Mott Physics in Superconductors

A.-M. Tremblay

G. Sordi, D. Sénéchal, K. Haule, S. Okamoto, B. Kyung, M. Civelli

MIT, 3 October, 2011

How to make a metal

Courtesy, S. Julian

Not always

NiO, Boer and Verway

Peierls, 1937

« Conventional » Mott transition

Understood from Hubbard model and dynamical mean field theory

Figure: McWhan, PRB 1970; Limelette, Science 2003

Hubbard model

1931-1980

$$H = -\sum_{\langle ij \rangle \sigma} t_{i,j} \left(c_{i\sigma}^{\dagger} c_{j\sigma} + c_{j\sigma}^{\dagger} c_{i\sigma} \right) + U \sum_{i} n_{i\uparrow} n_{i\downarrow}$$

Effective model, Heisenberg:
$$J = 4t^2 / U$$

Bare Mott critical point in organics

F. Kagawa, K. Miyagawa, + K. Kanoda PRB **69** (2004) +Nature **436** (2005)

Phase diagram (X=Cu[N(CN)₂]Cl) S. Lefebvre et al. PRL 85, 5420 (2000), P. Limelette, et al. PRL 91 (2003)

CIAR The Canadian Institute for Advanced Research

Perspective

Normal state of high-temperature superconductors

What is under the dome? Mott Physics away from n = 1

- Competing order
 - Current loops: Varma, PRB
 81, 064515 (2010)
 - Stripes or nematic: Kivelson et al. RMP 75 1201(2003); J.C.Davis
 - d-density wave : Chakravarty, Nayak, Phys. Rev. B 63, 094503 (2001); Affleck et al. flux phase
 - SDW: Sachdev PRB 80, 155129 (2009) ...
- Or Mott Physics?
 - RVB: P.A. Lee Rep. Prog.
 Phys. 71, 012501 (2008)

Two views (caricature)

Why T_c decreases? What is the origin of T^* ? What is the strange metal? Broken symmetry or not. What lies beneath the dome. Mott Physics away from n = 1

An alternate view (a bit of both)

PRL, **104**, 226402 (2010) and Phys. Rev. B. **84**, 075161 (2011)

S. Sachdev, Physica C **470**, S4 (2010) Matthias Punk + Subir Sachdev (unpublished) T. C. Ribeiro and X.-G. Wen, PRL (2005) and Phys. Rev. B 74, 155113 (2006)

Outline

- Method
- Normal state
 - First order transition
 - Widom line and pseudogap
- Superconducting state
 - Glue

Method

Mott transition and Dynamical Mean-Field Theory. The beginnings in d = infinity

- Compute scattering rate (self-energy) of impurity problem.
- Use that self-energy (ω dependent) for lattice.
- Project lattice on single-site and adjust bath so that single-site DOS obtained both ways be equal.

W. Metzner and D. Vollhardt, PRL (1989)A. Georges and G. Kotliar, PRB (1992)M. Jarrell PRB (1992)

DMFT, (d = 3)

2d Hubbard: Quantum cluster method

Another way to look at this (Potthoff)

$$\Omega_{\mathbf{t}}[G] = \Phi[G] - Tr[(G_{0\mathbf{t}}^{-1} - G^{-1})G] + Tr\ln(-G)$$

$$\Omega_{t}[\Sigma] = \begin{bmatrix} \frac{\delta \Phi[G]}{\delta G} = \Sigma \\ \Phi[G] - Tr[\Sigma G] - Tr \ln(-G_{0t}^{-1} + \Sigma) \end{bmatrix}$$
Still stationary (chain rule)

$$\Omega_{t}[\Sigma] = F[\Sigma] - Tr \ln(-G_{0t}^{-1} + \Sigma)$$

M. Potthoff, Eur. Phys. J. B 32, 429 (2003).

SFT : Self-energy Functional Theory

With $F[\Sigma]$ Legendre transform of Luttinger-Ward funct.

$$\Omega_{\mathbf{t}}[\Sigma] = F[\Sigma] + \operatorname{Tr}\ln(-(G_0^{-1} - \Sigma)^{-1})$$

is stationary with respect to Σ and equal to grand potential there.

$$\Omega_{\mathbf{t}}[\Sigma] = \Omega_{\mathbf{t}'}[\Sigma] - \mathrm{Tr}\ln(-(G_0^{\prime - 1} - \Sigma)^{-1}) + \mathrm{Tr}\ln(-(G_0^{-1} - \Sigma)^{-1}).$$

Vary with respect to parameters of the cluster (including Weiss fields)

Variation of the self-energy, through parameters in $H_0(\mathbf{t'})$

M. Potthoff, Eur. Phys. J. B 32, 429 (2003).

Understanding finite temperature phase from a *mean-field theory* down to T = 0

- Fermi liquid
 - Start from Fermi sea
 - Self-energy analytical
 - One to one correspondence of elementary excitations
 - Landau parameters

- Mott insulator
 - Hubbard model
 - Atomic limit
 - Self-energy singular
 - DMFT
 - How many sites in the cluster determines how low in temperature your description of the normal state is valid.

