lowest temperature
for σ(ω), m*(ω)/m and the highest temperature for ℏ/τ(ω). They represent the
uncertainty arising from reflectivity calibration using in-situ gold evaporation, and
have been estimated by repeating the Kramers--Kronig analysis after multiplying
the reflectivity curves by 1 ± 0.002.
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This linear dependence of the scattering rate calls for a com-
parison with resistivity. Hence we have also measured the tem-
perature dependence of the resistivity of our sample under two
magnetic fields H = 0 T and H = 16 T. As displayed in Fig. 2a, the
resistivity has a linear T-dependence ρ = ρ0 + AT over an extended
range of temperature, with A ≈ 0.63 μΩcm/K. This is a hallmark of
cuprates in this regime of doping10,13,14,20,53. It is qualitatively con-
sistent with the observed linear frequency dependence of the scat-
tering rate and, as discussed later in this paper, also in good
quantitative agreement with the ω→ 0 extrapolation of our optical
data within experimental uncertainties.

The optical mass enhancement m*(ω)/m is displayed in Fig. 1d.
With the chosen normalization, m*/m does not reach the asymptotic
value of one in the range ℏω <0.4 eV, which means that intra- and
interband and/or mid-infrared transitions overlap above 0.4 eV. The
inset of Fig. 1d shows a semi-log plot of the mass enhancement eval-
uated atℏω = 5kBT, where thenoise level is low forT⩾ 40K.Despite the
larger uncertainties at low T, this plot clearly reveals a logarithmic
temperature dependence ofm*/m. This is a robust feature of the data,
independent of the choice of ϵ∞ and K. We note that the specific heat
coefficient C/T of LSCO at the same doping level was previously
reported to display a logarithmic dependence on temperature, see
Fig. 2c47,48. We will further elaborate on this important finding of a
logarithmic dependence of the optical mass and discuss its relation to
specific heat in the next section.

Scaling analysis
In this section, we consider simultaneously the frequency and tem-
peraturedependenceof theoptical properties and investigatewhether
ℏω/kBT scaling holds for this sample close to the pseudogap critical

point. We propose a procedure to determine the three parameters ϵ∞,
K, and m introduced above.

Puttingω/T scaling to the test. Quantum systems close to a quantum
critical point display scale invariance. Temperature being the only
relevant energy scale in the quantumcritical regime, this leads inmany
cases toω/T scaling22 (inmost of the discussion below, we set ℏ = kB = 1
except when mentioned explicitly). In such a system we expect the
complex optical conductivity to obey a scaling behavior 1/
σ(ω, T)∝ TνF(ω/T), with ν⩽ 1 a critical exponent. More precisely, the
scaling properties of the optical scattering rate and effective mass
read:

1=τðω,TÞ=Tνf τ ðω=TÞ ð4Þ

m*ðω,TÞ �m*ð0,TÞ=Tν�1f mðω=TÞ ð5Þ

with fτ and fm two scaling functions. This behavior requires that both ℏω
and kBT are smaller than a high-energy electronic cutoff, but their ratio
can be arbitrary. Furthermore, we note that when ν = 1 (Planckian case)
the scaling is violated by logarithmic terms, which control in particular
the zero-frequency value of the optical mass m*(0,T). As shown in
Theorywithin a simple theoreticalmodel,ω/T scalingnonetheless holds
in this case to an excellent approximation provided that m*(0, T) is
subtracted, as in Eq. (5). We also note that in a Fermi liquid, the single-
particle scattering rate∝ω2 + (πT)2 does obeyω/T scaling (with formally
ν = 2), but the optical conductivity does not. Indeed, it involves ω/T2

terms violating scaling, and hence depends on two scaling variables
ω/T2 and ω/T, as is already clear from an (approximate) generalized
Drudeexpression 1/σ ≈ − iω + τ0[ω

2 + (2πT)2]. For a detaileddiscussionof
this point, see Ref. 54. Such violations of scaling by ω/Tν terms apply
more generally to the case where the scattering rate varies as Tν with
ν > 1. Hence, ω/T scaling for both the optical scattering rate and optical
effective mass are a hallmark of non-Fermi liquid behavior with ν⩽ 1.
Previous work has indeed provided evidence for ω/T scaling in the
optical properties of cuprates23,24.

