
A refresher in many-body theory

André-Marie Tremblay

May 2008



2



Contents

1 Quantum mechanics for interacting systems in condensed matter 7
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2 Statistical Physics and Density matrix . . . . . . . . . . . . . . . . 7

1.2.1 Density matrix in ordinary quantum mechanics . . . . . . . 7
1.2.2 Density Matrix in Statistical Physics . . . . . . . . . . . . . 8
1.2.3 Legendre transforms . . . . . . . . . . . . . . . . . . . . . . 8
1.2.4 Legendre transform from the statistical mechanics point of

view . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.3 Second quantization . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.3.1 Describing symmetrized or antisymmetrized states . . . . . 10
1.3.2 Change of basis . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.3.3 Second quantized version of operators . . . . . . . . . . . . 12

1.4 Hartree-Fock approximation . . . . . . . . . . . . . . . . . . . . . . 14
1.4.1 The theory of everything . . . . . . . . . . . . . . . . . . . 14
1.4.2 Variational theorem . . . . . . . . . . . . . . . . . . . . . . 14
1.4.3 Wick’s theorem . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.4.4 Minimization and Hartree-Fock equations . . . . . . . . . . 16

1.5 Model Hamiltonians . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.5.1 The Hubbard model . . . . . . . . . . . . . . . . . . . . . . 18
1.5.2 Heisenberg and t-J model . . . . . . . . . . . . . . . . . . . 18
1.5.3 Anderson lattice model . . . . . . . . . . . . . . . . . . . . 21

1.6 Broken symmetry and canonical transformations . . . . . . . . . . 21
1.6.1 The BCS Hamiltonian . . . . . . . . . . . . . . . . . . . . . 22

1.7 Elementary quantum mechanics and path integrals . . . . . . . . . 25
1.7.1 Physical interpretation of the propagator . . . . . . . . . . 25
1.7.2 Computing the propagator with the path integral . . . . . . 26
1.7.3 Coherent-state path integrals . . . . . . . . . . . . . . . . . 29

2 Response functions and their general properties 31
2.1 Relation between correlation functions and experiments . . . . . . 32
2.2 Linear-response theory . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.2.1 Schrödinger and Heisenberg pictures . . . . . . . . . . . . . 34
2.2.2 Interaction picture and perturbation theory . . . . . . . . . 35
2.2.3 Linear response . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.3 General properties of correlation functions . . . . . . . . . . . . . . 38
2.3.1 Notations and definitions . . . . . . . . . . . . . . . . . . . 39
2.3.2 Symmetry properties of the response functions . . . . . . . 40
2.3.3 Kramers-Kronig relations and causality . . . . . . . . . . . 45
2.3.4 Positivity of ωχ00(ω) and dissipation . . . . . . . . . . . . . 48
2.3.5 Fluctuation-dissipation theorem . . . . . . . . . . . . . . . . 49
2.3.6 Sum rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

CONTENTS 3



3 Green functions 55
3.0.7 Second quantized operators in the Heisenberg picture . . . 55

3.1 Motivation of the definition of the second quantized Green’s func-
tion GR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
3.1.1 Examples with quadratic Hamiltonians: . . . . . . . . . . . 58

3.2 Interaction representation and time-ordered product . . . . . . . . 60
3.3 Kadanoff-Baym and Keldysh-Schwinger contours . . . . . . . . . . 63
3.4 Matsubara Green’s function and its relation to usual Green’s func-

tions. (The case of fermions) . . . . . . . . . . . . . . . . . . . . . 66
3.4.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
3.4.2 Antiperiodicity and Fourier expansion (Matsubara frequen-

cies) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
3.4.3 Spectral representation, relation between GR and G and an-

alytic continuation . . . . . . . . . . . . . . . . . . . . . . . 70
3.4.4 Spectral weight and rules for analytical continuation . . . . 72
3.4.5 Matsubara Green’s function in momentum space and non-

interacting case . . . . . . . . . . . . . . . . . . . . . . . . . 74
3.4.6 Sums over Matsubara frequencies . . . . . . . . . . . . . . . 78

3.5 Physical meaning of the spectral weight: Quasiparticles, effective
mass, wave function renormalization, momentum distribution. . . . 80
3.5.1 Spectral weight for non-interacting particles . . . . . . . . . 80
3.5.2 Lehman representation . . . . . . . . . . . . . . . . . . . . . 80
3.5.3 Probabilistic interpretation of the spectral weight . . . . . . 82
3.5.4 Angle-resolved photoemission spectroscopy (ARPES) on a

Fermi liquid compound. . . . . . . . . . . . . . . . . . . . . 83
3.5.5 Quasiparticles[17] . . . . . . . . . . . . . . . . . . . . . . . . 86
3.5.6 Fermi liquid interpretation of ARPES . . . . . . . . . . . . 88
3.5.7 Momentum distribution in an interacting system . . . . . . 91

3.6 A few more formal matters : asymptotic behavior and causality . . 92
3.6.1 Asymptotic behavior of G (k;ikn) and Σ (k;ikn) . . . . . . . 93
3.6.2 Implications of causality for GR and ΣR . . . . . . . . . . . 94

3.7 Three general theorems . . . . . . . . . . . . . . . . . . . . . . . . 95
3.7.1 Wick’s theorem . . . . . . . . . . . . . . . . . . . . . . . . . 96
3.7.2 Linked cluster theorems . . . . . . . . . . . . . . . . . . . . 100
3.7.3 Variational principle and application to Hartree-Fock theory 102

3.8 Quantum impurities . . . . . . . . . . . . . . . . . . . . . . . . . . 104

4 CONTENTS



List of Figures

3-1 Kadanoff-Baym contour to compute G> (t− t0) . . . . . . . . . . . 65
3-2 Keldysh-Schwinger contour. . . . . . . . . . . . . . . . . . . . . . . 65
3-3 Contour for time ordering in imaginary time. . . . . . . . . . . . . 68
3-4 Deformed contour used to relate the Matsubara and the retarded

Green’s functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
3-5 Analytical structure of G(z) in the complex frequency plane. G(z)

reduces to either GR (ω) , GA (ω) or G (iωn) depending on the value
of the complex frequency z. There is a branch cut along the real axis. 73

3-6 G0 (p, τ ) for a value of momentum above the Fermi surface. . . . . 76
3-7 G0 (p, τ ) for a value of momentum at the Fermi surface. . . . . . . 76
3-8 G0 (p, τ ) for a value of momentum below the Fermi surface. . . . . 76
3-9 Evaluation of fermionic Matsubara frequency sums in the complex

plane. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
3-10 Schematic representation of an angle-resolved photoemission exper-

iment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
3-11 ARPES spectrum of 1− T − TiTe2 . . . . . . . . . . . . . . . . . . 85
3-12 Figure 1 from Ref.[27] for the ARPES spectrum of 1T-TiTe2 mea-

sured near the Fermi surface crossing along the high-symmetry ΓM
direction (θ = 0 is normal emission). The lines are results of Fermi
liquid fits and the inset shows a portion of the Brillouin zone with
the relevant ellipsoidal electron pocket. . . . . . . . . . . . . . . . . 90

3-13 Qualitative sketch of the zero-temperature momentum distribution
in an interacting system. . . . . . . . . . . . . . . . . . . . . . . . . 92

LIST OF FIGURES 5



6 LIST OF FIGURES



1. QUANTUM MECHANICS FOR
INTERACTING SYSTEMS IN CON-
DENSED MATTER

1.1 Introduction

The purpose of these notes is to point out a few key results in quantum mechanics,
statistical physics and many-body theory that should be useful to understand the
application of advanced numerical methods to condensed matter. The degree of
sophistication necessary to understand these methods is very high. The impor-
tant developments in the field have been achieved by people familiar with all the
anlytical tricks of the trade.
These notes will not be very useful to learn the topics if you have never heard

of them before. They should be seen as a summary of important concepts and
methods to know in the context of this School.

1.2 Statistical Physics and Density matrix

1.2.1 Density matrix in ordinary quantum mechanics

Quantum mechanics tells us that the expectation value of an observable O in a
normalized state |ψi is given by hψ|O |ψi . Expanding over complete sets of states,
we obtain

hψ|O |ψi =
X
i,j

hψ| ii hi|O |ji hj |ψi (1.1)

=
X
i,j

hj |ψi hψ| ii hi|O |ji (1.2)

=
X
i,j

hj| ρ |ii hi|O |ji (1.3)

= Tr [ρO] (1.4)

where the Density Matrix ρ is defined, as an operator, by

ρ ≡ |ψi hψ| . (1.5)

This is when we have a pure state. If the state is prepared in a statistical
superposition, in other words, if we have a certain probability pn that the state
that is prepared is |ψni , then the expectation value of an observable will be given
by the weighted sum of the results in each state, in other words, in the above
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formula for the average we should use

ρ ≡
X
n

pn |ψni hψn| . (1.6)

This is the density matrix for a mixed state. Note that

ρ2 =
X
n,m

pnpm |ψni hψn| ψmi hψm| . (1.7)

We have the property ρ2 = ρ only for a pure state.
When a system of interest is in contact with an environment, it is very useful

to work with an effective density matrix obtained by taking the trace first over the
degrees of freedom of the environment. This idea is common in particular in the
field of quantum information. In this school, we will see that by considering part
of a large system as the environment, we can greatly reduce the size of the Hilbert
space that needs to be considered to diagonalize a Hamiltonian, especially in one
dimension. The optimal way of doing this was found by Steve White and will be
discussed in the context of the "Density Matrix Renormalization Group". Not so
surprisingly, quantum information theory has helped to improve even further this
approach. Uli Schollwöck will explain this.

1.2.2 Density Matrix in Statistical Physics

Statistical Physics tells us that conserved quantities play a special role. Indeed,
at equilibrium, the density matrix cannot depend on time, so it depends only on
conserved quantities. This means that generally, the density matrix is diagonal in
the energy and number basis for example. All that is left to do is to specify pn. The
basic postulate of statistical physics is that in an isolated system, all mcroscopic
states consistent with the value of the conserved quantities are equiprobable. This
is the microcanonical ensemble where pn is identical for all energy eigenstates
|ψni . The other ensembles are derived in the usual way by considering the micro-
canonical system as including the system of interest and various reservoirs. In the
canonical ensemble for example, pn = e−βEn/Z where Z is the partition functionP

n e
−βEn and β = (kBT )

−1 .
Alternatively, the various ensembles are obtained by maximizing the entropy

S ≡ −kBTr [ρ ln ρ] (1.8)

subject to constraints such as fixed average energy and normalization in the case
of the canonical ensemble. Important properties of the entropy include extensivity
and concavity. The entropy also plays a major role in quantum information.

1.2.3 Legendre transforms

Legendre transforms are encountered in mechanics when going from a Lagrangian
to a Hamiltonian formulation. That transformation is extremely useful in sta-
tistical physics as well and it will be used for example by Gabi Kotliar at this
School.
The important idea of statistical physics that we start with is that of potentials.

If you know the entropy as a function of mechanical quantities, like energy volume

8 QUANTUM MECHANICS FOR INTERACTING SYSTEMS IN CONDENSED MATTER



and number of particles for example, then you know all the thermodynamics.
Indeed,

dE = TdS − pdV + μdN (1.9)

dS =
1

T
dE +

p

T
dV − μ

T
dN (1.10)

so you can obtain temperature T, pressure p and chemical potential μ simply by
taking partial derivatives of the entropy. (1/T, S) (p/T, V ) (−μ/T,N) are pairs of
conjugate variables. Instead of using E, V,N as independent variables, given the
concavity of the entropy and the uniqueness of the equilibrium state, you can write
S as a function of any three other variables. Nevertheless, the purely mechanical
variables E, V,N are the most natural ones for the entropy. The entropy plays the
role of a thermodynamic potential. As a function of all microscopic variables not
fixed by E,V,N, it is maximum at equilibrium.

Remark 1 When there are broken symmetries, additional variables must be added.
For example, for a ferromagnet with magnetization M in a magnetic field H,

dE = TdS − pdV + μdN +M·dH (1.11)

There are other potentials. For example, if a system is in contact with a heat
reservoir, the work that will be done at constant temperature will be modified by
the presence of the reservoir. It is thus physically motivated to define for example
the Helmholtz free energy

F = E − TS (1.12)

T =

µ
∂E

∂S

¶
V,N

(1.13)

In this case
dF = dE − SdT − TdS = −SdT − pdV + μdN. (1.14)

The Helmholtz free energy F can be written in terms of any three thermodynamical
variables, but T, V,N are the most natural ones. At fixed T, V,N it is the free
energy that is a minimum instead of the energy because we have to take into
account the reservoir. The change from S to T as a natural variable has been
done through the pair of equations (1.12,1.13). This is the general structure of a
Legendre transform. F and E are potentials, and the subtraction of the product of
the conjugate variables −

¡
∂E
∂S

¢
V,N

S does the trick of relating the two potentials

Remark 2 Note that
¡
∂2E/∂S2

¢
= (∂T/∂S) = 1/ (∂S/∂T ) = −1/

¡
∂2F/∂T 2

¢
.

1.2.4 Legendre transform from the statistical mechanics point of view

Note that since

−F
T

= S − E

T
(1.15)

= S −
µ
∂S

∂E

¶
V,N

E (1.16)

the quantity −F/T can be seen as the Legendre transform of the microcanonical
entropy. From the point of view of statistical mechanics, if we define Ω (E) as the
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number of microstate n corresponding to a given energy, then pn = 1/Ω (E) for
every microstate and

S (E) = −kBTr [ρ ln ρ] = −kB
X
n

1

Ω (E)
ln

1

Ω (E)
(1.17)

= kB lnΩ (E) (1.18)

So, from the point of view of statistical mechanics, the Legendre transform of the
entropy is obtained from

−F
T

= kB lnZ = kB ln
X
n

e−βEn (1.19)

= kB ln
X
E

Ω (E) e−βE (1.20)

= kB ln
X
E

elnΩ(E)e−βE (1.21)

= kB ln
X
E

e(S(E)−E/T )/kB (1.22)

Whereas the microcanonical entropy is a function of the energy of microstates, its
Legendre transform is summed over energy and is a function of 1/T, the coefficient
of E in both the thermodynamical expression of the Legendre transform Eq.(1.17)
and the statistical one Eq.(1.22).
We know that

hEi = −∂ lnZ
∂β

= −∂ (−F/T )
∂ (1/T )

(1.23)

which clarifies the connection between the statistical mechanics and thermody-
namical definitions of Legendre transform. E in the case of thermodynamics is
really the average energy from the statistical mechanical point of view. The last
equation could have been written down directly from the statistical expression for
−F/T.

1.3 Second quantization

1.3.1 Describing symmetrized or antisymmetrized states

States that describe identical particles must be either symmetrized, for bosons,
or antisymmetrized, for fermions. To simplify the calculations, it is useful to
use second quantization. As its name suggest, there is also an axiomatic way to
introduce this method as a quantization of fields but here we will just introduce it
as a calculational tool. The approach will be familiar already if you master ladder
operators for the harmonic oscillator.
For definiteness, let us concentrate on fermions. This can be translated for

bosons. Define the operator ψ† (r) that creates a particle in a position eigenstate
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|ri and antisymmetrizes the resulting wave function. Define also the vacuum state
|0i that is destroyed by the adjoint, namely ψ (r) |0i = 0. In this language

ψ† (r)ψ† (r0) |0i =
1√
2
(|ri |r0i− |r0i |ri) (1.24)

≡ |r, r0i = − |r0, ri . (1.25)

The state to the right is clearly normalized and antisymmetric. There are two
copies of the one-particle Hilbert space. In one component of the wave function,
the particle in the first copy is at |ri , in the other component the particle in the
first copy is at |r0i . Clearly, that can become quite complicated. The two body-
wave function hr, r0 |ϕi is antisymmetric and in the case where there are only two
one-particle states occupied it is a Slater determinant. Clearly, that becomes a
mess. In terms of the creation-annihilation operators however, all we need to know
is that by definition of these operators,

ψ† (r)ψ† (r0) + ψ† (r0)ψ† (r) = 0. (1.26)

We use the short-hand for anticommutationn
ψ† (r) , ψ† (r0)

o
= 0. (1.27)

Taking the adjoint,
{ψ (r) , ψ (r0)} = 0. (1.28)

The only thing missing is thatn
ψ (r) , ψ† (r0)

o
= δ (r− r0) . (1.29)

That is a bit more complicated to show, but let us take it for granted. It is clear
that if ψ† (r) creates a particle, then ψ (r) removes one (or destroys it). If the
particles are at different positions, that can be done in any order. If r = r0, then
it will matter if we create a particle before destroying it. If the creation occurs
before the destruction, there will be one more particle to destroy. The Dirac delta
function comes from normalization in the continuum. For discrete basis, we would
have unity on the right.

1.3.2 Change of basis

A key formula for the “field” operators ψ† (r) is the formula for basis change.
Suppose that one has a new complete basis of one-particle states |αi. Then, we
can change basis as follows:

|ri =
X
α

|αi hα| ri (1.30)

Given the definition of creation operators, the creation operator ψ† (r) for a par-
ticle in state |ri is related to the creation operator c†α for a particle in state |αi by
the analogous formula, namely

ψ† (r) =
X
α

c†α hα| ri . (1.31a)

This formula is quite useful.
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1.3.3 Second quantized version of operators

One-body operators

If we know the matrix elements of an operator in the one-particle basis, the cal-
culation of any observable can be reduced to some algebra with the creation-
annihilation operators. In other words, not only states, but also operators cor-
responding to observables can be written using creation-annihilation operators.
The expression for these operators is independent of the number of particles and
formally analogous to the calculation of averages of operators in first quantized
notation.
To be more specific, consider the operator for the density of particles at position

|ri . It can be written as ψ† (r)ψ (r) as we prove now. Since ABC − CAB =
ABC +ACB −ACB − CAB the commutator ot this operator with ψ† (r0) is,h

ψ† (r)ψ (r) , ψ† (r0)
i
= ψ† (r)

n
ψ (r) , ψ† (r0)

o
−
n
ψ† (r) , ψ† (r0)

o
ψ (r)(1.32)

= δ (r− r0)ψ† (r) (1.33)

We can now use the following little “theorem” on commutator of ladder operators:

Theorem 1 If [A,B] = βB and |αi is an eigenstate of A with eigenvalue α, then
B |αi is an eigenstate of A with eigenvalue α+β, as follows from AB |αi−BA |αi =
A (B |αi)− α (B |αi) = β (B |αi) .

Since ψ† (r)ψ (r) |0i = 0, the above implies that ψ† (r)ψ (r)
³
ψ† (r1) |0i

´
=

δ (r− r1)
³
ψ† (r1) |0i

´
, and generally a state ψ† (r1)ψ

† (r2) . . . |0i is an eigenstate
of ψ† (r)ψ (r) with eigenvalue δ (r− r1) + δ (r− r2) + . . . Clearly, the potential
energy of identical electrons in a potential V (r) can ve writtenZ

ψ† (r)V (r)ψ (r) d3r. (1.34)

The same reasoning leads to the kinetic energy in the momentum basis, where it
is diagonal Z

c† (k)
~2k2

2m
c (k)

d3k

(2π)3
. (1.35)

Returning to the position-space basis, we obtainZ
ψ† (r)

µ
−~

2∇2

2m

¶
ψ (r) d3r. (1.36)

In other words, for any one-body operator, we can always obtain its second-
quantized form in the one-particle basis |αi where it is diagonal:X

α

c†α hα|O |αi cα =
X
α,β

c†α hα|O |βi cβ . (1.37)

If we change to an arbitrary basis

|αi =
X
i

|ii hi| αi (1.38)

the operator takes the formX
α,β

c†α hα|O |βi cβ =
X
α,i,j

c†α hα| ii hi|O |ji hj| αi cα =
X
i,j

c†i hi|O |ji cj . (1.39)
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Example 2 Let ψ†α (r) be the creation operator for the position state |ri with the
spin α =↑, ↓ . We know the matrix elements of all component of the spin operators
in the basis where Sz is diagonal. Thus, from the last formula, we see that the
three components of the spin operator areZ

ψ†α (r)

µ
~
2
σαβ

¶
ψβ (r) d

3r (1.40)

where, as usual, the Pauli matrices are given by σz =
µ
1 0
0 −1

¶
, σy =

µ
0 −i
i 0

¶
, σx =µ

0 1
1 0

¶
.

Two-body operators

Let us now consider a two-body operator such as the potential energy. It is
diagonal in position-space. The Coulomb interaction

Vc (r− r0) =
e2

|r− r0| (1.41)

is an example. The second quantized Coulomb energy takes the formZ
Vc (r− r0)

1

2
(ρ (r) ρ (r0)− δ (r− r0) ρ (r)) d3rd3r0 (1.42)

where the 1/2 comes from avoiding double-counting and δ (r− r0) ρ (r) is necessary
not to count the interaction of an electron with itself. Including spin, the density
operator is

ρ (r) =
X
σ

ψ†σ (r)ψσ (r) . (1.43)

Substituting in the expression for the Coulomb interaction and using anti-commutation
relations, we obtain

1

2

X
σ,σ0

Z
Vc (r− r0)ψ†σ (r)ψ

†
σ0 (r

0)ψσ0 (r
0)ψσ (r) d

3rd3r0. (1.44)

It is an interesting and not very long exercise to prove that formula (which happens
to have the same form for bosons and fermions).
Let us change to some arbitrary basis. First notice that in terms of the potential

energy operator V̂c
Vc (r− r0) = hr| hr0| V̂c |ri |r0i . (1.45)

Then, the change of basis

ψ†σ (r) =
X
i

c†iσ hi| ri . (1.46a)

leads to the following two-particle analog of the one-body operator Eq.(1.39) in
an arbitrary basis

1

2

X
σ,σ0

X
ijkl

hi| hj| V̂c |ki |li c†iσc
†
jσ0clσ0ckσ. (1.47)
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1.4 Hartree-Fock approximation

The Hartree-Fock approximation is the simplest approximation to the many-body
problem. It is a mean-field theory of the full Hamiltonian, that we will call “The
theory of everything”. We will begin by writing it explicitely then proceed with
two theorems that form the basis of this approximation.

1.4.1 The theory of everything

Gathering the results of the previous section, an electron gas interacting with a
static lattice takes the form

Htoe =
X
σ

Z
ψ†σ (r)

µ
−~

2∇2

2m
+ Vc,e−i (r)

¶
ψσ (r) d

3r

+
1

2

X
σ,σ0

Z
Vc (r− r0)ψ†σ (r)ψ

†
σ0 (r

0)ψσ0 (r
0)ψσ (r) d

3rd3r0 (1.48)

where Vc,e−i (r) is the electron-ion Coulomb potential. The dynamics of the ions
(phonons) can be added to this problem, but until the rest of these introductory
notes, we shall take the lattice as static. We need the to allow the lattice to move
to have the complete "theory of everything" we want to solve in this School. But
the above is certainly a non-trivial start.

1.4.2 Variational theorem

The Ritz variational principle states that any normalized wave function satisfies

hψ|H |ψi ≥ hψ0|H |ψ0i (1.49)

where |ψ0i is the ground state wave function.
Proof. That follows easily by expanding |ψi =

P
i ai |ψii , where H |ψii =

Ei |ψii , and using E0 ≤ Ei :

hψ|H |ψi =
X
i,j

a∗jai

ψj
¯̄
H |ψii =

X
i

|ai|2Ei

≥ E0
X
i

|ai|2 = hψ0|H |ψ0i (1.50)

In the Hartree Fock approximation, we use the variational principle to look for
the best one-body Green function for Htoe. In other words, we use our formula
for a change of basis (there is no sum on repeated spin index here)

ψ†σ (r) =
X
i

c†iσ hi, σ| r, σi =
X
i

c†iσφ
∗
iσ (r) (1.51)

c†iσ =

Z
d3rψ†σ (r) hr,σ| i, σi =

Z
d3rψ†σ (r)φiσ (r) (1.52)
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and write our ground state wave function as

|ψHF i = c†1↑c
†
1↓c

†
2↑c

†
2↓ . . . c

†
N/2↑c

†
N/2↓ |0i . (1.53)

Our variational parameters are the one-particle Green functions φ∗σ (r) . Note that
the most general wave function would be a linear combination of wave functions
of the type |ψHF i , each with different one-particle states occupied.

1.4.3 Wick’s theorem

To compute hψHF |H |ψHF i , we expand each of the creation-annihilation opera-
tors in the Hamiltonian Eq.(1.48) in the basis we are looking for, using the change
of basis formula Eq.(1.51). Consider first the quadratic term and focus on the
second quantized operators. We need to know

hψHF | c
†
i↑cj↑ |ψHF i (1.54)

The key to compute such matrix elements is to simply use the anticommutation
relations for the creation-annihilation operators and the fact that annihilation
operators acting on the vacuum give zero. Let us do this slowly.
The anticommutation relations for the operators c(†)iσ are as follows:n

ciσ, c
†
jσ0

o
=

Z
d3r

Z
d3r0φ∗iσ (r)

n
ψσ (r) , ψ

†
σ0 (r

0)
o
φjσ0 (r

0) (1.55)

=

Z
d3rφ∗iσ (r)φjσ0 (r) = δi,jδσ,σ0 (1.56)

so
h0| ci↑c†i↑ |0i = 1− h0| c

†
i↑ci↑ |0i = 1. (1.57)

Generalizing this reasoning, we see that hψHF | ψHF i = 1. Now, hψHF | c
†
i↑cj↑ |ψHF i

will vanish if either i or j are not in the list of occupied states in |ψHF i since c
†
i↑

also annihilates the vacuum in the bra. If i and j are both in the list of occupied
states, hψHF | c

†
i↑cj↑ |ψHF i = δi,j since cj↑ will remove a particle in state j in |ψHF i

while c†i↑ will remove a particle in state i in hψHF | . If the list of particles is not the
same in the bra and in the ket, the annihilation operators can be anticommuted
directly to the vacuum and will destroy it. With this, we have that

hψHF |
X
σ

Z
ψ†σ (r)

µ
−~

2∇2

2m
+ Vc,e−i (r)

¶
ψσ (r) d

3r |ψHF i (1.58)

=
X
σ

N/2X
i=1

Z
φ∗iσ (r)

µ
−~

2∇2

2m
+ Vc,e−i (r)

¶
φiσ (r) d

3r. (1.59)

To compute the expectation value of the interacting part of Htoe we need

hψHF | c
†
iσc

†
jσ0ckσ0clσ |ψHF i . (1.60)

Since |ψHF i is a direct product of wave functions for up and down spins, if the
spins are different, we obtain

hψHF | c
†
iσc

†
jσ0ckσ0clσ |ψHF i = δi,lδj,k. (1.61)

If the spins are identical, something new happens. If the conditions k = l or
i = j are satisfied, the expectation value vanishes because of the anticommutation
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relations (Pauli principle). Consider k different from l. Since all we need is that
the list of states created be the same as the list of states destroyed there are two
possibilities

hψHF | c
†
iσc

†
jσckσclσ |ψHF i = δi,lδj,k − δi,kδj,l. (1.62)

The last contribution is known as the exchange contribution. The difference in
sign comes from the anticommutation. All these results, including the cases k = l
or i = j for same spin, can be summarized by

hψHF | c
†
iσc

†
jσ0ckσ0clσ |ψHF i = δi,lδj,k − δi,kδj,lδσ,σ0 . (1.63)

The last result can be written as

hψHF | c
†
iσc

†
jσ0ckσ0clσ |ψHF i = hψHF | c

†
iσclσ |ψHF i hψHF | c

†
jσ0ckσ0 |ψHF i(1.64)

− hψHF | c
†
iσckσ0 |ψHF i hψHF | c

†
jσ0clσ |ψHF i .(1.65)

A four point correlation function has been factored into a product of two-point
correlation functions. For states such as |ψHF i that are single-particle states,
creation operators are “contracted” in all possible ways with the destruction op-
erators. This elegant form is a special case of Wick’s theorem. It applies to
expectation values of any number of creation and annihilation operators. The
signs follow from anticommutation.

1.4.4 Minimization and Hartree-Fock equations

Using Wick’s theorem Eq.(1.63) and proceeding with the Coulomb interaction
between electrons as we did with the one-body part of the Hamiltonian in Eq.(1.59)
we obtain

hψHF |Htoe |ψHF i =
X
σ

N/2X
i=1

Z
φ∗iσ (r)

µ
−~

2∇2

2m
+ Vc,e−i (r)

¶
φiσ (r) d

3r

+
X
σ,σ0

N/2X
i=1

N/2X
j=1

1

2

Z
Vc (r− r0)

£
φ∗iσ (r)φiσ (r)φ

∗
jσ0 (r

0)φjσ0 (r
0) (1.66)

− δσ,σ0φ
∗
iσ (r)φiσ (r

0)φ∗jσ0 (r
0)φjσ0 (r)

¤
d3rd3r0. (1.67)

To find our variational parameters, namely the functions φiσ (r), we minimize
the above, subject to the constraint that the wave functions must be orthonor-
malized. This means that we take partial derivatives with respect to all variables
in the above expression. We satisfy the constraintsZ

φ∗iσ (r)φjσ0 (r) d
3r−δi,jδσ,σ0 = 0 (1.68)

using Lagrange multipliers. We have to think of φ∗iσ (r) and φiσ (r) as independents
variable defined at each different position r and for each index i, σ. To take the
partial derivatives carefully, one should discretize space and take the limit but the
final result is pretty obvious. All we need to know is that what replaces the partial
derivative in the continuum version is the functional derivative

δφiσ (r)

δφjσ0 (r
0)

= δ (r− r0) δi,jδσ,σ0 (1.69)

δφ∗iσ (r)

δφjσ0 (r
0)

= 0. (1.70)
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The result of the minimization with respect of φ∗iσ (r) is straightforward. One
obtains µ

−~
2∇2

2m
+ Vc,e−i (r)

¶
φiσ (r) + VH (r)φiσ (r)−

Z
d3r0Vex (r, r

0)φiσ (r
0)

=

N/2X
i=1

γijφjσ (r) (1.71)

VH (r) =

Z
d3r0Vc (r− r0)

X
σ0

N/2X
j=1

¯̄
φjσ0 (r)

¯̄2
(1.72)

Vex (r, r
0) = Vc (r− r0)

N/2X
j=1

φ∗jσ (r
0)φjσ (r) . (1.73)

The matrix γij is a real symmetric matrix of Lagrange multipliers. Diagonalizing
γij and writing the eigenvalues εi, the above equation looks like a Schrödinger
equation. The Hartree contribution VH (r) has the physical interpretation that
each electron interacts with the average density of the other electrons

n (r) =
X
σ0

N/2X
j=1

¯̄
φjσ0 (r)

¯̄2
. (1.74)

The exchange contribution Vex (r, r
0) has no classical analog. It comes from the

anticommutation of indistinguishible particles. The εi can be interpreted as single-
particle excitation energies only if removing a particle does not modify too much
the effective potentials.

