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0.1 Prologue

Below, I make reference to the following free lecture notes. If you feel you are
missing some prerequisites, everything is in these lecture notes.

http://www.physique.usherbrooke.ca/tremblay/cours/phy-892/N-corps.pdf

Many of these lectures are on YouTube (PHY892 Problème à N-corps / Many-
Body problem Playlist)

https://studio.youtube.com/channel/amstremblay

0.2 Lecture 1 Second quantization and perturbation
theory

(30 minutes) What are corelations (Reza Nourafkan)

0.2.1 Second quantization

(30 minutes) Chapter 81 : Handeling many-interacting particles : Second quanti-
zation

81.1 Fock space : Creation-annihilation operators

Number operator

81.2 Change of basis

87.2.1 Position and momentum basis

87.2.2 Wave functions

81.3 One-body operators

81.4 Two-body operators

0.2.2 The Hubbard model

(30 minutes) Chapter 82 The Hubbard model to illustrate some of the concepts

82.1 The Hubbard model
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0.2.3 Interaction representation, time-ordering product

(30 minutes) Chapter 83 Perturbation theory (interaction representation)
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0.3 Lecture 2 Green�s functions, Matsubara formal-
ism, self-energy, Wick�s theorem

0.3.1 Green�s functions in the Matsubara formalism

(40 minutes) Chapter 29 Matsubara Green Functions
29.1.1 Photoemission and fermion correlation functions
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29.1 De�nition for fermions
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29.3 Antiperiodicity and Fourier representation (Matsubara frequencies)
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29.5 Lehmann representation
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Spectral weight and how it is related to Gk(ikn) and to photoemission
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29.8 Non-interacting case

Gk (ikn) =
1

ikn � �k
(11)

29.7 Spectral weight
Obtaining the spectral weight from Gk(ikn); the problem of analytic con-

tinuation

LECTURE 2 GREEN�S FUNCTIONS, MATSUBARA FORMALISM, SELF-ENERGY,
WICK�S THEOREM 3
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29.2 Time-ordering in practice

0.3.2 The notion of self-energy, what it means, what it hides

(20 minutes) Chapter 17 Self-energy
18.3 Importance of poles of GRk ; Dyson�s equation
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85.3 A few properties of the self-energy

Im�Rk" (!) < 0 (16)

0.3.3 Wick�s theorem, response functions, RPA

(30 minutes) 86 and C3 Wick�s theorem (hybridization function)
85.4 Anderson Impurity problem, hybridization function
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39 Lindhard function
39.1 De�nition
39.1 Non-interacting limit

41.1 Density-density correlations, RPA
56.3 Hartree-Fock and RPA
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56.4 RPA and violation of the Pauli exclusion principle
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Non-interacting electrons
➤ A wave function composed of a single Slater determinant
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➤ A wave function composed of a single Slater determinant➤ A wave function composed of a single Slater determinant

Slides taken with permission from a  course by 
                                   Reza Nourafkan



ELECTRON CORRELATION 
PECULIARITY

QUANTUM MECHANICS, 
INDISTINGUISHABLE PARTICLES



CORRELATION IN 
EVERYDAY LIFE

IN A MANY BODY SYSTEM, THE BEHAVIOUR OF A 
GIVEN ENTITY IS NOT INDEPENDENT OF THE 

OTHERS!



CORRELATION IN MATHEMATICS & NATURAL SCIENCES

➤ Spatial

➤ Temporal

hn(r, t)n(r0, t)i 6= hn(r, t)ihn(r0, t)i

hn(r, t)n(r, t0)i 6= hn(r, t)ihn(r, t0)i

hABi 6= hAihBi

CAB = hABi � hAihBi



MANY-BODY PROBLEM IN SOLIDS

➤ Many-body Hamiltonian of an electronic system

➤ Many-body wave-function for N electrons
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MANY-BODY PROBLEM IN SOLIDS
➤ Trial many-body wave function for an N electrons system

➤ Many-body basis set?

➤ Product of one-particle wave-functions

➤ Choose M (M>N) single particle basis function (spin-
orbital)

➤ Electrons are indistinguishable fermions

{�1�1(r),�2�2(r), . . . ,�M�M (r)}

 (r1�1, . . . , rN�N ) =
X

i

ci i(r1�1, . . . , rN�N )
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WHY IS THE PROBLEM OF ELECTRONIC STRUCTURE HARD?