C-DMFT

$$Z = \int \mathcal{D}[\psi^{\dagger}, \psi] \,\mathrm{e}^{-S_{c} - \int_{0}^{\beta} d\tau \int_{0}^{\beta} d\tau' \sum_{\mathbf{K}} \psi_{\mathbf{K}}^{\dagger}(\tau) \Delta(\tau, \tau') \psi_{\mathbf{K}}(\tau')}_{\mathbf{K}}$$

Mean-field is not a trivial problem! Many impurity solvers.

EFFECTIVE LOCAL IMPURITY PROBLEM

SELF-CONSISTENCY CONDITION

Here: continuous time QMC

P. Werner, PRL 2006 P. Werner, PRB 2007 K. Haule, PRB 2007

$$\Delta(i\omega_n) = i\omega_n + \mu - \Sigma_c(i\omega_n) \\ - \left[\sum_{\tilde{k}} \frac{1}{i\omega_n + \mu - t_c(\tilde{k}) - \Sigma_c(i\omega_n)}\right]^{-1}$$

Solving cluster in a bath problem

- Continuous-time Quantum Monte Carlo calculations to sum all diagrams generated from expansion in powers of hybridization.
 - P. Werner, A. Comanac, L. de' Medici, M. Troyer, and A. J. Millis, Phys. Rev. Lett. 97, 076405 (2006).
 - K. Haule, Phys. Rev. B 75, 155113 (2007).

Mott insulator at finite T

FIG. 5. The temperature T^* at which the gap develops vs U for 4×4 , 6×6 , and 8×8 lattices.

M. Vekic and S.R. White, PRB 47, 1160 (1993)

Interaction-induced Mott transition, n = 1

Method	U _{c1}	$\mathbf{U_c}$	U_{c2}	Ref.
VCA+ED 2 x 2 + 8b	5.25	5.5	6.37	Balzer et al. EPL (2009)
CDMFT+CTQMC+H 2 x 2	5.3		5.7	Park et al. PRL (2008)
DCA+CTQMC+H 8	5.7		6.4	Gull et al. cond-mat (2009)
DCA+CTQMC+H 4	!	~4.2	!	Gull et al. EPL (2008)
Dual fermions	!	~6.5	!	Hafermann et al. (2008)
CDMFT+ED 2 x 2 + 8b 15 parameters	?	~5.6	?	Liebsch, Merino (2008)
CDMFT+ED 2,3,4		~4		Zhang et al. PRB (2007) (3d also)
QMC 6 x 6		6		Vekic et al. (1993)

Cuprates as doped Mott insulators

Spectral weight transfer

Experiment: X-Ray absorption

Chen et al. PRL 66, 104 (1991)

Peets et al. PRL **103**, (2009), Phillips, Jarrell PRL , vol. **105**, 199701 (2010)

Number of low energy states above $\omega = 0$ scales as 2x +Not as 1+x as in Fermi liquid

Meinders et al. PRB 48, 3916 (1993)

Giovanni Sordi

G. Sordi, K. Haule, A.-M.S.T PRL, **104**, 226402 (2010) and Phys. Rev. B. **84**, 075161 (2011)

Doping-induced Mott transition (t'=0)

μNot just adding new piece:Kristjan HauleLesson from DMFT, first order transition + critical
point governs phase diagramImage: Image: Image

Doping driven Mott transition, t' = 0

Method	ť'	Orbital selective	U	Critical point	Ref.	
D+C+H 8			7		Werner et al. cond-mat (2009)	
D+C+H 4					Gull et al. EPL (2008)	
	-0.3		10,6		Liebsch, Merino (2008)	
					Ferrero et al. PRB (2009)	
D+C+H 8			7		Gull, et al. PRB (2009)	
0.08 0.06 0.04 "FL" 0.02 0.1	herence scale	nt FL		0.08 $N_{c} =$ 0.06 $N_{c} =$ 0.04 -0.02 $NFL0$ 0.95 $-$	16, U=1.5, W=2 $\Theta \oplus T^{*}$ $\Pi \oplus T_{X}$ MFL MFL FL 0.9 0.85 0.8 0.75 0.7	
K. Haule, G. Kotliar, PRB (2008)			3)	Vildhyadhiraja, PRL (2009)		

3

Doping driven Mott transition

Gull, Werner, Millis, (2009)

First order transition at finite doping

 $n(\mu)$ for several temperatures: T/t = 1/10, 1/25, 1/50

The critical point

Normal state phase diagram

G. Sordi, K. Haule, A.-M.S.T PRL, **104**, 226402 (2010)

Link to Mott transition up to optimal doping

Doping dependence of critical point as a function of U

Characterisation of the phases (U=6.2t)

 $U > U_{\rm MIT}$:

- 1. Mott insulator (MI)
- 2. Underdoped phase (UD): $\delta < \delta_{\rm c}$
- 3. Overdoped phase (OD): $\delta > \delta_{\rm c}$
- 4. Coexistence/forbidden region

Here "optimal doping" $\delta_{\rm c}=$ doping at which the 1st order transition occurs

How does the UD phase differ from the OD phase?