1.5 Model Hamiltonians

Suppose we have one-body states, obtained either from Hartree-Fock or from
Density Functional Theory (DFT). The latter is a much better approach than
Hartree-Fock. Nevertheless, it does not diagonalize the Hamiltonian. If the prob-
lem has been solved for a translationally invariant lattice, the one-particle states
will be Bloch states indexed by crystal momentum k and band index n. If we
expand the creation-annihilation operators in that basis using the general formu-
las for one-particle Eq.(1.39) and two-particle Eq.(1.47) parts of the Hamiltonian,
clearly it will not be diagonal. Suppose that a material has s and p electrons,
for which DFT does a good job. In addition, suppose that there are only a few
bands of d character near the Fermi surface. Assuming that the only part of the
Hamiltonian that is not diagonal in the DFT basis concerns the states in those d
band, it is possible to write a much simpler form of the Hamiltonian. We will see
that nevertheless, solving such “model” Hamiltonians is non-trivial, despite their
simple-looking form.
Model Hamiltonians can now explicitly be constructed using cold atoms in

optical traps. A laser interference pattern can be used to create an optical lattice
potential using the AC Stark effect. One can control tunneling between potential
minima as well as the interation of atoms between them.
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1.5.1 The Hubbard model

Restricting ourselves to a single band and expanding in the Wannier basis associ-
ated with the Bloch states, the Hamiltonian takes the form

H =
X
σ

X
i,j

c†iσ hi| K̂ |ji cjσ +
1

2

X
σ,σ0

X
ijkl

hi| hj| V̂c |ki |li c†iσc
†
jσ0clσ0ckσ. (1.75)

where K̂ contains all the one-body parts of the Hamiltonin, namely kinetic energy
and lattice potential energy. The operator c(†)iσ annihilate (create) a particle in
a Wannier state centered at lattice site i and with spin σ. The one-body part
by itself is essentially the DFT band structure. In 1964, Hubbard, Kanamori
and Gutzwiller did the most dramatic of approximations, hoping to have a model
simple enough to solve. They assumed that hi| hj| V̂c |ki |li would be much larger
than all other interaction matrix elements when all lattice sites are equal. Defining
tij ≡ hi| K̂ |ji and U ≡ hi| hi| V̂c |ii |ii , and using ciσciσ = 0 they were left with

H =
X
σ

X
i,j

tijc
†
iσcjσ +

1

2

X
σ,σ0

X
i

Uc†iσc
†
iσ0ciσ0ciσ

=
X
σ

X
i,j

tijc
†
iσcjσ +

X
i

Uc†i↑c
†
i↓ci↓ci↑ (1.76)

=
X
σ

X
i,j

tijc
†
iσcjσ +

X
i

Uni↓ni↑. (1.77)

Most of the time, one considers hopping only to nearest neighbors. The model can
be solved exactly only in one dimension using the Bethe ansatz, and in infinite
dimension. The latter solution is the basis for Dynamical Mean Field Theory
(DMFT) that will be discussed at this School. Despite that the Hubbard model
is the simplest model of interacting electrons, it is far from simple to solve.
Atoms in optical lattices can be used to artificially create a system described

by the Hubbard model with parameters that are tunable. The laser intensity of
the trapping potential and the magnetic field are the control parameters. The
derivation given in the case of solids is phenomenological and the parameters
entering the Hamiltonian are not known precisely. In the case of cold atoms, one
can find conditions where the Hubbard model description is very accurate. By
the way, interesting physics occurs only in the nano Kelvin range. Discussing how
such low temperatures are achieved would distract us to much.
Important physics is contained in the Hubbard model. For example, the in-

teraction piece is diagonal in the localized Wannier basis, while the kinetic energy
is diagonal in the momentum basis. Depending on filling and on the strength of
U compared with band parameters, the true eigenstates will be localized or ex-
tended. The localized solution is called a Mott insulator. The Hubbard model
can describe ferromagnetism, antiferromagnetism (commensurate and incommen-
surate) and it is also believed to describe high-temperature superconductivity,
depending on lattice and range of interaction parameters.

1.5.2 Heisenberg and t-J model

Suppose we are in the limit where U is much larger than the bandwidth. One
expects that in low energy eigenstates, single-particle Wannier states will be either
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empty or occupied by a spin up or a spin down electron and that double occupation
will be small. If we could write an effective Hamiltonian valid at low energy, that
means that we would reduce the size of the Hilbert space from roughly 4N to 3N

for an N site lattice. This is possible. The effective Hamiltonian that one obtains
in this case is the t−J model, which becomes the Heisenberg model at half-filling.
To obtain this model, one can use canonical transformations or equivalently

degenerate perturbation theory. Although both approches are equivalent, the one
that is most systematic is the canonical transformation approach. Nevertheless,
we will see a simplified version of the degenerate perturbation theory approach
since it is sufficient for our purpose and simpler to use.
We start from the point of view that the unperturbed part of the Hamiltonian

is the potential energy. If there is no hopping, the ground state has no double
occupancy and it is highly degenerate since the spins can take any orientation.
Hopping will split this degeneracy. Let us write the eigenvalue problem for the
Hubbard Hamiltonian in the block formµ

H11 H12

H21 H22

¶µ
X
Y

¶
= E

µ
X
Y

¶
(1.78)

where H11 contains only terms that stay within the singly occupied subspace, H12

and H21 contains hopping that links the singly occupied subspace with the other
ones and H22 contains terms that connect states where there is double occupancy.
Formally, this separation can be achieved using projection operators. To project
a state in the singly occupied subspace, one uses H11 = PHP where the projector
P is

P =
NY
i=1

(1− ni↑ni↓) . (1.79)

Returning to the block form of the Hamiltonian, we can solve for Y = (E −H22)
−1H21X

and write ³
H11 +H12 (E −H22)

−1
H21

´
X = EX. (1.80)

What save us here is that the eigenstates we are looking for are near E = 0 whereas
H22 will act on states where there is one singly occupied state since the hopping
term in H12 can at most create one doubly occupied state from a state with no
double occupation. The leading term in H22 will thus simbply give a contribution
U which is large compared to E. We are left with the eigenvalue problemµ

H11 −
H12H21

U

¶
X = EX. (1.81)

The first part of the Hamiltonian H11 contains only hopping between states
where no site is doubly occupied. The potential energy in those states vanishes.
The quantityH12H21 can be computed as follows. The only term of the original

Hamiltonian that links singly and doubly occupied states is the hopping part. Let
us consider only nearest neighbor hopping with tij = −t. Then

H12H21 = t2
X
hijiσ

X
hkliσ0

³
c†iσcjσ + h.c.

´³
c†kσ0clσ0 + h.c.

´
(1.82)

where each nearest-neighbor bond hiji is counted only once in the sum. Since
we leave from a state with singly occupied sites and return to a state with singly
occupied sites, hkli = hiji survives as well as cases such as hkli = hili if one of
the sites i is empty in the initial state. The latter contribution is called correlated
hopping. It describes second-neighbor hopping through a doubly occupied state.
In the t−J model, this term is often neglected on the grounds that it is proportional
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to t2/U whereas H11 is of order t. That is not necessarily a good reason to neglect
this term.
Let us return to the contribution coming from hkli = hiji . Discarding terms

that destroy two particles on the same site, we are left with only

−H12H21

U
= − t

2

U

X
hijiσσ0

³
c†iσcjσQc

†
jσ0ciσ0 + i↔ j

´
(1.83)

where Q is the projection operator that makes sure that the intermediate state is
doubly occupied. We have to consider four spin configurations for the neighboring
sites i and j . The configurations |i ↑i |j ↑i and |i ↓i |j ↓i do not contribute
since the intermediate state is prohibited by the Pauli principle. The configuration
|i ↑i |j ↓i when acted upon by the first term in the last equation Eq.(1.83) has non-
zero matrix elements with two possible finite states, hi ↑| hj ↓| and hi ↓| hj ↑| . The
matrix element has the value−t2/U for the first case and t2/U for the configuration
where the spins have been exchanged because of the fermionic nature of the states.
The configuration |i ↓i |j ↑i has the corresponding possible final states. And
the i ↔ j term in Eq.(1.83) just doubles the previous results, in other words
the magnitude of the non-zero matrix elements is 2t2/U . Since only spins are
involved, all we need to do is to find spin operators that have exactly the same
matrix elements.
What we are looking for is

4t2

U~2
X
hiji

µ
Si · Sj −

~2

4
ninj

¶
= J

X
hiji

µ
Szi S

z
j +

1

2

¡
S+i S

−
j + S−i S

+
j

¢
− ~

2

4
ninj

¶
(1.84)

where J ≡ 4t2/U~2. Indeed, if the neighboring spins are parallel, the quantity
S+i S

−
j + S−i S

+
j has zero expectation value while the expectation of S

z
i S

z
j , namely

~2/4, is cancelled by the expectation of −~2ninj/4. For antiparallel spins, Szi Szj −
~2ninj/4 has expectation value −~2/2 between configurations where the spins do
not flip while 12

¡
S+i S

−
j + S−i S

+
j

¢
has vanishing matrix elements. In the case where

the spins flip between the initial and final state, only12
¡
S+i S

−
j + S−i S

+
j

¢
has non-

zero expectation value and it is equal to ~2/2.With the definition of J given, this
corresponds to the matrix elements we found above.
This is the form of the Heisenberg Hamiltonian. Including the correlated hop-

ping term, the t− J Hamiltonian takes the following form

H = P

⎡⎣X
hijiσ

tijc
†
iσcjσ + J

X
hiji

µ
Si · Sj −

~2

4
ninj

¶⎤⎦P (1.85)

+P

⎡⎣−J
4

X
i,k 6=k0

³
c†i,−σcj,−σc

†
j+k,σcj+k0,σ + c†j+k,−σc

†
i,−σcj,−σcj+k0,σ

´⎤⎦P
where the last term is the three-site hopping term that is usually neglected.
It is remarkable, but expected, that at half-filling the effective Hamiltonian is

a spin-only Hamiltonian (The first term in the above equation does not contribute
when there is no hole because of the projection operators). From the point of
view of perturbation theory, the potential energy is the large term. We are in an
insulating phase and hopping has split the spin degeneracy.
Classically, the ground state on a hypercubic lattice would be an antiferromag-

net. This mechanism for antiferromagnetism is known as superexchange.
In closing, one should remember that to compute the expectation value of any

operator in the singly occupied space, one must first write it in block form, in other
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words, one should not forget the contribution from the Y component of the wave
function. For example, the kinetic energy hKi of the Hubbard model calculated
in the low energy subspace will be equal to minus twice the potential energy hV i.
That can be seen from

hKi = (X Y )K

µ
X
Y

¶
= (XKY ) + (Y KX) = − 2

U
(X KK X) (1.86)

hV i = (X Y )V

µ
X
Y

¶
= (Y V Y ) = +

1

U
(X KK X) (1.87)

since in the intermediate state, V gives the eigenvalue U in all intermediate states.

1.5.3 Anderson lattice model

In the Anderson lattice model, on purely phenomenological grounds one considers

localized states
³
f†iσ

´
with a Hubbard U , hybridized with a conduction band

³
c†kσ

´
of non-interacting electrons. This model is particularly useful for heavy fermions,
for example, where one can think of the localized states as being f electrons:

HA = Hf +Hc +Hfc (1.88)

Hf ≡
X
σ

X
i

εf†iσfiσ +
X
i

U
³
f†i↑fi↑

´³
f†i↓fi↓

´
(1.89)

Hc ≡
X
σ

X
k

εkc
†
kσckσ (1.90)

Hfc ≡
X
σ

X
i

Vic
†
iσfiσ + h.c. (1.91)

In the case where there is only one site with f electrons, one speaks of the Anderson
impurity model. When U is large, one can proceed as for the t−J Hamiltonian and
obtain an effective model where there is no double occupancy of the impurity and
where the spin of the conduction electrons interacts with the spin of the impurity.
The transformation is called the Schrieffer-Wolf transformation and the effective
Hamiltonian is the Kondo Hamiltonian.

1.6 Broken symmetry and canonical transformations

The occurence of broken symmetry can be obtained from mathematical arguments
only in very few situations, such as the Ising model in two dimensions. A simple
paramagnetic state and a state with broken symmetry are separated by a phase
transition, in other words by singularities in the free energy. Hence, the broken
symmetry state cannot be obtained perturbatively. One postulates a one-body
Hamiltonian where the symmetry is broken its stability verified using variational
arguments. In this and many other contexts, canonical transformations are key
tools to understand and solve the problem. We have seen examples above. Basis
changes obtained from unitary transformations preserve the (anti)commutation
relations. Such transformations are called canonical. We will illustrate these
concepts with the example of superconductivity.
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1.6.1 The BCS Hamiltonian

The general idea of Cooper pairs is that c†p↑c
†
−p↓ almost plays the role of a boson

b†p. Commutation relations are not the same, but we want to use the general
idea that superconductivity will be described by a non-zero expectation value of

b†p by analogy to superfluidity. The expectation value
D
c†p↑c

†
−p↓

E
occurs in the

Ginzburg-Landau theory as a pair wave function. The mean-field state will be
described by a coherent state.
We first write the general Hamiltonian in momentum space and, in the spirit

of Weiss, the trial Hamiltonian for the mean-field takes the form

HE − μN = H0 − μN +
1

V

X
p,p0

U (p− p0)
D
c†p↑c

†
−p↓

E
c−p0↓cp0↑

+
1

V

X
p,p0

U (p− p0) c†p↑c
†
−p↓ hc−p0↓cp0↑i

= H0 − μN +
X
p

³
∆∗pc−p↓cp↑ + c†p↑c

†
−p↓∆p

´
(1.92)

where we defined

∆p =
1

V

X
p0

U (p− p0) hc−p0↓cp0↑i . (1.93)

The potential U (p− p0) is an effective attraction that comes from phonons in
standard BCS theory. We take this for granted. The states within an energy shell
of size ~ωD around the Fermi level are those that are subject to that attraction.The
kinetic part of the Hamiltonian is given by

H0 − μN =
X
p,σ

(εp − μ) c†p,σ cp,σ (1.94)

≡
X
p,σ

ζpc
†
p,σ cp,σ . (1.95)

In the so-called jellium model, εp = ~2p2/2me but one can take a more general
dispersion relation. In matrix form, the combination of all these terms gives,
within a constant

HE − μN =
X
p

³
c†p↑ c−p↓

´µ ζp ∆p
∆∗p −ζ−p

¶µ
cp↑
c†−p↓

¶
. (1.96)

One is looking for a canonical transformation that diagonalize the Hamiltonian.
When this will be done, the c(†)−p↓ will be linear combinations of eigenoperators.
These linear combinations will involve∆p. To find the value of ∆p, it will suffice to
substitute the eigenoperator expression for cpσ in the definition of ∆p, Eq.(1.93).
This will give a self-consistent expression for ∆p.
Let us define the Nambu spinor

Ψp =

µ
cp↑
c†−p↓

¶
(1.97)

whose anticommutator is n
Ψp,i,Ψ

†
p0.j

o
= δp,p0δi,j (1.98)
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where i and j identiby the components of the Nambu spinor. Any unitary trans-
formation of the Nambu spinors will satisfy the anticommutation relations, as one
can easily check. Since the Hamiltonian matrix is Hermitian, it can be diagonalized
by a unitary transformation.
Eigenvalues Ep are obtained from the characteristic equation¡

λp − ζp
¢ ¡
λp + ζp

¢
− |∆p|2 = 0 (1.99)

where one used ζp = ξ−p valid for a lattice with inversion symmetry. The solutions
are

λp = ±Ep = ±
q
ζ2p + |∆p|

2 (1.100)

and the eigenvectors obeyµ
±Ep − ζp −∆p
−∆∗p ±Ep + ζp

¶µ
a1p
a2p

¶
= 0. (1.101)

whose solution is ¡
±Ep − ζp

¢
a1p = ∆pa2p (1.102)

The constraint of normalization for a unitary transformation is

|a1p|2 + |a2p|2 = 1. (1.103)

The unitary transformation U

U =

µ
up −vp
v∗p u∗p

¶
(1.104)

U† =

µ
u∗p vp
−v∗p up

¶
(1.105)

where µ
up
v∗p

¶
=

1√
2

⎛⎜⎝
³
1 +

ζp
Ep

´1/2
e−iφ1p³

1− ζp
Ep

´1/2
eiφ2p

⎞⎟⎠
diagonalizes the Hamiltonianµ

Ep 0
0 −Ep

¶
= U†

µ
ζp ∆p
∆∗p −ζp

¶
U.

Using this result, we can write

HE − μN =
X
p

³
c†p↑ c−p↓

´
UU†

µ
ζp ∆p
∆∗p −ζp

¶
UU†

µ
cp↑
c†−p↓

¶
(1.106)

=
X
p

³
α†p↑ α−p↓

´µ Ep 0
0 −Ep

¶µ
αp↑
α†−p↓

¶
(1.107)

=
X
p,σ

Epα
†
p,σαp,σ + cte. (1.108)

where the new operators are related to the old by the Bogoliubov-Valentin (1958)
transformationµ

αp↑
α†−p↓

¶
= U†

µ
cp↑
c†−p↓

¶
=

µ
u∗p vp
−v∗p up

¶µ
cp↑
c†−p↓

¶
. (1.109)
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The ground state is the state that is annihilated by these new operators

αpσ |BCSi = 0.

The new operators are linear combination of creation-annihilation operators since
the eigenstate is a linear combination of states having different numbers of parti-
cles. At zero temperature for example, one can check explicitely that the following
state is indeed annihilated by αpσ

|BCSi =
Y
k

µ
1 +

vk
u∗k

c†−k↓c
†
k↑

¶
|0i .

The value of the gap∆p is obtained from the self-consistency equation Eq.(1.93).
It suffices to write the cp↑ en as a function of the diagonal operators αpσ . Inverting
the Bogoliubov transformation Eq.(1.109) givesµ

cp↑
c†−p↓

¶
=

µ
up −vp
v∗p u∗p

¶µ
αp↑
α†−p↓

¶
(1.110)

whose adjoint is³
c†p↑ c−p↓

´
=
³

α†p↑ α−p↓

´µ u∗p vp
−v∗p up

¶
. (1.111)

We also note that
n (Ep) ≡

D
α†p↑αp↑

E
=

1

eσ0Ep + 1
. (1.112)

The Fermi-Dirac distribution arises from the fact the the Hamiltonian is diagonal
and quadratic when written as a function of fermionic operators α(†)p .We can now
compute the mean value of the pair operator.

hc−p0↓cp0↑i =
D³

vp0α
†
p0↑ + up0α−p0↓

´³
up0αp0↑ − vp0α

†
−p0↓

´E
(1.113)

= vp0up0
D
α†p0↑αp0↑ − α−p0↓α

†
−p0↓

E
(1.114)

= −vp0up0 (1− 2n (Ep0)) (1.115)

= −1
2

Ã
1−

ζ2p0

E2
p0

!1/2
e−iφ1p0−iφ2p0 (1− 2n (Ep0)) (1.116)

= −1
2

|∆p0 |
Ep0

e−iφ1p0−iφ2p0 (1− 2n (Ep0)) . (1.117)

= −1
2

∆p0

Ep0
(1− 2n (Ep0)) (1.118)

Substituting in self-consistency equation, we Eq.(1.93) on obtain

∆p = −
1

2V

X
p0

U (p− p0) ∆p
0

Ep0
(1− 2n (Ep0)) . (1.119)

where ∆p is in general complex. This is known as the BCS equation.

Remark 3 Even when the interaction depends on p− p0, the phase is necessarily
independent of p. Indeed, the gap equation can be rewritten in the form

[Cp∆p] = −
1

2V

X
p0

CpU (p− p0)Cp0 [Cp0∆p0 ] . (1.120)
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where

Cp =

µ
(1− 2n (Ep))

Ep

¶1/2
. (1.121)

The gap equation can then be reinterpreted as an eigenvalue equation. The eigen-
vectors are in brackets and the eigenvalue is unity. Since the matrix −CpU (p− p0)Cp0/ (2V )
whose eigenvalues we are looking for is real and symmetric, the eigenvector is real
within a global phase, i.e. a complex number eiφ that multiplies all components
of the eigenvector. This independence of p of the phase is known as “phase co-
herence”. It is key to superconductivity, If the eigenvalue of the gap equation is
degenerate, something new can happen. One obvious degeneracy is associated with
time-reversal symmetry. When this symmetry is broken, there is still an overall
p independent phase, but the order parameter is complex in a way that does not
correspond to a global phase. This in general gives, for example, a non-trivial
value of the orbital angular momentum.

Remark 4 Coherence: Since φ1p + φ2p = φ for all values of p, all the pairs are
added to the wave function with exactly the same phase. This can be seen from
the BCS wave function at zero temperatureY

k

µ
1 +

vk
u∗k

c†−k↓c
†
k↑

¶
|0i .

It is the interactions that impose that phase coherence that is at the origin of the
phenomenon of superconductivity. Only the overall p independent phase of ∆ is
arbitrary. The global gauge symmetry is broken by fixing the phase since phase
and number obey an uncertainty relation. Fixing the phase thus corresponds to
making the total number of particles uncertain.

1.7 Elementary quantum mechanics and path inte-
grals

There is one formulation of quantum mechanics that is particularly useful for
numerical simulations. It is the path integral formulation. The path integral
formulation can be postulated. Quantum mechanics follows. Here we start from
more familiar concepts and obtain the path integral formulation, as Feynman did.
Let us go back to a single particle. The amplitude for a particle to go from

position xi to position xf in a time t is given by

G (xf , t;xi, 0) ≡ hxf | e−iHt/~ |xii . (1.122)

This amplitudeG (xf , t;xi, 0) is known as the propagator. To simplify the notation
we work in one-dimension and we work in units where ~ = 1. It is the basic object
of this section.

1.7.1 Physical interpretation of the propagator

There are several ways to physically understand the propagator. From the basic
postulates of quantum mechanics, squaring G (xf , t;xi, 0) gives the probability
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that we are in eigenstate of position xf at time t if the starting state is a position
eigenstate xi. Also, if we know the propagator we know the amplitude to go from
any state to any other one. Indeed, inserting complete sets of position eigenstates
we find that

ψf
¯̄
e−iHt/~ |ψii =

Z
dxidxfψ

∗
f (xf )ψi (xi) hxf | e−iHt |xii (1.123)

Another way to see how to use the propagator is to define the retarded prop-
agator

GR (xf , t;xi, 0) ≡ hxf | e−iHt |xii θ (t) (1.124)

where θ (t) is the heaviside step function. Inserting a complete set of energy
eigenstates, we find

GR (xf , t;xi, 0) ≡
X
n

hxf | ni e−iEnt hn |xii θ (t)

=
X
n

φn (xf )φ
∗
n (xi) e

−iEntθ (t) (1.125)

The Fourier transform of this quantity with η a positive real number isZ ∞
−∞

dtei(z+iη)tGR (xf , t;xi, 0) = i
X
n

φn (xf )φ
∗
n (xi)

z + iη −En
. (1.126)

The poles of this function give the eigenenergies and the residues are related to
the wave functions. In the many-body context, a generalization of the propagator
occurs very naturally in perturbation theory.
In statistical physics, hxf | ρ |xii is a quantity of interest. Using the known form

of the density matrix, we have hxf | ρ |xii = hxf | e−βH |xii /Z. Hence, computing
these matrix elements is like computing the propagator in imaginary time τ with
the substitution t→ −iτ . This analogy holds also in the many-bady context.

1.7.2 Computing the propagator with the path integral

In general, H contains non-commuting pieces. The potential energy V is diagonal
in position space, but the kinetic energyK is diagonal in momentum space. Hence,
computing the action of e−iHt on |xii is non-trivial since we need to diagonalize
the Hamiltonian to compute the value of the exponential of an operator and that
Hamiltonian contains two non-commuting pieces that are diagonal in different
basis. The key observation is that if the time interval t is very small, say ε, then
the error that we do in writing the exponential as a product of exponentials is of
order ε2 since it depends on the commutator of Kε with V ε

e−iHε ∼ e−iKεe−iV ε +O
¡
ε2
¢
. (1.127)

In fact the error of order ε2 is in the argument of the exponential, as one can see
from the Baker-Campbell-Hausdorff formula eAeB = eM with

M = A+B +
1

2
[A,B] + a2 [A, [A,B]] + . . . (1.128)

In numerical calculations it is important to keep the exponential form since this
garantees unitarity.
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Other factorizations give errors of even higher order. For example,

e−iHε ∼ e−iV ε/2e−iKεe−iV ε/2 (1.129)

gives an error of order ε3. In practice, for numerical simulations it is quite useful
to use factorizations that lead to higher order errors. To continue analytically
however, the simplest factorization suffices.
In the factorized form, we can take advantage of the fact that we can introduce

complete sets of states where the various pieces of the Hamiltonian are diagonal
to compute the propagator for an infinitesimal time

hxf | e−iKεe−iV ε |xii =

Z
dp

2π
hxf | e−iKε |pi hp| e−iV ε |xii (1.130)

=

Z
dp

2π
e
i
h
−ε p

2

2m+p(xf−xi)−εV (xi)
i

(1.131)

where we used hx| pi = eipx. The last formula can be rewrittenZ
dp

2π
ei(pẋ−H)ε (1.132)

where
ẋ ≡ xf − xi

ε
. (1.133)

The argument of the exponential is the Lagrangian times the time interval. It thus
has the units of action and is made dimensionless by dividing by the quantum of
action ~ that we have set to unity.
For a finite time interval, we simply split the time evolution operator into

evolution pieces that involve over an infinitesimal time interval

e−iHt =
NY
i=1

e−iHε (1.134)

where ε = t/N. There is no approximation here. Inserting N − 1 complete sets of
states, we have

hxf | e−iHt |xii =

Z N−1Y
j=1

dxj hxf | e−iHε |xN−1i hxN−1| e−iHε |xN−2i hx2| . . .

|x1i hx1| e−iHε |xii . (1.135)

Each of the N matrix elements can be evaluated now using the previous trick so
that the propagator is given by the formally exact expression

hxf | e−iHt |xii = lim
N→∞

Z N−1Y
j=1

dxj

Z NY
j=1

dpj exp

∙
i

µ
pN

xf − xN−1
ε

− p2N
2m
− V

¡
xN−1

¢¶
ε

+i

µ
pN−1

xN−1 − xN−2
ε

−
p2N−1
2m

− V
¡
xN−2

¢¶
ε

+ . . .

+ i

µ
p1
x1 − xi

ε
− p21
2m
− V (xi)

¶
ε

¸
(1.136)

To do the calculation, this is what one has to do. Formally however, the final
expression is quite nice. It can be written as a path integral in phase space

hxf | e−iHt |xii =

Z
[DxDp] exp

½
i

Z
dt [pẋ−H (p, x)]

¾
(1.137)

=

Z
[DxDp] exp iS (x, p) (1.138)
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where the definition of the measure [DxDp] is clear by comparison and where S is
the action.
It is more natural to work in configuration space where the Lagrangian is

normally defined. This comes out automatically by doing the integral over all
the intermediate momenta. They can be done exactly since they are all Gaussian
integrals that are easily obtained by completing the squareZ

dp

2π
exp i

µ
pN−1

xN−1 − xN−2
ε

−
p2N−1
2m

¶
ε =

r
m

2πiε
exp

"
im

2

µ
xN−1 − xN−2

ε

¶2
ε

#

=

r
m

2πiε
exp

∙
im

2
ẋ2N−1ε

¸
. (1.139)

Remark 5 The above is the propagator for a free particle. In that case, the time
interval could be arbitrary and the result could also be obtained using our earlier
decomposition on energy eigenstates sinceX

n

φn (xf )φ
∗
n (xi) e

−iEnt =

Z
dp

2π
eip(xf−xi)−it

p2

2m . (1.140)

Once the integrals over momenta have been done, we are left with

hxf | e−iHt |xii = lim
N→∞

Z N−1Y
j=1

dxj

Ãr
mN

2πit

!N

exp

"
iε

Ã
m

2

µ
xf − xN−1

ε

¶2
− V

¡
xN−1

¢!

+iε

Ã
m

2

µ
xN−1 − xN−2

ε

¶2
− V

¡
xN−2

¢!
+ . . .

+ iε

Ã
m

2

µ
x1 − xi

ε

¶2
− V (xi)

!#
(1.141)

=

Z xf

xi

Dx exp
µ
i

Z t

0

dt0
µ
1

2
mẋ2 − V (x)

¶¶
=

Z xf

xi

DxeiS(ẋ,x) (1.142)

where the formal expression makes clear only that it is the integral of the La-
grangian, hence the action, that comes in the argument of the exponential. The
integration measure here is different from the one we had before. This form is
particularly useful for statistical physics where all the integrals are clearly con-
vergent, as opposed to the present case where they oscillate rapidly and do not
always have a clear meaning.
The physical interpretation of this result is quite interesting. It says that the

amplitude for going from one point to another in a given time is given by the
sum amplitydes for all possible ways of going between these two points in the
given time, each path, or trajectory, being weighted by an exponential whose
phase is the classical action measured in units of the action quantum ~. The
classical limit is obtained when the action is large compared with the quantum of
action. Indeed, in that case the integral can be evaluated in the stationary phase
approximation. In that approximation, one expands the action to quadratic order
around the trajectory that minimizes the action. That trajectory, given by the
Euler-Lagrange equation, is the classical trajectory according to the principle of
least action.

Remark 6 The exponentials in the path integral are time-ordered, i.e. the ones
correspondint to later times are always to the left of those with earlier times. This
time-ordering feature will be very relevant later for Green functions.
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1.7.3 Coherent-state path integrals

In the many-body context, the amplitudes that are interesting are of the form

Tr
h
ρcf (t) c

†
i

i
. (1.143)

In the special case where only the ground state contibutes and that state is the
vacuum state (i.e. no particle present), the above reduces precisely to our pre-
vious definition since c†i |0i = |xii and h0| e−βHcf (t) = h0| e−βHeiHtcfe

−iHt =
h0| cfe−iHt = hxf | e−iHt.
To derive a path integral formulation for that type of amplitude, we note that

destruction operators in H always appear first on the right. Hence, if we replace
the position eigenstates in the one-particle case by eigenstates of the destruction
operator, we will be able to derive a path integral formulation in the many-body
case by following an analogous route. We will not do the full derivation here. The
final result is that both for bosons and fermions, the path integral also involves
exponentials of the action. For fermions, one must introduce Grassmann algebra
with non-commuting numbers to define coherent states. For bosons the situation
is simpler.
Let us see how boson coherent states are constructed. Let

£
a, a†

¤
= 1, then

define the coherent state |zi by

|zi = e−|z|
2/2eza

† |0i . (1.144)

To show that this is an eigenstate of a, note first that one can easily show by
induction that h

a,
¡
a†
¢ni

= n
¡
a†
¢n−1

(1.145)

which formally looks like h
a,
¡
a†
¢ni

=
∂
¡
a†
¢n

∂a†
(1.146)

and since the exponential is defined in terms of its power seriesh
a, eza

†
i
=

∂eza
†

∂a†
= zeza

†
(1.147)

Using our little theorem on commutators of ladder operators (1.3.2), we have that

since a |0i = 0 then a
³
eza

† |0i
´
= z

³
eza

† |0i
´
and |zi is an eigenstate of a.