Here, we investigate whether our optical data obey ω/T scaling.
We find that the quality of the scaling depends sensitively on the
chosen value of ϵ∞. Different prescriptions in the literature to fix ϵ∞
yield—independently of themethod used—values ranging from ϵ∞ ≈ 4.3
for strongly underdoped Bi2212 to ϵ∞ ≈ 5.6 for strongly overdoped
Bi221232,55. The parameter ϵ∞ is commonly understood to represent the
dielectric constant of thematerial in the absenceof the charge carriers,
and is caused by the bound charge responsible for interband transi-
tions at energies typically above 1 eV. While this definition is unam-
biguous for the insulating parent compound, for the doped material
one is confronted with the difficulty that the optical conductivity at
these higher energies also contains contributions described by the
self-energy of the conduction electrons, caused for example by their
coupling to dd-excitations56. Consequently, not all of the oscillator
strength in the interband region represents bound charge. Our model
overcomes this hurdle by determining the low-energy spectrumbelow
0.4 eV, and subsuming all bound charge contributions in a single
constant ϵ∞. Its value is expected to be bound from above by the value
of the insulating phase, in other words we expect to find ϵ∞ < 4.5 (see
Supplementary Information Sec. A). Rather than setting an a priori
value for ϵ∞, we follow here a different route and we choose the value
that yields the best scaling collapse for a given value of the exponent ν.
This program is straightforwardly implemented for 1/τ and indicates
that the best scaling collapse is achieved with ν ≈ 1 and ϵ∞ ≈ 3, see
Fig. 2b as well as Supplementary Information Sec. B and Supplemen-
tary Fig. 2. Turning to m*, we found that subtracting the dc value
m*(ω =0, T) is crucial when attempting to collapse the data. Extra-
polating optical data to zero frequency is hampered by noise. Hence,

Fig. 2 | Scaling of scattering rate and mass enhancement. a Temperature-
dependent resistivity measured in zero field (black) and at 16 teslas (red). The inset
emphasizes the linearity of the 16 T data at low temperature. The dashed line shows
ρ0 +AT with ρ0 = 12.2 μΩcm and A =0.63 μΩcm/K. b Scattering rate divided by
temperature plotted versus ω/T; the collapse of the curves indicates a behavior 1/
τ ~ Tfτ(ω/T). c Effective quasiparticle mass (in units of the indicated band mass m)
deduced from the low-temperature electronic specific heat47

[m*
Cp = ð3=πÞð_2dc=k

2
BÞðC=TÞ] and zero-frequency optical mass enhancement; the

dashed lines indicate lnT behavior. dOptical mass minus the zero-frequencymass
shown in c plotted versus ω/T; the collapse of the curves indicates a behavior
m*(ω) −m*(0) ~ fm(ω/T). The data between0.22 and0.4 eV are shown asdotted lines.
ϵ∞ = 2.76 was used here as in Fig. 1.
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instead of attempting an extrapolation, we consider m*(0, T) as
adjustable values thatwe again tune such as to optimize the collapse of
the optical data. This analysis of m*/m confirms that the best scaling
collapse occurs for ν ≈ 1 but indicates a larger ϵ∞ ≈ 7 (Supplementary
Information Sec. B and Supplementary Fig. 3). The determination of ϵ∞
from the mass data depends sensitively on the frequency range tested
for scaling and drops to value below ϵ∞ = 3 when focusing on lower
frequencies. As a third step, we perform a simultaneous optimization
of the data collapse for 1/τ and m*/m, which yields the values ν = 1,
ϵ∞ = 2.76 which we will adopt throughout the following. Note that a
determination of ϵ∞ by separation of the high-frequency modes in a
Drude–Lorentz representation of ϵ(ω) yields a larger value
ϵ∞ = 4.5 ± 0.5, as typically found in the cuprates23,32,57. Importantly, all
our conclusions hold if we use this latter value in the analysis, however,
the quality of the scaling displayed in Figs. 2 and 5 is slightly degraded.

