Insulators, metals, pseudogaps and high-temperature superconductors

A.-M. Tremblay

G. Sordi, K. Haule, D. Sénéchal, P. Sémon, B. Kyung, G. Kotliar

Rutgers, 24 January, 2012

How to make a metal

SHERBROOKE

Superconductivity

— -p° **↓**

#1 Cooper pair, #2 Phase coherence

Half-filled band is metallic?

Half-filled band: Not always a metal

NiO, Boer and Verway

Peierls, 1937

« Conventional » Mott transition

Figure: McWhan, PRB 1970; Limelette, Science 2003

Hubbard model

1931-1980

Superconductivity and attraction?

Bare Mott critical point in organics

F. Kagawa, K. Miyagawa, + K. Kanoda PRB **69** (2004) +Nature **436** (2005)

Phase diagram (X=Cu[N(CN)₂]Cl) S. Lefebvre et al. PRL **85**, 5420 (2000), P. Limelette, et al. PRL **91** (2003)

CIAR The Canadian Institute for Advanced Research

UNIVERSITÉ DE SHERBROOKE

High-temperature superconductors

What is under the dome? Mott Physics away from n = 1

- Competing order
 - Current loops: Varma, PRB 81, 064515 (2010)
 - Stripes or nematic:
 Kivelson et al. RMP 75 1201(2003); J.C.Davis
 - d-density wave : Chakravarty, Nayak, Phys.
 Rev. B 63, 094503 (2001); Affleck et al. flux phase
 - SDW: Sachdev PRB 80, 155129 (2009) ...
- Or Mott Physics?
 - RVB: P.A. Lee Rep. Prog. Phys. **71**, 012501 (2008)

SHERBROOKE

Perspective

Two views (caricature)

Why *T_c* decreases? What is the origin of *T**? What is the strange metal? Broken symmetry or not. What lies beneath the dome. Mott Physics away from n = 1

Outline

- Method
- *T*=0 phase diagram The « glue »
- Finite *T* phase diagram
 - Normal state
 - First order transition
 - Widom line and pseudogap
 - Superconductivity

Mott transition and Dynamical Mean-Field Theory. The beginnings in d = infinity

- Compute scattering rate (self-energy) of impurity problem.
- Use that self-energy (ω dependent) for lattice.
- Project lattice on single-site and adjust bath so that single-site DOS obtained both ways be equal.

W. Metzner and D. Vollhardt, PRL (1989)A. Georges and G. Kotliar, PRB (1992)M. Jarrell PRB (1992)

DMFT, (d = 3)

2d Hubbard: Quantum cluster method

Maier, Jarrell et al., Rev. Mod. Phys. 77, 1027 (2005)

Another way to look at this (Potthoff)

M. Potthoff, Eur. Phys. J. B 32, 429 (2003).

SFT : Self-energy Functional Theory

With $F[\Sigma]$ Legendre transform of Luttinger-Ward funct.

Vary with respect to parameters of the cluster (including Weiss fields)

Variation of the self-energy, through parameters in $H_0(\mathbf{t'})$

M. Potthoff, Eur. Phys. J. B 32, 429 (2003).

A bit of physics: superconductivity and repulsion

Cartoon « BCS » weak-coupling picture

Exchange of spin waves? Kohn-Luttinger T_c with pressure

P.W. Anderson Science 317, 1705 (2007)

D. J. Scalapino, E. Loh, Jr., and J. E. Hirsch P.R. B 34, 8190-8192 (1986).
Béal–Monod, Bourbonnais, Emery P.R. B. 34, 7716 (1986).
Kohn, Luttinger, P.R.L. 15, 524 (1965).
17, 1705 (2007)

A cartoon strong coupling picture

P.W. Anderson Science 317, 1705 (2007)

Pitaevskii Brückner: Pair state orthogonal to repulsive core of Coulomb interaction

> Kotliar and Liu, P.R. B **38,** 5142 (1988) Miyake, Schmitt–Rink, and Varma P.R. B **34**, 6554-6556 (1986)

d-wave superconductivity

• Weak coupling

- C. J. Halboth and W. Metzner, Phys. Rev. Lett. 85, 5162 (2000).
- B. Kyung, J.-S. Landry, and A. M. S. Tremblay, Phys. Rev. B 68, 174502 (2003).
- C. Bourbonnais and A. Sedeki, Physical Review B 80, 085105 (2009).
- D. J. Scalapino, Physica C: Superconductivity 470, Supplement 1, S1 (2010), ISSN 0921-4534, proceedings of the 9th International Conference on Materials and Mech anisms of Superconductivity.