To show that |zi is normalized, consider

hz |zi = e−|z|
2 h0| ez∗aeza† |0i = e−|z|

2

e|z|
2 h0| eza† |0i

= 1 (1.148)

In the last step, one has simply expanded the exponential in a power series and
used the normalization of the vacuum.
Finally we the closure relation

I =
1

π

Z
dzdz∗ |zi hz| (1.149)

that can be proven by taking matrix elements with states with arbitrary number
of bosons |ni =

¡
a†
¢n |0i /√n! and doing the integral in polar coordinates.
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2. RESPONSE FUNCTIONS AND
THEIR GENERAL PROPERTIES

Whether perturbation theory is applicable or not, we rarely need all the informa-
tion contained in the wave-function. A reduced description in terms of only a few
variables suffices if it allows us to explain what can be observed by experimental
probes. Correlation functions offer us such a description. As for any physical
theory, we thus first discuss which quantities are observable, or in other words,
what it is that we want to compute.
Whatever the appropriate microscopic description of the system, or whatever

the underlying broken symmetry, the result of any given type of experiment can
be expressed as a specific correlation function.
We will need to treat two different aspects of correlation functions.
First, general properties, which are independent from the specific manner in

which we compute correlation functions. For example

• Symmetries

• Positivity

• Fluctuation-dissipation theorems relating linear response and equilibrium
fluctuations

• Kramers-Kronig transformations, which follow from causality

• Kubo relations, such as that relating linear response to a specific correlation
function.

• Sum rules

• Goldstone theorem, which follows from Bogoliubov inequalities

Second, we will need to develop techniques to compute specific correlation func-
tions. Sometimes, phenomenological considerations suffice to find, with unknown
parameters, the functional dependence of correlations functions on say wave-vector
and frequency. These phenomenological considerations apply in particular in the
hydrodynamic regime, and whenever projection operator techniques are used.
Microscopic approaches will lead us to use another type of correlation func-

tions, namely Green’s functions. In fact, Green’s function are just one type of
correlation function. They will appear very naturally. Furthermore, many of the
general properties of correlation functions which we discuss in the present chapter
will transpose directly to these functions. Much of this section is inspired from
Foster.[1]
In the present chapter, we intend to

• Recall that scattering experiments are a measure of equilibrium fluctuations

• Linear response to an external perturbation can be expressed as an equilib-
rium correlation function

And this correlation function can be related to equilibrium fluctuations by the
fluctuation-dissipation theorem.

• Then we discuss general properties of correlation functions

• Give a specific example of sum-rule calculation.
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2.1 Relation between correlation functions and ex-
periments

Scattering experiments with weak probes usually measure various equilibrium cor-
relation functions of a system. What we mean by “weak probes” is simply that
Fermi’s Golden rule and the Born approximation are all that we need to describe
the effect of the system on the external probe, and vice-versa. As an example, con-
sider inelastic electron scattering but it should be clear that similar considerations
apply to a large number of cases: inelastic light scattering, neutron scattering,
etc...

The plan is simply to use Fermi’s Golden Rule to compute the cross section.
One obtains

dσ
d�fdΩf

=
h

m2

(2π)3~5
kf
ki

¯̄
V c
−q
¯̄2i R

dt eiωt

ρq(t)ρ−q(0)

®
(2.1)

Forgetting for all the details, the key point is that the cross section is related to the
Fourier transform of the density-density correlation function. The trick, due to Van
Hove, to derive this formula from the Golden rule is to use the Dirac representation
of the delta function for energy conservation and the Heisenberg representation to
express the final result as a correlation function. Since in the Born approximation,
incident and final states of the probe are plane waves, everything about the probe is
known. The only reference to it will be through explicitly known matrix elements
and quantum numbers, such as momentum, energy, spin etc...

A schematic proof is as follows. From the Golden rule, the transition rate is

2π

~
X
I,F,f

e−βEI

Z
|hF | hf |V |Ii |ii|2 δ (EF + ef −EI − ei) (2.2)

where upper cases refer to the system and lower cases to the probe. The initial and
final states can be written as direct product of these since probe and system are far
from each other then. We have taken a thermal average over initial states and a
sum over all possible final states consistent with energy conservation. The operator
V makes the transition. Generally speaking, the operator V takes the form of a
product of an operator involving the system, O, times an operator involving the
probe o. The product of the densities occurs for example in Coulomb interactions.
The previous equation may thus be written as

2π

~
|M |2

X
I,F

e−βEI

Z
|hF |O |Ii|2 δ (EF + ef −EI − ei) (2.3)

where |M |2 involves the probe only. Using the Dirac representation of the delta
function and the Heisenberg equations of motion and defining ~ω = ef − ei the

32 RESPONSE FUNCTIONS AND THEIR GENERAL PROPERTIES



energy transfered by the probe to the system, one obtains

|M |2
X
I,F

Z
dte
−i
³
EF−Ei+~ω

~

´
t e−βEI

Z
|hF |O |Ii|2 (2.4)

= |M |2
X
I

Z
dte−iωt

e−βEI

Z
hI| eiHt/~O†e−iHt/~O |Ii (2.5)

= |M |2
X
I,F

Z
dte−iωt

e−βEI

Z
hI| eiHt/~O†e−iHt/~ |F i hF |O |Ii (2.6)

= |M |2
X
I

Z
dte−iωt

e−βEI

Z
hI| eiHt/~O†e−iHt/~O |Ii (2.7)

= |M |2
Z

dte−iωtTr
h
ρeiHt/~O†e−iHt/~O

i
(2.8)

= |M |2
Z

dte−iωt

O† (t)O

®
. (2.9)

The transition rate, from which one deduces cross sections for example, is the
Fourier transform of a correlation function.
In the case of photoemission, V is involves the scalar product of the current

times the vector potential, which in turn can create or destroy one photon. The
latter enters the probe matrix element, as does the creation operator in the current
that puts an electron in the final state. The operator O entering the correlation
function above is thus the destruction operator. The corresponding correlation
function will be related to the Green function as we will see in the next chapter.
The Green function is thus a special case of correlation function.

Definition 3 Note in passing that we use the following definitions for Fourier
transforms in the continuum

fq =
R
d3r f(r)e−iq·r (2.10)

f(r) =
R

d3k
(2π)3

fqe
iq·r (2.11)

gω =
R
dt g(t)eiωt (2.12)

g(t) =
R

dω
2π gωe

−iωt (2.13)

2.2 Linear-response theory

We are interested in the response of a system to a weak external perturbation.
The electrical conductivity is the response to a weak applied field, the thermal
conductivity the response to a thermal gradient etc... The result will be again
an equilibrium correlation function. We will be able to relate this correlation
function to equilibrium correlation functions of the type just calculated at the end
of the last section by developing the so-called “fluctuation-dissipation theorem”.
The plan to compute the effect of an external perturbation is to add it to the
Hamiltonian and then to treat it as a perturbation, taking the full interacting
Hamiltonian of the system H0 as the unperturbed Hamiltonian.
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Let
H (t) = H0 + δH(t) (2.14)

where H0 is the Hamiltonian of the system under study and δH(t) is the pertur-
bation given by the time-dependent Hamiltonian

δH(t)= −
R
d3rAi(r)ai(r,t). (2.15)

In this expression, Ai is some observable of the system (excluding external per-
turbation) in the Schrödinger representation, while ai(r,t) is the external field.
Examples of such couplings to external fields include the coupling to a magnetic
field h through the magnetization M, (Ai (r) = Mz (r) ; ai(r,t) = hz(r, t)) or
the coupling to an electromagnetic vector potential A/c through a current j,
(Ai (r) = jx(r)δi,x; ai(r,t) = Ax(r,t)δi,x/c) or that of a scalar potential φ through
the density ρ (Ai (r) = ρ (r) ; ai(r,t) = φ(r, t)). In this approach, it is clear that
the external perturbation is represented in the semi-classical approximation, in
other words it is not quantized. We first pause to recall the various representa-
tions, or pictures, of quantum mechanics, introducing the interaction representa-
tion as the framework where perturbation theory is most easily formulated. Then
we go on to derive linear response theory.

2.2.1 Schrödinger and Heisenberg pictures

Since the Hamiltonian is the infinitesimal generator of time translations, Schrödinger’s
equation for a time-dependent Hamiltonian takes the same form as usual,

i~
∂ψS
∂t

= H(t)ψS . (2.16)

Using the fact thatH(t) is Hermitian, one can easily prove that ∂ hψS |ψSi /∂t = 0,
in other words that probability is conserved. Hence, the solution of this equation
will be given by

ψS(t) = U(t, t0)ψS(t0) (2.17)

where U(t, t0) is a unitary operator satisfying

U(t0, t0) = 1 (2.18)

while by time-reversal symmetry

U(t0, t)U(t, t0) = 1. (2.19a)

Conservation of probability gives

U(t, t0)
†U(t, t0) = 1 (2.20)

so that combining the last result with the definition of the inverse, we have,

U(t, t0)
−1 = U(t, t0)

†. (2.21)

Furthermore, when we can use time-reversal invariance, Eq.(2.19a), we also have

U(t, t0)
−1 = U(t, t0)

† = U(t0, t). (2.22)

By definition, for all values of t, the expectation value of an operator is the
same in either the Schrödinger, or the Heisenberg picture.

hψS (t)|OS |ψS (t)i = hψH | OH (t) |ψHi . (2.23)
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In the Heisenberg picture the operators are time-dependent while in the Schrödinger
picture, only the wave functions are time dependent. Let us choose t = 0 to be
the time where both representations coincide. The choice of this time is arbitrary,
but taking t = 0 simplifies greatly the notation. We have then that

OS(t = 0) = OH(t = 0) ≡ OS (2.24)

ψS (t = 0) = ψH (t = 0) ≡ ψS (2.25)

Using the expression for the time-dependent wave function, and the equality of
matrix elements Eq.(2.23), we obtain

OH(t) = U†(t, 0)OSU(t, 0). (2.26)

One recovers all the usual results for time-independent Hamiltonians by noting
that in this case, the solution of Schrödinger’s equation is,

U(t, t0) = e−iH(t−t0)/~ . (2.27)

Remark 7 When there is time-reversal invariance, then it is useful to replace the
adjoint by the time-reversed operator, so that the connection between Heisenberg
and Schrödinger picture Eq.(2.26) becomes

OH(t) = U(0, t)OSU(t, 0). (2.28)

Because we do not want to assume for the time being that there is time-reversal
invariance, we shall stick here with the usual expression Eq.(2.26) but in much of
the later chapters, the above representation will be used.

2.2.2 Interaction picture and perturbation theory

Perturbation theory is best formulated in the “interaction representation”. In this
picture, one can think of both operators and wave functions as evolving, as we
will see. We take

H (t) = H0 + δH(t) (2.29)

where H0 is time-independent as above, but the proof can be generalized to time-
dependent H0 simply by replacing eiH0t/~ everywhere below by the appropriate
evolution operator.
The definition of the evolution operator in the interaction representation UI(t, 0)

is given by
U(t, 0) ≡ e−iH0t/~UI(t, 0). (2.30)

and
U(0, t) ≡ UI(0, t)e

iH0t/~ . (2.31)

so that for example

U(t, t0) ≡ e−iH0t/~UI(t, t0)e
iH0t0/~ (2.32)

We have used the fact that UI(t, t0) obeys the same general properties of unitarity
as an ordinary evolution operator, as can easily be checked. Again the interaction
representation will coincide with the other two at t = 0. The justification for
the definition of UI above is that when the external perturbation δH(t) is small,
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UI(t, t0) is close to unity. If we write again the equality of matrix elements in the
general case, we obtain

hψS (t)| OS |ψS (t)i = hψS |U†(t, 0)OSU(t, 0) |ψSi (2.33)

= hψS |U
†
I (t, 0)e

iH0t/~OSe
−iH0t/~UI(t, 0) |ψSi (2.34)

= hψS |U
†
I (t, 0)OI (t)UI(t, 0) |ψSi (2.35)

This last result is important. It can be interpreted as saying that the operators
in the interaction representation evolve with

OI (t) = eiH0t/~OSe
−iH0t/~ (2.36)

while the wave functions obey

|ψI (t)i = UI(t, 0) |ψSi (2.37)

In other words, in the interaction picture both the operators and the wave function
evolve. We still have to find the equation of motion for UI(t, t0). The result will
justify why we introduced the interaction representation. Start from Schrödinger’s
equation,

i~
∂U(t, t0)

∂t
= H(t)U(t, t0) (2.38)

which gives the equation of motion for UI(t, 0), namely

H0e
−iH0t/~UI(t, 0) + e−iH0t/~ i~

∂

∂t
UI(t, 0) = H(t)e−iH0t/~UI(t, 0) (2.39)

i~
∂

∂t
UI(t, 0) = eiH0t/~δH(t)e−iH0t/~UI(t, 0). (2.40)

so that using the definition of time evolution of an arbitrary operator in the inter-
action representation as above (2.36) the equation for the time evolution operator
UI(t, 0) in the interaction representation may be written,

i~
∂

∂t
UI(t, 0) = δHI(t)UI(t, 0) (2.41)

with the initial condition
UI(0, 0) = 1. (2.42)

As expected, Eq.(2.41) tells us that, if there is no perturbation, UI is equal to
unity for all times and only the operators and not the wave function evolve. The
interaction representation then reduces to the Heisenberg representation. Multi-
plying the equation of motion from the right by UI(0, t0) we have for an arbitrary
initial time

i~ ∂
∂tUI(t, t0) = δHI(t)UI(t, t0) (2.43)

We will come back later to a formal solution of this equation. To linear order
in the external perturbation, it is an easy equation to solve by iteration using
the initial condition as the initial guess. Indeed, integrating on both sides of the
equation of motion (2.43) and using the initial condition, we have

UI(t, t0) = 1− i
~
R t
t0
dt0 δHI(t

0)UI(t
0, t0) (2.44)

which, iterated to first order, gives,

UI(t, t0) = 1−
i

~

Z t

t0

dt0 δHI(t
0) +O(δH2

I) (2.45)

and correspondingly

U†I (t, t0) = 1 +
i

~

Z t

t0

dt0 δHI(t
0) +O(δH2

I) (2.46)
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2.2.3 Linear response

Returning to our general considerations, in the case of interest to us the external
perturbation in the interaction representation is of the form,

δHI(t)= −
R
d3rA0i (r, t)ai(r,t) (2.47)

where for short we wrote A0i (r, t) to represent a system’s observable evolving in
the system’s Heisenberg representation,

A0i (r, t) =e
iH0t/~Ai(r)e

−iH0t/~ . (2.48)

Suppose we want the expectation value of the observable B in the presence of
the external perturbation turned on at time t0. Then, starting from a thermal
equilibrium state at time t0, it suffices to evolve B (r) with the full evolution
operator, including the external perturbation.1

hB(r, t)i =

U†(t, t0)B(r)U(t, t0)

®
(2.49)

Using the interaction representation Eq.(2.32), the last equation becomes

hB(r, t)i =
D
U†I (t, t0)B

0(r, t)UI(t, t0)
E
. (2.50)

In this last expression, B0(r, t) is now in the system’s Heisenberg representation of
the system without the external perturbation. We also used the fact that e−iH0t0/~

commutes with the density matrix and that the trace has a cyclic property to
cancel the extra e−iH0t0/~ and eiH0t0/~ appearing in the equation for the evolution
operator in Eq.(2.32).
Using the explicit expression Eq.(2.47) for the external perturbation in the

equation for the evolution operator in the interaction representation (2.45), we
have that the term linear in applied field is then given by,

δ hB(r, t)i = i

~

Z t

t0

dt0
Z

d3r0
£
B0(r, t), A0i (r

0, t0)
¤®
ai(r

0,t0). (2.51)

It is customary to take t0 = −∞, assuming that the perturbation is turned-on
adiabatically slowly. One then defines a “retarded” response function, or suscep-
tibility χR, by

δ hB(r, t)i =
R∞
−∞ dt0

R
d3r0 χRBAi(r, t; r

0, t0)ai(r
0,t0) (2.52)

with,

χRBAi(r, t; r
0, t0) = i

~
£
B0(r, t), A0i (r

0, t0)
¤®
θ(t− t0). (2.53)

This response function is called “retarded” because the response always comes after
the perturbation, as expected in a causal system. The function θ(t − t0) ensures
this causality. One can also define anti-causal response functions. We come back
to this later. For the moment, recall that the superscript 0 here means to zeroth
order in the external probe. In other words, the linear response is given by an
equilibrium correlation function. One normally does not write the superscript 0
which is usually kept to mean non-interacting system. From now on, we drop this
superscript.

1We let the density matrix take its initial equilibrium value. This is physically appealing. But
we could have as well started from a representation where it is the density matrix that evolves
in time and the operators that are constant.

LINEAR-RESPONSE THEORY 37



Remark 8 Translationally invariant case: Since we compute equilibrium aver-
ages, the susceptibility χRBAi(r, t; r

0, t0) can depend only on the time difference.
In the translationally invariant case, the susceptibility is also a function of only
r− r0 so that Fourier transforming the expression for the linear response (2.52),
we obtain from the convolution theorem in this case,

δ hB(q, ω)i = χRBAi(q, ω)ai(q, ω). (2.54)

Remark 9 Frequency of the response: The response is at the same frequency as
the external field, a feature which does not survive in non-linear response.

Remark 10 Onsager reciprocity relations: Given the expression for the response
function in terms of a commutator of Hermitian operators, it is clear that the
response of the operator B to an external perturbation that couples to A is simply
related to the response of A to a perturbation that couples to B, in other words
where the operators have reversed roles. These are “Onsager’s reciprocity rela-
tions”.

Remark 11 Validity of linear response and heating: Finally, we can ask whether
it is really justified to linearize the response. Not always since the external pertur-
bation can be large. But certain arguments suggest that it is basically never correct
in practice to linearize the response. Indeed, assume we apply an external electric
field E. As long as the energy gained by the action of the field is smaller than
kBT , the linearization should be correct. In other words, linear response theory
should be valid for a time

t <
kBT

eEv
. (2.55)

This is unfortunately a ridiculously small time. Taking v ≈
p
kBT/m the condi-

tion becomes t <
√
mkBT/eE with E = 1V/cm,

√
mkBT/eE ≈

√
10−3010−23102/10−19 ≈

10−6s. Indeed, one finds that unless there is a temperature gradient, or an explicit
interaction with a system in equilibrium (such as phonons), the second order term
in perturbation theory is secular, i.e. it grows linearly with time. This is nothing
more than the phenomenon of Joule heating.[2] We are then forced to conclude
that linear response theory applies, only as long as the system is maintained in
equilibrium by some means: for example by explicitly including interactions with
phonons which are by force taken to be in thermal equilibrium, or by allowing for a
thermal gradient in the system that carries heat to the boundaries. In a Boltzmann
picture, one can see explicitly that if the second-order term in E is kept small by
collisions with a system in thermal equilibrium, then the linear term is basically
equal to what we would have obtained by never going to second-order in the first
place.[2]

Remark 12 Reversibility and linear response: Other arguments against linear
response theory center on the fact that a correlation function where operators all
evolve reversibly cannot describe irreversible processes.[3] We will see explicitly
later that it is possible to compute irreversible absorption with this approach. We
will also see how irreversibility comes in the infinite-volume limit.

2.3 General properties of correlation functions

It is useful to know analytic properties that do not depend on the microscopic
model considered. This has at least two advantages: a) to check whether approx-
imation schemes satisfy these exact relations b) to formulate phenomenological
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relations which are consistent. We will see that approximate calculations cannot
satisfy all known exact relations for correlation functions, but it will be obvious
that violating certain relations is more harmful than violating others. Many of
the general properties which we will discuss in the present context have trivial
generalizations for Green’s function. Working on these general properties now
will make them look more natural later when we introduce the curious Green’s
function beast!

2.3.1 Notations and definitions

To start with, recall the definition

χRBA(r, t; r
0, t0) =

i

~
h[B(r, t), A(r0, t0)]i θ(t− t0). (2.56)

We have removed the superscript 0 which was only used as a crutch in the deriva-
tion of linear-response theory to indicate that the operators were evolving with the
unperturbed Hamiltonian. Since the unperturbed Hamiltonian in the present con-
text is the full Hamiltonian of the system, including interactions, we will drop the
superscript 0 from now on. It will be used later in a context where the unperturbed
Hamiltonian is that of non-interacting particles.
We define one more correlation function which will, in most cases of physical

interest, play the role of the quantity which describes absorption. Welcome χ00

χ00BA(r, t; r
0, t0) = 1

2} h[B(r, t), A(r0, t0)]i . (2.57)

The two in the denominator looks strange, but it will allow χ00 to generally be
the imaginary part of a response function without extra factors of 2. With this
definition, we have

χRBA(r, t; r
0, t0) = 2iχ00BA(r, t; r

0, t0)θ(t− t0). (2.58)

To shorten the notation, we will also use the notation

χRAiAj (t− t0) = i
~ h[Ai(t), Aj(t

0)]i θ(t− t0). (2.59)

In this notation we include in the indices i and j the positions as well as any other
label of the operator such as vector or spin component. In this notation, we have
not assumed translational invariance. We did however assume time-translation
invariance. Since we are working with equilibrium averages above, this is always
true.

Exercise 2.3.1 Check time-translational invariance explicitly by using Heisen-
berg’s representation, the cyclic property of the trace and the fact that the den-
sity matrix (Z−1e−βH in the canonical ensemble, or Ξ−1e−β(H−μN) in the grand-
canonical) commutes with the time-evolution operator e−iHt/~ .

Corresponding to the short-hand notation, we have

χ00AiAj (t− t0) ≡ 1
2~ h[Ai(t), Aj(t

0)]i . (2.60)

χRAiAj (t− t0) = 2iχ00AiAj (t− t0)θ(t− t0). (2.61)
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2.3.2 Symmetry properties of the response functions

The quantity χ00AiAj (t−t
0) contains all the non-trivial information on the response.

Indeed, the causal response is simply obtained by multiplying by a trivial θ(t− t0)
function. Certain symmetries of this response function depend on the particular
symmetry of the Hamiltonian, others are quite general. Let us consider them in
turn.[1]

Properties that depend on the symmetry of the Hamiltonian

Let S be a symmetry of the Hamiltonian. By this we mean that the operator S
representing the symmetry commutes with the Hamiltonian

[H,S] = 0 (2.62)

To be more precise, in the context of statistical mechanics we say that S is a
symmetry of the system when it commutes with the density matrix

[ρ, S] = 0 (2.63)

In other words, S−1ρS = ρ thus the spectrum of the density matrix is unaffected
by the symmetry operation. The operator S is in general unitary or antiunitary
as we will see below.
To extract non-trivial consequences of the existence of a symmetry, one first

takes advantage of the fact that the trace can be computed in any complete basis
set. This means that the thermal average of any operator O is equal to its thermal
average in a basis where the symmetry operation S has been applied to every
basis function. Since the symmetry operation commutes with the density matrix
by assumption, one can then let the symmetry operations act on the operators
instead of on the basis functions. In other words, we have

S−1OS
®
= hOi (2.64)

It is because S and O in general do not commute that the above equation leads
to non-trivial consequences.
Let us look in turn at the consequences of translational invariance and of

invariance under a parity transformation rα→ −rα. We skip the proofs.

• Translational invariance:

χ00BA(r, t; r
0, t0) = χ00BA(r+R, t; r

0 +R, t0) (2.65)

so that χ00BA is a function of r− r0 only. Since we already know that χ00BA is
a function only of t− t0, in such cases we write

χ00BA(r, t; r
0, t0) = χ00BA(r− r0; t− t0) (2.66)

• Parity: Under a parity transformation, operators transform as follows

P−1O (r)P = εPO (−r) (2.67)

where εP = ±1. This number is known as the “signature” under parity
transformation. That εP = ±1 is the only possibility for simple operators
like density and momentum follows from the fact that applying the parity
operation twice is the same as doing nothing. In other words, P 2 = 1.
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To be more specific, εPρ = 1 for density while for the momentum operator,
εPp = −1. In general then, this implies that

χ00BA(r, t; r
0, t0) = εPBε

P
Aχ

00
BA(−r, t;−r0, t0) (2.68)

When we also have translational invariance, the last result means that χ00BA(r− r0; t−
t0) is even or odd in r− r0 depending on whether the operators have the same
or opposite signatures under parity. Correspondingly, the Fourier transform
in the translationally invariant case is odd or even, as can easily be proven
by a change of integration variables in the Fourier transform

χ00BA(q; t− t0) = εPBε
P
Aχ

00
BA(−q; t− t0) (2.69)

• Time-reversal symmetry in the absence of spin: From the Schrödinger equa-
tion in the absence of spin, one can see that when the Hamiltonian is real,
then complex conjugation leads to an equation that evolves the complex con-
jugate wave function as if t→ −t. We thus take time-reversed states as just
this operation of complex conjugation. A system in equilibrium obeys time-
inversion symmetry, unless an external magnetic field is applied. This means
that equilibrium averages evaluated with time-reversed states are equal to
equilibrium averages evaluated with the original bases. In fact time-inversion
symmetry is a very subtle subject. A very complete discussion may be found
in Gottfried [4] and Sakurai [8]. We present an oversimplified discussion. Let
us call Tt the operator that time-reverses a state. This is the operation of
complex conjugation that we will call K. The first thing to notice it that it
is unlike any other operator in quantum mechanics. In particular, the Dirac
notation must be used with extreme care. Indeed, for standard operators,
say X, we have the associative axiom

hα|X |βi = hα| (X |βi) = (hα|X) |βi (2.70)

This is clearly incorrect if X is the complex conjugation operator. Hence,
we must absolutely specify if it acts on the right or on the left. Hence, we
will write K−→ when we want to take the complex conjugate of a ket, and K←−
to take the complex conjugate of a bra.

Remark 13 Antiunitary operators: Time reversal is an antiunitary oper-
ation. The key property that differentiates an anti-unitary operator from a
unitary one is its action on a linear combination

Tt (a1 |ψ1i+ a2 |ψ2i) = a∗1Tt |ψ1i+ a∗2Tt |ψ2i (2.71)

In general such an operator is called antilinear. Antiunitarity comes in when
we restrict ourselves to antilinear operators that preserve the norm. The time
reversal operator is such an operator. Under time reversal, an arbitrary ma-
trix element preserves its norm, but not its phase. This is easy to see from
the fact that for an arbitrary matrix element hψ1|K←−K−→ |ψ2i = hψ2 |ψ1i 6=
hψ1 |ψ2i the phase changes sign under complex conjugation while the square
modulus hψ2 |ψ1i hψ1 |ψ2i is invariant. Gottfried[4] shows that only discrete
transformations (not continuous ones) can be described by anti-unitary op-
erators. This reference also discusses the theorem by Wigner that states
that if we declare that two descriptions of quantum mechanics are equiva-
lent if |hψ2 |ψ1i| =

¯̄
ψ02
¯̄
ψ01
®¯̄
(equality of “rays”) then both unitary and

anti-unitary transformations are allowed.
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Remark 14 The adjoint is not the inverse. Note that T †t Tt = K←−K−→, so this
last quantity is not the identity because the rightmost complex conjugation
operator acts to the right, and the leftmost one to the left. Again, it is not
convenient to talk about time-reversal in the usual Dirac notation.

• Returning to the action of the time reversal operation on a Schrödinger
operator, we see that the expectation value of an arbitrary operator between
time reversed states is

hi|K←−OK−→ |ji =
³
hi|K←−

´³
K−→O

∗ |ji
´
= (hi|O∗ |ji)∗ = hj| O†∗ |ii . (2.72)

In the above expression, we used one of the properties of the hermitian
product, namely hk |li∗ = hl |ki∗ , as well as the definition of the adjoint of
an operator A : hk| A |li∗ = hl| A† |ki . Applying this expression Eq.(2.72) for
diagonal expectation values, and recalling that the density matrix is real, we
find for equilibrium averages,D

K←−OK−→
E
=

O†∗

®
= εt


O†
®

(2.73)

The last equality defines the signature of the time-reversal operation for
operators. One easily finds that �t = +1 for position while �t = −1 for
velocity or momentum, etc... We can use this last result to find the effect of
the time-reversal invariance on general correlation functions. The action of
time reversal Eq.(2.73) gives, when A and B are self-adjoint operators, and
K−→H = HK−→ D

K←−A(t)BK−→
E

=
D
B∗e−iHt/}A∗eiHt/}

E
= �tA�

t
B hBA(−t)i (2.74)

In addition to the signature, the order of operators is changed as well as the
sign of time. For χ00AiAj (t− t0) this immediately leads to

χ00AiAj (t− t0) = �ti�
t
jχ
00
AjAi(−t

0 − (−t)) (2.75)

and for the corresponding Fourier transform in frequency,

χ00AiAj (ω) = �ti�
t
jχ
00
AjAi

(ω) . (2.76)

Remark 15 In the case of an equilibrium average where both the density
matrix and the Hamiltonian commute with the time-reversal operation, we
have, as in Eq.(2.64), 

T−1t OTt
®
= hOi . (2.77)

Hence as expected, Eqs.(2.73) and (2.77) together imply that operators that
have an odd signature with respect to time reversal symmetry have a vanish-
ing expectation value in equilibrium.

• Time-reversal symmetry in the presence of spin: Spin should transform un-
der time reversal like angular momentum r× p, in other words it should
change sign since r does not while p does. Complex conjugation has this
property for r× p but not for spin represented by Pauli matrices. We should
really wait for the section where we treat fermions to discuss this problem
but we can start to address it here. To come out from the problem that
complex conjugation does not suffice anymore, it suffices to notice that in
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general the time reversal operator has to be represented by a unitary oper-
ator times complex conjugation. The resulting operator is still anti-unitary,
as can easily be proven. Let us thus write

Tt = K−→U (2.78)

where K−→ is complex conjugation again and U is a unitary operator U†U = 1
in spin space that we need to find. Note that the action on a bra is given by

U†K←− (2.79)

Let us first repeat the steps of calculating expectation values in time-reversed
states, as in Eq.(2.72), but for the more general case

hi|U†K←−OK−→U |ji =
³
hi|U†K←−

´³
K−→O

∗U |ji
´
=
¡
hi|U†O∗U |ji

¢∗
= hj|U†O†∗U |ii

(2.80)
Computing the equilibrium trace with U†O†∗U is thus equivalent to com-
puting the equilibrium trace in time-reversed states but with O. If we take
for O the spin σ, the net effect of the time-reversal operation should be to
change the direction of the spin, in other words, we want

U†σ†∗U = −σ (2.81)

The expression for U will depend on the basis states for spin. Using the
Pauli matrix basis

σx ≡
∙
0 1
1 0

¸
; σy ≡

∙
0 −i
i 0

¸
; σz ≡

∙
1 0
0 −1

¸
(2.82)

we have σ† = σ, and σ∗x = σx, σ
∗
y = −σy, σ∗z = σz so that Eq.(2.81) for

time reversal gives us the following set of equations for the unitary operator
U

U†σxU = −σx (2.83)

U†σyU = σy (2.84)

U†σzU = −σz (2.85)

Given the fundamental properties of Pauli matrices

σiσj + σjσi = 0 for i 6= j

σ2i = 1 (2.86)

σiσj = iσk (2.87)

where i, j, k are cyclic permutations of x, y, z, the solution to the set of
equations for U is

U = eiδσy (2.88)

where δ is an arbitrary real phase. This is like a π rotation along the y
axis so that already we can expect that up will be transformed into down
as we were hoping intuitively. In summary, the time reversal operator in
the presence of spin multiplies the spin part by eiδσy and takes the complex
conjugate.