➤ N electrons system and M (M>N) single particle basis
function 

➤ Number of Slater determinants

➤ Two carbon atoms (N=12). Suppose M=36

more that 109 determinants
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Dimensionality



IT IS HOPELESS TO LOOK FOR AN EXACT 
SOLUTION OF A MANY-BODY SYSTEM

How we are going to proceed?



HARTREE-FOCK METHOD

➤ A wave function composed of a single Slater determinant

➤ The single-electron functions are chosen cleverly to produce
the best approximation possible 
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SLATER DETERMINANTS ARE UNCORRELATED
➤ The repulsion energy between two electrons is calculated

between an electron and the average electron density for the
other electrons

It doesn't take into account the fact that the electron will push 
away the other electrons as it moves around 

➤ Probability density of finding two electrons

Opposite spin orbitals are uncorrelated!

⇢(r1�1, r2�2) =
X

�3...�N

Z
dr3 . . . drN | (r1�1, . . . , rN�N )|2

=
1

N(N � 1)

X

kl

⇥
|�k(r1�1)|2|�l(r2�2)|2 � �⇤k(r1�1)�k(r2�2)�

⇤
l (r2�2)�l(r1�1)

⇤

⇢(r1, r2) =
X

�1�2

⇢(r1�1, r2�2)



KOHN-SHAM APPROACH
➤ It is not essential to tabulate the complete many-body wave

function

➤ The Kohn-Sham approach to DFT defines an auxiliary system of
independent fermions that is chosen to reproduce the ground state
electron density but not all properties

➤ DFT guarantees us that such an auxiliary system exist end even
more provides us a generator for its external potential

Universal exchange-correlation functional
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WHAT IS MEANT BY ELECTRON CORRELATION?

➤ Chemist: what is not captured in Hartree-Fock method

➤ Correlation energy

➤ Physicist: what is not captured in Khon-Sham approach in
LDA/GGA approximation

➤ Correlation energy

Ecorr = h |H| i � EHF

|⌃(!)� ⌃HF |

Ecorr = h |H| i � ELDA/GGA

|⌃(!)� v
LDA/GGA
xc |



WEAK VS STRONG CORRELATIONS

➤ A weakly-correlated system is one for which a mean-field
approximation or a low-order perturbation expansion around
it suffices





ELECTRON CORRELATION 
SIGNATURES

Thermodynamic and transport properties which 
are fundamentally different from mean-field 

theory or Landau Fermi-liquid theory predictions 



Photoemission: measuring single‐electron E(k)



Fermi liquid

4

T. Valla, A. V. Fedorov, P. D. Johnson, and S. L. Hulbert
P.R.L. 83, 2085 (1999).



SIGNATURES OF ELECTRON CORRELATION

➤ Correlation-induced phase transition

➤ Differences between LDA band masses 
and measured masses

➤ Satellites in photoemission
➤ Non-linear T dependance of the 

electronic contribution in 
specific heat

➤ Small Drude weights

➤ ……

Fig. from P. D. C. King et al

LaNiO3 film



A. Georges http://arxiv.org/abs/cond‐mat/0403123



2023/02/09 – MATQ SEMINAR

Isolated band seems to be the culprit

At x=0, should be an insulator:

Confirmed by photoemission data

(@SOLEIL)

Identifying the correlated subspace
Which degrees of freedom are correlated? Can be identified from DFT

(C)  Benjamin Bacq-Labreuil  



A. Georges http://arxiv.org/abs/cond‐mat/0403123



BEYOND MEAN-FIELD APPROACHES

➤ Dynamical mean-field theory



CORRELATION DRIVEN METAL-INSULATOR TRANSITION

➤ VO2



SUMMARY

➤ Most materials with interesting properties such as heavy
fermion, high Tc superconductor, giant magnetoresistance,
multiferroic etc. are strongly correlated

➤ Ordered states are usually weakly correlated

➤ Methods such as QMC (model Hamiltonian) or LDA+DMFT
take into account some correlation effects