Giovanni Sordi

Patrick Sémon

Kristjan Haul

Pseudogap and the Widom line

The Widom line

Xu et al. PNAS, **102**, 46 (2005) Simeoni et al., Nature Physics **6**, 503 (2010)

The Widom line

Rapid change also in dynamical quantities

T dependence of the DOS

Tunneling DOS

Khosaka et al. Science 315, 1380 (2007);

Spin susceptibility

Underdoped Hg1223 Julien et al. PRL **76**, 4238 (1996)

Plaquette eigenstates

Local moment and Mott transition

Local moment and Mott transition

Local singlet and pseudogap transition

Local singlet and pseudogap transition

Another property of the UD phase

Underdoped metal very sensitive to anisotropy

Okamoto, Sénéchal, Civelli, AMST Phys. Rev. B **82**, 180511R 2010

Satoshi Okamoto

D. Fournier et al. Nature Physics (Marcello Civelli

Superconductivity

Phase diagram Exact diagonalization as impurity solver (T=0).

Dome vs Mott (CDMFT)

Kancharla, Kyung, Civelli, Sénéchal, Kotliar AMST Phys. Rev. B (2008)

CDMFT global phase diagram

Kancharla, Kyung, Civelli, Sénéchal, Kotliar AMST Phys. Rev. B (2008)

Armitage, Fournier, Greene, RMP (2009)

Consistent with following experiment

H. Mukuda, Y. Yamaguchi, S. Shimizu, ... A. Iyo JPSJ 77, 124706 (2008)

Magnetic phase diagram of YBCO

Haug, ... Keimer, New J. Phys. 12, 105006 (2010)

Theoretical phase diagram BEDT

 $X = Cu_2(CN)_3 (t' \sim t)$

Phys. Rev. Lett. 95, 177001(2005) Y. Shimizu, et al. Phys. Rev. Lett. 91, (2003)

Im Σ_{an} and electron-phonon in Pb

Maier, Poilblanc, Scalapino, PRL (2008)

The glue

The glue and neutrons

FIG. 3 (color online). **Q**-integrated dynamic structure factor $S(\omega)$ which is derived from the wide-*H* integrated profiles for LBCO 1/8 (squares), LSCO x = 0.25 (diamonds; filled for $E_i = 140 \text{ meV}$, open for $E_i = 80 \text{ meV}$), and x = 0.30 (filled circles) plotted over $S(\omega)$ for LBCO 1/8 (open circles) from [2]. The solid lines following data of LSCO x = 0.25 and 0.30 are guides to the eyes.

Wakimoto ... Birgeneau PRL (2007); PRL (2004)

Main collaborators

Giovanni Sordi

Bumsoo Kyung

David Sénéchal

Marcello Civelli

Kristjan Haule

Satoshi Okamoto

d = 2 precursors, e-doped

$$\xi^{\star} = 2.6(2)\xi_{\rm th}$$

Vilk, A.-M.S.T (1997)

Kyung, Hankevych, A.-M.S.T., PRL, sept. 2004

Semi-quantitative fits of both ARPES and neutron

TPSC: general ideas

- General philosophy
 - Drop diagrams
 - Impose constraints and sum rules
 - Conservation laws
 - Pauli principle ($\langle n_{\sigma}^2 \rangle = \langle n_{\sigma} \rangle$)
 - Local moment and local density sum-rules
- Get for free:
 - Mermin-Wagner theorem
 - Kanamori-Brückner screening
 - Consistency between one- and two-particle $\Sigma G =$

 $U < n_{\sigma} n_{-\sigma} >$ Vilk, AMT J. Phys. I France, 7, 1309 (1997); Theoretical methods for strongly correlated electrons also (Mahan, 3rd) \bigcup Stherebrooke

Resistivity (TPSC)

Dominic Bergeron

Thermoelectric power

Louis-François Arsenault

Sriram Shastry

Patrick Sémon

Heterostructures

Maxime Charlebois

Syed Hassan

David Sénéchal

Patrick Fournier

Maxime Dion

Simon Verret

Retardation effects

David Sénéchal

André-Marie Tremblay

Le regroupement québécois sur les matériaux de pointe

CIAR The Canadian Institute for Advanced Research

Sponsors:

Fonds FCAR

Réseau Québécois de Calcul de Haute Performance

Mammouth, série

Éducation, Loisir et Sport Québec 🔯 🛤

Canada Foundation for Innovation Fondation canadienne pour l'innovation

Conclusions

- Tools for Hubbard model, high Tc.
- The influence of Mott Physics extends way beyond half-filling
 - Pseudogap as a phase
 - Effects of critical point at high temperature (Widom line)
 - Superconductivity
 - Dome
 - Retardation effects in pairing come from spin fluctuations.