Tt = K−→eiδσy (2.89)

Note the action of this operator on real spinors quantized along the z direc-
tion

Tt |↑i = −ie−iδ |↓i (2.90)
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Tt |↓i = ie−iδ |↑i (2.91)

The time reversal operator thus transforms up into down and vice versa but
with a phase. Even if we can choose e−iδ = i to make the phase real, the
prefactor cannot be +1 for both of the above equations. In particular, note
that TtTt |↑i = − |↑i , another strange property of spinors. The application
of two time reversal operations on spinors is like a 2π rotation around y so
that it changes the phase of the spinor. It can be proven that this result is
independent of the choice of quantization axis, as we can expect.[4] As far
as the main topic of the present section is concerned, observables such as
angular momentum will have a simple signature under time reversal (they
are always two spinors that come in for each observable Ai) so that the
results of the previous section are basically unmodified.

When χ00AiAj (ω) is real, the properties of being a commutator (2.93) and of
Hermiticity (2.95) allow us to further show that χ00AiAi(ω) is also an odd function
of frequency, an important result that we show in the following section.

Properties that follow from the definition.

Let us thus write down the general symmetry properties of χ00AiAj (t − t0) that
simply follow from its definition (2.60).

• Commutator: Since it is a commutator, we have

χ00AiAj (t− t0) = −χ00AjAi(t
0 − t) (2.92)

which in frequency space reads,

χ00AiAj (ω) = −χ
00
AjAi

(−ω) . (2.93)

• Hermiticity: Taking the observables as Hermitian, as is usually the case, one
can use the cyclic property of the trace and the Hermiticity of the density
matrix to show that

χ00AiAj (t− t0) =
h
χ00AjAi(t

0 − t)
i∗
. (2.94)

(Proof for Hermitian operators: h[Ai, Aj ]i∗ = Tr {ρAiAj − ρAjAi}∗

= Tr {AjAiρ−AiAjρ} = Tr {ρ [Aj , Ai]} with ρ the density matrix.)

In Fourier space, this becomes,

χ00AiAj (ω) =
h
χ00AjAi(ω)

i∗
. (2.95)

Remark 16 Non-hermitian operators: It is important to note that the operators
Ai may be non-Hermitian, as is the case for superconductivity. In such cases, one
should remember that the above property may not be satisfied.

Remark 17 Most useful property: The most important consequence of this sec-
tion that we will often use is that correlation functions such as χ00ρqρ−q(ω) are odd
in frequency and real

χ00ρqρ−q(ω) = −χ
00
ρqρ−q

(−ω) =
h
χ00ρqρ−q(ω)

i∗
(2.96)
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To prove this, we first use Hermiticity Eq.(2.95) in the form

χ00ρrρr0 (ω) =
h
χ00ρr0ρr(ω)

i∗
(2.97)

to show that χ00ρqρ−q(ω) is real

χ00ρqρ−q(ω) =

Z
d3r

Z
d3r0e−iq·(r−r

0)χ00ρrρr0 (ω) (2.98)

=

∙Z
d3r

Z
d3r0eiq·(r−r

0)χ00ρr0ρr(ω)

¸∗
(2.99)

=
h
χ00ρqρ−q(ω)

i∗
(2.100)

The commutator property Eq.(2.93), χ00ρqρ−q(ω) = −χ
00
ρ−qρq

(−ω) and symmetry
under parity transformation Eq.(2.69), χ00ρ−qρq(−ω) = χ00ρqρ−q(−ω) then suffice to
show that χ00ρqρ−q(ω) is also odd in frequency χ

00
ρqρ−q

(ω) = −χ00ρqρ−q(−ω). Instead
of parity, one could have invoked time-reversal symmetry Eq.(2.76) and the com-
mutator property Eq.(2.93) to show that χ00ρqρ−q(ω) is odd since then χ00ρrρr0 (ω) =

χ00ρr0ρr(ω) = −χ
00
ρrρr0

(−ω) immediately implies that χ00ρqρ−q(ω) = −χ
00
ρqρ−q

(−ω).

2.3.3 Kramers-Kronig relations and causality

These Kramers-Kronig relations are by far the best known and most useful rela-
tions. They relate real and imaginary parts of response functions and they come
simply from causality. Causality is insured by the presence of the θ function in the
expression for the response functions Eq.(2.61). Causality simply states that the
response to an applied field at time t0 occurs only at time t later. This is satisfied
in general in our formalism, as can be seen by looking back at the formula for
the linear response Eq.(2.52). Kramers-Kronig relations are the same causality
statement as above, seen from the perspective of Fourier transforms. To be more
specific, in this section we will derive the following results:

Re
h
χRAiAj (ω)

i
= P

R
dω0

π

Im
h
χRAiAj

(ω0)
i

ω0−ω (2.101)

Im
h
χRAiAj (ω)

i
= −P

R
dω0

π

Re
h
χRAiAj

(ω0)
i

ω0−ω . (2.102)

They come from analytic properties of the response functions in the complex
frequency plane. We give two derivations.

The straightforward manner:

Let us first derive the relations the easy way. Suppose that we know the Fourier
transform in frequency χRAiAj (ω) of the response function. We call it the retarded
function because the response comes after the perturbation. It is causal. One way
to make sure that its real time version χRAiAj (t − t0) contains θ(t − t0) is to have
χRAiAj (ω) analytic in the upper half-plane. To see that analyticity in the upper
half-plane is a sufficient condition to have θ(t− t0), consider

χRAiAj (t− t0) =

Z ∞
−∞

dω

2π
e−iω(t−t

0)χRAiAj (ω). (2.103)
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If t − t0 is negative, then it is possible to close the contour in the upper half
plane since the exponential will decrease at positive imaginary frequencies. Since
χRAiAj (ω) is analytic in that half-plane, the result will be zero, which is just another
way to say that χRAiAj (t − t0) is proportional to θ(t − t0), as we had planned to
show. In the next subsection, we will show that analyticity in the upper half plane
is also a necessary condition to have θ(t− t0).
Assuming that χRAiAj (ω) is analytic in the upper half plane, it is then easy to

derive the Kramers-Kronig relations. It now suffices to useZ
dω0

π

1

ω0 − ω − iη
χRAiAj (ω

0) = 2iχRAiAj (ω + iη) (2.104)

which is easy to prove by applying the residue theorem on a contour closed in the
upper half plane where χRAiAj (ω) is analytic. This also assumes that χ

R
AiAj

(ω0)

falls off at least like a small power of 1/ω0 so that there is no contribution from
the part at ∞. We then need the following identity,

lim
η→0

1

ω ∓ iη
= lim

η→0

ω ± iη

ω2 + η2
= lim

η→0

∙
ω

ω2 + η2
± iη

ω2 + η2

¸
= P 1

ω
± iπδ(ω) (2.105)

where δ is Dirac’s delta function and P means principal part integral. – Suppose
the factor 1/ (ω + iη) on the left is in an integral that can be done by contour
integration. Then, knowing the definition of the delta function, this can be used
as the definition of principal part.– Using this identity and setting equal the real
parts of our contour integral (2.104) we obtain, upon taking the lim η → 0,

P
Z

dω0

π

Re
h
χRAiAj (ω

0)
i

ω0 − ω
− Im

h
χRAiAj (ω)

i
= −2 Im

h
χRAiAj (ω)

i
(2.106)

while from the imaginary part,

P
Z

dω0

π

Im
h
χRAiAj (ω

0)
i

ω0 − ω
+Re

h
χRAiAj (ω)

i
= 2Re

h
χRAiAj (ω)

i
. (2.107)

This is precisely what we mean by the Kramers-Kronig relations, namely we re-
cover the results Eqs.(2.101)(2.102) at the beginning of this section. From the
proof just given, Kramers-Kronig relations will apply if

• χRAiAj (ω) is analytic, as a function of complex frequency, in the upper half-
plane.

• χRAiAj (ω) falls off at least as a small power of ω at infinity.

Spectral representation and alternate derivation.

It is instructive to perform a derivation which starts from what we found earlier.
We will gain as a bonus an explicit expression for real and imaginary parts in
terms of correlation functions, as well as a derivation of the analyticity properties
from scratch. In fact this will also complete the proof that analyticity in the upper
half-plane is both necessary and sufficient to have causality.
Using the convolution theorem, we would write for the frequency-space version

of the response functions, (2.61)

χRAiAj (ω) = 2i

Z
dω0

2π
χ00AiAj (ω

0)θ(ω − ω0). (2.108)
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This looks nice, but it does not really mean anything yet because we encounter a
serious problem when we try to evaluate the Fourier transform of the θ function.
Indeed, Z ∞

−∞
dteiωtθ(t) =

eiωt

iω
|∞0 (2.109)

and we have no idea what eiω∞ means. To remedy this, we have to return to
the expression for the linear response (2.52). Assuming that the external field
ai is turned-on adiabatically from t = −∞, we multiply whatever we had before
by eηt

0
, taking the limit of vanishing η at the end of the calculation. We also

adiabatically turn off the response at t→∞ by using a factor e−ηt.The equation
for the response in time (2.61) is then simply multiplied by eη(t

0−t), so that it
still depends only on the time difference. Furthermore, when we take its Fourier
transform,

R∞
−∞ d(t − t0)eiω(t−t

0), everything proceeds as before, except that we

can use the extra convergence factor e−η(t−t
0), to make sense out of the Fourier

transform of the Heaviside theta function. To be more specific, the equation for
the response (2.61) now reads,

χRAiAj (t− t0)e−η(t−t
0) = 2iχ00AiAj (t− t0)θ(t− t0)e−η(t−t

0) (2.110)

so that in the calculation of the response (2.108) we have,Z ∞
−∞

d(t− t0)ei(ω+iη−ω
0)(t−t0)θ(t− t0) =

ei(ω+iη−ω
0)(t−t0)

i(ω + iη − ω0)
|∞0 =

1

i(ω0 − ω − iη)
.

(2.111)
Everything behaves as if we had computed the Fourier transform for ω+iη instead
of ω,

χRAiAj (ω + iη) = 2i

Z
dω0

2π
χ00AiAj (ω

0)θ(ω + iη − ω0) (2.112)

=

Z
dω0

π

χ00AiAj (ω
0)

ω0 − (ω + iη)
. (2.113)

This function is called the “retarded response” to distinguish it from what we
would have obtained with θ(t0 − t) instead of θ(t − t0). The retarded response is
causal, in other words, the response occurs only after the perturbation. In the anti-
causal case (“advanced response”) the response all occurs before the perturbation
is applied. In the latter case, the convergence factor is e−η(t

0−t) instead of eη(t
0−t).

Introducing a new function

χAiAj (z) =
R

dω0

π

χ00AiAj (ω
0)

ω0−z (2.114)

we can write for the retarded response,

χRAiAj (ω) = limη→0 χAiAj (z)|z=ω+iη (2.115)

and for the advanced one,

χAAiAj (ω) = limη→0 χAiAj (z)|z=ω−iη. (2.116)

Using the above results, it is easy to see that χRAiAj (ω) is analytic in the upper half
plane, while χAAiAj (ω) is analytic in the lower-half plane. One can even explicitly
see from the equation (2.113) for the function which is analytic in the upper-half
plane χRAiAj (ω) that the poles or the integrand in the lower-half frequency plane
are just below the real axis, a distance η along the imaginary direction. The
residue at a given pole will depend on the value of χ00AiAj at the corresponding
value of the real coordinate of the pole.
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Remark 18 If χ00AiAj (ω
0) is given by a sum of delta function, then χAiAj (z) has

a series of poles just below the real axis. This is what occurs with the so-called
Lehman representation that we will discuss later. On the other hand, if χ00AiAj (ω

0)

is a continuous function, as occurs in an infinite system, then the poles of χAiAj (z)
are below the real axis, but not ncessarily close to it. The passage from a series
of poles to a continuous function is what introduces irreversibility in many-body
systems.

Definition 4 Equations such as (2.114) are called spectral representations.

Remark 19 Why spectral representation: The reason for this name is that, as we
discuss in the next section below, χ00AiAj (ω

0) contains information on dissipation
or, alternatively, on the spectrum of excitations. Hence, in that kind of equations,
the response is expressed in terms of the spectrum of excitations. We will also
have spectral representations for Green’s functions.

χAiAj (z) is a function which is equal to χRAiAj (ω) for z infinitesimally above
the real axis, and to χAAiAj (ω) for z infinitesimally below the real axis. On the
real axis of the complex z plane χAiAj (z) has a cut whenever χ

00
AiAj

(ω) 6= 0 sinceh
χAiAj (ω + iη)− χAiAj (ω − iη)

i
= 2iχ00AiAj (ω). (2.117)

So much for taking the Fourier transform of a response which is so simple
looking in its ordinary time version Eq.(2.61). Time-reversal invariance (2.76) and
Hermiticity in Eq.(2.95) imply, for two operators with the same signature under
time-reversal, that χ00AiAj (ω

0) is a real function. Hence, from the mathematical
identity for principal part Eq.(2.105) and from the spectral representation (2.114)
we have, for two hermitian operators Ai, Aj with the same signature under time
reversal, that

Im
h
χRAiAj (ω)

i
= χ00AiAj (ω) (2.118)

so that from the spectral representation we recover the first of the Kramers-Krönig
relation (2.101). The other one can be derived following the same route as in
the simpler derivation, namely apply

R
dω
π

1
ω−ω0+iη on both sides of the spectral

representation. For two hermitian operators Ai, Aj with opposite signatures under
time reversal Eqs.(2.76) and (2.95) imply that χ00AiAj (ω

0) is purely imaginary. In
this case,

Re
h
χRAiAj (ω)

i
= iχ00AiAj (ω) . (2.119)

Remark 20 Kramers-Kronig and time reversal: The Kramers Krönig relations
do not depend on these subtleties of signatures under time-reversal. However
the relation between real and imaginary parts of the response and commutator
Eq.(2.118) does. If we can compute either the real or imaginary part of the re-
sponse, the Kramers Krönig relations give us the part we do not know. In any
case, everything about the system is in χ00AiAj (ω).

2.3.4 Positivity of ωχ00(ω) and dissipation

Without proof, we state that positivity of dissipation implies that

χ00AiAi(ω)ω > 0. (2.120)
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We have seen that for Hermitian operators with the same signature under time
reversal, χ00AiAi(ω) is a real and odd function of frequency so the above equation is
satisfied. The positive definiteness of χ00AiAj (ω)ω by itself however does not suffice
to prove that χ00AiAi(ω) is an odd function of frequency.
One can check explicitely that χ00AiAi(ω) contains spectral information about

excited states by doing backwards the steps that lead us from Fermi’s golden rule
to correlation functions.

2.3.5 Fluctuation-dissipation theorem

This very useful theorem relates linear response to equilibrium fluctuations mea-
sured in scattering experiments. It takes the form,

SAiAj (ω) =
2~

1−e−β~ωχ
00
AiAj

(ω) = 2~(1 + nB (ω))χ
00
AiAj

(ω) (2.121)

where nB (ω) = 1/
¡
eβ~ω − 1

¢
is the Bose factor while the “structure factor” or

correlation function is defined by,

SAiAj (t) ≡ hAi(t)Aji− hAii hAji = h(Ai(t)− hAii) (Aj(0)− hAji)i (2.122)

≡ hδAi(t)δAji . (2.123)

We have already encountered the charge structure factor in the context of inelas-
tic neutron scattering. Clearly, the left-hand side of the fluctuation-dissipation
theorem Eq.(2.121) is a correlation function for dissipation while the right-hand
side contains the dissipation function χ00 just discussed. This is a key theorem of
statistical physics.
To prove the theorem, it suffices to trivially relate the definitions,

χ00AiAj (t) =
1

2~
h[Ai(t), Aj ]i =

1

2~
h[δAi(t), δAj ]i =

1

2~
¡
SAiAj (t)− SAjAi(−t)

¢
(2.124)

then to use the key identity,

SAjAi(−t) = SAiAj (t− i~β) . (2.125)

This kind of periodicity of equilibrium correlation functions will be used over and
over in the context of Green’s functions. It will allow to define Fourier expansions
in terms of so-called Matsubara frequencies. The proof of the identity simply
uses the definition of the time evolution operator and the cyclic property of the
trace. More specifically, using the cyclic property of the trace, time-translation
invariance follows, and

SAjAi(−t) = Z−1Tr
£
e−βHδAj(−t)δAi

¤
= Z−1Tr

£
e−βHδAjδAi(t)

¤
(2.126)

To reverse the order of δAi and δAj , it suffices to use the cyclic property, so that

SAjAi(−t) = Z−1Tr
£
δAi(t)e

−βHδAj

¤
. (2.127)

Simple manipulations and Heisenberg’s representation for the time-evolution of
the operators gives,

SAjAi(−t) = Z−1Tr
£
e−βHeβHδAi(t)e

−βHδAj

¤
(2.128)
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= Z−1Tr
£
e−βHδAi(t− i~β)δAj

¤
= SAiAj (t− i~β). (2.129)

This is precisely what we wanted to prove. The rest is an exercise in Fourier
transforms,Z

dteiωtSAiAj (t− i~β) =
Z

dteiω(t+i~β)SAiAj (t) = e−β~ωSAiAj (ω). (2.130)

To prove the last result, we had to move the integration contour from t to t+ i~β,
in other words in the imaginary time direction. Because of the convergence factor
e−βH in the traces, expectations of any number of operators of the type eiHtAe−iHt

are analytic in the imaginary time direction for −i~β < t < i~β, hence it is
permissible to displace the integration contour as we did. Fourier transforming
the relation between χ00AiAj (t) and susceptibility Eq.(2.124), one then recovers the
fluctuation-dissipation theorem (2.121).
A few remarks before concluding.

Remark 21 Alternate derivation: Formally, the Fourier transform gives the same
result as what we found above if we use the exponential representation of the Taylor
series,

SAiAj (t− i~β) = e−i~β
∂
∂tSAiAj (t).

Remark 22 Relation to detailed balance: The Fourier-space version of the peri-
odicity condition (2.125) is a statement of detailed balance:

SAjAi(−ω) = e−β~ωSAiAj (ω) . (2.131)

Indeed, in one case the energy ~ω is absorbed in the process, while in the other case
it has the opposite sign (is emitted). This is one way of seeing the basic physical
reason for the existence of the fluctuation-dissipation theorem: Even though the
response apparently had two different orders for the operators, the order of the
operators in thermal equilibrium can be reversed using the cyclic property of the
trace..

Remark 23 Physical explanation of fluctuation-dissipation theorem: Physically,
the fluctuation-dissipation theorem is a statement that the return to equilibrium is
governed by the same laws, whether the perturbation was created by an external
field or by a spontaneous fluctuation.

2.3.6 Sum rules

All the many-body Physics of the response or scattering experiments is in the cal-
culation of unequal-time commutators. These commutators in general involve the
time evolution of the systems and thus they are non-trivial to evaluate. However,
equal-time commutators are easy to evaluate in general using the usual commu-
tation relations. Equal-time corresponds to integral over frequency as seen from
Fourier space. Hence the name sum rules. We will not in general be able to
satisfy all possible sum-rules since this would mean basically an exact solution
to the problem, or computing infinite-order high-frequency expansion. In brief,
sum-rules are useful to

• Relate different experiments to each other.

• Establish high frequency limits of correlation functions.

• Provide constraints on phenomenological parameters or on approximate the-
ories.

50 RESPONSE FUNCTIONS AND THEIR GENERAL PROPERTIES



Thermodynamic sum-rules.

Suppose we compute the linear response to a time-independent perturbation. For
example, compute the response of the magnetization to a time-independent mag-
netic field. This should give us the susceptibility. Naturally, we have to leave the
adiabatic switching-on, i.e. the infinitesimal η. In general then,

δ hAi(ω = 0)i = χRAiAj (ω = 0)aj(ω = 0). (2.132)

Returning to the notation where q is explicitly written,

δ hAi(q,ω = 0)i = χRAiAj (q,ω = 0)aj(q, ω = 0). (2.133)

Using the spectral representation (2.114) and the usual relation between iη and
principal parts, Eq.(2.105), we also have,

χRAiAj (q,ω = 0) =

Z ∞
−∞

dω

π

χ00AiAj (q,ω)

ω − iη
= P

Z ∞
−∞

dω

π

χ00AiAj (q,ω)

ω
. (2.134)

There is no contribution from the imaginary part on the grounds that there can
be no dissipation zero-frequency dissipation in a stable system. In fact, as long
as the thermodynamic derivatives involve operators that have the same symmetry
under time reversal, then χ00AiAj (q,ω) is odd, as proven at the end of the section
on symmetry properties, so that χ00AiAj (q,ω = 0) = 0. Note that in practice,
the principal part in the above equation is not necessary since χ00AiAj (q,ω) usually
vanishes linearly in ω for small ω. To be completly general however, it is preferable
to keep the principal part.
Recalling that the thermodynamic derivatives are in general for uniform (q =

0) applied probes, the above formula become,

lim
q→0

χRAiAj (q,ω = 0) =
∂Ai

∂aj
≡ χAiAj . (2.135)

χAiAj=limq→0
R∞
−∞

dω
π

χ00AiAj (q,ω)

ω . (2.136)

This is called a thermodynamic sum-rule. As an example, consider the density n
response. It obeys the so-called compressibility sum rule,

lim
q→0

χRnn(q,ω = 0) = lim
q→0

Z ∞
−∞

dω

π

χ00nn(q,ω)

ω
=

µ
∂n

∂μ

¶
T,V

. (2.137a)

As usual, a few remarks are in order:

Remark 24 Order of limits: It is extremely important to note that for thermo-
dynamic sume rules, the ω → 0 limit is taken first, before the q → 0 limit.
The other limit describes transport properties as we shall see. Another impor-
tant question is that of the principal part integral. As follows from a problem
set, in the long wave length limit we have χ00nn(q,ω) =

2Dq2ω
ω2+(Dq2)2

χnn where D is
the diffusion constant. One can check explicitly with that form that at any fi-
nite q, it does not matter whether we take or not the principal part integral. We
did not take it in Eq.(2.137a). If we take the limit q→ 0 before doing the in-
tegral however, limq→0 χ00nn(q,ω) takes the form ωδ (ω) so it is important NOT
to take the principal part integral to get the correct result (in other words, un-
der the integral sign the η → 0 limit must be taken before the q→ 0 limit). We
also see this as follows. If we return to the original form limη→0 1/(ω − iη) =
limη→0 ω/(ω

2 + η2) + iη/(ω2 + η2), and then do the integral of the first term (real
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part), we can check that we have to take the η → 0 limit under the integral sign
before the q→ 0 limit to recover the result obtained by doing the integral at finite
q and then taking the q→ 0 limit (the latter is unambiguous and does not depend
on the presence of the principal part in the integral). Physically, this means that
the adiabatic turning-on time must be longer than the diffusion time to allow the
conserved quantity to relax. This is summarized by the following set of equations

lim
q→0

P
Z ∞
−∞

dω

π

χ00nn(q,ω)

ω
= lim

q→0

Z ∞
−∞

dω

π

χ00nn(q,ω)

ω
(2.137b)

=

Z ∞
−∞

dω

π
lim
q→0

χ00nn(q,ω)

ω
(2.137c)

6= P
Z ∞
−∞

dω

π
lim
q→0

χ00nn(q,ω)

ω
(2.137d)

Remark 25 Thermodynamic sum-rule and moments: Thermodynamic sum-rules
are in a sense the inverse first moment over frequency of χ00AiAj (q,ω) (the latter
being analogous to the weight). Other sum-rules are over positive moments, as we
now demonstrate.

Alternate derivation: Here is another way to derive the thermodynamic sum
rules. First note that thermodynamic variables involve conserved quantities,
namely quantities that commute with the Hamiltonian. Take for example N,
the total number of particles. Since N commutes with the Hamiltonian, in the
grand-canonical ensemble we have the classical result

hNNi− hNi2 = 1

β

µ
∂n

∂μ

¶
T,V

By definition,

hNNi− hNi2 =
Z ∞
−∞

dω

2π
SNN (ω) (2.137e)

Using the general fluctuation-dissipation theorem, we now relate this quantity to
χ00NN (ω) as follows. Because nq for q = 0 is simply the total number of particles
N and hence is conserved, hnq=0 (t)nq=0i is time independent. In frequency
space then, this correlation function is a delta function in frequency. For such a
conserved quantity, the fluctuation-dissipation theorem Eq.(2.121) then becomes

SNN (ω) = lim
ω→0

2~
1− e−β~ω

χ00NN (ω) =
2

βω
χ00NN (ω) (2.137f)

from which we obtain what is basically the thermodynamic sum-rule Eq.(2.137a)

hNNi− hNi2 =

Z ∞
−∞

dω

2π
SNN (ω) (2.137g)

=

Z ∞
−∞

dω

π

χ00NN (ω)

βω
=
1

β

µ
∂n

∂μ

¶
T,V

(2.137h)

This is then the classical form of the fluctuation-dissipation theorem. In this form,
the density fluctuations are related to the response (∂n/∂μ)T,V (itself related to
the compressibility).

Moments, sum rules, and high-frequency expansions.

Odd derivatives of χ00AiAj at equal-time are easy to compute and provide us with
moments:Z ∞

−∞

dω

π
ωnχ00AiAj (ω) =

µ
i
∂

∂t

¶n ∙Z ∞
−∞

dω

2π
e−iωt2χ00AiAj (ω)

¸
t=0

(2.137i)
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=
1

~

¿∙µ
i
∂

∂t

¶n
Ai(t), Aj(0)

¸À
t=0

=
1

~

¿∙∙∙
Ai(t),

H

~

¸
,
H

~

¸
..., Aj(0)

¸À
t=0
(2.137j)

which may all easily be computed through n equal-time commutations with the
Hamiltonian.
Suppose the spectrum of excitations is bounded, as usually happens when

the input momentum q is finite. Then, χ00AiAj (ω
0) = 0 for ω0 > D where D is

some large frequency. Then, for ω > D, we can expand the denominator since
the condition ω0/ω ¿ 1 will always be satisfied. This gives us a high-frequency
expansion,

χRAiAj (q,ω) =
R∞
−∞

dω0

π

χ00AiAj (q,ω
0)

ω0−ω−iη (2.137k)

≈
P∞

n=1
−1
ω2n

R∞
−∞

dω0

π (ω0)2n−1 χ00AiAj (q,ω
0) (2.137l)

where we have explicitly taken into account the fact that only odd moments of
χ00AiAj do not vanish because it is an odd function. Clearly, in the ω → ∞ limit,
the susceptibilities in general scale as 1/ω2, a property we will use later in the
context of analytic continuations.

The f sum-rule as an example.

When the potential-energy part of the Hamiltonian commutes with the density
operator, while the kinetic-energy part is that of free electrons (not true for tight-
binding electrons) we find thatR∞

−∞
dω
π ωχ00nn(q, ω) =

nq2

m . (2.137m)

This is the f sum-rule. It is valid for an arbitrary value of the wave vector q. It is a
direct consequence of the commutation-relation between momentum and position,
and has been first discussed in the context of electronic transitions in atoms. The
proof is as follows. We first use the above results for momentsZ ∞

−∞

dω

π
ωχ00nn(q, ω) =

i

~V

¿∙
∂nq(t)

∂t
, n−q(t)

¸À
(2.137n)

= − 1

~2V h[[H,nq(t)] , n−q(t)]i (2.137o)

In the first equality, we have also used translational invariance to write,Z
d (r− r0) e−iq·(r−r

0)f(r− r0) = 1

V

Z
dre−iq·r

Z
dr0e−iq·r

0
f(r− r0) (2.137p)

where V is the integration volume. The computation of the equal-time commutator
is self-explanatory,

nq =

Z
dre−iq·r

X
α

δ(r− rα) =
X
α

e−iq·rα (2.137q)

£
pxβ , nq

¤
=
~
i

"
∂

∂xβ
,
X
α

e−iq·rα

#
= −~qxe−iq·rβ . (2.137r)

Assuming that the interactions commute with the density operator, and using
[p · p, n] = p [p, n] + [p, n]p we have

[H,nq(t)] =
X
β

"
p2β
2m

,nq

#
=

1

2m

X
β

¡
pβ ·

¡
−~qe−iq·rβ

¢
+
¡
−~qe−iq·rβ

¢
· pβ

¢
(2.137s)
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[[H,nq(t)] , n−q(t)] = −
1

m

NX
β=1

~2q2e−iq·rβeiq·rβ = −~
2q2N

m
(2.137t)

which proves the result (2.137m) when substituted in the expression in terms of
commutator (2.137o) with n ≡ N/V. The result of the commutators is a number
not an operator, so the thermodynamic average is trivial in this case! (Things will
be different with tight-binding models.)
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3. GREEN FUNCTIONS

We are now ready to start working with the real many-body problem. This chapter
will be rather formal but we will make the link with the previous chapter and also
we will try to do applications as soon as possible in the following chapter.
The single-particle basis state is a complete basis that is used most often. Note

however that a simple wave-function such as

ψ (x, y) = (x− y)Ne−|x−y|/a (3.1)

for two electrons in one dimension, with N and a constants, is a perfectly ac-
ceptable antisymmetric wave function. To expand it in a single-particle basis
state however requires a sum over many (in general an infinite number of) anti-
symmetrized one-particle states.
The plan then is as follows. We will then motivate the definition of the Green’s

function in the many-body context by analogy with what we just saw. Then, we
return to perturbation theory to show that it is most natural to work in imaginary
time. This leads us to the Matsubara Green’s function. We show that if we know
this Green’s function, we also happen to know the retarded one, as well as all
the one-body quantities of physical interest. We will once more spend some time
on the interpretation of the spectral weight, develop some formulas for working
with the Fourier series representation of the imaginary time functions (Matsubara
frequencies). This should put us in a good position to start doing perturbation
theory, which is all based on Wick’s theorem. Hence, we will spend some time
proving this theorem as well as the very general linked-cluster theorem that is very
useful in practice.

3.0.7 Second quantized operators in the Heisenberg picture

In a previous chapter, we showed how to translate one- and two-body operators in
the Schrödinger picture into the language of second quantization. The Heisenberg
picture is defined as usual. In this section, we derive a few useful identities and
study the case of quadratic Hamiltonians as an example.
In the Heisenberg picture

ck (t) = ei
bHtcke

−i bHt ; c†k (t) = ei
bHtc†ke

−i bHt (3.2)

It is easy to compute the time evolution in the case where the Hamiltonian is
quadratic in creation and annihilation operators. Take for example

bH =
X
k

�kc
†
kck (3.3)

The time evolution may be found from the Heisenberg equation of motion, which
follows from differentiating the definition of the Heisenberg operators

i
∂ck (t)

∂t
=
h
ck (t) , bHi . (3.4)
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To evaluate the commutator, we note that since bH commutes with itself,h
ck (t) , bHi = hck (t) , ei bHt bHe−i

bHt
i
=

"
ck (t) , e

i bHt

ÃX
k0

�k0c
†
k0ck0

!
e−i

bHt

#
(3.5)

=

"
ck (t) ,

ÃX
k0

�k0c
†
k0 (t) ck0 (t)

!#
=
X
k0

�k0
h
ck (t) , c

†
k0 (t) ck0 (t)

i
. (3.6)

Commutator identities: The following are very useful identities to get equa-
tions of motions, and in general equal-time commutators.