• Renormalized Mean-Field Theory

- P. W. Anderson, P. A. Lee, M. Randeria, T. M. Rice, N. Trivedi, and F. C. Zhang, Journal of Physics: Condensed Matter 16, R755 (2004).
- K.-Y. Yang, T. M. Rice, and F.-C. Zhang, Phys. Rev. B 73, 174501 (2006).

• Slave particles

- P. A. Lee, N. Nagaosa, and X.-G. Wen, Rev. Mod. Phys. 78, 17 (2006).
- M. Imada, Y. Yamaji, S. Sakai, and Y. Motome, Annalen der Physik 523, 629 (2011)

• Variational approaches

- T. Giamarchi and C. Lhuillier, Phys. Rev. B 43, 12943 (1991).
- A. Paramekanti, M. Randeria, and N. Trivedi, Phys. Rev. B 70, 054504 (2004).

d-wave superconductivity

- Quantum cluster methods
 - T. Maier, M. Jarrell, T. Pruschke, and J. Keller, Phys. Rev. Lett. 85, 1524 (2000).
 - T. A. Maier, M. Jarrell, T. C. Schulthess, P. R. C. Kent, and J. B. White, Phys. Rev. Lett. 95, 237001 (2005).
 - K. Haule and G. Kotliar, Phys. Rev. B 76, 104509 (2007).

QMC constrained path S. Zhang, Carlson, Gubernatis Phys. Rev. Lett. 78, 4486 (1997) Refined variational approach: no Aimi and Imada, J. Phys. Soc. Jpn (2007)

T = 0 phase diagram n = 1

Phase diagram Exact diagonalization as impurity solver (T=0).

Theoretical phase diagram BEDT

 $X = Cu_2(CN)_3$ (t'~ t)

Phys. Rev. Lett. 95, 177001(2005) Y. Shimizu, et al. Phys. Rev. Lett. 91, (2003)

T = 0 phase diagram: cuprates

Phase diagram Exact diagonalization as impurity solver (T=0).

Dome vs Mott (CDMFT)

Kancharla, Kyung, Civelli, Sénéchal, Kotliar AMST Phys. Rev. B (2008)

CDMFT global phase diagram

Kancharla, Kyung, Civelli, Sénéchal, Kotliar AMST Phys. Rev. B (2008) AND Capone, Kotliar PRL (2006)

Armitage, Fournier, Greene, RMP (2009)

Consistent with following experiments

Magnetic phase diagram of YBCO

Haug, ... Keimer, New J. Phys. 12, 105006 (2010)

Materials dependent properties

C. Weber, C.-H. Yee, K. Haule, and G. Kotliar, ArXiv e-prints (2011), 1108.3028.

T = 0 phase diagram

The glue

Im Σ_{an} and electron-phonon in Pb

Maier, Poilblanc, Scalapino, PRL (2008)

The glue

The glue and neutrons

FIG. 3 (color online). **Q**-integrated dynamic structure factor $S(\omega)$ which is derived from the wide-*H* integrated profiles for LBCO 1/8 (squares), LSCO x = 0.25 (diamonds; filled for $E_i = 140$ meV, open for $E_i = 80$ meV), and x = 0.30 (filled circles) plotted over $S(\omega)$ for LBCO 1/8 (open circles) from [2]. The solid lines following data of LSCO x = 0.25 and 0.30 are guides to the eyes.

Wakimoto ... Birgeneau PRL (2007); PRL (2004)

Outline

- Method
- *T*=0 phase diagram The « glue »
- Finite *T* phase diagram
 - Normal state
 - First order transition
 - Widom line and pseudogap
 - Superconductivity

Finite T phase diagram

Normal state of the cuprates

Understanding finite temperature phase from a *mean-field theory* down to T = 0

- Fermi liquid
 - Start from Fermi sea
 - Self-energy analytical
 - One to one correspondence of elementary excitations
 - Landau parameters

- Mott insulator
 - Hubbard model
 - Atomic limit
 - Self-energy singular
 - DMFT
 - How many sites in the cluster determines how low in temperature your description of the normal state is valid.

