

Strongly Correlated Superconductivity

A.-M. Tremblay

G. Sordi, D. Sénéchal, K. Haule, S. Okamoto, B. Kyung, M. Civelli

St-John's, 16 June 2011

The race for absolute zero temperature

On the way towards the target T=0

• What happens to electrical resistance?

8 April 1911

Inching our way to room temperature

Attraction mechanism in the metallic state

#1 Cooper pair, #2 Phase coherence

$$E_{P} = \sum_{\mathbf{p},\mathbf{p}'} U_{\mathbf{p}-\mathbf{p}'} \psi_{\mathbf{p}\uparrow,-\mathbf{p}\downarrow} \psi_{\mathbf{p}\uparrow,-\mathbf{p}'\downarrow}^{*}$$

$$E_{P} = \sum_{\mathbf{p},\mathbf{p}'} U_{\mathbf{p}-\mathbf{p}'} \left(\langle \psi_{\mathbf{p}\uparrow,-\mathbf{p}\downarrow} \rangle \psi_{\mathbf{p}\uparrow,-\mathbf{p}'\downarrow}^{*} + \psi_{\mathbf{p}\uparrow,-\mathbf{p}\downarrow} \langle \psi_{\mathbf{p}\uparrow,-\mathbf{p}'\downarrow}^{*} \rangle \right)$$

 $|\mathrm{BCS}(\theta)\rangle = \dots + e^{iN\theta}|N\rangle + e^{i(N+2)\theta}|N+2\rangle + \dots$

Superconductivity everywhere

Superconductivity everywhere

Inching our way to room temperature

ersité de ERBROOKE

High-temperature superconductors

SCIENTIFIC AMERICAN

JUNE 1988 \$3.50

How nonsense is deleted from genetic messages. R_x for economic growth: aggressive use of new technology. Can particle physics test cosmology?

High-Temperature Superconductor belongs to a family of materials that exhibit exotic electronic properties. Y Ba Cu O7. 5 92-37

What is special

- TM (not Cu, Au,Fe)
- Cubic
- Stay away from
 - O
 - Magnets
 - Insulators

- Cu
- Layered
- Stay close to
 - O
 - Magnets
 - Insulators

Superconductivity in the presence of repulsion

Phase diagram

Armitage, Fournier, Greene, RMP (2009)

Layered organic conductors(κ -BEDT-X family)

Experimental phase diagram BEDT-X

Phase diagram (X=Cu[N(CN)₂]Cl) S. Lefebvre et al. PRL **85**, 5420 (2000), P. Limelette, et

Heavy fermions CeMnI₅

Figure 1. The structure of the CeMIn₅ materials. The Ce (Wykyoff position 1a) atoms are yellow, the In(1) (1c) atoms are orange, the In(2) (4i) are green, and the M atoms are blue (1b). Details of the structural parameters can be found in [10]. Hyperfine interactions in the heavy fermion CeMIn₅ systems N J Curro

Pnictides (2008)

http://www.stanford.edu/~tpd/research_hightc.html

Pnictides

http://physics.aps.org/articles/v3/41

Antiferromagnetism means repulsion

Hubbard model

1931-1980

$$H = -\sum_{\langle ij \rangle \sigma} t_{i,j} \left(c_{i\sigma}^{\dagger} c_{j\sigma} + c_{j\sigma}^{\dagger} c_{i\sigma} \right) + U \sum_{i} n_{i\uparrow} n_{i\downarrow}$$

Weak coupling

Strong coupling

Antiferromagnetism and repulsion

Effective model, Heisenberg: $J = 4t^2 / U$

Superconductivity with repulsion

$$E_P = \sum_{\mathbf{p},\mathbf{p}'} U_{\mathbf{p}-\mathbf{p}'} \psi_{\mathbf{p}\uparrow,-\mathbf{p}\downarrow} \psi^*_{\mathbf{p}\uparrow,-\mathbf{p}'\downarrow}$$

Weak to intermediate coupling

Armitage, Fournier, Greene, RMP (2009)

FLEX, Bickers, Scalapino Two-particle self-consistent approach, Vilk, Kyung, A.-M.S.T.

Weak to intermediate coupling

• Renormalization group

Claude Bourbonnais

Strong correlations

Phase diagram

Insulator even if n=1

Armitage, Fournier, Greene, RMP (2009)

Experimental phase diagram BEDT-X

Phase diagram (X=Cu[N(CN)₂]Cl) S. Lefebvre et al. PRL **85**, 5420 (2000), P. Limelette, et

A quantum traffic jam (A.P.): Mott insulator

Spectral weight transfer

Meinders et al. PRB 48, 3916 (1993)

Cuprates as doped Mott insulators

Experiment: X-Ray absorption

Chen et al. PRL 66, 104 (1991)

Peets et al. PRL 103, (2009), Phillips, Jarrell arXiv

Number of low energy states above $\omega = 0$ scales as 2x +Not as 1+x as in Fermi liquid

Meinders et al. PRB 48, 3916 (1993)

Theoretical method

Mott transition and Dynamical Mean-Field Theory. The beginnings in d = infinity

- Compute scattering rate (self-energy) of impurity problem.
- Use that self-energy (ω dependent) for lattice.
- Project lattice on single-site and adjust bath so that single-site DOS obtained both ways be equal.