[A,BC] = ABC −BCA = ABC −BAC +BAC −BCA (3.7)

[A,BC] = [A,B]C +B [A,C] (3.8)

[A,BC] = {A,B}C −B {A,C} (3.9)

The first commutator identity is familiar from elementary quantum mechan-
ics. The last one can be memorized by noting that it behaves as if the B
had anticommuted with the A.

The above identities can then be used to evaluate the needed commutator
either for fermionsh

ck (t) , c
†
k0 (t) ck0 (t)

i
=
n
ck (t) , c

†
k0 (t)

o
ck0 (t) + 0 = δk,k0ck (t) (3.10)

or for bosonsh
ck (t) , c

†
k0 (t) ck0 (t)

i
=
h
ck (t) , c

†
k0 (t)

i
ck0 (t) + 0 = δk,k0ck (t) (3.11)

in either case then, the equation of motion becomes

i
∂ck (t)

∂t
=
h
ck (t) , bHi = �kck (t) (3.12)

whose solution is
ck (t) = e−i�ktck (3.13)

Taking the adjoint,

c†k (t) = c†ke
i�kt . (3.14)

If we had been working in a basis where bH was not diagonal, then repeating
the steps above,

i
∂aα (t)

∂t
=
h
aα (t) , bHi =X

β,γ

hβ| bH |γi haα (t) , a†β (t) aγ (t)i =X
γ

hα| bH |γi aγ (t)
(3.15)

whose solution is found by diagonalizing, integrating, and changing back the basis.

3.1 Motivation of the definition of the second quan-
tized Green’s function GR

When the Hamiltonian is quadratic in creation-annihilation operators, in other
words when we have a one-body problem, the retarded single-particle Green’s
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function we are about to define does reduce to the Green’s function we studied in
the one-body Schrödinger equation. Its actual definition is however better suited
for many-body problems as we shall see in the present section.
Consider the definition we had before

GR (r,t; r0, t0) = −i hr| e−iH(t−t
0) |r0i θ (t− t0) . (3.16)

Since in second-quantization the operator ψ† (r) creates a particle at point r, the
following definition seems natural

GR (r,t; r0, t0) = −i hGS|ψ (r) e−iH(t−t
0)ψ† (r0) |GSi θ (t− t0) (3.17)

In this expression, |GSi is a many-body vacuum (ground-state). Choosing appro-
priately the zero of energy, H |GSi = 0 |GSi = 0 so that the above result could
be written

GR (r,t; r0, t0) = −i hGS|ψ (r,t)ψ† (r0, t0) |GSi θ (t− t0) . (3.18)

This is not quite what we want except in the case where there is a single parti-
cle propagating. Indeed, to keep the physical definition of the propagator, it is
convenient to have at time t = t0 + 0+

GR
¡
r,t+ 0+; r0, t

¢
= −iδ (r− r0) (3.19)

reflecting the fact that the wave-function does not have the time to evolve in an
infinitesimal time. However, in the present case, the many-body vacuum |GSi is
a linear combination of Slater determinants,

|GSi =
Z

dr1...

Z
drNΨ (r1...rN )ψ

† (r1) ...ψ
† (rN ) |0i (3.20)

where Ψ (r1...rN ) reduces to the Schrödinger wave function and |0i is a real vac-
uum. This means that hGS|ψ (r,t)ψ† (r0, t) |GSi is not in general a delta function.
This is a manifestation of the fact that we have a many-body problem and that
particles are indistinguishable.
Nevertheless, we can recover the desired simple initial condition Eq.(3.19) even

in the Many-Body case by adopting the following definition, which in a way takes
into account the fact that not only electrons, but also holes can now propagate:

GR (r,t; r0, t0) = −i hGS|
n
ψ (r,t) , ψ† (r0, t0)

o
|GSi θ (t− t0) ; for fermions

(3.21)

GR (r,t; r0, t0) = −i hGS|
h
ψ (r,t) , ψ† (r0, t0)

i
|GSi θ (t− t0) ; for bosons

(3.22)
This is the zero-temperature definition. At finite temperature, the ground-state
expectation value is replaced by a thermodynamic average. Hence we shall in
general work with

Definition 5

GR (r,t; r0, t0) = −i
Dn

ψ (r,t) , ψ† (r0, t0)
oE

θ (t− t0) ; for fermions (3.23)

GR (r,t; r0, t0) = −i
Dh
ψ (r,t) , ψ† (r0, t0)

iE
θ (t− t0) ; for bosons (3.24)

These definitions have the desired property that at t = t0 + 0+, we have that
GR (r,t+ 0+; r0, t) = −iδ (r− r0) as follows from commutation or anti-commutation
relations
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Remark 26 Analogies: This definition is now analogous to χR = 2iχ”θ (t− t0)
which we had in linear response. The imaginary part of the Green’s function will
again be a commutator or an anticommutator and hence will obey sum-rules.

Remark 27 Green’s function as a response function: Physically, this definition
makes obvious that the Green’s function is the response to an external probe which
couples linearly to creation-annihilation operators. In the case of fermions, the
external probe has to be an anticommuting number (a Grassmann variable, as we
shall discuss later).

3.1.1 Examples with quadratic Hamiltonians:

When the Hamiltonian is quadratic in creation-annihilation operators, the equa-
tion of motion obeyed by this Green’s function is the same as in the one-body
case. An example of quadratic Hamiltonian is that for free particles

hr|H |r1i = −
∇2
2m

hr |r1i = −
∇2
2m

δ (r− r1) . (3.25)

In the general second quantized case, we write

bH =

Z
dr1

Z
dr2ψ

† (r2,t) hr2|H |r1iψ (r1,t) (3.26)

We give two calculations of the Green’s function, one directly from the definition
and one from the equations of motion (Schrödinger’s equation).

Calculation from the definition. For a quadratic Hamiltonian, one can also
compute directly the Green’s function from its definition since, if |ni is an
eigenbasis, φn (r) = hr |ni, hn0|H |ni = Enδn,n0

ψ (r,t) =
X
n

hr |ni an (t) =
X
n

e−iEnt hr |ni an =
X
n

e−iEntφn (r) an

(3.27)n
ψ (r,t) , ψ† (r0, 0)

o
=
X
n

X
m

e−iEntφn (r)
©
an, a

†
m

ª
φ∗m (r

0) =
X
n

e−iEntφn (r)φ
∗
n (r

0)

(3.28)

GR (r,t; r0, 0) = −i
Dn

ψ (r,t) , ψ† (r0, 0)
oE

θ (t) = −i
X
n

e−iEntφn (r)φ
∗
n (r

0) θ (t)

(3.29)

GR (r, r0;ω) =

Z
dtei(ω+iη)t (−i)

X
n

e−iEntφn (r)φ
∗
n (r

0) θ (t) =
X
n

φn (r)φ
∗
n (r

0)

ω + iη − En

(3.30)

Calculation from the equations of motion In general, the equation of mo-
tion can be obtained as follows

i
∂

∂t
GR (r,t; r0, t0) = i

∂

∂t

h
−i
Dn

ψ (r,t) , ψ† (r0, t0)
oE

θ (t− t0)
i

(3.31)

=
Dn

ψ (r,t) , ψ† (r0, t0)
oE

δ (t− t0) + i
Dnh bH,ψ (r,t)

i
, ψ† (r0, t0)

oE
θ (t− t0)

(3.32)
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Following the steps analogous to those in Eq.(3.10) above, using the anti-
commutation relations Eqs.(??)(??) it is clear thath bH,ψ (r,t)

i
= −

Z
dr1 hr|H |r1iψ (r1,t) (3.33)

so that

i
∂

∂t
GR (r,t; r0, t0) (3.34)

= δ (r− r0) δ (t− t0)− i

Z
dr1 hr|H |r1i

Dn
ψ (r1,t) , ψ

† (r0, t0)
oE

θ (t− t0)

= δ (r− r0) δ (t− t0) +

Z
dr1 hr|H |r1iGR (r1,t; r

0, t0) (3.35)

This last expression may be rewritten asZ
dr1 hr| i

∂

∂t
− bH |r1iGR (r1,t; r

0, t0) = δ (r− r0) δ (t− t0) (3.36)

= hr |r0i δ (t− t0) (3.37)

where we recognize the equation (??) found in the previous Chapter. For-
mally then

hr|
µ
i
∂

∂t
− bH¶GR (t−t0) |r0i = hr |r0i δ (t− t0) (3.38)

so that the operator form of the Green’s function is the same as that found
before, namely bGR (t−t0) =

µ
i
∂

∂t
− bH¶−1 δ (t− t0) (3.39)

It is convenient to rewrite the result for the equation of motion Eq.(3.36) in
the following form that is more symmetrical in space and time.Z

dr1

Z
dt1 hr| i

∂

∂t
− bH |r1i δ (t− t1)G

R (r1,t1; r
0, t0) = δ (r− r0) δ (t− t0)

(3.40)
We may as well let time play a more important role since in the many-body
case it will be essential, as we have already argued in the context of the
frequency dependence of the self-energy. The inverse of the Green’s function
in this notation is just like above,

GR (r,t; r1, t1)
−1 = hr| i ∂

∂t
− bH |r1i δ (t− t1) . (3.41)

Seen from this point of view, the integrals over time and space are the
continuum generalization of matrix multiplication. The delta function is
like the identity matrix.

Definition 6 The following short-hand notation is often used

GR (1, 10) ≡ GR (r,t; r0, t0) (3.42)

GR
¡
1, 1
¢−1

GR
¡
1, 10

¢
= δ (1− 10) (3.43)

where the index with the overbar stands for an integral.
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3.2 Interaction representation and time-ordered prod-
uct

Perturbation theory in the many-body case is less trivial than in the one-body
case. In the many-body case time and frequency dependence are unavoidable. To
construct perturbation theory we will follow the same steps as those used in the
derivation of linear response theory. The only difference is that we will write a
formally exact solution for the evolution operator in the interaction representation
instead of using only the first order result. The important concept of time-ordered
product comes out naturally from this exercise.
The plan is to recall the Heisenberg and Schrödinger pictures, and then to

introduce the interaction representation in the case where the Hamiltonian can be
written in the form

H = H0 + V (3.44)

where
[H0, V ] 6= 0 (3.45)

Let us begin. We assume that H is time independent. Typical matrix elements
we want to compute at finite temperature are of the form

hi| e−βHψH (t)ψ
†
H (t

0) |ii (3.46)

We do not write explicitly indices other than time to keep the notation simple.
Recall the Heisenberg and Schrödinger picture

ψH (t) = eiHtψSe
−iHt (3.47)

We define the time evolution operator

U (t, 0) = e−iHt (3.48)

so that

ψH (t) = U (0, t)ψSU (t, 0) (3.49)

Because from now on we assume time-reversal symmetry, we will always make the
replacement

U† (t, 0) = U (0, t) (3.50)

as we just did. The differential equation for the time-evolution operator is

i
∂U (t, 0)

∂t
= HU (t, 0) (3.51)

With the initial condition U (0, 0) = 1 it has U (t, 0) = e−iHt as its solution. It
obeys the semi-group property

U (t, t0) = U (t, 0)U (0, t0) = e−iH(t−t
0) (3.52)

U−1 (t, 0) = U (0, t) (3.53)

U (t0, t0) = 1 (3.54)

for arbitrary t0
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We are now ready to introduce the interaction representation. In this repre-
sentation, the fields evolve with the unperturbed Hamiltonian

bψ (t) = eiH0tψSe
−iH0t (3.55)

Note that we now use the caret (hat) to mean “interaction picture”. We hope this
change of notation causes no confusion. To introduce these interaction represen-
tation fields in a general matrix element,

hi| e−βHψH (t)ψ
†
H (t

0) |ii = hi| e−βHU (0, t)ψSU (t, 0)U (0, t0)ψ
†
SU (t

0, 0) |ii
(3.56)

it suffices to notice that it is easy to remove the extra eiH0t coming from the
replacement of ψS by e

−iH0tbψ (t) eiH0t simply by including them in the definition
of the evolution operator in the interaction representation

bU (t, 0) = eiH0tU (t, 0) (3.57)

bU (0, t) = U (0, t) e−iH0t (3.58)bU (t, 0) bU (0, t) = bU (0, t) bU (t, 0) = 1 (3.59)

With these definitions, we have that our general matrix element takes the form

hi| e−βHψH (t)ψ
†
H (t

0) |ii = hi| e−βH bU (0, t) bψ (t) bU (t, 0) bU (0, t0) bψ† (t0) bU (t0, 0) |ii
(3.60)

The purpose of the exercise is evidently to find a perturbation expansion for the
evolution operator in the interaction representation. It will be built starting from
its equation of motion

i
∂ bU (t, 0)

∂t
= eiH0t (−H0 +H)U (t, 0) = eiH0tV

¡
e−iH0teiH0t

¢
U (t, 0) (3.61)

Since a general operator is a product of ψ fields, it will also evolve with time in
the same way so it is natural to define the interaction representation for V as well.
Our final result for the equation of motion for bU (t, 0) is then

i
∂ bU (t, 0)

∂t
= bV (t) bU (t, 0)

Multiplying on the right by bU (0, t0) we have a more general equation
i∂
bU(t,t0)
∂t = bV (t) bU (t, t0) (3.62)

Remark 28 Difficulties associated with the fact that we have non-commuting op-
erators: The solution of this equation is not e−i

R bV (t)dt. We will see momentarily
how the real solution looks formally like an exponential while at the same time
being very different from it. To write the solution as a simple exponential is wrong
because it assumes that we can manipulate bU (t, t0) as if it was a number. In re-
ality it is an operator so that ∂ bU(t,t0)

∂t
bU (t, t0)−1 6= ∂

∂t ln
bU (t, t0) . Indeed, note the

ambiguity in writing the definition of this derivative: Should we write

∂

∂t
ln bU (t, t0) = lim

∆t→0
bU (t, t0)−1 hbU (t+∆t, t0)− bU (t, t0)i /∆t

or
lim
∆t→0

hbU (t+∆t, t0)− bU (t, t0)i bU (t, t0)−1 /∆t ? (3.63)
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The two limits cannot be identical since in general

lim
∆t→0

hbU (t+∆t, t0) , bU (t, t0)−1i 6= 0. (3.64)

because bU (t, t0) is made up of operators such as V and e−iH0t that do not commute
with each other.

To solve the equation for the evolution operator Eq.(3.62), it is more conve-
nient to write the equivalent integral equation that is then solved by iteration.
Integration on both sides of the equation and use of the initial condition Eq.(3.54)
gives immediately Z t

t0

∂ bU (t0, t0)
∂t0

dt0 = −i
Z t

t0

dt0 bV (t0) bU (t0, t0) (3.65)

bU (t, t0) = 1− i

Z t

t0

dt0 bV (t0) bU (t0, t0) (3.66)

Solving by iteration, we find

bU (t, t0) = 1− i

Z t

t0

dt0 bV (t0) bU (t0, t0) = (3.67)

= 1− i

Z t

t0

dt0 bV (t0) + (−i)2 Z t

t0

dt0 bV (t0)Z t0

t0

dt00 bV (t00) (3.68)

+(−i)3
Z t

t0

dt0 bV (t0) Z t0

t0

dt00 bV (t00)Z t”

t0

dt000 bV (t000) + ... (3.69)

Suppose t > t0 and consider a typical term in this series. By suitably defining a
contour C and time-ordering operator along this contour Tc, it can be rearranged
as follows

(−i)3
Z t

t0

dt0 bV (t0)Z t0

t0

dt00 bV (t00) Z t”

t0

dt000 bV (t000) (3.70)

= (−i)3 1
3!
Tc

∙Z
C

dt1 bV (t1)Z
C

dt2 bV (t2) Z
C

dt3 bV (t3)¸ (3.71)

where

• C is a contour that is here just a real line segment going from t0 to t.

• Tc is the “time-ordering operator”. Assuming t > t0, it places the operator
which appear later on the contour C to the left. For the time being, Tc orders
operators that are bosonic in nature. A generalization will appear soon with
fermionic Green’s functions.

• The integral on the lef-hand side of the last equation covers all possible times
such that the operators with the time that is largest (latest) are to the left.
The 1

3! comes from the fact that for a general bV (t1) bV (t2) bV (t3) there are
3! ways of ordering the operators. All these possible orders appear in the
integrals on the right-hand side of the last equation. The operator Tc always
orders them in the order corresponding to the left-hand side, but this means
that the integral on the left-hand side appears 3! times on the right-hand
side, hence the overall factor of 1

3! .

• A product of operators on which Tc acts is called a time-ordered product.
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One also needs bU (0, t). In this case, with t > 0, the operators at the earliest
time are on the left. This means that the contour on which the Tc is defined is
ordered along the opposite direction.
A general term of the series may thus be written as

bU (t, t0) = ∞X
k=0

(−i)k 1
k!
Tc

"µZ
C

dt1 bV (t1)¶k# (3.72)

which we can in turn write in the convenient notation

bU (t, t0) = Tc

h
exp

³
−i
R
C
dt1 bV (t1)´i (3.73)

where the contour is as defined above. In other words, operators are ordered right
to left from t0 to t whether t, as a real number, is larger or smaller than t0.
We can check the limiting case [H0, V ] = 0. Then bV is independent of time and

we recover the expected exponential expression for the time evolution operator.
The definition of the time-ordering operator is extremely useful in practice not

only as a formal device that allows the time evolution to still look like an expo-
nential operator (which is explicitly unitary) but also because in many instances it
will allow us to treat operators on which it acts as if they were ordinary numbers.
In the zero-temperature formalism, the analog of bU (t, t0) is the so-called S

matrix. The time-ordering concept is due to Feynman and Dyson.

Remark 29 Non-quadratic unperturbed Hamiltonians: It is important to notice
that in everything above, H0 does not need to be quadratic in creation-annihilation
operators. With very few exceptions however,[10] it is quadratic since we want
the “unperturbed” Hamiltonian to be easily solvable. Note that the case where H0

is time dependent can also be treated but in this case we would have an evolution
operator U0 (t, 0) instead of e−iH0t. The only property of the exponential that we
really use in the above derivation is the composition law obeyed by time-evolution
operators in general, namely U0 (t, t0)U0 (t0, t00) = U0 (t, t

00) .

Remark 30 The general case of time-dependent Hamiltonians: The problem we
just solved for the time evolution in the interaction picture Eq.(3.62) is a much
more general problem that poses itself whenever the Hamiltonian is time-dependent.

3.3 Kadanoff-BaymandKeldysh-Schwinger contours

While we have discussed only the time evolution of the operators in the interaction
representation, it is clear that we should also take into account the fact that the
density matrix e−βH should also be calculated with perturbative methods. The
results of the previous section can trivially be extended to the density matrix by
a simple analytic continuation t→ −iτ . In doing so in the present section, we will
discover the many advantages of imaginary time for statistical mechanics.
Let us define evolution operators and the interaction representation for the

density matrix in basically the same way as before

e−βH = U (−iβ, 0) = e−iH0(−iβ) bU (−iβ, 0) = e−βH0 bU (−iβ, 0) (3.74)

The solution of the imaginary time evolution equation

i
∂ bU (it00, 0)
∂ (it00)

= bV (it00) bU (it00, 0)
KADANOFF-BAYM AND KELDYSH-SCHWINGER CONTOURS 63



is then bU (−iβ, 0) = Tc

∙
exp

µ
−i
Z
C

d (it00) bV (it00)¶¸ (3.75)

where
t00 ≡ Im (t) (3.76)

bV (it00) = e−t
00H0V et

00H0 (3.77)

and the contour C now proceeds from t00 = 0 to t00 = −β.
Overall now, the matrix elements that we need to evaluate can be expressed in

such a way that the trace will be performed over the unperturbed density matrix.
Indeed, using our above results, we find

hi| e−βHψH (t)ψ+H (t0) |ii = hi| e−βH0 bU (−iβ, 0) bU (0, t) bψ (t) bU (t, 0) bU (0, t0) bψ+ (t0) bU (t0, 0) |ii
(3.78)

We want to take initial states at a time t0 so that in practical calculations where
the system is out of equilibrium we can choose t0 = −∞ where we can assume that
the system is in equilibrium at this initial time. Hence, we are here considering
a more general case than we really need but that is not more difficult so let us
continue. Since we are evaluating a trace, we are free to take

|ii = bU (0, t0) |i (t0)i (3.79)

then we have

hi| e−βH = hi (t0)| bU (t0, 0) e−βH = hi (t0)| ¡e−βH0eβH0
¢ ¡
eiH0t0e−iHt0

¢
e−βH

(3.80)
= hi (t0)| e−βH0eiH0(t0−iβ)e−iH(t0−iβ) = hi (t0)| e−βH0 bU (t0 − iβ, 0) (3.81)

This allows us to write an arbitrary matrix element entering the thermodynamic
trace as the evolution along a contour in complex time

hi| e−βHψH (t)ψ
†
H (t

0) |ii = hi (t0)| e−βH0 bU (t0 − iβ, 0) bU (0, t) bψ (t) bU (t, 0) bU (0, t0) bψ† (t0) bU (t0, 0) |ii
= hi (t0)| e−βH0 bU (t0 − iβ, t0) bU (t0, t) bψ (t) bU (t, t0) bψ† (t0) bU (t0, t0) |i (t0)i (3.82)

How would we evaluate the retarded Green’s function in practice using this
approach? Take the case of fermions. It is convenient to define G> (t− t0) and
G< (t− t0) by

G> (t− t0) = −i
D
ψH (t)ψ

†
H (t

0)
E

(3.83)

G< (t− t0) = i
D
ψ†H (t

0)ψH (t)
E

(3.84)

in such a way that

GR (t− t0) = −i
Dn

ψH (t) , ψ
†
H (t

0)
oE

θ (t− t0) ≡
£
G> (t− t0)−G< (t− t0)

¤
θ (t− t0)

(3.85)
To evaluate G> (t− t0) for example, we would expand the evolution operators
such as bU (t0, t0) as a power series in bV , each power of bV being associated with an
integral of a time ordered product that would start from t0 to go to the creation

operator bψ† (t0) , then go to the destruction operator bψ (t) until it returns to t0−iβ.
This contour is illustrated in Fig.(3-1). It is this contour that determines the order
of the operators, so that even if t0 is a larger number than t, as illustrated on the

right panel of this figure, the operator bψ (t) always occur after bψ† (t0) on the
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Im(t)

Re(t)
t (t’)

(t)

ψ

ψ

+
0

t 0 −  βi

Im(t)

Re(t)
t

(t’)(t) ψψ
+

0

t 0 −  βi

^

^ ^ ^

Figure 3-1 Kadanoff-Baym contour to compute G> (t− t0) .

contour, i.e. bψ (t) is on the left of bψ† (t0) in the algebraic expression. The parts
of the contour that follow the real axis are displaced slightly along the imaginary
direction for clarity.
We will see momentarily that it is possible to avoid this complicated con-

tour to make calculations of equilibrium quantities. However, in non-equilibrium
situations, such contours are unavoidable. In practice however, what is used
by most authors is the Keldysh-Schwinger contour that is obtained by insertingbU (t0,∞) bU (∞, t0) = 1 to the left of bψ† (t0) in the algebraic expression Eq.(3.82).
In practice this greatly simplifies the calculations since the contour, illustrated in
Fig.(3-2), is such that integrals always go from −∞ to ∞. To specify if a given
creation or annihilation operator is on the upper or the lower contour, a simple
2× 2 matrix suffices since there are only four possibilities..

Im(t)

Re(t)
t (t’)

(t)

ψ

ψ

+
0

t 0 −  βi

^

^

Figure 3-2 Keldysh-Schwinger contour.

In equilibrium, the analog of the fluctuation dissipation theorem in the form
of Eq.(2.125) for correlation functions, allows us to relate G> and G<, which
means that we can simplify matters greatly and work with a single Green function.
Fundamentally, this is what allows us to introduce in the next section a simpler
contour that is extremely more convenient for systems in equilibrium, and hence
for linear response.
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3.4 Matsubara Green’s function and its relation to
usual Green’s functions. (The case of fermions)

In thermodynamic equilibrium the time evolution operator as well as the density
matrix are exponentials ofH times a complex number. To evaluate these operators
perturbatively, one needs to calculate time-ordered products along a contour in
the complex time domain that is relatively complicated, as we saw in the previous
section. In the present section, we introduce a Green’s function that is itself a time-
ordered product but along the imaginary time axis only, as illustrated in Fig.(3-3)
below. This slight generalization of the Green’s function is a mathematical device
that is simple, elegant and extremely convenient since the integration contour is
now simple. In a sense, we take advantage of the fact that we are free to define
Green functions as we wish, as long as we connect them to observable quantities
in the corresponding manner at the end of the calculation. What makes this
Green function extremely useful for calculations is the fact that in evaluating
time-ordered products that occur in the perturbation series, a theorem (Wick’s
theorem) tells us that all correlations functions are related to producs of time-
ordered Green’s functions. So we might as well focus on this quantity from the
start. For thermodynamic quantities, since only equal-time correlation functions
are needed, it is clear that evaluation in imaginary time or in real time should
be equivalent since only t = 0 is relevant. More generally, for time-dependent
correlation functions we will see that in frequency space the analytic continuation
to the physically relevant object, namely the retarded function, is trivial. Also,
the same tricks apply not only to Green’s functions but also to general response
functions such as the density-density correlation function.
After introducing the so-called Matsubara Green’s function itself, we will study

its properties. First, using essentially the same trick as for the fluctuation-dissipation
theorem for correlation functions, we prove that these functions are antiperiodic
in imaginary time. This allows us to expand these functions in a Fourier series.
The spectral representation and the so-called Lehman representation then allow
us to make a clear connection between the Matsubara Green’s function and the
retarded function through analytic continuation. As usual, the spectral represen-
tation also allows us to do high-frequency expansions. We give specific examples
of Matsubara Green’s functions for non-interacting particles and show in general
how to treat their Fourier series expansions, i.e. how to do sums over Matsubara
frequencies.

3.4.1 Definition

The Matsubara Green’s function is defined by

G (r, r0; τ − τ 0) = −
D
Tτψ (r,τ)ψ

† (r0, τ 0)
E

(3.86)

= −
D
ψ (r,τ)ψ† (r0, τ 0)

E
θ (τ − τ 0) +

D
ψ† (r0, τ 0)ψ (r,τ)

E
θ (τ 0 − τ) (3.87)

The definition of Ref.([11]) has an overall minus sign difference with the definition
given here.

Definition 7 The last equation above defines the time ordering operator for fermi-
ons. It is very important to notice the minus sign associated with interchanging
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two fermion operators. This time-ordering operator is thus a slight generalization
of the time-ordering operator we encountered before. There was no minus sign in
this case associated with the interchange of operators. The time-ordering operator
for bosonic quantities, such as V that appeared in the perturbation expansion, will
never have a minus sign associated with the exchange of bosonic operators.

We still need to specify a few things. First, the thermodynamic average is in
the grand-canonical ensemble

hOi ≡
Tr
£
e−β(H−μN)O

¤
Tr
£
e−β(H−μN)

¤ (3.88)

with μ the chemical potential and N is the total number of particle operator, while
the time evolution of the operators is defined by

ψ (r,τ) ≡ eτ(H−μN)ψS (r) e
−τ(H−μN) (3.89)

ψ† (r,τ) ≡ eτ(H−μN)ψ+S (r) e
−τ(H−μN) (3.90)

For convenience, it is useful to define

K ≡ H − μN (3.91)

Several points should attract our attention:

• The correspondence with the real time evolution operators e−iHt is done by
noting that

τ = − Im (t) (3.92)

or, in general for complex time

τ = it

• Strictly speaking, we should use ψ (r,−iτ) if we want the symbol ψ (r,t) for
t complex to mean the same thing as before. That is why several authors
write bψ (r,τ) for the Matsubara field operator. We will stick with ψ (r,τ)
since this lack of rigor does not usually lead to confusion. We have already
given enough different meanings tob in previous sections! Furthermore, this
type of change of “confusion” in the notation is very common in Physics.
For example, we should never write f (k) to denote the Fourier transform of
f (r) .

• ψ† (r,τ) is not the adjoint of ψ (r,τ). However, its analytic continuation
τ → it is the adjoint of ψ (r,t).

• Using as usual the cyclic property of the trace, it is clear that G depends
only on τ − τ 0 and not on τ or τ 0 separately.

• It suffices to define the Matsubara Green’s function G (r, r0; τ) in the interval
−β ≤ τ ≤ β. We do not need it outside of this interval. The perturbation

expansion of bU (−iβ, 0) = Tc

h
exp

³
−
R
C
dτ bV (τ)´i evidently necessitates

that we study at least the interval 0 ≤ τ ≤ β but the other part of the
interval, namely −β ≤ τ ≤ 0 is also necessary if we want the time ordering
operator to lead to both of the possible orders of ψ and ψ†: namely ψ† to
the left of ψ and ψ† to the right of ψ. Both possibilities appear in GR. If
we had only τ > 0, only one possibility would appear in the Matsubara
Green’s function. We will see however in the next section that, in practice,
antiperiodicity allows us to trivially take into account what happens in the
interval −β ≤ τ ≤ 0 if we know what happens in the interval 0 ≤ τ ≤ β.
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• The last contour considered in the previous section for bU (−iβ, 0) = Tc

h
exp

³
−
R
C
dτ bV (τ)´i

tells us that the time-ordering operator Tτ orders along the contour (Im (t) = −β) >
(Im (t0) = β) which corresponds to (τ = β) > (τ 0 = −β). The present con-
tour is illustrated in Fig.(3-3).

Im(t)

Re(t)
(0)

(τ)

ψ

ψ

+̂

^

τ = −β

τ = β

Figure 3-3 Contour for time ordering in imaginary time. Only the time difference is
important. The contour is translated slightly along the real-time axis for clarity.

Remark 31 Role of extra chemical potential in time evolution: The extra chem-
ical potential in the evolution operator eτ(H−μN) is convenient to make all oper-
ators, including the density matrix, evolve in the same way. It corresponds to
measuring energies with respect to the chemical potential as we will see with the
Lehman representation below. The extra e−τμN disappears for equal-time quanti-
ties (thermodynamics) and in the calculation of expectation values hO+(t)O (t0)i
for operators O which are bilinear in fermions of the form (ψ+ψ) at equal time.
Indeed in that case one has O+(t) = eiHtO+e−iHt = ei(H−μN)tO+e−i(H−μN)t.
When Wick’s theorem is used to compute expectation values, the creation and an-
nihilation operators evolve then as above. In any case, as we just said, the addition
of the chemical potential in the evolution operator just amounts to measuring the
single-particle energies with respect to the chemical potential.

3.4.2 Antiperiodicity and Fourier expansion (Matsubara frequencies)

Suppose τ < 0. Then

G (r, r0; τ) =

ψ+ (r0, 0)ψ (r,τ)

®
(3.93)

Using the cyclic property of the trace twice, as in the demonstration of the
fluctuation-dissipation theorem it is easy to show that

G (r, r0; τ) = −G (r, r0; τ + β) ; τ < 0 (3.94)
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This boundary condition is sometimes known as the Kubo-Martin-Schwinger (KMS)
boundary condition.