Local moment and Mott transition

Local moment and Mott transition

IJ

Bare Mott critical point in organics

F. Kagawa, K. Miyagawa, + K. Kanoda PRB **69** (2004) +Nature **436** (2005)

Phase diagram (X=Cu[N(CN)₂]Cl) S. Lefebvre et al. PRL **85**, 5420 (2000), P. Limelette, et al. PRL **91** (2003)

CIAR The Canadian Institute for Advanced Research

UNIVERSITÉ DE SHERBROOKE

Interaction-induced Mott transition theory

κ–BEDT-CN

Liebsch Phys. Rev. B 79, 195108 (2009)

See also: Ohashi et al. PRL **100**, 076402 (2008)

Mott insulator at finite T

M. Vekic and S.R. White, PRB 47, 1160 (1993)

Interaction-induced Mott transition, n = 1

Method	U_{c1}	$\mathbf{U_c}$	U _{c2}	Ref.
VCA+ED 2 x 2 + 8b	5.25	5.5	6.37	Balzer et al. EPL (2009)
CDMFT+CTQMC+H 2 x 2	5.3		5.7	Park et al. PRL (2008)
DCA+CTQMC+H 8	5.7		6.4	Gull et al. cond-mat (2009)
DCA+CTQMC+H 4	!	~4.2	!	Gull et al. EPL (2008)
Dual fermions	!	~6.5	!	Hafermann et al. (2008)
CDMFT+ED 2 x 2 + 8b 15 parameters	?	~5.6	?	Liebsch, Merino (2008)
CDMFT+ED 2,3,4		~4		Zhang et al. PRB (2007) (3d also)
QMC 6 x 6		6		Vekic et al. (1993)

Finite T phase diagram

Normal state of the cuprates

Giovanni Sordi

G. Sordi, K. Haule, A.-M.S.T PRL, **104**, 226402 (2010) and Phys. Rev. B. **84**, 075161 (2011)

Doping-induced Mott transition (t'=0)

C-DMFT

$$Z = \int \mathcal{D}[\psi^{\dagger}, \psi] \,\mathrm{e}^{-S_{c} - \int_{0}^{\beta} d\tau \int_{0}^{\beta} d\tau' \sum_{\mathbf{K}} \psi_{\mathbf{K}}^{\dagger}(\tau) \Delta(\tau, \tau') \psi_{\mathbf{K}}(\tau')}_{\mathbf{K}}$$

EFFECTIVE LOCAL IMPURITY PROBLEM

Mean-field is not a trivial problem! Many impurity solvers.

Here: continuous time QMC

P. Werner, PRL 2006 P. Werner, PRB 2007 K. Haule, PRB 2007

$$\Delta(i\omega_n) = i\omega_n + \mu - \Sigma_c(i\omega_n) \\ - \left[\sum_{\tilde{k}} \frac{1}{i\omega_n + \mu - t_c(\tilde{k}) - \Sigma_c(i\omega_n)}\right]^{-1}$$

Solving cluster in a bath problem

- Continuous-time Quantum Monte Carlo calculations to sum all diagrams generated from expansion in powers of hybridization.
 - P. Werner, A. Comanac, L. de' Medici, M. Troyer, and A. J. Millis, Phys. Rev. Lett. 97, 076405 (2006).
 - K. Haule, Phys. Rev. B **75**, 155113 (2007).

Doping driven Mott transition, t' = 0

Method	ť'	Orbital selective	U	Critical point	Ref.
D+C+H 8			7		Werner et al. cond-mat (2009)
D+C+H 4					Gull et al. EPL (2008)
	-0.3		10,6		Liebsch, Merino (2008)
					Ferrero et al. PRB (2009)
D+C+H 8			7		Gull, et al. PRB (2009)

Doping driven Mott transition

Gull, Werner, Millis, (2009)

First order transition at finite doping

 $n(\mu)$ for several temperatures: T/t = 1/10, 1/25, 1/50

The critical point

Normal state phase diagram

Link to Mott transition up to optimal doping

Doping dependence of critical point as a function of U

Characterisation of the phases (U=6.2t)

 $U > U_{\rm MIT}$:

- 1. Mott insulator (MI)
- 2. Underdoped phase (UD): $\delta < \delta_{\rm c}$
- 3. Overdoped phase (OD): $\delta > \delta_{\rm c}$
- ${\small 4.} \ {\small Coexistence/forbidden} \ region$

Here "optimal doping" $\delta_{\rm c}=$ doping at which the 1st order transition occurs

How does the UD phase differ from the OD phase?

