Layered organic superconductors: the view from cluster dynamical mean-field theory

A.-M. Tremblay

Gordon Conference, 15 May 2013

Competing order or Mott Physics ?

Armitage, Fournier, Greene, RMP (2009)

Layered BEDT organics

H. Kino + H. Fukuyama, J. Phys. Soc. Jpn **65** 2158 (1996), R.H. McKenzie, Comments Condens Mat Phys. **18**, 309 (1998)

Mott, antiferromagnetism, superconductivity

F. Kagawa, K. Miyagawa, + K. Kanoda PRB **69** (2004) +Nature **436** (2005)

Phase diagram (X=Cu[N(CN)₂]Cl) S. Lefebvre et al. PRL **85**, 5420 (2000), P. Limelette, et al. PRL **91** (2003)

« Spin liquid »

$X = Cu_2(CN)_3 (t' \sim t)$

Phys. Rev. Lett. 95, 177001(2005)

Reviews:

B J Powell and Ross H McKenzie, Rep. Prog. Phys. 74 (2011) 056501 K. Kanoda and R. Kato, Annu. Rev. Condens.Matter Phys. 2011. 2:167–88

Outline

- Model and method
 - -T = 0
 - Finite T
- Phase diagram: Organics and cuprates
 - -T = 0
 - Finite T
- The Mott critical point and critical exponents

The model

Hubbard on anisotropic triangular lattice

H. Kino + H. Fukuyama, J. Phys. Soc. Jpn **65** 2158 (1996), R.H. McKenzie, Comments Condens Mat Phys. **18**, 309 (1998)

Perspective

Weak-strong coupling, and Mott transition

Local moment and Mott transition

Bare Mott critical point in organics

F. Kagawa, K. Miyagawa, + K. Kanoda PRB **69** (2004) +Nature **436** (2005)

Phase diagram (X=Cu[N(CN)₂]Cl) S. Lefebvre et al. PRL **85**, 5420 (2000), P. Limelette, et al. PRL **91** (2003)

Sample litterature on the phase diagram

- H. Morita et al., J. Phys. Soc. Jpn. 71, 2109 (2002).
- H. Kondo, T. Moriya, J.Phys.Soc.Japan 73, 812–814 (2004)
- J. Liu et al., Phys. Rev. Lett. 94, 127003 (2005).
- S.S. Lee et al., Phys. Rev. Lett. 95, 036403 (2005).
- B. Powell et al., Phys. Rev. Lett. 94, 047004 (2005). RVB
- J.Y. Gan et al., Phys. Rev. Lett. 94, 067005 (2005).
- J. Y. Gan, Yan Chen, and F. C. Zhang Phys. Rev. B 74, 094515 (2006). RMFT
- Watanabe T, et al. J. Phys. Soc. Japan 75 074707 2006
- Galitski V and Kim Y B Phys. Rev. Lett. 99 266403 (2007).
- Wrobel P and Suleja W Phys. Rev. B 76 214509 (2007).
- Powell B J and McKenzie R H Phys. Rev. Lett. 98 027005 (2007).
- Hunpyo Lee, Gang Li, and Hartmut Monien, Phys. Rev. B 78, 205117 (2008).
- T. Watanabe et al. Phys. Rev. B 77, 214505 (2008). Variational WF
- Meng, Jarrell, et al. triangular lattice DCA cond-mat /1304.7739v1 (2013) SHERBROOKE

No SC phase

L. F. Tocchio, A. Parola, C. Gros, and F. Becca, Phys. Rev. B 80, 064419 (2009).
T. Kashima and M. Imada, J. Phys. Soc. Jpn. 70, 2287 (2001). (PIRG)
Clay R T, Li H and Mazumdar S Phys. Rev. Lett. **101** 166403 (2008).
S. Dayal, R. T. Clay, and S. Mazumdar, Phys. Rev. B 85, 165141 (2012). (PIRG)
N. Gomes, R. T. Clay, and S. Mazumdar, arXiv:1305.0843

¹/₄ filled model

The method

2d Hubbard: Quantum cluster method

DMFT as a stationnary point

+ and -

- Long range order:
 - Allow symmetry breaking in the bath (mean-field)
- Included:
 - Short-range dynamical and spatial correlations
- Missing:
 - Long wavelength p-h and p-p fluctuations