Proof: Let
e−βΩ ≡ Tr

£
e−βK

¤
(3.95)

then
G (r, r0; τ) = eβΩTr

£
e−βKψ+ (r0)

¡
eKτψ (r) e−Kτ

¢¤
(3.96)

The cyclic property of the trace then tells us that

G (r, r0; τ) = eβΩTr
£¡
eKτψ (r) e−Kτ

¢
e−βKψ+ (r0)

¤
(3.97)

= eβΩTr
£¡
e−βKeβK

¢ ¡
eKτψ (r) e−Kτ

¢
e−βKψ+ (r0)

¤
(3.98)

=

ψ (r,τ + β)ψ+ (r0, 0)

®
(3.99)

= −G (r, r0; τ + β) (3.100)

The last line follows because given that−β < τ, we necessarily have τ+β > 0
so that the other θ function must be used in the definition of the Matsubara
Green’s function.

If τ > 0, the above arguments can be repeated to yield

G (r, r0; τ − β) = −G (r, r0; τ) ; τ > 0 (3.101)

However, for τ > 0 note that

G (r, r0; τ) 6= −G (r, r0; τ + β) ; τ > 0 (3.102)

While G (r, r0; τ + β) for τ > 0 is well defined, we never need this function. So we
restrict ourselves to the interval −β ≤ τ ≤ β described in the previous section.
One can take advantage of the antiperiodicity property of the Green’s function

in the interval −β ≤ τ ≤ β to expand it in a Fourier series that will automatically
guaranty that the crucial antiperiodicity property is satisfied. More specifically,
we write

G (r, r0; τ) = 1
β

P∞
n=−∞ e−iknτG (r, r0; ikn) (3.103)

where the so-called Matsubara frequencies for fermions are odd, namely

kn = (2n+ 1)πT =
(2n+1)π

β ; n integer (3.104)

The antiperiodicity property will be automatically fulfilled because e−iknβ =
e−i(2n+1)π = −1.
The expansion coefficients are obtained as usual for Fourier series of antiperi-

odic functions from

G (r, r0; ikn) =
R β
0
dτeiknτG (r, r0; τ) (3.105)

Note that only the τ > 0 region of the domain of definition is needed, as promised.

Remark 32 Domain of definition of the Matsubara Green’s function: The value
of G (r, r0; τ) given by the Fourier series (3.103) for τ outside the interval −β <
τ < β, is in general different from the actual value of Eq.(3.86) G (r, r0; τ − τ 0) =
−

Tτψ (r,τ)ψ

+ (r0, τ 0)
®
. Indeed, to define a Fourier series one extends the func-

tion defined in the interval −β < τ < β so that it is periodic in τ outside this inter-
val with a period 2β. The true function G (r, r0; τ − τ 0) = −


Tτψ (r,τ)ψ

+ (r0, τ 0)
®

has an envelope that is, instead, exponential outside the original interval. We
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will see an explicit example in the case of the free particles. In perturbation ex-
pansions, we never need G (r, r0; τ) outside the interval where the series and the
true definition give different answers. To avoid mathematical inconsistencies, it is
nevertheless preferable in calculations to do Matsubara frequency sums before any
other integral! It is possible to invert the order of integration and of summation
but we must beware.

3.4.3 Spectral representation, relation between GR and G and analytic continuation

By analogy with what we have done previously for response functions χ, it is
useful to introduce the spectral representation for the retarded Green’s function.
We obtain explicitly G (r, r0; ikn) by integration in the complex plane and find that
is trivially related to GR (r, r0;ω) .
As before, we have

GR (r, r0; t) = −i
Dn

ψ (r,t) , ψ† (r0, 0)
oE

θ (t) (3.106)

but this time, the evolution operator is defined to take into account the fact that
we will work in the grand-canonical ensemble. By analogy with the definition of
the Matsubara operators, we now have

K = H − μN

ψ (r,t) ≡ eitKψS (r) e
−itK (3.107)

ψ† (r,t) ≡ eitKψ+S (r) e
−itK (3.108)

We now proceed by analogy with the response functions. On the left we show
the definitions for response functions, and on the right the analogous definitions
for response functions. Let

GR (r, r0; t) = −iA (r, r0; t) θ (t) ; χRij (t) = 2iχ
00
ij (t) θ (t) (3.109)

where the spectral weight is defined by

A (r, r0; t) ≡
©
ψ (r,t) , ψ+ (r0, 0)

ª®
; χ00ij (t) = h[Ai (r,t) , Aj (r

0, 0)]i (3.110)

Then taking the Fourier transform, one obtains the spectral representation

GR (r, r0;ω) =
R∞
−∞

dω0

2π

A(r,r0;ω0)
ω+iη−ω0 ; χRij (ω) =

Z ∞
−∞

dω0

π

χ00ij (ω
0)

ω0 − (ω + iη)
.

(3.111)
The spectral weight will obey sum-rules, like χ00 did. For exampleR∞

−∞
dω0

2π A (r, r
0;ω0) =

©
ψ (r,0) , ψ+ (r0, 0)

ª®
= δ (r− r0) (3.112)

From such sum rules, a high-frequency expansion can easily be found as usual.
But that is not our subject for now.
To establish the relation between the Matsubara Green’s function and the

retarded one, and by the same token establish the spectral representation for G,
consider

G (r, r0; τ) = −

ψ (r,τ)ψ+ (r0, 0)

®
θ (τ) +


ψ+ (r0, 0)ψ (r,τ)

®
θ (−τ) (3.113)
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G (r, r0; ikn) =
Z β

0

dτeiknτG (r, r0; τ) (3.114)

=

Z β

0

dτeiknτ
£
−

ψ (r,τ)ψ+ (r0, 0)

®¤
(3.115)

Assume that kn > 0. Then, as illustrated in Fig.(3-4), we can deform the contour
of integration within the domain of analyticity along Re (t) = Im (τ) > 0. (The
analyticity of


ψ (r,τ)ψ+ (r0, 0)

®
in that domain comes from e−βH in the trace.

You will be able to prove this later by calculating G (r, r0; τ) with the help of the
spectral representation Eq.(3.122) and tricks for evaluating sums on Matsubara
frequencies). For Im (τ) =∞ there will be no contribution from the small segment
since eiknτ becomes a decaying exponential. The integral becomes

Im(t) = - Re(τ)

Re(t) = Im(τ)

Re(τ) = −β

∞

Re(τ) = β

τ = it

Figure 3-4 Deformed contour used to relate the Matsubara and the retarded Green’s
functions.

G (r, r0; ikn) = (3.116)Z t=∞

t=0

d (it)
£
−

eiKtψS (r) e

−iKtψ+S (r
0)
®¤
eikn(it)

+

Z t=0

t=∞
d (it)

h
−
D
eiK(t−iβ)ψS (r) e

−iK(t−iβ)ψ+S (r
0)
Ei

e(ikn)i(t−iβ)

In the last integral, we then use the results

e(ikn)i(−iβ) = e(ikn)β = −1 (3.117)Z 0

∞
= −

Z ∞
0

(3.118)h
−
D
eiK(t−iβ)ψS (r) e

−iK(t−iβ)ψ†S (r
0)
Ei
=
h
−
D
eβKeiKtψS (r) e

−iKte−βKψ†S (r
0)
Ei

(3.119)
It then suffices to cancel the left most eβK with the density matrix and to use the
cyclic property of the trace to obtain for the integrand of the last integral,

=
h
−
D
ψ† (r0, 0)ψ (r,t)

Ei
. (3.120)

Overall then, the integral in Eq.(3.116) is equal to

G (r, r0; ikn) = −i
Z ∞
0

dt
Dn

ψ (r,t) , ψ† (r0, 0)
oE

ei(ikn)t (3.121)
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G (r, r0; ikn) =
R∞
−∞

dω0

2π

A(r,r0;ω0)
ikn−ω0 (3.122)

All that we assumed to deform the contour was that kn > 0. Thus, ikn →
ω + iη with η > 0 is consistent with the hypothesis and allows us to deform
the contour as advertized. Comparing the formula for G (r, r0; ikn) for kn > 0
with the expression for the retarded Green’s function(3.111), we see that analytic
continuation is possible.

GR (r, r0;ω) = limikn→ω+iη G (r, r0; ikn) (3.123)

If we had started with kn < 0, analytic continuation ikn → ω− iη to the advanced
Green’s function would have been possible.

Remark 33 Connectedness and periodicity: For a general correlation function,
similar spectral representations can also be defined for connected functions (see
below) so that periodicity or anti-periodicity can be defined.

3.4.4 Spectral weight and rules for analytical continuation

In this section, we summarize what we have learned for the analytic properties of
the Matsubara Green’s function and we clarify the rules for analytic continuation.[12]
The key result for understanding the analytical properties of G is the spectral

representation Eq.(3.122)

G (r, r0; ikn) =
Z ∞
−∞

dω0

2π

A (r, r0;ω0)

ikn − ω0
(3.124)

The spectral weight A (r, r0;ω0) was discussed just in the previous subsection (See
also Eq.(3.179)).
The Matsubara Green’s function and the retarded functions are special case of

a more general function defined in the complex frequency plane by

G (r, r0; z) =
R∞
−∞

dω0

2π

A(r,r0;ω0)
z−ω0 (3.125)

This function is analytic everywhere except on the real axis. Physically interesting
special cases are

G (r, r0; ikn) = G (r, r0; ikn)

GR (r, r0;ω) = lim
η→0

G (r, r0;ω + iη) (3.126)

GA (r, r0;ω) = lim
η→0

G (r, r0;ω − iη) (3.127)

The function G (r, r0; z) has a jump on the real axis given by

A (r, r0;ω0) = i limη→0 [G (r, r
0;ω + iη)−G (r, r0;ω − iη)] (3.128)

A (r, r0;ω0) = i
£
GR (r, r0;ω)−GA (r, r0;ω)

¤
In the special case where A (r, r0;ω0) is real (which is almost always the case in
practice since we consider r = r0 or k = k0), we have

A (r, r0;ω0) = −2 ImGR (r, r0;ω) (3.129)
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like we have often used in the one-body case.
The previous results are summarized in Fig.(3-5) which displays the analytic

structure of G (r, r0; z) . This function is analytical everywhere except on the real
axis where it has a branch cut leading to a jump Eq.(3.128) in the value of the
function as we approach the real axis from either the upper or lower complex half-
plane. The limit as we come from the upper half-plane is equal to GR (r, r0;ω)
whereas from the lower half-plane it is equal to GA (r, r0;ω) . The Matsubara
Green’s function is defined only on a discrete but infinite set of points along the
imaginary frequency axis.

Im(z)

Re(z)

G(z) = G (ω)R

G(z) = G (ω)A

G(z) = (iω )n

Figure 3-5 Analytical structure of G(z) in the complex frequency plane. G(z)
reduces to either GR (ω) , GA (ω) or G (iωn) depending on the value of the complex
frequency z. There is a branch cut along the real axis.

The problem of finding GR (r, r0;ω) along the real-time axis from the knowl-
edge of the Matsubara Green’s function is a problem of analytical continuation.
Unfortunately, G (z = ikn) does not have a unique analytical continuation be-
cause there is an infinite number of analytical functions that have the same value
along this discrete set of points. For example, suppose we know G (z = ikn) , then
G (z)

¡
1 +

¡
eβz + 1

¢¢
has the same value as G (z) for all points z = ikn because

eiknβ + 1 = 0. Baym and Mermin[13], using results from the theory of complex
functions, have obtained the following result.

Theorem 8 If

1. G (z) is analytical in the upper half-plane

2. G (z) = G (ikn) for all Matsubara frequencies

3. limz→∞ zG (z) = cst

then the analytical continuation is unique and

GR (r, r0;ω) = lim
ikn→ω+iη

G (r, r0; ikn) (3.130)

The key point is the third one on the asymptotic behavior at high frequency.
That this is the correct asymptotic behavior at high frequency follows trivially from
the spectral representation Eq.(3.125) as long as we remember that the spectral
weight is bounded in frequency. The non-trivial statement is that this asymptotic
behavior suffices to make the analytical continuation unique. In practice this rarely
poses a problem. The simple replacement ikn → ω+ iη suffices. Nevertheless, the
asymptotic behavior reflects a very fundamental property of the physical system,
namely the anticommutation relations! It is thus crucial to check that it is satisfied.
More on the meaning of the asymptotic behavior in subsection (3.6.1).
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3.4.5 Matsubara Green’s function in momentum space and non-interacting case

We first present the definition of the Matsubara Green’s function in momentum
space since this is where, in translationally invariant systems, it will be diagonal.
With our definition of momentum and real space second quantized operators, and
our normalization for momentum eigenstates Eq.(??) we have

G (r, r0; τ − τ 0) = −
D
Tτψ (r,τ)ψ

† (r0, τ 0)
E
= −

*
Tτ
X
k

hr |ki ck (τ)
X
k0

c†k0 (τ
0) hk0 |r0i

+
(3.131)

hr |ki hk0 |r0i = 1

V e
ik·r−ik0·r0 =

1

V e
i(k−k0)·

³
r0+r
2

´
+i
³
k+k0
2

´
·(r−r0). (3.132)

Assuming space translation invariance, we can integrate over the center of mass

coordinate 1
V
R
d
³
r0+r
2

´
= 1. Since

1

V

Z
d

µ
r0 + r

2

¶
e
i(k−k0)·

³
r0+r
2

´
=
1

V (2π)
3 δ
¡
k− k0

¢
= δk,k0 (3.133)

we are left with

G (r, r0; τ − τ 0) = −
*
Tτ
1

V
X
k0

ck0 (τ) c
†
k0 (τ

0) eik
0·(r−r0)

+
(3.134)

G (k; τ − τ 0) =

Z
d (r− r0) e−ik·(r−r

0)

"
−
*
Tτ
1

V
X
k0

ck0 (τ) c
†
k0 (τ

0) eik
0·(r−r0)

+#
(3.135)

G (k; τ − τ 0) = −
D
Tτck (τ) c

†
k (τ

0)
E

(3.136)

which could have been guessed from the start! Our definitions of Fourier trans-
forms just make this work.

Remark 34 Momentum indices and translational invariance: Note that the con-
servation of total momentum corresponding to translational invariance corresponds
to the sum of the momentum indices of the creation-annihilation operators being
equal to zero. The sign of momentum is counted as negative when it appears on a
creation operator.

Example of non-interacting particles

For non-interacting particles let us consider a quadratic diagonal Hamiltonian

K0 =
X
k

(�k − μ) c+k ck ≡
X
k

ζkc
+
k ck (3.137)

The result for the Green’s function may be obtained either directly from the
definition or by integrating the equations of motion. Both ways of obtaining
the simple result

G0 (k; ikn) = 1
ikn−ζk

(3.138)

are instructive, so let us do both. Assuming for one moment that the above result
is correct, our rules for analytic continuation then immediately give us the retarded
function

GR (k;ω) = 1
ω+iη−ζk

(3.139)

that has precisely the form we expect from our experience with the one-body case.
The only difference with the one-body case is in the presence of the chemical
potential in ζk.
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From the definition To evaluate the Green’s function from its definition, we
need ck (τ) . That quantity may be obtained by solving the Heisenberg equations
of motion,

∂ck
∂τ

= [K0, ck] = −ζkck (3.140)

The anticommutator was easy to evaluate using our standard trick Eq.(3.9). The
resulting differential equation is easy to integrate given the initial condition on
Heisenberg operators. We obtain,

ck (τ) = e−ζkτck (3.141)

so that substituting in the definition,

G0 (k; τ) = −

Tτck (τ) c

+
k

®
= −e−ζkτ

£
ckc

+
k

®
θ (τ)−


c+k ck

®
θ (−τ)

¤
(3.142)

using the standard result from elementary statistical mechanics,
c+k ck

®
= f (ζk) =

1

eβζk + 1
(3.143)

and

ckc

+
k

®
= 1−


c+k ck

®
we obtain

G0 (k; τ) = −e−ζkτ [(1− f (ζk)) θ (τ)− f (ζk) θ (−τ)] . (3.144)

Remark 35 Inadequacy of Matsubara representation outside the domain of defi-
nition: We see here clearly that if τ < 0 the equality

G0 (k; τ + β) = −G0 (k; τ) (3.145)

is satisfied because e−ζkβ (1− f (ζk)) = f (ζk) . On the other hand,

G0 (k; τ + 3β) 6= G0 (k; τ + β) (3.146)

as we might have believed if we had trusted the expansion

G0 (k; τ) =
1

β

∞X
n=−∞

e−iknτG0 (k; ikn)

outside its domain of validity! The conclusion is that as long as the Matsubara
frequency representation is used to compute functions inside the domain −β < τ <
β, it is correct. The perturbation expansion of the interaction picture does not force
us to use Green’s functions outside this domain, so the Matsubara representation
is safe!

Remark 36 Alternate evaluation of time evolution: We could have obtained the
time evolution also by using the identity

eACeA = C + [A,C] +
1

2!
[A, [A,C]] +

1

3!
[A, [A, [A,C]]] + . . . (3.147)

that follows from expanding the exponential operators. This is less direct.

Remark 37 Appearance of G0 (k; τ) : It is instructive to plot G0 (k; τ) as a func-
tion of imaginary time. In some energy units, let us take β = 5, and then consider
three possible values of ζk. First ζk = 0.2, i.e. for a value of momentum above
the Fermi surface, then a value right at the Fermi surface, ζk = 0 and finally
a value ζk = −0.2 corresponding to a momentum right below the Fermi surface.
These cases are illustrated respectively in Figs.(3-6) to (3-8). Note that the jump
at τ = 0 is always unity, reflecting the anticommutation relations. What is meant
by antiperiodicity also becomes clear. The extremal values near ±β and ±0 are
simply related to the occupation number, independently of interactions.
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Figure 3-6 G0 (p, τ ) for a value of momentum above the Fermi surface.
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Figure 3-7 G0 (p, τ ) for a value of momentum at the Fermi surface.
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Figure 3-8 G0 (p, τ ) for a value of momentum below the Fermi surface.
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Let us continue with the derivation of the Matsubara frequency result G0 (k; ikn).

G0 (k; ikn) =
Z β

0

dτeiknτG0 (k; τ) = − (1− f (ζk))

Z β

0

dτeiknτe−ζkτ (3.148)

= − (1− f (ζk))
eiknβe−ζkβ − 1

ikn − ζk
(3.149)

= − (1− f (ζk))
−e−ζkβ − 1
ikn − ζk

=
1

ikn − ζk
(3.150)

The last equality follows because

(1− f (ζk)) =
eζkβ

eζkβ + 1
=

1

e−ζkβ + 1
(3.151)

We thus have our final result Eq.(3.138) for non-interacting particles.

From the equations of motion In complete analogy with the derivation in
subsection (3.1.1) we can obtain the equations of motion in the quadratic case.

∂

∂τ
G0 (k; τ) = −

∂

∂τ

D
Tτck (τ) c

†
k

E
(3.152)

= −δ (τ)
Dn

ck (τ) , c
†
k

oE
−
¿
Tτ

µ
∂

∂τ
ck (τ)

¶
c†k

À
(3.153)

Using the equal-time anticommutation relations as well as the Heisenberg equa-
tions of motion for free particles Eq.(3.140) the above equation becomes,

∂

∂τ
G0 (k; τ) = −δ (τ) + ζk

D
Tτck (τ) c

†
k

E
(3.154)

so that the equation of motion for the Matsubara propagator is¡
∂
∂τ + ζk

¢
G0 (k; τ) = −δ (τ) (3.155)

To obtain the Matsubara-frequency result, we only need to integrate on both sides
using the general expression to obtain Fourier coefficients Eq.(3.105)Z β−

0−

∙µ
∂

∂τ
+ ζk

¶
G0 (k; τ)

¸
eiknτdτ = −1 (3.156)

so that integrating by parts,

eiknτ G0 (k; τ)|β
−

0− − iknG0 (k; ikn) + ζkG0 (k; ikn) = −1 (3.157)

Note that we had to specify that the domain of integration includes 0. The inte-
grated term disappears because of the KMS boundary conditions (antiperiodicity)
Eq.(3.94). Indeed, antiperiodicity implies that

eiknτ G0 (k; τ)|β
−

0− = −G0
¡
k;β−

¢
− G0

¡
k; 0−

¢
= 0 (3.158)

Eq.(3.157) for the Matsubara Green’s function then immediately gives us the de-
sired result Eq.(3.138).
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3.4.6 Sums over Matsubara frequencies

In doing practical calculations, we will have to become familiar with sums over
Matsubara frequencies. When we have products of Green’s functions, we will use
partial fractions in such a way that we will basically always have to evaluate sums
such as

T
X
n

1

ikn − ζk
(3.159)

where T = β−1. We have however to be careful since the result of this sum is
ambiguous. Indeed, returning back to the motivation for these sums, recall that

G (k;τ) = T
X
n

e−iknτ

ikn − ζk
(3.160)

We already know that the Green’s function has a jump at τ = 0. In other words,∙
lim
τ→0+

G (k;τ) = −

ckc

+
k

®¸
6=
∙
lim
τ→0−

G (k;τ) =

c+k ck

®¸
(3.161)

This inequality in turn means that

T
X
n

e−ikn0
−

ikn − ζk
6= T

X
n

e−ikn0
+

ikn − ζk
6= T

X
n

1

ikn − ζk
(3.162)

The sum does not converge uniformly in the interval including τ = 0 because the
1/n decrease for n → ∞ is too slow. Even if we can obtain a finite limit for the
last sum by combining positive and negative Matsubara frequencies, what makes
physical sense is only one or the other of the two limits τ → 0±.

Remark 38 Remark 39 The jump, limτ→0− G (k;τ)−limτ→0+ G (k;τ) is always
equal to unity because of the anticommutation relations. The slow convergence in
1/ikn is thus a reflection of the anticommutation relations and will remain true
even in the interacting case. If the (ikn)

−1 has a coefficient different from unity,
the spectral weight is not normalized and the jump is not unity. This will be
discussed shortly.

Let us evaluate the Matsubara frequency sums. Considering again the case of
fermions we will show as special cases that

T
P

n
e−ikn0

−

ikn−ζk
= 1

eβζk+1
= f (ζk) = G0 (k;0−) (3.163)

T
P

n
e−ikn0

+

ikn−ζk
= −1

e−βζk+1
= −1 + f (ζk) = G0 (k;0+) (3.164)

Obviously, the non-interacting Green’s function has the correct jump G0 (k;0−)−
G0 (k;0+) = 1

Proof: [14]To perform the sum over Matsubara frequencies, the standard trick is
to go to the complex plane. The following function

−β 1

eβz + 1
(3.165)

has poles for z equal to any fermionic Matsubara frequency: z = ikn. Its
residue at these poles is unity since for

z = ikn + δz (3.166)

78 GREEN FUNCTIONS



we have

−β 1

eβz + 1
= −β 1

eiknβ+βδz + 1
= −β 1

−1eβδz + 1 (3.167)

lim
z−ikn→0

δz

∙
−β 1

eβz + 1

¸
= 1 (3.168)

Similarly the following function has the same poles and residues:

lim
z−ikn→0

δz

∙
β

1

e−βz + 1

¸
= 1 (3.169)

To evaluate the τ < 0 case by contour integration, we use Cauchy’s theorem on
the contour C1, which is a sum of circles going counterclockwise around the
points where z is equal to the Matsubara frequencies. Using Eq.(3.168) this
allows us to establish the equality

1

β

X
n

e−iknτ

ikn − ζk
= − 1

2πi

Z
C1

dz

eβz + 1

e−zτ

z − ζk
(3.170)

This contour can be deformed, as illustrated in Fig.(3-9), into C2+C3 (going
through C 01) with no contribution from the semi-circles at Re (z) = ±∞
because 1

eβz+1
insures convergence when Re (z) > 0 despite e−zτ in the

numerator, and e−zτ insures convergence when Re (z) < 0, τ < 0. With
the deformed contour C2 + C3, only the contribution from the pole in the
clockwise direction is left so that we have

1
β

P
n

e−iknτ

ikn−ζk
= e−ζkτ

eβζk+1
= e−ζkτf (ζk) (3.171)

which agrees with the value of G0 (k; τ) in Eq.(3.144) when τ < 0. In partic-
ular, when τ = 0− we have proven the identity (3.164) . To evaluate the

Im(z)

Re(z)

C’1
X

C2
C3

Figure 3-9 Evaluation of fermionic Matsubara frequency sums in the complex plane.

τ > 0 case we use the same contour but with the other form of auxiliary
function Eq.(3.169). We then obtain,

1

β

X
n

e−iknτ

ikn − ζk
= lim

η→0+
1

2πi

Z
C1

dz

e−βz + 1

e−zτ

z − ζk
(3.172)
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This contour can be deformed into C2 + C3 with no contribution from the
semi-circles at Re (z) = ±∞ because this time e−zτ insures convergence
when Re (z) > 0, τ > 0 and 1

e−βz+1 ensures convergence when Re (z) < 0

despite e−zτ in the numerator. Again, from C2 + C3, only the contribution
from the pole in the clockwise direction survives so that we have

1
β

P
n

e−iknτ

ikn−ζk
= − e−ζkτ

e−βζk+1
= − e−ζkτeβζk

eβζk+1
= −e−ζkτ (1− f (ζk)) (3.173)

which agrees with the value of G0 (k; τ) in Eq.(3.144) when τ < 0. In partic-
ular, when τ = 0+ we have proven the identity (3.163).

3.5 Physical meaning of the spectral weight: Qua-
siparticles, effective mass, wave function renor-
malization, momentum distribution.

To discuss the Physical meaning of the spectral weight, we first find it in the
non-interacting case, then write a formal general expression, the Lehman repre-
sentation, that allows us to see its more general meaning. After our discussion
of a photoemission experiment, we will be in a good position to understand the
concepts of quasiparticles, wave-function renormalization, effective mass and mo-
mentum distribution. We will even have a first look at Fermi liquid theory, and
see how it helps us to understand photoemission experiments.

3.5.1 Spectral weight for non-interacting particles

The general result for the spectral weight in terms of the Green’s function Eq.(3.128)
gives us for non-interacting particles

A0 (k, ω) = i

∙
1

ω + iη − ζk
− 1

ω − iη − ζk

¸
(3.174)

= 2πδ (ω − ζk) (3.175)

In physical terms, this tells us that for non-interacting particles in a translationally
invariant system, a single excited particle or hole of momentum k added to an
eigenstate is an true excited eigenstate located an energy ω = ζk above or below
the Fermi level. In the interacting case, the Lehman representation will show us
clearly that what we just said is the correct interpretation

3.5.2 Lehman representation

For a general correlation function, not necessarily a Green’s function, one estab-
lishes the connection between Matsubara functions and retarded functions by using
the Lehman representation. This representation is also extremely useful to extract
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the physical significance of the poles of correlation functions so this is why we in-
troduce it at this point. We have already seen examples of Lehman representation
in the one-body case when we wrote in Eq.(3.30),

GR (r, r0;ω) =
X
n

φn (r)φ
∗
n (r

0)

ω + iη −En

Let us consider the more general many-body case, starting from the Matsubara
Green’s function. It suffices to insert a complete set of energy eigenstates between
each field operator in the expression for the spectral weight

A (r, r0; t) ≡
©
ψ (r,t) , ψ+ (r0, 0)

ª®
(3.176)

= eβΩ
X
m,n

h
hn| e−βKeiKtψS (r) e

−iKt |mi hm|ψ†S (r0) |ni

+ hn| e−βKψ†S (r0) |mi hm| eiKtψS (r) e
−iKt |ni

i
We now use e−iKt |ni = e−iKnt |ni with Kn = En − μNn if there are Nn par-
ticles in the initial state |ni . In the first term above, hn| has one less parti-
cle than |mi while the reverse is true in the second term so that Km − Kn =
(Em − μ (Nn + 1)− En + μNn) in the first term andKn−Km = (En − μNn −Em + μ (Nn − 1))
in the second. Taking the Fourier transform

R
dteiω

0t we have

A (r, r0;ω0) = eβΩ × (3.177)X
mn

h
e−βKn hn|ψS (r) |mi hm|ψ

†
S (r

0) |ni 2πδ (ω0 − (Em − μ−En))

+ e−βKn hn|ψ†S (r0) |mi hm|ψS (r) |ni 2πδ (ω0 − (En − μ−Em))
i

One can interpret Physically the spectral weight as follows. It has two pieces,
the first one for excited states with one more particle, and the second one for
excited states with one more hole. Photoemission experiments (See Einstein’s
Nobel prize) access this last piece of the spectral weight, while Bremsstrahlung
inverse spectroscopy (BIS) experiments measure the first piece.1 Excited particle
states contribute to positive frequencies ω0 if their excitation energy is larger than
the chemical potential, Em −En > μ and to negative frequencies otherwise. Zero
frequency means that the excitation energy is equal to the chemical potential.
In other words, every excited single-particle or single-hole state corresponds to a
delta function in the spectral weight whose weight depends on the overlap between
initial states with one more particle at r0 or one more hole at r, and the true excited
states.

Remark 40 At zero temperature, we have

A (r, r0;ω0) = Z−1
X
m

h
h0|ψS (r) |mi hm|ψ

†
S (r

0) |0i 2πδ (ω0 − (Em − μ−E0))

+ h0|ψ†S (r0) |mi hm|ψS (r) |0i 2πδ (ω0 − (E0 − μ−Em))
i
(3.178)

Since to add a particle we need at least an energy μ, then Em − μ − E0 > 0 and
the first term, that adds particles, contributes only to positive frequencies. On the
other hand, if we remove a particle, E0 − μ − Em < 0 since the thermodynamic
result ∂E/∂N = μ implies, with dN = −1, that E0 − Em < μ (the equality being
satisfied only for the hole infinitesimally close to the Fermi surface) so that the
second term, that adds holes, contributes only to the negative frequencies.

1To be more specific, these experiments add or remove particles in momentum, not position
eigenstates. The only change that this implies in the discussion above is that ψ(†)S (r) should be

replaced by c(†)p .
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The spectral representation Eq.(3.122) immediately tells us that the poles of
the single-particle Green’s functions are at the same position as delta functions
in the spectral weight, in other words they are at the excited single-particle or
single-hole states. Doing changes of dummy summation indices we can arrange so
that it is always hn| that has one less particle. Then,

A (r, r0;ω0) = eβΩ
P

mn

¡
e−βKn + e−βKm

¢
hn|ψS (r) |mi hm|ψ

†
S (r

0) |ni 2πδ (ω0 − (Km −Kn))

(3.179)
Substituting in the spectral representation Eq.(3.122) we have,

G (r, r0; ikn) = eβΩ
P

mn

¡
e−βKm + e−βKn

¢ hn|ψS(r)|mihm|ψ†S(r0)|ni
ikn−(Em−En−μ) (3.180)

This is the Lehman representation. It tells us how to interpret the poles of the
analytically continued G (r, r0; ikn) .

Remark 41 Standard way of proving analytical continuation formula: The stan-
dard way of proving that GR (ω) = limikn→ω+iη G (ikn) is to first find the Lehman
representation for both quantities.

3.5.3 Probabilistic interpretation of the spectral weight

For a different representation, for example for momentum, we have [15] in the
translationally invariant case, by analogy with the above result for the spectral
weight Eq.(3.179)

A (k, ω0) = eβΩ
P

mn

¡
e−βKm + e−βKn

¢
|hn| ck |mi|2 2πδ (ω0 − (Km −Kn)) .