Density of states

Density of states

Khosaka et al. Science 315, 1380 (2007);

Spin susceptibility

Spin susceptibility

Plaquette eigenstates

Pseudogap T^* along the Widom line

Giovanni Sordi

Patrick Sémon

Kristjan Haul

Finite *T* phase diagram

Pseudogap in the normal state and the Widom line

What is the Widom line?

McMillan and Stanley, Nat Phys 2010

- it is the continuation of the coexistence line in the supercritical region
- ► line where the maxima of different response functions touch each other asymptotically as T → T_p
- liquid-gas transition in water: max in isobaric heat capacity C_p, isothermal compressibility, isobaric heat expansion, etc
- DYNAMIC crossover arises from crossing the Widom line! water: Xu et al, PNAS 2005, Simeoni et al Nat Phys 2010

The Widom line

Rapid change also in dynamical quantities

Phase diagram

Giovanni Sordi

Patrick Sémon

<mark>Kristja</mark>n Haul

Finite T phase diagram

Superconductivity

arXiv:1201.1283v1

n = 1, Almost layered organics BEDT

Cuprates (doping driven transition)

Cuprates (doping driven transition)

Contrast Tc and order parameter even at large U

Meaning of T_c^d

• Local pair formation

F. Rullier-Albenque, H. Alloul, and G.Rikken, Phys. Rev. B **84**, 014522 (2011).

Actual T_c in underdoped

• Quantum and classical phase fluctuations

- V. J. Emery and S. A. Kivelson, Phys. Rev. Lett. 74, 3253 (1995).
- V. J. Emery and S. A. Kivelson, Nature **374**, 474 (1995).
- D. Podolsky, S. Raghu, and A. Vishwanath, Phys. Rev. Lett. 99, 117004 (2007).
- Z. Tesanovic, Nat Phys **4**, 408 (2008).

• Magnitude fluctuations

– I. Ussishkin, S. L. Sondhi, and D. A. Huse, Phys. Rev. Lett. **89**, 287001 (2002).

• Competing order

 E. Fradkin, S. A. Kivelson, M. J. Lawler, J. P. Eisenstein, and A. P. Mackenzie, Annual Review of Condensed Matter Physics 1, 153 (2010).

• Disorder

- F. Rullier-Albenque, H. Alloul, F. Balakirev, and C. Proust, EPL (Europhysics Letters) 81, 37008 (2008).
- H. Alloul, J. Bobro, M. Gabay, and P. J. Hirschfeld, Rev. Mod. Phys. 81, 45 (2009).

First-order transition leaves its mark

Unified phase diagram

Other topics

Main collaborators

Giovanni Sordi

David Sénéchal

Bumsoo Kyung

Patrick Sémon

Kristjan Haule

Massimo Capone

Marcello Civelli

Gabriel Kotliar

André-Marie Tremblay

Le regroupement québécois sur les matériaux de pointe

CIAR The Canadian Institute for Advanced Research

Sponsors:

Fonds FCAR

Fondation canadienne pour l'innovation

Mammouth

Canada Foundation for Innovation Fondation canadienne pour l'innovation

compute • calcul

High Performance Computing

CREATING KNOWLEDGE DRIVING INNOVATION BUILDING THE DIGITAL ECONOMY

Le calcul de haute performance

CRÉER LE SAVOIR ALIMENTER L'INNOVATION BÂTIR L'ÉCONOMIE NUMÉRIQUE

Summary

Summary

- Mott physics extends way beyond half-filling
- Pseudogap is a phase
- Pseudogap *T** is a Widom line
- High compressibility (stripes?)

Summary

- Below the dome finite *T* critical point (not QCP) controls normal state
- First-order transition destroyed but traces in the dynamics
- T^* different from $T_c^{\ d}$
- Actual T_c in underdoped
 - Competing order
 - Long wavelength fluctuations (see O.P.)
 - Disorder