W. Metzner and D. Vollhardt, PRL (1989)A. Georges and G. Kotliar, PRB (1992)M. Jarrell PRB (1992)

DMFT, (d = 3)

2d Hubbard: Quantum cluster method

Hettler ... Jarrell... Krishnamurty PRB 58 (1998) Kotliar et al. PRL 87 (2001) M. Potthoff et al. PRL 91, 206402 (2003). Maier, Jarrell et al., Rev. Mod. Phys. 77, 1027 (2005)

Solving cluster in a bath problem

- Continuous-time Quantum Monte Carlo calculations to sum all diagrams generated from expansion in powers of hybridization.
 - P. Werner, A. Comanac, L. de' Medici, M. Troyer, and A. J. Millis, Phys. Rev. Lett. 97, 076405 (2006).
 - K. Haule, Phys. Rev. B **75**, 155113 (2007).

The « normal » state

Normal state phase diagram

Giovanni Sordi

Mott felt away from n = 1

ţ

Kristjan Haule

G. Sordi, K. Haule, A.-M.S.T PRL, **104**, 226402 (2010)

and arXiv:1102.0463

- first order transition at finite doping between two metals
- it is associated to Mott physics: all signatures of the first order transition can be traced back to Mott critical point

 \Rightarrow signature of the Mott transition in the 2D Hubbard model extends way beyond half filling!

criticality originates from

first order transition at finite doping coming from influence of Mott physics well beyond half filling! G. Sordi, K. Haule, A.-M.S.T PRL, **104**, 226402 (2010) and arXiv:1102.0463

Strongly Correlated Superconductivity

Phase diagram Exact diagonalization as impurity solver (T=0).

CDMFT global phase diagram

Kancharla, Kyung, Civelli, Sénéchal, Kotliar AMST Phys. Rev. B (2008)

Armitage, Fournier, Greene, RMP (2009)

Consistent with following experiment

H. Mukuda, Y. Yamaguchi, S. Shimizu, ... A. Iyo JPSJ 77, 124706 (2008)

Experimental phase diagram BEDT-X

Phase diagram (X=Cu[N(CN)₂]Cl) S. Lefebvre et al. PRL **85**, 5420 (2000), P. Limelette, et

Layered organics (*k*-BEDT-X family)

Perspective

Im Σ_{an} and electron-phonon in Pb

Maier, Poilblanc, Scalapino, PRL (2008)

The glue

The glue and neutrons

FIG. 3 (color online). **Q**-integrated dynamic structure factor $S(\omega)$ which is derived from the wide-*H* integrated profiles for LBCO 1/8 (squares), LSCO x = 0.25 (diamonds; filled for $E_i = 140$ meV, open for $E_i = 80$ meV), and x = 0.30 (filled circles) plotted over $S(\omega)$ for LBCO 1/8 (open circles) from [2]. The solid lines following data of LSCO x = 0.25 and 0.30 are guides to the eyes.

Wakimoto ... Birgeneau PRL (2007); PRL (2004)

UNIVERSITÉ DE SHERBROOKE

room-temperature superconductors They would transform the grid—if they can exist at all By Michael Moyer and refrigeration units every kilometer or so, greathand, are finicky. The strongest winds blow across the high plains. The sun shires brightest on ly increasing the cost and complexity of superconous substances needed to be chilled down to 23 Superconductors that work at ordinary temperkelvins or less),

atures and pressures would enable a truly global Two years ago the discovery of an entirely new class of superconductor-one based on ironenergy supply. The Saharan sun could power westraised hopes that theorists might be able to divine ern Europe via superconducting cables strung across the floor of the Mediterranean Sea. Yet the the mechanism at work in high-temperature supertrick to making a room-temperature superconducconductors [see "An Iron Key to High-Temperature tor is just as much of a mystery today as it was in Superconductivity?" by Graham P. Collins; SCIEN-1986, when researchers constructed the first su-TIFIC AMERICAN, August 2009]. With such insights perconducting materials that worked at the relain hand, perhaps a path toward room-temperature tively high temperatures of liquid nitrogen (previsuperconductors would come into view. But progress has remained slow. The winds of change don't

SCIENTIFIC AMERICAN 43

To do

- Work with what we have
 - Quantum computer (SC vs laser)
- Improve theoretical methods
- Guide the search for new materials
 - AFM
 - U
 - There does not seem to be a fundamental law prohibiting room temperature superconductivity
- Design heterostructures

Main collaborators

Giovanni Sordi

David Sénéchal

Kristjan Haule

Sarma Kancharla

Gabi Kotliar

Massimo Capone

Bumsoo Kyung

Marcello Civelli

Satoshi Okamoto

Département de physique Université de Sherbrooke

I D E R E V S

AEDICEA SIDERA

André-Marie Tremblay

Le regroupement québécois sur les matériaux de pointe

CIAR The Canadian Institute for Advanced Research

Sponsors:

Fonds FCAR

Fondation canadienne pour l'innovation

Mammouth, série

Canada Foundation for Innovation Fondation canadienne pour l'innovation

Réseau Québécois de Calcul de Haute Performance