Scaling of the optical scattering rate and connection to resistivity.
The scaling properties of the scattering rate obtained from our optical
data according to the procedure described above is illustrated in
Fig. 2b,whichdisplaysℏ/τdividedby kBT andplotted versusℏω/kBT for
temperatures above the superconducting transition. The collapse of
the curves at different temperatures reveals the behavior
ℏ/τ∝ Tfτ(ω/T). The function fτ(x) reaches a constant fτ(0) > 0 at small
values of the argument, and behaves for large arguments as
fτ(x≫ 1)∝ x. This is consistent with the typical quantum critical beha-
vior _=τ ∼ maxðT ,ωÞ. When inserted in the ω =0 limit of Eq. (15), the
value fτ(0) ≈ 5 indicated by Fig. 2b yields 1/σ(0) =AT with A = 0.55 μΩ
cm/K, in fairly good agreement with the measured resistivity (Fig. 2a).
Hence the resistivity and optical-spectroscopy data are fully con-
sistent, both of them supporting a Planckian dissipation scenario with
ν = 1 for LSCO at p = 0.24.

Spectral weight, effective mass and connection to specific heat.
The dc mass enhancement values m*(0, T)/m resulting from the pro-
cedure described above are displayed in Fig. 2c. Remarkably, as seen
on this figure, the scaling analysis delivers an almost perfectly

logarithmic temperature dependence of m*(0, T), consistent with a
Planckian behavior ν = 1. As mentioned above, this logarithmic beha-
vior can actually be identified in the unprocessed optical data, (see
inset of Fig. 1). In order to compare this behavior to the corresponding
logarithmic behavior reported for the specific heat, we note that the
scaling analysis provides m*(0, T) up to a multiplicative constant Km,
where m is the band mass. In contrast, the electronic specific heat
yields the quasiparticle mass in units of the bare electron massme. We
expect that the logarithmic T-variation of m*(0, T) and m*

qp / C=T are
both due to the critical inelastic scattering and that the lnT term in
eachquantity should thereforehave identical prefactors. Imposing this
identity provides a relationship between Km and me, namely (m/me)
K = 583meV.

Remarkably, we have found that this condition is obeyed within
less than a percent by a square-lattice tight-binding model with para-
meters appropriate for LSCO at p =0.24 (Supplementary Information
Sec. E). This model has nearest and next-nearest neighbor hopping
amplitudes t =0.3 eV and t0=t = � 0:1758, respectively, and an electro-
nic densityn =0.76/a2. The Fermi-level density of states is 1.646/(eVa2),
which corresponds to a band massm/me = 2.76 using the LSCO lattice
parameter a = 3.78 Å. The spectral weight is K = 211meV, such that the
prediction of this tight-bindingmodel is (m/me)K = 582meV, in perfect
agreement with the previously determined value. In view of this
agreement, we use the tight-binding model in order to fix the
remaining two system parameters: m = 2.76me and K = 211meV. Fig-
ure 2c compares the mass enhancement inferred from the low-
temperature specific heat and from the scaling analysis of the optical
data. The tight-binding value of the product Km ensures that both data
sets have the same slope on a semi-log plot. However, the resulting
optical mass enhancement is larger than the quasiparticle mass
enhancement by≈0.75,which is also the amount bywhich the infrared
mass enhancement exceeds unity in Fig. 1d. A mass enhancement lar-
ger than unity at 0.4 eV implies that part of the intraband spectral
weight lies above 0.4 eV, overlapping with the interband transitions.
Conversely, interband spectral weight is likely leaking below 0.4 eV,
which prevents us from accessing the absolute value of the genuine
intraband mass by optical means. Figure 2d shows the collapse of the
frequency-dependent change of the mass enhancement, confirming
the behavior m*(ω) −m*(0) ≈ Tν−1fm(ω/T) with ν = 1. The shape of the
scaling function fm(x) agrees remarkably well with the theoretical
prediction derived in Theory below.

Apparent power-law behavior: a puzzle. The above scaling analysis
has led us to the following conclusions. (i) The optical scattering rate
and optical mass enhancement of LSCO at p =0.24 exhibit ω/T scaling
over two decades for the chosen value ϵ∞ = 2.76. (ii) The best collapse
of the data is achieved for an exponent ν = 1 corresponding to
Planckian dissipation. This behavior is consistent with the measured
T-linear resistivity. (iii) The temperature dependence of m*(0, T) that
produces the best data collapse is logarithmic, consistently with the
temperature dependence of the electronic specific heat.