(3.181)
The overlap matrix element |hn| ck |mi|2 that gives the magnitude of the delta
function contribution to the spectral weight represents the overlap between the
initial state with one more particle or hole in a momentum eigenstate and the
true excited one-particle or one-hole state. The last equation clearly shows that
A (k,ω0) / (2π) is positive and we already know that it is normalized to unity,Z

dω0

2π
A (k,ω0) =

Dn
ck, c

†
k

oE
= 1. (3.182)

Hence it can be interpreted as the probability that a state formed from a true eigen-
state |ni either by adding a particle in a single-particle state k, namely c†k |ni (or
adding a hole ck |ni in a single-particle state k) is a true eigenstate whose energy
is ω above or below the chemical potential. Clearly, adding a particle or a hole
in a momentum eigenstate will lead to a true many-body eigenstate only if the
momentum of each particle is individually conserved. This occurs only in the non-
interacting case, so this is why the spectral weight is then a single delta function.
In the more general case, many energy eigenstates will have a non-zero overlap
with the state formed by simply adding a particle or a hole in a momentum eigen-
state. While particle-like excitations will overlap mostly with eigenstates that are
reached by adding positive ω, they can also overlap eigenstates that are reached
by adding negative ω. In an analogous manner, hole-like eigenstates will be mostly
at negative ω. Let us see how this manifests itself in a specific experiment.

Remark 42 Energy vs momentum in an interacting system: It is clear that in an
interacting system one must distinguish the momentum and the energy variables.
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The energy variable is ω. Knowing the momentum of a single added electron or
hole is not enough to know the added energy. This added energy would be k2/2m
only in the case of non-interacting electrons.

Remark 43 Physical reason for high-frequency fall-off: The explicit expression
for the spectral weight Eq.(3.181) suggests why the spectral weight falls off fast
at large frequencies for a given k,as we have discussed in Subsection (3.6.1). A
state formed by adding one particle (or one hole) of momentum k should have
exponentially small overlap with the true eigenstates of the system that have one
more particle (or hole) but an arbitrarily large energy difference ω with the initial
state.

3.5.4 Angle-resolved photoemission spectroscopy (ARPES) on a Fermi liquid com-
pound.

In a photoemission experiment, a photon ejects an electron from a solid. This is
nothing but the old familiar photoelectric effect. In the angle resolved version of
this experiment (ARPES), the energy and the direction of the outgoing electron
are measured. This is illustrated in Fig.(3-10). The outgoing electron energy can
be measured. Because it is a free electron, this measurement gives the value of the
wave vector through k2/2m. Using energy conservation, the energy of the outgoing
electron is equal to the energy of the incident photon Eph, minus the work function
W plus the energy of the electron in the system, ω, measured relative to the Fermi
level.

e
Photon

= E   + ω + μ - W k
2m

2

k

ph

Figure 3-10 Schematic representation of an angle-resolved photoemission experi-
ment.

The energy of the electron in the system ω will be mostly negative. The value
of k|| may be extracted by simple geometric considerations from the value of k.
Since in this experiment there is translational invariance only in the direction
parallel to the plane, this means that in fact it is only the value of k|| that is
conserved. Hence, it is only for layered systems that we really have access to
both energy ω and total momentum k|| of the electron when it was in the system.
Without going into details of the assumptions going into the derivation, Fermi’s
golden rule suggests, (see first section of Chapter 2) that the cross section for
ejecting an electron of momentum k|| and energy ω (measured with respect to μ)
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is proportional to

∂2σ

∂Ω∂ω
∝

X
mn

e−βKm
¯̄
hn| ck|| |mi

¯̄2
δ (ω + μ− (Em −En)) (3.183)

∝
X
mn

e−βKm
¯̄
hn| ck|| |mi

¯̄2
δ (ω − (Km −Kn)) (3.184)

∝
Z

dteiωt
D
c†k||ck|| (t)

E
(3.185)

which is “half” of the spectral weight (the mostly negative-energy part). More
specifically, we can rewrite this result in terms of the spectral weight as follows,

∂2σ

∂Ω∂ω
∝ f (ω)A

¡
k||, ω

¢
. (3.186)

Note the analogy with the cross section we found earlier for electron scattering.
It was expressed in Eq.(2.1) in terms of a density-density correlation function.
Through the fluctuation-dissipaton theorem Eq.(2.121), it was related to a spectral
weight χ00 (analogous to A) through the Bose function (analogous to the Fermi
function).

Proof: The most direct and simple proof is from the Lehman representation
Eq.(3.181). To get a few more general results aboutG<

¡
k||, ω

¢
andG>

¡
k||, ω

¢
we present the following alternate proof. The cross section is proportional
to the Fourier transform of G<

¡
k||, ω

¢
as defined in Eq.(3.84).

∂2σ

∂Ω∂ω
∝ −iG<

¡
k||, ω

¢
(3.187)

One can relate G< and G> to the spectral weight in a very general way
through the Fermi function. This is done using the usual cyclic property of
the trace (fluctuation-dissipation theorem). FromD

ck|| (t) c
†
k||

E
= Z−1Tr

h
e−βK

¡
eiKtck||e

−iKt
¢
c†k||

i
(3.188)

= Z−1Tr
h¡
eβKe−βK

¢
c†k||e

−βK ¡eiKtck||e
−iKt

¢i
(3.189)

=
D
c†k||ck|| (t+ iβ)

E
(3.190)

one finds by simple use of definitions and change of integration variables,

A
¡
k||, ω

¢
=

Z
dteiωt

D
c†k||ck|| (t) + ck|| (t) c

†
k||

E
(3.191)

=

Z
dteiωt

D
c†k||ck|| (t)

E
+

Z
dteiω(t+iβ−iβ)

D
c†k||ck|| (t+ iβ)

E
=

¡
1 + eβω

¢ Z
dteiωt

D
c†k||ck|| (t)

E
(3.192)

= f (ω)−1
¡
−iG<

¡
k||, ω

¢¢
(3.193)

Substituting in Eq.(3.187) proves Eq.(3.186). Note that since

A
¡
k||, ω

¢
= −i

£
G<

¡
k||, ω

¢
−G>

¡
k||, ω

¢¤
(3.194)

we also have the result

iG>
¡
k||, ω

¢
= (1− f (ω))A

¡
k||, ω

¢
(3.195)

84 GREEN FUNCTIONS



The theoretical formula for the photoemission cross-section Eq.(3.186) neglects
processes where energy is transferred from the outgoing electron to phonons or
other excitations before it is detected (multiple scattering of outgoing electron).
Such processes are referred to as “inelastic background”.
The state of technology and historical coincidences have conspired so that the

first class of layered (quasi-two-dimensional) compounds that became available
for ARPES study around 1990 were high temperature superconductors. These
materials have properties that make them non-conventional materials that are not
yet understood using standard approaches of solid-state Physics. Hence, people
started to look for two-dimensional materials that would behave as expected from
standard models. Such a material, semimetallic TiTe2 was finally found around
1992. For our purposes, quasi-to-dimensional just means here that the Fermi
velocity perpendicular to the planes is much smaller than the Fermi velocity in
the planes. The results of this experiment[19] appear in Fig.(3-11).

Figure 3-11 ARPES spectrum of 1− T − T iTe2, after R. Claessen, R.O. Anderson,
J.W. Allen, C.G. Olson, C. Janowitz, W.P. Ellis, S. Harm, M. Kalning, R. Manzke,
and M. Skibowski, Phys. Rev. Lett 69, 808 (1992).

We have to remember that the incident photon energy is 21.2eV while the
variation of ω is on a scale of 200meV so that, for all practical purposes, the
momentum vector in Fig.(3-10) is a fixed length vector. Hence, the angle with
respect to the incident photon suffices to define the value of k||. Each curve in
Fig.(3-11) is for a given k||, in other words for a given angle measured from the
direction of incidence of the photon. The intensity is plotted as a function of the
energy of the outgoing electron. The zero corresponds to an electron extracted
from the Fermi level. Electrons with a smaller kinetic energy come from states
with larger binding energy. In other words, each of the curves above is basically
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a plot of the hole-like part of A
¡
k||, ω

¢
. From band structure calculations, one

knows that the angle θ = 14.750 corresponds to the Fermi level (marked kF on the
plot) of a Ti− 3d derived band. It is for this scattering angle that the agreement
between experiment and Fermi liquid theory is best (see Sec.(3.5.6) below). The
plots for angles θ < 14.750 corresponds to wave vectors above the Fermi level.
There, the intensity is much smaller than for the other peaks. For θ = 130,
the experimental results are scaled up by a factor 16. The intensity observed for
wave-vectors above the Fermi wave vector comes from the overlap of particle-like
excitations with eigenstates below the Fermi surface, a phenomenon we alluded to
in the previous section.
The energy resolution is 35meV. Nevertheless, it is clear that the line shapes

are larger than the energy resolution: Clearly the spectral weight is not a delta
function and the electrons in the system are not free particles. Nevertheless,
there is a definite maximum in the spectra whose position changes with k||. It
is tempting to associate the width of the line to a lifetime. In other words, a
natural explanation of these spectra is that the electrons inside the system are
“quasiparticles” whose energy disperses with wave vector and that have a lifetime.
We try to make these concepts more precise below.

3.5.5 Quasiparticles[17]

For a general interacting system, the one-particle Green’s function takes the form,

GR (k,ω) =
1

ω + iη − ζk −
PR (k, ω)

(3.196)

The corresponding spectral weight is,

A (k,ω) = −2 ImGR (k,ω) (3.197)

=
−2 Im

PR
(k, ω)³

ω − ζk −Re
PR

(k, ω)
´2
+
³
Im
PR

(k, ω)
´2 (3.198)

If the imaginary part of the self-energy, the scattering rate, is not too large and
varies smoothly with frequency, the spectral weight will have a maximum whenever

ω − ζk −ReΣR (k, ω) = 0 (3.199)

Let Ek−μ be the value of ω for which this equation is satisfied. Ek is the so-called
quasiparticle energy. This energy is clearly in general different from the results of
band structure calculations that are usually obtained by neglecting the frequency
dependence of the self-energy. Expanding ω−ζk−ReΣR (k, ω) around ω−Ek+μ
where A (k,ω) is a maximum, we find

ω − ζk −ReΣR (k, ω) ≈
Ã
1− ∂ReΣR (k, ω)

∂ω

¯̄̄̄
Ek−μ

!
(ω −Ek + μ) + . . . (3.200)

If we define the “quasiparticle weight” or square of the wave function renormal-
ization by

Zk =
1

1− ∂
∂ω ReΣ

R(k,ω)|
ω=Ek−μ

(3.201)
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then in the vicinity of the maximum, the spectral weight takes the following simple
form in the vicinity of the Fermi level, where the peak is sharpest

A (k,ω) ≈ 2πZk
1

π

−Zk Im
PR

(k, ω)

(ω −Ek + μ)
2
+
³
Zk Im

PR
(k, ω)

´2 + inc (3.202)

= 2πZk

"
1

π

Γk (ω)

(ω −Ek + μ)
2
+ (Γk (ω))

2

#
+ inc (3.203)

The last equation needs some explanation. First, it is clear that we have defined
the scattering rate

Γk (ω) = −Zk ImΣR (k, ω) (3.204)

Second, the quantity in square brackets looks, as a function of frequency, like a
Lorentzian. At least if we can neglect the frequency dependence of the scattering
rate. The integral over frequency of the square bracket is unity. Since A (k,ω) /2π
is normalized to unity, this means both that

Zk ≤ 1 (3.205)

and that there are additional contributions to the spectral weight that we have
denoted inc in accord with the usual terminology of “incoherent background”.
The equality in the last equation holds only if the real part of the self-energy is
frequency independent.
It is also natural to ask how the quasiparticle disperses, in other words, what is

its effective Fermi velocity compared with that of the bare particle. Let us define
the bare velocity by

vk = ∇kζk (3.206)

and the renormalized velocity by

v∗k = ∇kEk (3.207)

Then the relation between both quantities is easily obtained by taking the gradient
of the quasiparticle equation Eq.(3.199)

∇k
£
Ek − μ− ζk −ReΣR (k, Ek − μ) = 0

¤
(3.208)

v∗k − vk −∇kReΣR (k, Ek − μ)− ∂ReΣR (k, ω)

∂ω

¯̄̄̄
Ek−μ

v∗k = 0 (3.209)

where∇k in the last equation acts only on the first argument of ReΣR (k, Ek − μ).
The last equation is easily solved if we can write that k dependence of ΣR as
a function of ζk instead, something that is always possible for spherical Fermi
surfaces. In such a case, we have

v∗k = vk
1+ ∂

∂ζk
ReΣR(k,Ek−μ)

1− ∂
∂ω ReΣ

R(k,ω)|
ω=Ek−μ

(3.210)

In cases where the band structure has correctly treated the k dependence of the
self-energy, or when the latter is negligible, then the renormalized Fermi velocity
differs from the bare one only through the famous quasiparticle renormalization
factor. In other words, v∗k = Zkvk. The equation for the renormalized velocity
is also often written in terms of a mass renormalization instead. Indeed, we will
discuss later the fact that the Fermi wave vector kF is unmodified by interactions
for spherical Fermi surfaces (Luttinger’s theorem). Defining then m∗v∗kF = kF =
mvkF means that our equation for the renormalized velocity gives us

m
m∗ = limk→kF

1+ ∂
∂ζk

ReΣR(k,Ek−μ)
1− ∂

∂ω ReΣ
R(k,ω)|

ω=Ek−μ
(3.211)
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3.5.6 Fermi liquid interpretation of ARPES

Let us see how to interpret the experiments of the previous subsection in light
of the quasiparticle model just described. First of all, the wave vectors studied
are all close to the Fermi surface as measured on the scale of kF . Hence, every
quantity appearing in the quasiparticle spectral weight Eq.(3.203) is evaluated
for k = kF so that only the frequency dependence of the remaining quantities is
important. The experiments were carried out at T = 20K where the resistivity has
a T 2 temperature dependence. This is the regime dominated by electron-electron
interactions, where so-called Fermi liquid theory applies. What is Fermi liquid
theory? It would require more than the few lines that we have to explain it, but
roughly speaking, for our purposes, let us say that it uses the fact that phase space
for electron-electron scattering vanishes at zero temperature and at the Fermi
surface, to argue that the quasiparticle model applies to interacting electrons.
Originally the model was developed by Landau for liquid 3He which has fermionic
properties, hence the name Fermi Liquid theory. It is a very deep theory that in
a sense justifies all the successes of the almost-free electron picture of electrons in
solids. We cannot do it justice here. A simple way to make its main ingredients
plausible, [18] is to assume that near the Fermi surface, at frequencies much less
than temperature, the self-energy is i) analytic and ii) has an imaginary part that
vanishes at zero frequency. The latter result follows from general considerations
on the Pauli principle and available phase space that we do not discuss here.
Let us define real and imaginary parts of the retarded self-energy by

ΣR = Σ0 + iΣ00 (3.212)

Our two hypothesis imply that Σ00 has the Taylor expansion

Σ00 (kF ;ω) = αω − γω2 + . . . (3.213)

The imaginary part of the retarded self-energy must be negative to insure that the
retarded Green’s function has poles in the lower half-plane, as is clear from the
general relation between Green function and self-energy Eq.(3.196). This means
that we must have α = 0 and γ > 0. Fermi liquid theory keeps only the leading
term

Σ00 = −γω2

We will verify for simple models that this quadratic frequency dependence is es-
sentially correct in d ≥ 3. The real part is then obtained from the Kramers-Kronig
relation Eq.(??), (Sec.3.6.2) or from the spectral representation,

lim
ω→0

[Σ0 (kF ;ω)− Σ0 (kF ;∞)] = lim
ω→0

P
Z

dω0

π

Σ00 (kF ;ω
0)

ω0 − ω
(3.214)

= P
Z

dω0

π

Σ00 (kF ;ω
0)

ω0
+ ω

"
P
Z

dω0

π

Σ00 (kF ;ω
0)

(ω0)2

#
+ . . .(3.215)

The first term is the value of the real-part of the self-energy at zero-frequency. This
constant contributes directly to the numerical value of the chemical potential (the
Hartree-Fock shift Σ0 (kF ;∞) does not suffice to evaluate the chemical potential).
The second term in the last equation tells us that

∂

∂ω
Σ0 (kF , ω)

¯̄̄̄
ω=0

=

"
P
Z

dω0

π

Σ00 (kF ;ω
0)

(ω0)2

#
(3.216)
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Since Σ00 = −γω2 the integral exists and is negative (if we assume a frequency
cutoff as discussed below), hence

∂

∂ω
Σ0 (k, ω)

¯̄̄̄
ω=0

< 0 (3.217)

This in turn means that the corresponding value of ZkF is less than unity, as we
had concluded in Eqs.(3.201) and (3.205) above. In summary, the analyticity hy-
pothesis along with the vanishing of Σ00 (0) implies the existence of quasiparticles.

Remark 44 Warning: there are subtleties. The above results assume that there
is a cutoff to Σ00 (kF ;ω0) . The argument just mentioned in Eq.(3.216) fails when
the integral diverges. Then, the low frequency expansion for the self-energy in
Eq.(3.215) cannot be done. Expanding under the integral sign is no longer valid.
One must do the principal part integral first. In fact, even for a Fermi liquid at
finite temperature, Σ00 (kF ;ω) ∼ ω2 + (πT )2 so that the (πT )2 appears to lead
to a divergent integral in Eq.(3.216). Returning to the original Kramers-Krönig
expression fo Σ0 however, the principal part integral shows that the constant term
(πT )2 for Σ00 (kF ;ω) does not contribute at all to Σ0 if the cutoff in Σ00 is symmetric
at positive and negative frequencies. In practice one can encounter situations
where ∂Σ/∂ω > 0. In that case, we do not have a Fermi liquid since Z > 1 is
inconsistent with the normalization of the spectral weight. One can work out an
explicit example in the renormalized classical regime of spin fluctuations in two
dimensions. (Appendix D of [28]).

The solid lines in Fig.(3-11) are two-parameter fits that also take into account
the wave vector and energy resolution of the experiment [19]. One parameter is
Ek − μ while the other one is γ0, a quantity defined by substituting the Fermi
liquid approximation in the equation for damping Eq.(3.204)

ΓkF (ω) = ZkF γω
2 = γ0ω2. (3.218)

Contrary to Ek, the damping parameter γ0 is the same for all curves. The solid-line
fits are obtained with γ0 = 40eV −1 (β0 on the figure). The fits become increasingly
worse as one moves away from the Fermi surface, as expected. It is important to
notice, however, that even the small left-over weight for wave-vectors above the
Fermi surface

¡
θ < 14.750

¢
can be fitted with the same value of γ. This weight is

the tail of a quasiparticle that could be observed at positive frequencies in inverse
photoemission experiments (so-called BIS). The authors compared the results of
their fits to the theoretical estimate,[20] γ = 0.067ωp/ε

2
F . Using ωp = 18.2eV,

εF = 0.3eV and the extrapolated value of ZkF obtained by putting
2 rs = 10 in

electron gas results,[21] they find γ0 < 5 (eV )−1 while their experimental results
are consistent with γ0 = 40 ± 5 (eV )−1 . The theoretical estimate is almost one
order of magnitude smaller than the experimental result. This is not so bad given
the crudeness of the theoretical model (electron gas with no lattice effect). In
particular, this system is a semimetal so that there are other decay channels than
just the one estimated from a single circular Fermi surface. Furthermore, electron
gas calculations are formally correct only for small rs while there we have rs = 10.
More recent experiments have been performed by Grioni’s group [27]. Results

are shown in Fig. (3-12). In this work, authors allow for a constant damping
Γ0 = 17 meV coming from the temperature and from disorder and then they
fit the rest with a Fermi velocity ~vF = 0.73 ± 0.1eV Ȧ close to band structure
calculations, ~vF = 0.68 eV Ȧ and γ0 that varies between 0.5 eV −1 (160) and
0.9 eV −1 (14.50). The Fermi liquid fit is just as good, but the interpretation of
the origin of the broadening terms is different. This shows that there is much
uncertainty still in the interpretation of ARPES data, even for Fermi liquids.

2rs is the average electron spacing expressed in terms of the Bohr radius.
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Figure 3-12 Figure 1 from Ref.[27] for the ARPES spectrum of 1T-TiTe2 measured
near the Fermi surface crossing along the high-symmetry ΓM direction (θ = 0 is
normal emission). The lines are results of Fermi liquid fits and the inset shows a
portion of the Brillouin zone with the relevant ellipsoidal electron pocket.

Theoretical estimates for high-temperature superconductors are two orders of
magnitude smaller than the observed result [19].

Remark 45 Asymmetry of the lineshape: The line shapes are asymmetrical, with
a tail at energies far from the Fermi surface (large binding energies). This is
consistent with the fact that the “inverse lifetime” ΓkF (ω) = ZkF γω

2 is not a
constant, but is instead larger at larger binding energies.

Remark 46 Failure of Fermi liquid at high-frequency: Clearly the Fermi liquid
expression for the self-energy fails at large frequencies since we know from its
spectral representation that the real-part of the self-energy goes to a frequency-
independent constant at large frequency, the first correction being proportional to
1/ikn as discussed below in subsection (3.6.1). Conversely, there is always a cutoff
in the imaginary part of the self-energy. This is not apparent in the Fermi liquid
form above but we had to assume its existence for convergence. The cutoff on
the imaginary part is analogous to the cutoff in χ00. Absorption cannot occur at
arbitrary high frequency.

Remark 47 Destruction of quasiparticles by critical fluctuations in two dimen-
sions: Note that it is only if Σ00 vanishes fast enough with frequency that it is
correct to expand the Kramers-Kronig expression in powers of the frequency to
obtain Eq.(3.216). When Σ00 (ω) vanishes slower than ω2, then Eq.(3.216) for the
slope of the real part is not valid. The integral does not converge uniformly and it
is not possible to interchange the order of differentiation and integration. In such
a case it is possible to have the opposite inequality for the slope of the real part
∂
∂ωΣ

0 (k, ω)
¯̄
ω=0

> 0. This does not lead to any contradiction, such as ZkF > 1,
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because there is no quasiparticle solution at ω = 0 in this case. This situation
occurs for example in two dimensions when classical thermal fluctuations create a
pseudogap in the normal state before a zero-temperature phase transition is reached
[22].

3.5.7 Momentum distribution in an interacting system

In an interacting system, momentum is not a good quantum number so
D
c†kck

E
is

not equal to the Fermi distribution. On the other hand,
D
c†kck

E
can be computed

from the spectral weight. Indeed,D
c†kck

E
= lim

τ→0−

h
−
D
Tτck (τ) c

†
k

Ei
= lim

τ→0−
G (k,τ) (3.219)

To compute the latter quantity from the spectral weight, it suffices to use the
spectral representation Eq.(3.122)

lim
τ→0−

G (k,τ) = T lim
τ→0−

∞X
n=−∞

e−iknτG (r, r0; ikn)

= T lim
τ→0−

∞X
n=−∞

e−iknτ
Z ∞
−∞

dω0

2π

A (k,ω0)

ikn − ω0
(3.220)

Using the result Eq.(3.163) found above for the sum over Matsubara frequencies,
we are left withD

c†kck
E
= limτ→0− G (k,τ) =

R∞
−∞

dω0

2π f (ω
0)A (k,ω0) (3.221)

with f (ω0) the Fermi-Dirac distribution.
This means that the momentum distribution is a Fermi-Dirac distribution only

if the spectral weight is a delta function. This occurs for free particles or, more
generally if the real-part of the self-energy is frequency independent since, in this
case, the Kramers-Kronig relations imply that the imaginary part of the self-energy
vanishes so that Eq.(3.198) for the spectral weight gives us a delta function.

Remark 48 Jump of the momentum distribution at the Fermi level: Even ifD
c†kck

E
is no-longer a Fermi-Dirac distribution in an interacting system, neverthe-

less at zero-temperature in a system subject only to electron-electron interaction,
there is a jump in

D
c†kck

E
at the Fermi level. The existence of this jump can be

seen as follows. At zero temperature, our last result gives usD
c†kck

E
=

Z 0

−∞

dω0

2π
A (k,ω0) (3.222)

Let us take the quasiparticle form Eq.(3.203) of the spectral weight with the Fermi
liquid expression Eq.(3.218) for the scattering rate. The incoherent background
varies smoothly with k and hence cannot lead to any jump in occupation number.
The quasiparticle piece on the other hand behaves when k → kF , or in other words
when Ek−μ→ 0, as ZkF δ (ω). At least crudely speaking. When Ek−μ→ 0−, this
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delta function is inside the integration domain hence it contributes to the integral,
while when Ek − μ → 0+ the delta function is outside and does not contribute to
the integral. This means that there is a big difference between these two nearby
wave vectors, namely

lim
k→k−f

D
c†kck

E
− lim
k→k+f

D
c†kck

E
= Zk

F
(3.223)

In the above argument, we have done as if Γk (ω) was frequency independent and
infinitesimally small in Eq.(3.203). This is not the case so our argument is rather
crude. Nevertheless, if one uses the actual frequency-dependent forms and does
the frequency integral explicitly, one can check that the above conclusion about the
jump is true (although less trivial).

Remark 49 Fermi surface and interactions: The conclusion of the previous re-
mark is that even in an interacting system, there is a sharp Fermi surface as in
the free electron model. For simplicity we have discussed the spinless case. A
qualitative sketch of the zero-temperature momentum distribution in an interact-
ing system appears in Fig.(3-13). Since momentum of a single particle is not
a good quantum number anymore, some states above the Fermi momentum are
now occupied while others below are empty. Nevertheless, the Fermi surface is
unaffected.

Zp
F

1

0 pp
F

Figure 3-13 Qualitative sketch of the zero-temperature momentum distribution in
an interacting system.

Remark 50 Luttinger’s theorem: More generally, in a Fermi liquid the volume
of reciprocal space contained within the Fermi surface defined by the jump, is inde-
pendent of interactions. This is Luttinger’s theorem. In the case where the Fermi
surface is spherical, this means that kF is unaffected.

3.6 A few more formal matters : asymptotic behav-
ior and causality

In designing approximations, we have to try to preserve as many as possible of the
exact properties. Sum rules are such properties. They determine the structure
of the high-frequency expansion and hence one can also check whether a given
approximation preserves the sum rules by looking at its high-frequency expansion.
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This is the first topic we will discuss. The second topic concerns restrictions
imposed by causality. This has become a very important topic in the context of
Dynamical Mean-field theory or other approaches that describe the physics that
occurs at strong coupling, such as the Mott transition. We will come back on this
in later chapters.

3.6.1 Asymptotic behavior of G (k;ikn) and Σ (k;ikn)

As usual, the high-frequency asymptotic properties of the Green’s function are
determined by sum rules. From the spectral representation(3.122), we obtain, for
the general interacting case

lim
ikn→∞

G (k; ikn) = lim
ikn→∞

Z ∞
−∞

dω0

2π

A (k;ω0)

ikn − ω0
(3.224)

= lim
ikn→∞

1

ikn

Z ∞
−∞

dω0

2π
A (k;ω0) = lim

ikn→∞

1

ikn

©
ck, c

+
k

ª®
= lim

ikn→∞

1

ikn
(3.225)

Defining the self-energy as usual

G (k; ikn) =
1

ikn − ζk − Σ (k, ikn)
(3.226)

the correct asymptotic behavior for the Green’s function implies that the self-
energy at high frequency cannot diverge: It must go to a constant independent of
frequency

lim
ikn→∞

Σ (k, ikn) = cst. (3.227)

We will see later that the value of this constant is in fact given correctly by the
Hartree-Fock approximation.
The converse of the above result [18] for the Green’s function, is that if

lim
ikn→∞

G (k; ikn) = lim
ikn→∞

1

ikn

then that is all that is needed to obtain an approximation for the Green’s function
which obeys the anticommutation relation:

G
¡
k;0−

¢
− G

¡
k;0+

¢
=

c+k ck

®
+

ckc

+
k

®
= 1 (3.228)

Proof :It suffices to notice that

G
¡
k;0−

¢
− G

¡
k;0+

¢
=
1

β

X
n

h
e−ikn0

− − e−ikn0
+
i
G (k;ikn) (3.229)

We can add and subtract the asymptotic behavior to obtain,

1

β

X
n

∙³
e−ikn0

− − e−ikn0
+
´µ
G (k;ikn)−

1

ikn

¶¸
+
1

β

X
n

³
e−ikn0

− − e−ikn
´ 1

ikn

(3.230)
In the first sum, G (k;ikn)− 1

ikn
decays faster than 1

ikn
so that the convergence

factors are not needed for the sum to converge. This means that this first
sum vanishes. The last sum gives unity, as we easily see from the previous
section. This proves our assertion.
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Remark 51 High-frequency expansion for the Green’s function and sum-rules:
The coefficients of the high-frequency expansion of G (k; ikn) in powers of 1/ikn
are obtained from sum rules on the spectral weight, in complete analogy with what
we have found in previous chapters. The fact that A (k,ω) falls fast enough to
allow us to expand under the integral sign follows from the fact that all frequency
moments of A (k,ω) , namely

R
dωωnA (k,ω) , exist and are given by equal-time

commutators. Explicit expressions for A (k,ω) in terms of matrix elements, as
given in Subsection(3.5.3) above, show physically why A (k,ω) falls so fast at
large frequencies. As an example, to show that the coefficient of the 1/ikn term
in the high frequency expansion is equal to

R∞
−∞

dω0

2π A (k;ω
0) it is sufficient thatR∞

−∞
dω0

2π |ω0A (k;ω0)| exists.[16] This can be seen as follows,

iknG (k; ikn)−
Z ∞
−∞

dω0

2π
A (k;ω0) =

Z ∞
−∞

dω0

2π
A (k;ω0)

µ
ikn

ikn − ω0
− 1
¶
(3.231)

=

Z ∞
−∞

dω0

2π
A (k;ω0)

ω0

ikn − ω0
(3.232)

≤
Z ∞
−∞

dω0

2π

¯̄̄̄
A (k;ω0)

ω0

ikn − ω0

¯̄̄̄
(3.233)

≤
¯̄̄̄
1

ikn

¯̄̄̄ Z ∞
−∞

dω0

2π
|A (k;ω0)ω0| (3.234)

If the integral exists then, it is a rigorous result that

lim
ikn→∞

iknG (k; ikn) =
Z ∞
−∞

dω0

2π
A (k;ω0) (3.235)

This is an important result. It suggests that approximate theories that give 1 as the
coefficient of (ikn)

−1 in the high frequency expansion have a normalized spectral
weight. However[16] the above proof assumes that there is indeed a spectral repre-
sentation for G (k; ikn) . A Green’s function for a theory that is not causal fails to
have a spectral representation. If a spectral representation is possible, the analyti-
cally continued approximate GR (k,ω) is necessarily causal. Approximate theories
may not be causal. This failure of causality may reflect a phase transition, as we
will see later, or may simply be a sign that the approximation is bad. As an exam-
ple, suppose that we obtain G (k; ikn) = (ikn − ia)

−1
. This has the correct high-

frequency behavior but its analytical continuation does not satisfy causality. It has
no spectral representation. On the other hand, G (k; ikn) = (ikn + (kn/ |kn|) ia)−1
has a Lorentzian as a spectral weight and is causal. It may also occur that the
approximate theory may have

R∞
−∞

dω0

2π A (k;ω
0) = 1 but A (k;ω0) < 0 for some

range of ω0. This unphysical result may again signal that the approximate theory
fails because of a phase transition or because it is a bad approximation.