Hence, the data presented in Fig. 2 provide compelling evidence
that the low-energy carriers in LSCO at the doping p = 0.24 experience
linear-in-energy and linear-in-temperature inelastic scattering pro-
cesses, as expected in a scale-invariant quantum critical system char-
acterized by Planckian dissipation. It is therefore at first sight
surprising that the infrared conductivity exhibits as a function of fre-
quency a power lawwith an exponent that is clearly smaller than unity,
as highlighted in Fig. 3a, b. These figures show that the modulus and
phase of σ are both to a good accuracy consistent with the behavior
σ / ð�iωÞ�ν* =ω�ν*ei

π
2ν

*
with an exponent ν* = 0.8. A similar behavior

with exponent ν* ≈0.6 was reported for optimally- and overdoped
Bi221223, while earlier optical investigations of YBCO and Bi2212 have
also reportedpower lawbehavior of Re σðωÞ26,28,29.Wenowaddress this
question by considering a theoreticalmodel presented in the following

Fig. 3 | Sub-linear power lawat intermediate frequencies. aModulus andbphase
of the complex conductivity shown in Fig. 1a and b; the modulus decays with an
exponent ν* ≈0.8 and thephase approaches a value slightly lower than (π/2)ν*. c and
d: same quantities calculated using a Planckian model with linear-in-energy scat-
tering rate, Eqs. (7) and (10). The model and parameters are discussed in the text.
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section. As derived there, and illustrated in Fig. 3c, d, we show that an
apparent exponent ν* < 1 is actually predicted by theory for Planckian
systems with single-particle self-energy exponent ν = 1, over an inter-
mediate range of values of ω/T. This is one of the central claims of
our work.

Theory
In this section, we consider a simple theoretical model and explore its
implications for the optical conductivity. Our central assumption is
that the inelastic scattering rate (imaginary part of the self-energy)
obeys the following scaling property:

�Im ΣðεÞ= gπkBTS
ε

kBT

� �
: ð6Þ

In this expression g is a dimensionless inelastic coupling constant and
ε = ℏω. This ℏω/kBT scaling form is assumed to applywhenboth ℏω and
kBT are smaller than a high-energy cutoff Λ but their ratio can be
arbitrary. The detailed form of the scaling function S is not essential,
except for the requirements that S(0) is finite and S(x≫ 1)∝ ∣x∣. These
properties ensure that the low-frequency inelastic scattering rate
depends linearly on T for ℏω≪ kBT and that dissipation is linear in
energy for ℏω≫ kBT, which are hallmarks of Planckian behavior. We
note that such a scaling form appears in the context of microscopic
models such as overscreened non-Fermi liquid Kondo models59 and
the doped SYK model close to a quantum critical point60–64. In such
models, conformal invariance applies and dictates the form of the
scaling function to be SðxÞ= x cothðx=2Þ (with possible modifications
accounting for a particle-hole spectral asymmetry parameter, see Refs.
59,65 and Supplementary Information Sec. F. We have assumed that
the inelastic scattering rate ismomentum independent (spatially local)
i.e. uniform along the Fermi surface. This assumption is supported by
recent angular-dependent magnetoresistance experiments on Nd-
LSCO at a doping close to the pseudogap quantum critical point21—see

also Ref. 66. In contrast, the elastic part of the scattering rate (not
included in our theoretical model) was found to be strongly
anisotropic (angular dependent).

The real part of the self-energy is obtained from the
Kramers–Kronig relation which reads, substituting the scaling form
above:

ΣðzÞ= gkBT
Z

Λ
dx

SðxÞ
z=kBT � x

: ð7Þ

We note that this expression is only defined provided the integral is
bounded at high-frequency by the cutoff Λ, as detailed in Supplemen-
tary Information Sec. C. This reflects into a logarithmic temperature
dependence at low energy:

Re ½ΣðεÞ � Σð0Þ�= � 2gε lnðaΛ=kBTÞ ð8Þ

with a = 0.770542 a numerical constant (Supplementary Information
Sec. C). Correspondingly, the effective mass of quasiparticles, as well
as the specific heat, is logarithmically divergent at low temperature:

m*
qp

m
=

1
Z

= 1 + 2g ln a
Λ

kBT

� �
ð9Þ

with 1=Z = 1� dReΣðεÞ=dε∣ε =0. Importantly, the coefficient of the
dominant lnT term depends only on the value of the inelastic cou-
pling g.

In a local (momentum-independent) theory, vertex corrections
are absent67,68 and the optical conductivity can thus be directly com-
puted from the knowledge of the self-energy as69:

σðωÞ= iΦð0Þ
ω

Z 1

�1
dε

f ðεÞ � f ðε+ _ωÞ
_ω+Σ*ðεÞ � Σðε+ _ωÞ ð10Þ

where f ðεÞ= ðeε=kBT + 1Þ�1
is the Fermi function and Σ* denotes complex

conjugation. In this expression ΦðεÞ=2ðe=_Þ2R BZ
d2k
ð2πÞ2 ∂εk=∂kx

� �2
δðε+μ0 � εkÞ is the transport function associated with the bare
bandstructure. We have assumed that its energy dependence can be
neglected so that only the valueΦ(0) at the Fermi levelmatters (we set
μ0 = 0 by convention). Using a tight-binding model for the band
dispersion, Φ(0) can be related to the spectral weight K discussed in
the previous section as: (ℏ/e)2Φ2D(0) =K = 211 meV, i.e. Φ(0) =Φ2D(0)/
dc = 1.33 × 107ϵ0THz

2 (see Supplementary Information Sec. E).
Within our model, the behavior of the optical conductivity relies

on three parameters: the cutoff Λ, the Drude weight related to Φ(0)
and, importantly, the dimensionless inelastic coupling g. An analysis of
Eq. (10), detailed in Supplementary Information Sec. C, yields the fol-
lowing behavior in the different frequency regimes:

• ℏω≲ kBT. The optical conductivity in this regime takes a Drude-
like form Eq. (15) with ℏ/τ = 4πgkBT. The numerically computed
zero-frequency optical mass enhancement m*(0)/m agrees very
well with m*

qp=m= 1=Z as given by Eq. (9), see Supplementary
Fig. 6. Fitting Eq. (9) to the m*(0)/m data in Fig. 2c provides the
values g =0.23 and Λ =0.4 eV.

• ℏω ≳Λ. In this high-frequency regime, the asymptotic behavior is
fixed by causality and reads ∣σ∣ ~ 1/ω, argðσÞ ! π=2 (see
Supplementary Fig. 4 and Supplementary Fig. 5).

• kBT≲ ℏω≲Λ. In this regime, which is the most important in
practice when considering our experimental data, one can
derive the following expression:

σðωÞ≈ Φð0Þ
�iω

1
1 + 2g 1� ln _ω

2Λ

� �� 	
+ iπg

: ð11Þ

Fig. 4 | Effective exponent. Emergence of an apparent sub-linear power-law in a
pure Planckian model. a Apparent exponent given by Eq. (12) versus interaction
strength g. b–dModulus of the optical conductivity on a log-log scale showing the
apparent power law at energies between kBT and the cutoff Λ =0.4 eV. Data are
shown for three values of g (dots in a) and a range of temperatures. Both horizontal
and vertical axes cover exactly two decades, such that a 1/ω behavior would cor-
respond to a slope of − 1 (dotted line).
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Remarkably, as shown in Fig. 4, the theoretical optical con-
ductivity is verywell approximated in this regime by an apparent
power-law dependence ∣σ∣ ∼ ∣ω∣�ν* , over at least a decade in
frequency. The effective exponent ν* < 1 depends continuously
on the inelastic coupling constant g and can be estimated as:

ν* � �d ln ∣σ∣
d lnω

∣
_ω=Λ=2

� 1� 2g½1 + 2gð1 + ln 4Þ�
π2g2 + ½1 + 2gð1 + ln4Þ�2

:

ð12Þ

Correspondingly, argðσÞ has a plateau at argðσÞ≈πν*=2 before
reaching its eventual asymptotic value π/2 (Supplementary
Fig. 5). Using the value g = 0.23 deduced above from m*(0)/m
yields ν* = 0.8, in very good agreement with experiment, as
shown in Fig. 3.