3.6.2 Implications of causality for GR and ΣR

Consider the retarded Green function as a matrix in r, r0. We will show that
the real and imaginary parts of GR and of ΣR are each Hermitian matrices. in
addition, ImGR and ImΣR are both negative definite (except in the special case
of non-interacting particles where ImΣR = 0).
In analogy with the Matsubara Green function Eq.(3.180) GR has the Lehman

representation

GR (r, r0;ω) = eβΩ
X
mn

¡
e−βKm + e−βKn

¢ hn|ψS (r) |mi hm|ψ†S (r0) |ni
ω + iη − (Em −En − μ)

. (3.236)
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Taking the complex conjugate of the transpose, we obtain

ReGR (r0, r;ω)
∗
= eβΩ

X
mn

¡
e−βKm + e−βKn

¢ hn|ψS (r0) |mi∗ hm|ψS (r) |ni∗
ω − (Em −En − μ)

= ReGR (r, r0;ω) (3.237)

ImGR (r0, r;ω)
∗
= −π

X
mn

¡
e−βKm + e−βKn

¢
hn|ψS (r0) |mi

∗ hm|ψS (r) |ni
∗

×δ (ω − (Em −En − μ)) (3.238)

= ImGR (r, r0;ω) (3.239)

which means that the real and imaginary parts are both Hermitian matrices. In
a basis where the matrix ImGR (r, r0;ω) is diagonal, say for quantum number α,
then

ImGR (α;ω) = −π
X
mn

¡
e−βKm + e−βKn

¢
hn| cα |mi hm| c†α |ni δ (ω − (Em −En − μ))

= −π
X
mn

¡
e−βKm + e−βKn

¢
|hn| cα |mi|2 δ (ω − (Em −En − μ)) (3.240)

which proves that the matrix for the imaginary part is negative definite in addition
to being Hermitian. The negative sign comes from the +iη in the original formula
and is clearly a consequence of causality.
Following Potthoff [26] we show that the retarded self-energy as a matrix has

the same properties as GR. First, we need to prove that

1

A± iB
= X ∓ iY (3.241)

with X and Y both Hermitian and Y positive definite if A and B are both Her-
mitian with B positive definite. This is true because

1

A± iB
= B−1/2

1

B−1/2AB−1/2 ± iI
B−1/2. (3.242)

Since B−1/2AB−1/2 is Hermitian as well, we can diagonalize it by a unitary trans-
formation B−1/2AB−1/2 = UcU† where c is a diagonal matrix. Thus,

1

A± iB
= B−1/2U

1

c± iI
U†B−1/2 = B−1/2U

c∓ iI

c2 + 1
U†B−1/2 = X ∓ iY (3.243)

with X and Y Hermitians since
¡
U†B−1/2

¢†
= B−1/2U . In addition, Y is positive

definite since in the diagonal basis Y →
¡
c2 + 1

¢−1
. Now, define

¡
GR
¢−1

=

(A− iB)−1 = X + iY and
¡
GR
0

¢−1
= (A0 − iB0)

−1 = X0 + iY0 so that¡
GR
¢−1

= X + iY =
¡
GR
0

¢−1 − ΣR = X0 + iY0 −ReΣR − i ImΣR. (3.244)

Then, given that X,Y and X0, Y0 are Hermitians, we have that ReΣR and ImΣR

are Hermitians. In addition, ImΣR is negative definite since Y0 is infinitesimal
which implies that Y − Y0 can only be positive (or vanish in the non-interacting
case).

3.7 Three general theorems

Risking to wear your patience out, we still have to go through three general the-
orems used repeatedly in Many-Body theory. Wick’s theorem forms the basis ot
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the diagram technique in many-body theory. The linked-cluster theorems, or cu-
mulant expansions, are much more general theorems that are also necessary to set
up the machinery of diagrams. Finally, we state a variational principle for the free
energy that allows us to give a physical meaning to Hartree-Fock theory as the
best one-body Hamiltonian for any given problem. This variational principle is
useful for ordinary system, but also becomes indispensable when there is a broken
symmetry.

3.7.1 Wick’s theorem

Wick’s theorem allows us to compute arbitrary correlation functions of any Hamil-
tonian that is quadratic in Fermion or Boson operators. That is clearly what we
need to do perturbation theory, but let us look in a bit more details at how this
comes about. We have already talked about Wick’s theorem in the context of
Hartree-Fock theory. Here we present the more general result valid at finite tem-
perature. We will need to compute in the interaction picture

G (τ) = −
Tr
h
e−βH0Tτ

³bU (β, τ) bψ (τ) bU (τ , 0) bψ† (0)´i
Tr
h
e−βH0Tτ bU (β, 0)i (3.245)

Because bU (τ , 0) always contains an even number of fermions, it can be commuted
with creation-annihilation operators without paying the price of minus signs so
that

G (τ) = −
Tr
h
e−βH0Tτ

³ bU(β,0)bψ(τ)bψ†(0)´i
Tr[e−βH0Tτ bU(β,0)] (3.246)

More specifically the evolution operator is,

bU (β, 0) = Tτ

h
exp

³
−
R β
0
dτ1 bV (τ1)´i (3.247)

Expanding this evolution operator to first order in the numerator of the Green’s
function one obtains

−Tr
h
e−βH0Tτ

³bψ (τ) bψ† (0)´i+ Z β

0

dτ1Tr
h
e−βH0Tτ

³bV (τ1) bψ (τ) bψ† (0)´i
(3.248)

where in the case of a two-body interaction (Coulomb for example), bV (τ1) contains
four field operators.
Wick’s theorem allows us to evaluate expectation values such as those above.

More generally, it allows us to compute expectation values of creation-annihilation
operators such as, D

ai (τ i) aj (τ j) a
†
k (τk) a

†
l (τ l)

E
0

(3.249)

as long as the density matrix e−βH0 is that of a quadratic Hamiltonian.
Note that since quadratic Hamiltonians conserve the number of particles, ex-

pectation values vanish when the number of creation operators does not match
the number of destruction operators.

Lemma 9 If H0 = ε1a
†
1a1 + ε2a

†
2a2 then

D
a1a

†
1a2a

†
2

E
=
D
a1a

†
1

ED
a2a

†
2

E
.
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Proof: To understand what is going on, it is instructive to study first the problem
where a single fermion state can be occupied. Then

D
a1a

†
1

E
=

Tr
h
e−βH0a1a

†
1

i
Tr [e−βH0 ]

(3.250)

=
h0| a1a†1 |0i+ e−β�1 (h0| a1) a1a†1

³
a†1 |0i

´
h0| |0i+ e−β�1 (h0| a1)

³
a†1 |0i

´ =
1

1 + e−β�1
(3.251)

For two fermion states 1, 2, then the complete set used to evaluate the trace
is

|0i |0i , a†1 |0i |0i , |0i a†2 |0i , a†1 |0i a
†
2 |0i (3.252)

so that D
a1a

†
1

E
=

1

1 + e−β�1
1 + e−β�2

1 + e−β�2
=

1

1 + e−β�1
. (3.253)

The easiest way to understand the last result is to recall that
³
1 + a†1

´³
1 + a†2

´
|0i

will generate the trace so that we can factor each subspace. The last result
will remain true for an arbitrary number of fermion states, in other wordsD

a1a
†
1

E
=

1

1 + e−β�1

Q
m6=1 1 + e−β�mQ
m6=1 1 + e−β�m

=
1

1 + e−β�1
. (3.254)

Furthermore,D
a1a

†
1a2a

†
2

E
=

1

1 + e−β�1
1

1 + e−β�2

Q
m6=1,2 1 + e−β�mQ
m6=1,2 1 + e−β�m

(3.255)

=
1

1 + e−β�1
1

1 + e−β�2
(3.256)

=
D
a1a

†
1

ED
a2a

†
2

E
(3.257)

Theorem 10 Any expectation value such as
D
ai (τ i) aj (τ j) a

†
k (τk) a

†
l (τ l)

E
0
cal-

culated with a density matrix e−βK0 that is quadratic in field operators can be com-

puted as the sum of all possible products of the type
D
aj (τ j) a

†
k (τk)

E
0

D
ai (τ i) a

†
l (τ l)

E
0

that can be formed by pairing creation an annihilation operators. For a given term
on the right-hand side, there is a minus sign if the order of the operators is an odd
permutation of the order of operators on the left-hand side.

Proof: It is somewhat pretentious to call a proof the plausibility argument that we
give below, but let us go ahead anyway. The trick to prove the theorem([23])
is to transform the operators to the basis where H0 is diagonal, to evaluate
the expectation values, then to transform back to the original basis. Let
Greek letters stand for the basis where H0 is diagonal. Using the formula
for basis changes, we have, (with an implicit sum over Greek indices)D

ai (τ i) aj (τ j) a
†
k (τk) a

†
l (τ l)

E
0
= (3.258)

hi| αi hj| βi
D
aα (τ i) aβ (τ j) a

†
γ (τk) a

†
δ (τ l)

E
0
hγ| ki hδ| li (3.259)

We already know from Eq.(3.141) that

aα (τ i) = e−ζατiaα ; a†α (τ i) = a†αe
ζατ i (3.260)
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so that D
ai (τ i) aj (τ j) a

†
k (τk) a

†
l (τ l)

E
0

(3.261)

= hi| αi e−ζατi hj| βi e−ζβτj
D
aαaβa

†
γa
†
δ

E
0
eζγτk hγ| ki eζδτ l hδ| li (3.262)

What we need to evaluate then are expectation values of the typeD
aαaβa

†
γa
†
δ

E
0
. (3.263)

Evaluating the trace in the diagonal basis, we see that we will obtain a non-
zero value only if indices of creation and annihilation operators match two
by two or are all equal. Suppose β = γ, α = δ and α 6= β. Then, as in the
lemma D

aαaβa
†
βa

†
α

E
0
=

aαa

†
α

®
0

D
aβa

†
β

E
0

(3.264)

If instead, β = δ, α = γ and α 6= β, thenD
aαaβa

†
αa

†
β

E
0
= −

D
aαaβa

†
βa

†
α

E
0
= −


aαa

†
α

®
0

D
aβa

†
β

E
0
. (3.265)

The last case to consider is α = β, β = δ, α = γ
aαaαa

†
αa

†
α

®
0
= 0. (3.266)

All these results, Eqs.(3.264)(3.265) and the last equation can be combined
into one formulaD

aαaβa
†
γa
†
δ

E
0
=


aαa

†
α

®
0

D
aβa

†
β

E
0
(δα,δδβ,γ − δα,γδβ,δ) (3.267)

=
D
aαa

†
δ

E
0


aβa

†
γ

®
0
−

aαa

†
γ

®
0

D
aβa

†
δ

E
0

(3.268)

which is easiest to remember as follows,

D
aαaβa

†
γa
†
δ

E
=

*
↓
aαaβ
↑
a†γ
↑

↓
a†δ

+
+

*
↓
aαaβ
↑

↓
a†γa

†
δ
↑

+
(3.269)

in other words, all possible pairs of creation and annihilation operators must
be paired (“contracted”) in all possible ways. There is a minus sign if an
odd number of operator exchanges (transpositions) is necessary to bring the
contracted operators next to each other on the right-hand side (In practice,
just count one minus sign every time two operators are permuted). Substi-
tuting Eq.(3.268) back into the expression for the original average expressed
in the diagonal basis Eq.(3.262) we haveD

ai (τ i) aj (τ j) a
†
k (τk) a

†
l (τ l)

E
0

(3.270)

=
D
ai (τ i) a

†
l (τ l)

E
0

D
aj (τ j) a

†
k (τk)

E
0
−
D
ai (τ i) a

†
k (τk)

E
0

D
aj (τ j) a

†
l (τ l)

E
0

By induction (not done here) one can show that this result generalizes to the
expectation value of an arbitrary number of creation-annihilation operators.

Definition 11 Contraction: In the context of Wick’s theorem, we call each factorD
ai (τ i) a

†
k (τk)

E
0
on the right-hand side, a “contraction”.
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Since Wick’s theorem is valid for an arbitrary time ordering, it is also valid for
time-ordered products so that, for exampleD

Tτ

h
ai (τ i) aj (τ j) a

†
k (τk) a

†
l (τ l)

iE
0
= (3.271)

D
Tτ

h
ai (τ i) a

†
l (τ l)

iE
0

D
Tτ

h
aj (τ j) a

†
k (τk)

iE
0
−
D
Tτ

h
ai (τ i) a

†
k (τk)

iE
0

D
Tτ

h
aj (τ j) a

†
l (τ l)

iE
0
.

(3.272)
The only simplification that occurs with time-ordered products is the following.
Note that, given the definition of time-ordered product, we haveD

Tτ

h
ai (τ i) a

†
k (τk)

iE
0
= −

D
Tτ

h
a†k (τk) ai (τ i)

iE
0

(3.273)

Indeed, the left-hand side and right-hand side of the above equation are, respec-
tively D

Tτ

h
ai (τ i) a

†
k (τk)

iE
0
=

D
ai (τ i) a

†
k (τk)

E
0
θ (τ i − τk) (3.274)

−
D
a†k (τk) ai (τ i)

E
0
θ (τk − τ i) (3.275)

−
D
Tτ

h
a†k (τk) ai (τ i)

iE
0
= −

D
a†k (τk) ai (τ i)

E
0
θ (τk − τ i) (3.276)

+
D
ai (τ i) a

†
k (τk)

E
0
θ (τ i − τk) (3.277)

In other words, operators can be permuted at will inside a time-ordered product, in
particular inside a contraction, as long as we take care of the minus-signs associated
with permutations. This is true for time-ordered products of an arbitrary number
of operators and for an arbitrary density matrix.
On the other hand, if we apply Wick’s theorem to a product that is not time

ordered, then we have to remember thatD
ai (τ i) a

†
k (τk)

E
0
6= −

D
a†k (τk) ai (τ i)

E
0

(3.278)

as we can easily verify by looking at the special case τk = τ i or by going to a
diagonal basis. We can anticommute operators at will to do the “contractions”

but they cannot be permuted inside a contraction
D
ai (τ i) a

†
k (τk)

E
0
.

In practice, we will apply Wick’s theorem to time-ordered products. In nu-
merical calculations it is sometimes necessary to apply it to objects that are not
time-ordered.

Example 12 To make the example of Wick’s theorem Eq.(3.272) more plausible,
we give a few examples, Suppose first that the time order to the left of Eq.(3.272)
is such that the destruction operators are inverted. Then,D

Tτ

h
ai (τ i) aj (τ j) a

†
k (τk) a

†
l (τ l)

iE
0
= −

D
aj (τ j) ai (τ i) a

†
k (τk) a

†
l (τ l)

E
0
(3.279)

which means that since i and j have exchanged roles, in doing the contractions
as above there is one more permutation to do, which gets rid of the extra minus
sign and reproduces the right-hand side of Eq.(3.272). More explicitly, to do the
contractions as above, we have to change i for j on both the right- and the left-hand
side of Eq.(3.270). Doing this and substituting above, we obtainD
aj (τ j) ai (τ i) a

†
k (τk) a

†
l (τ l)

E
0
=
D
aj (τ j) a

†
l (τ l)

E
0

D
ai (τ i) a

†
k (τk)

E
0
−
D
aj (τ j) a

†
k (τk)

E
0

D
ai (τ i) a

†
l (τ l)

E
(3.280)
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which we substitute in the previous equation to obtain exactly what the right-hand
side of Eq.(3.272) would have predicted. To take another example, suppose that
the time orders are such thatD

Tτ

h
ai (τ i) aj (τ j) a

†
k (τk) a

†
l (τ l)

iE
0
= −

D
ai (τ i) a

†
k (τk) aj (τ j) a

†
l (τ l)

E
0
.

(3.281)
Then, to do the contractions we proceed as above, being careful not to permute
creation and annihilation operators within an expectation value

−
D
ai (τ i) a

†
k (τk) aj (τ j) a

†
l (τ l)

E
0

= −
D
ai (τ i) a

†
l (τ l)

E
0

D
a†k (τk) aj (τ j)

E
0
−
D
ai (τ i) a

†
k (τk)

E
0

D
aj (τ j) a

†
l (τ l)

E
0
.(3.282)

The right-hand side of Eq.(3.272) gives usD
Tτ

h
ai (τ i) a

†
l (τ l)

iE
0

D
Tτ

h
aj (τ j) a

†
k (τk)

iE
0
−
D
Tτ

h
ai (τ i) a

†
k (τk)

iE
0

D
Tτ

h
aj (τ j) a

†
l (τ l)

iE
0

= −
D
ai (τ i) a

†
l (τ l)

E
0

D
a†k (τk) aj (τ j)

E
0
−
D
ai (τ i) a

†
k (τk)

E
0

D
aj (τ j) a

†
l (τ l)

E
0

(3.283)

with the minus sign in the first term because we had to exchange the order in one
of the time-ordered products.

3.7.2 Linked cluster theorems

Suppose we want to evaluate the Green’s function by expanding the time-ordered
product in the evolution operator Eq.(3.247). The expansion has to be done both
in the numerator and in the denominator of the general expression for the average
Eq.(3.245). This is a very general problem that forces us to introduce the notion
of connected graphs. A generalization of this problem also occurs if we want to
compute the free-energy from

lnZ = ln
³
Tr
h
e−βH0 bU (β, 0)i´ = ln³Z0 DbU (β, 0)E

0

´
(3.284)

= ln

Ã*
Tτ

"
exp

Ã
−
Z β

0

dτ1 bV (τ1)!#+
0

!
+ lnZ0 (3.285)

In probability theory this is like computing the cumulant expansion of the char-
acteristic function. Welcome to linked cluster theorems.
These problems are special cases of much more general problems in the theory

of random variables which do not even refer to specific Feynman diagrams or to
quantum mechanics. The theorems, and their corollary that we prove below, are
amongst the most important theorems used in many-body Physics or Statistical
Mechanics in general.

Linked cluster theorem for normalized averages

Consider the calculation of 
e−f(x)A (x)

®
e−f(x)

® (3.286)
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where the expectation hi is computed over a multivariate probability distribution
function for the variables collectively represented by x. The function f (x) is
arbitrary, as is the function A (x). Expanding the exponential, we may write

e−f(x)A (x)
®

e−f(x)
® =

P∞
n=0

1
n! h(−f (x))

nA (x)iP∞
n=0

1
n! h(−f (x))

ni
(3.287)

When computing a term of a given order n, such as 1
n! h(−f (x))

n
A (x)i, we may

always write

1

n!
h(−f (x))nA (x)i =

∞X
c=0

∞X
m=0

δn,m+c
1

n!

n!

c!m!

D
(−f (x))cA (x)

E
c
h(−f (x))mi

(3.288)

where the subscript c on the average means that none of the terms in
D
(−f (x))cA (x)

E
c

can be factored into lower order correlation functions, such as for example
D
(−f (x))c

E
hA (x)i

or
D
(−f (x))c−1

E
h(−f (x))A (x)i etc... The combinatorial factor corresponds to

the number of ways the (−f (x))n can be grouped into a group of c terms and a
group of n − c terms, the δn,m+c Kronecker delta function ensuring that indeed
m = n − c. Using the last equation in the previous one, the sum over n is now
trivially performed with the help of δn,m+c and one is left with


e−f(x)A (x)

®
e−f(x)

® =

P∞
c=0

P∞
m=0

1
m!c!

D
(−f (x))cA (x)

E
c
h(−f (x))miP∞

n=0
1
n! h(−f (x))

ni
(3.289)

The numerator can now be factored so as to cancel the denominator which proves
the theorem

Theorem 13 Linked cluster theorem for normalized averages:

he−f(x)A(x)i
he−f(x)i =

P∞
c=0

1
c!

D
(−f (x))cA (x)

E
c
=

e−f(x)A (x)

®
c

(3.290)

This result can be applied to our calculation of the Green’s function since
within the time-ordered product, the exponential may be expanded just as an ordi-

nary exponential, and the quantity which plays the role of (−f (x)), namely
³
−
R β
0
dτ bV (τ)´

can be moved within the Tτ product without costing any additional minus sign.

Linked cluster theorem for characteristic functions or free energy

We now wish to show the following general theorem for a multivariate probability
distribution.

Theorem 14 Linked cluster theorem (cumulant expansion).

ln

e−f(x)

®
=
P∞

n=1
1
n! h(−f (x))

nic =

e−f(x)

®
c
− 1 (3.291)

The proof is inspired by Enz[24]. When f (x) = ik · x, the quantity

e−ik·x

®
is called the characteristic function of the probability distribution. It is the gener-
ating function for the moments. The quantities on the right-hand side, which as
above are connected averages, are usually called cumulants in ordinary probability
theory and ln


e−ik·x

®
is the generating function for the cumulant averages.
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Proof: To prove the theorem, we introduce first an auxiliary variable λ

∂

∂λ

D
e−λf(x)

E
=
D
e−λf(x) [−f (x)]

E
(3.292)

We can apply to the right-hand side the theorem we just provedD
e−λf(x) [−f (x)]

E
=
D
e−λf(x) [−f (x)]

E
c

D
e−λf(x)

E
(3.293)

so that
1

e−λf(x)
® ∂

∂λ

D
e−λf(x)

E
=

¿
∂

∂λ
e−λf(x)

À
c

. (3.294)

Integrating both sides from 0 to 1, we obtain

ln
D
e−λf(x)

E
|10 =

D
e−f(x)

E
c
− 1 (3.295)

QED

Example 15 It is instructive to check the meaning of the above result explicitly
to second order

ln
D
e−λf(x)

E
≈ ln

¿
1− λf (x) +

1

2
(λf (x))

2

À
≈
µ
− hλf (x)i+ 1

2

D
(λf (x))

2
E¶
−1
2
hλf (x)i2

(3.296)D
e−λf(x)

E
c
− 1 ≈ − hλf (x)ic +

1

2

D
(λf (x))2

E
c

(3.297)

so that equating powers of λ, we find as expected,D
(f (x))2

E
c
=
D
(f (x))2

E
− hf (x)i2 . (3.298)

The above results will help us in the calculation of the free energy since we
find, as in the first equations of the section on linked cluster theorems,

F = −T ln
h
Z0

D
Tτ

h
e−

R β
0
dτ bV (τ)iE

0

i
= −T

∞X
n=1

1

n!

*
Tτ

"
−
Z β

0

dτ bV (τ)#n+
0c

−T lnZ0

(3.299)

F = −T lnZ = −T
hD
Tτ

h
e−

R β
0
dτ bV (τ)iE

0c
− 1
i
− T lnZ0. (3.300)

the subscript 0 stands for averages with the non-interacting density matrix. The
above proof applies to our case because the time-ordered product of an exponential
behaves exactly like an ordinary exponential when differentiated, as we know from
the differential equation that leads to its definition.

3.7.3 Variational principle and application to Hartree-Fock theory

It is legitimate to ask if there is a one-body Hamiltonian, in other words an
effective Hamiltonian with a time-independent potential, whose solution is as close
as possible to the true solution. To address this question, we also need to define
what we mean by “as close as possible”. The answer to both of these queries
is provided by the variational principle for thermodynamic systems. We discuss
below how Hartree-Fock theory comes out naturally from the variational principle.
Also, it is an unavoidable starting point when there is a broken symmetry, as we
will discuss more fully in a later chapter.
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Thermodynamic variational principle for classical systems

One can base the thermodynamic variational principle for classical systems on the
inequality

ex ≥ 1 + x (3.301)

which is valid for all x, whether x > 0, or x < 0. This inequality is a convexity
inequality which appears obvious when the two functions are plotted. We give two
proofs.

Proof 1: ex is a convex function, i.e. d2ex/d2x ≥ 0 for all values of x. At x = 0
the functions ex and 1+x as well as their first derivatives are equal. Since a
straight line tangent to a convex curve at a point cannot intersect it anywhere
else, the theorem is proven.QED

Algebraically, the proof goes as follows.

Proof 2: The equality occurs when x = 0. For x ≤ −1, ex ≥ 0 while 1 + x < 0,
hence the inequality is satisfied. For the remaining two intervals, notice that
ex ≥ 1 + x is equivalent to

∞X
n=2

1

n!
xn ≥ 0. (3.302)

For x ≥ 0, all terms in the sum are positive so the inequality is trivially
satisfied. In the only remaining interval, −1 < x < 0, the odd powers of x in
the infinite-sum version of the inequality are less than zero but the magnitude
of each odd power of x is less than the magnitude of the preceding positive
power of x, so the inequality (3.302) survives. QED

Moving back to our initial purpose, let eH0 be a trial Hamiltonian. Then take
e−β(

eH0−μN)/Z0 as the trial density matrix corresponding to averages hie0. We will
use the above inequality Eq.(3.301) to prove that

−T lnZ ≤ −T lnZe0 +
D
H − eH0

E
e0 (3.303)

This inequality is a variational principle because eH0 is arbitrary, meaning that
we are free to parametrize it and then to minimize with respect to the set of
all parameters to find the best one-particle Hamiltonian in our Physically chosen
space of Hamiltonians.

Proof Our general result for the free energy in terms of connected terms, Eq.(3.300),
is obviously applicable to classical systems. The simplification that occurs
there is that since all operators commute, we do not need to worry about
the time-ordered product, thus witheV = H − eH0 (3.304)

we have

F = −T lnZ = −T
∙D

e−β
eV Ee0,c − 1

¸
− T lnZe0. (3.305)

Using our basic inequality Eq.(3.301) for e−β eV we immediately obtain the
desired result

F ≤ −T
D
−β eV Ee0,c + Fe0 (3.306)

which is just another way of rewriting Eq.(3.303).

THREE GENERAL THEOREMS 103



It is useful to note that in the language of density matrices, ρ0 = e−β(
eH0−μN)/Z0

the variational principle Eq.(3.303) reads,

−T lnZ ≤ Tr [ρ0 (H − μN)] + TTr [ρ0 ln ρ0] (3.307)

which looks as if we had the function (E − μN)− TS to minimize, quite a satis-
factory state of affairs.

Thermodynamic variational principle for quantum systems

For quantum systems, the general result Eq.(3.303) applies but it is more difficult
to prove because there is in general no basis that diagonalizes simultaneously

each and every term in the expansion of Tτ exp
h
−
R β
0
dτ eV (τ)i . If eV was not time

dependent, as in the classical case, then matters would be different since eV n would
be diagonal in the same basis as eV and one could apply our inequality Eq.(3.301)
in this diagonal basis and prove the theorem. The proof of the variational principle
in the quantum case is thus more complicated because of the non-commutation of
operators. As far as I know, the proof is due to Feynman [25]. We do not repeat
it here.

Application of the variational principle to Hartree-Fock theory

Writing down the most general one-body Hamiltonian with orthonormal eigen-
functions left as variational parameters, the above variational principle leads to
the usual Hartree-Fock eigenvalue equation. Such a general one-body Hamiltonian
would look like

eH0 =
X
α

Z
dxφ∗α (x)

µ
−∇

2

2m

¶
φα (x) c

+
α cα (3.308)

with φα (x) as variational wave-functions. In the minimization problem, one must
add Lagrange multipliers to enforce the constraint that the wave-functions are not
only orthogonal but also normalized.
In a translationally invariant system, the one-body wave functions will be plane

waves usually, so only the eigenenergies need to be found. This will be done in
the following chapter.
It does happen however that symmetry is spontaneously broken. For example,

in an anti-ferromagnet the periodicity is halved so that the Hartree-Fock equa-
tions will correspond to solving a 2× 2 matrix, even when Fourier transforms are
used. The matrix becomes larger and larger as we allow more and more general
non-translationally invariant states. In the extreme case, the wave functions are
different on every site! This is certainly the case in ordinary Chemistry with small
molecules or atoms!

3.8 Quantum impurities

An important example that we will encounter in this School is that of a cor-
related impurity in a bath of non-interacting electrons. Dynamical Mean-Field
theory is based on this example. We will only set up the problem without solving
it. The Numerical Renormalization Group approach (NRG) and Density Matrix
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Renormalization Group are examples of approaches that can be used to solve this
problem.
We begin with the Anderson impurity problem. Including the chemical poten-

tial we obtain,

KI = Hf +Hc +Hfc − μN (3.309)

Hf ≡
X
σ

(ε− μ) f†iσfiσ + U
³
f†i↑fi↑

´³
f†i↓fi↓

´
(3.310)

Hc ≡
X
σ

X
k

(εk − μ) c†kσckσ (3.311)

Hfc ≡
X
σ

X
k

Vikc
†
kσfiσ + h.c. (3.312)

Note that the sum over k in the hybridization part of the Hamiltonian Hfc basi-
cally tells us that it is the local overlap of the conduction band with the impurity
that produces the coupling.
Suppose we want to know the properties of the impurities, such as the local

density of states. It can be obtained from the Green function

Gff (τ) = −
D
Tτfiσ (τ) f

†
iσ

E
. (3.313)

We will proceed with the equations of motion method. We first write the
equations of motion for ckσ and fiσ

∂

∂τ
ckσ = [HI , ckσ] (3.314)

= − (εk − μ) ckσ + Vikfiσ (3.315)
∂

∂τ
fiσ = [HI , fiσ] (3.316)

= − (ε− μ) fiσ − Uf†i−σfi−σfiσ + V ∗ikckσ (3.317)

Proceeding like our in our earlier derivation of the equations of motion Eq.(3.153)
we have

∂

∂τ
Gff (τ) = −δ (τ)

Dn
fiσ (τ) , f

†
iσ

oE
−
D
Tτ

³
− (ε− μ) fiσ (τ)− Uf†i−σ (τ) fi−σ (τ) fiσ (τ) + V ∗ikckσ

´
f†iσ

E
(3.318)

= −δ (τ)− (ε− μ)Gff (τ) + U
D
Tτf

†
i−σ (τ) fi−σ (τ) fiσ (τ) f

†
iσ

E
+ V ∗ikGcf (k, i, τ)

where we defined
Gcf (k, i, τ) = −

D
Tτckσ (τ) f

†
iσ

E
. (3.319)

To eliminate this quantity, we write its equations of motion

∂

∂τ
Gcf (k, i, τ) = −δ (τ)

Dn
ckσ (τ) , f

†
iσ

oE
−
D
Tτ (− (εk − μ) ckσ (τ) + Vikfiσ (τ)) f

†
iσ

E
= − (εk − μ)Gcf (k, i, τ) + VikGff (τ) (3.320)

It can be solved by going to Matsubara frequencies

Gcf (k, i, ikn) =
1

ikn − (εk − μ)
VikGff (ikn) . (3.321)
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Substituting in the equation for Gff (ikn) we obtain∙
ikn − (ε− μ) + V ∗ik

1

ikn − (εk − μ)
Vik

¸
Gff (ikn)

= 1− U

Z β

0

dτeiknτ
D
Tτf

†
i−σ (τ) fi−σ (τ) fiσ (τ) f

†
iσ

E
. (3.322)

The equation to be solved has exactly the same structure as we would find for a
single impurity except that now the “non-interacting” Green function is

G0ff (ikn)
−1 = ikn − (ε− μ) + V ∗ik

1

ikn − (εk − μ)
Vik. (3.323)

This is in fact exactly the non-interacting Green function that we would find with
U = 0. One can propagate from the impurity site back to the impurity site by
going through the bath. One often defines the hybridization function ∆ff (ikn)
by

∆ff (ikn) = V ∗ik
1

ikn − (εk − μ)
Vik. (3.324)
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