In the dc limit ω→0, Eq. (10) together with our Ansatz for the
scattering rate, yields a T-linear resistivity:

ρ=AT , A=
4π3kB

7ζ ð3Þ_
g

Φð0Þ =
4π3_kBdc

7ζ ð3Þe2
g
K
: ð13Þ

Using the values of g and Φ(0) determined above, we obtain:
A =0.38 μΩcm/K, to be compared to the experimental value A = 0.63
μΩcm/K. It is reassuring that a reasonable order of magnitude is
obtained (at the 60% level) for the A-coefficient, while obviously a
precise quantitative agreement cannot be expected from such a sim-
ple model.

Finally, we present in Fig. 5 an ω/T scaling plot of 1/τ and m*/
m −m*(0)/m for our model, as well as a direct comparison to experi-
mental data. We emphasize that ω/T scaling does not hold exactly for
either of these quantitieswithin our Planckianmodel. This is due to the
fact that the real part of the self-energy behaves logarithmically at low
T and thus leads to violations of scaling, as also clear from the need to
retain a finite cutoff Λ. However, approximate ω/T scaling is obeyed to
a rather high accuracy, as shown in Fig. 5a, b and discussed in more

details analytically in Supplementary Information Sec. C. Panels c andd
allow for a direct comparison between the scaling properties of the
theoretical model and the experimental data, including analytical
expressions of the approximate scaling functions derived in Supple-
mentary Information Sec. C. These functions stem from an approx-
imate expression for the conductivity, Eq. (S13), that displays exactω/T
scaling. The approximation made in deriving them explains why the
scaling functions differ slightly from the numerical data in Fig. 5a, b.
Note the similar difference with the experimental data in Fig. 5d.

Discussion
In this article, we have shown that our experimental optical data for
LSCO at p =0.24 display scaling properties as a function of ℏω/kBT
which are consistent with Planckian behavior corresponding to a
scaling exponent ν = 1. We found that the accuracy of the data scaling
depends on the choice of the parameter ϵ∞ relating the optical con-
ductivity to the measured dielectric permittivity, and that optimal
scaling is achieved for a specific range of values of this parameter.

From both a direct analysis of the optical data and by requiring
optimal scaling, we demonstrated that the low-frequency optical
effective mass m*(ω ≈0, T)/m displays a logarithmic dependence on
temperature. This dependence, also a hallmark of Planckian behavior, is
qualitatively consistent with that reported for the specific heat (quasi-
particle effective mass)47,48. We showed that the coefficient of the
logarithmic term can be made quantitatively consistent between these
two measurements if a specific relation exists between the spectral
weightK and the ratiom/meof the bandmass to the bare electronmass.
Interestingly, we found that a realistic tight-binding model satisfies this
relation. The low-frequency optical scattering rate 1/τ extracted from
our scaling analysis displays a linear dependence on temperature,
consistent with the T-linear dependence of the resistivity that we mea-
sured on the same sample, with a quite good quantitative agreement
found between the T-linear slopes of these two measurements.

We have introduced a simple theoretical model which relies on
the assumption that the single-particle inelastic scattering rate (ima-
ginary part of the self-energy) displays ℏω/kBT scaling properties with
ν = 1 and that its angular dependence along the Fermi surface can be
neglected. These assumptions are consistent with angular dependent
magnetoresistance measurements21. The model involves a dimen-
sionless inelastic coupling constant g as a key parameter. We calcu-
lated the optical conductivity based on this model and showed that it
accounts very well for the frequency dependence (Fig. 3) and ω/T
scaling properties (Fig. 5) of our experimental data.

A key finding of our analysis is that the calculated optical con-
ductivity displays an apparent power-law behavior with an effective
exponent ν* < 1 over an extended frequency range relevant to experi-
ments (Figs. 3 and 4). We were able to establish that ν* depends con-
tinuously on the inelastic coupling constant g [Eq. (12) andFig. 4a]. This
apparent power law is also clear in the experimental data, especially
when displaying the data for ∣σ∣ and argðσÞ as a function of frequency.
Hence, our analysis solves a long-standing puzzle in the field, namely
the seemingly contradictory observations of Planckian behavior with
ν = 1 for the resistivity and optical scattering rate versus a power law
ν* < 1 observed for ∣σ∣ and argðσÞ.Wenote that the apparent exponent ν*

reported in previous optical spectroscopy literature varies from one
compound to another, which is consistent with our finding that ν*

depends on g and is hence not universal. For our LSCO sample, the
measured value of ν* leads to the value g ≈0.23.

The logarithmic temperature dependence of both the optical
effective mass and the quasiparticle effective mass is directly propor-
tional to the inelastic coupling constant g. We emphasize that this is
profoundly different fromwhat happens in a Fermi liquid. There, using
the Kramers–Kronig relation, one sees that the effective mass
enhancement (related to the low-frequency behavior of the real part of
the self-energy) depends on the whole high-frequency behavior of the

Fig. 5 | Frequency-temperature scaling. aApproximate collapse of the theoretical
scattering rate and bmass enhancement; the dashed lines show 2πgS(x/2) in a and
Eq. (S16) in b. c Same data as in Fig. 2b. d Same data as in Fig. 2d on a logarithmic
scale (not displayed here because of excessive noise: ℏω/kBT < 10 for T < Tc); the
dashed line is Eq. (S16).
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imaginary part of the self-energy. In contrast, in a Planckian metal
obeying ω/T scaling, the dominant lnT dependence of the mass is
entirely determined by the low-energy behavior of the imaginary part
of the self-energy, see Eq. (9). Based on this observation, we found that
the slope of the lnT term in the effective mass and specific heat is
consistent with the value g ≈0.23 independently determined from
the effective exponent ν*. Using that same value of gwithin our simple
theory leads to a value of the prefactor A of the T-linear term in the
resistivity which accounts for 60% of the experimentally measured
value. Quantitative agreement would require g ≈0.38, corresponding
to a value of ν* ≈0.77 also quite close to the experimentally observed
value ν* ≈0.8. It is also conceivable that electron-phonon coupling
contributes to the experimental value of A. In view of the extreme
simplification of the theoretical model for transport used in the pre-
sent work, it is satisfying that overall consistency between optics,
specific heat and resistivity can be achieved with comparable values of
the coupling g.

In recentworks65,70, Planckian behavior has also been put forward as
an explanation for the observed unconventional temperature depen-
dence of the in-plane and c-axis Seebeck coefficient of Nd-LSCO. In these
works, the same scaling formof the inelastic scattering rate than the one
used here was used, modified by a particle-hole asymmetry parameter.
For simplicity, this asymmetry parameter was set to zero in the present
article. We have checked, as detailed in Supplementary Information
Sec. F, that our results and analysis are unchanged if this asymmetry
parameter is included, as is expected from the fact that optical spec-
troscopy measures particle-hole excitations and is thus rather insensi-
tive to the value of the particle-hole asymmetry parameter.

Finally, wenote for completeness that a power-lawbehaviorof the
optical conductivity has also been observed in other materials,
including quasi one-dimensional conductors71–74 with ν* ~ 1.5, and three-
dimensional conductors75–78 with ν* ~ 0.5. In the former case, Luttinger-
liquid behavior provides an explanation for the observed power law at
intermediate frequencies71, while the interpretation of the power-law
behavior for materials such as Sr/CaRuO3 is complicated by a high
density of low-energy interband transitions79.

Summarizing, our results demonstrate a rather remarkable con-
sistency between experimental observations based on optical spec-
troscopy, resistivity and specific heat, all being consistent with ν = 1
Planckian behavior and ω/T scaling. We have explained the long-
standing puzzle of an apparent power law of the optical spectrumover
an intermediate frequency range and related the non-universal
apparent exponent to the inelastic coupling constant. Looking for-
ward, it would be valuable to extend ourmeasurements and analysis to
other cuprate compounds at doping levels close to the pseudogap
quantum critical point. Our findings provide compelling evidence for
the quantum critical behavior of electrons in cuprate super-
conductors. This raises the fundamental question of what is the nature
of the associated quantum critical point, and its relation to the enig-
matic pseudogap phase.

Methods
Sample synthesis
The La1.76Sr0.24CuO4 (p =0.24) single crystal used in the present study
was grown by the travelling solvent floating zone method80. This
sample was annealed, cut and oriented along the a-b plane and
polished before measuring infrared reflectivity and resistivity.

Infrared optical conductivity
We measured the infrared reflectivity from 2.5meV to 0.5 eV using a
Fourier-transform spectrometer with a home-built UHV optical flow
cryostat and in-situ gold evaporation for calibrating the signal. In the
energy range from0.5 to 5 eV, wemeasured the real and imaginary parts
of the dielectric function ϵ(ω) using a home-built UHV cryostat installed
in a visible-UV ellipsometer. Raw data for ϵ(ω) are presented in

Supplementary Fig. 1. Combining the ellipsometry and reflectivity data
and using the Kramers–Kronig relations between the reflectivity ampli-
tude and phase, we obtained for each measured temperature the
complex dielectric function in the range from 2.5meV to 5 eV
(see Supplementary Information Sec. B and Supplementary Fig. 1). The
complex optical conductivity σ(ω) of low-energy transitions is directly
linked to ϵ(ω) by

σðωÞ= iϵ0ω ϵ1 � ϵðωÞ� 	
: ð14Þ

In this expression, ϵ∞ is the background relative permittivity due to
high-energy transitions [see Eq. (1)]. We use international SI units,
where ϵ0 = 8.85 × 10−5 kS/(cm THz). In the Gaussian CGS system, ϵ0 = 1/
(4π). In Scaling analysis we propose and discuss in details a procedure
to estimate the value of ϵ∞. Using the value ϵ∞ = 2.76 determined there,
we display in Fig. 1a, b the real and imaginary parts of the optical
conductivity. In Fig. 1a, one observes a Drude-like behavior upon
cooling from 300 K, characterized by a sharpening of the Drude peak
in Re σ and a maximum in Imσ at a frequency that decreases with
decreasing T. For temperatures below 75K, theDrude peak is narrower
than the minimum photon energy accessible with our spectrometer,
2.5 meV, which gives the impression of a gap opening in Re σ. Yet, the
superconducting transition only occurs at Tc = 19 K. The conductivity
decreases monotonically between 0.1 and 0.4 eV, before interband
transitions gradually set in.

As is common for materials with strong electronic correlations,
and well documented for cuprates in particular51,52, the optical con-
ductivity has a richer frequency dependence than that of a simple
Drudemodel. It is convenient however to consider a generalized Drude
parametrization in terms of a frequency-dependent scattering rate 1/
τ(ω) and mass enhancement m*(ω)/m introduced in Eqs. (2) and (3):

σðωÞ= e2K=ð_2dcÞ
1=τðωÞ � iωm*ðωÞ=m , ð15Þ

so that the scattering rate and mass enhancement can be determined
from the optical conductivity according to:

1
τðωÞ =

e2K

_2dc

Re
1

σðωÞ

� �
ð16Þ

m*ðωÞ
m

= � e2K

_2dc

Im
1

ωσðωÞ

� �
: ð17Þ

In these expressions, dc = 6.605Å is the distance between two CuO2

planes, m is the band mass and K is the spectral weight for a single
plane. The determination ofm and K is also discussed in Sec. II B along
with that of ϵ∞. K only affects the absolute magnitude of 1/τ andm*/m,
while the choice of ϵ∞ has a more significant influence.

DC transport experiment
DC resistivity was measured inside a physical property measurement
system (PPMS) from Quantum Design in four-point geometry on the
temperature range from 300K to 2 K. The electric contacts weremade
by using silver wires of 50μmand silver paste. To increase the contact
quality, contacts were annealed at 500 °C in oxygen atmosphere for an
hour in order to get a resistanceof a fewohms. Toobtain the resistivity
ρ(T) as a function of temperature in the units Ω cm from the raw
sample resistance R(T) in Ω, the length L, width W, and thickness t of
the sample were measured to get a geometric factor α =W × t/L
knowing the relation: ρ(T) = αR(T). Resistivity was measured at two
magnetic fields H = 0 T and H = 16 T to extract the superconducting
transition temperature Tc = 19 K at H = 0 T and the normal-state resis-
tivity down to 5 K (H = 16 T).
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Data availability
The experimental and theoretical data generated in this study as well
as the associated codes have been deposited in the Yareta database81.
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