Doping driven Mott transition, t' = 0

Method	ť'	Orbital selective	U	Critical point	Ref.
D+C+H 8			7		Werner et al. cond-mat (2009)
D+C+H 4					Gull et al. EPL (2008)
	-0.3		10,6		Liebsch, Merino (2008)
					Ferrero et al. PRB (2009)
D+C+H 8			7		Gull, et al. PRB (2009)
				0.08	

Doping driven Mott transition

$$T = 0.25 t$$

Gull, Parcollet, Millis arXiv:1207.2490v1

Gull, Werner, Millis, (2009) E. Gull, M. Ferrero, O. Parcollet, A. Georges, and A. J. Millis (2000) SHERBROOKE

Two solvers for the cluster-in-a-bath problem

See also, Capone and Kotliar, Phys. Rev. B 74, 054513 (2006), Macridin, Maier, Jarrell, Sawatzky, Phys. Rev. B 71, 134527 (2005).

C-DMFT

$$Z = \int \mathcal{D}[\psi^{\dagger}, \psi] \,\mathrm{e}^{-S_{c} - \int_{0}^{\beta} d\tau \int_{0}^{\beta} d\tau' \sum_{\mathbf{K}} \psi_{\mathbf{K}}^{\dagger}(\tau) \Delta(\tau, \tau') \psi_{\mathbf{K}}(\tau')}_{\mathbf{K}}$$

EFFECTIVE LOCAL IMPURITY PROBLEM

SELF-CONSISTENCY CONDITION

Here: continuous time QMC

Mean-field is not a trivial

problem! Many impurity

solvers.

P. Werner, PRL 2006 P. Werner, PRB 2007 K. Haule, PRB 2007

$$\Delta(i\omega_n) = i\omega_n + \mu - \Sigma_c(i\omega_n) \\ - \left[\sum_{\tilde{k}} \frac{1}{i\omega_n + \mu - t_c(\tilde{k}) - \Sigma_c(i\omega_n)}\right]^{-1}$$

At finite T, solving cluster in a bath problem

- Continuous-time Quantum Monte Carlo calculations to sum all diagrams generated from expansion in powers of hybridization.
 - P. Werner, A. Comanac, L. de' Medici, M. Troyer, and A. J. Millis, Phys. Rev. Lett. 97, 076405 (2006).
 - K. Haule, Phys. Rev. B **75**, 155113 (2007).

Reducing the sign problem

 $\cos\theta c'_{A_1\sigma} - \sin\theta c_{A_1\sigma}, \quad \sin\theta c'_{A_1\sigma} + \cos\theta c_{A_1\sigma}$

Patrick Sémon

Outline

- Model and method
 - -T = 0
 - Finite T
- Phase diagram: Organics and cuprates
 - -T=0
 - Finite T
- The Mott critical point and critical exponents

T = 0 phase diagram n = 1

Phase diagram

Exact diagonalization as solver for cluster-in-a bath problem (T=0).

The

Theoretical phase diagram BEDT

 $X = Cu_2(CN)_3 (t' \sim t)$

Phys. Rev. Lett. 95, 177001(2005) Y. Shimizu, et al. Phys. Rev. Lett. 91, (2003)

CDMFT cuprate phase diagram

Kancharla, Kyung, Civelli, Sénéchal, Kotliar AMST Phys. Rev. B (2008) AND Capone, Kotliar PRL (2006)

Armitage, Fournier, Greene, RMP (2009)

$\omega = 0$ (CDMFT)

Theory: T_c down vs Mott

S. Kancharla et al. Phys. Rev. B (2008)

Frequencies important for pairing

Bumsoo Kyung

David Sénéchal

Resilience to near-neighbor repulsion V

In mean-field,
$$J - V$$

 $J = 130 meV$
 $V = 400 meV$

The $ln(E_F/\omega_D)$ necessary to screen V, for μ^* not enough

Weak-coupling: V < U (U/W) for survival of d-wave

S. Raghu, E. Berg, A. V. Chubukov, and S. A. Kivelson, PRB 85, 024516 (2012).
S. Onari, R. Arita, K. Kuroki, and H. Aoki, PRB 70, 094523 (2004).

Resilience to near-neighbor repulsion

David Sénéchal

Giovanni Sordi

Finite T phase diagram n = 1

CTQMC as solver for cluster in a bath (T=0).

Patrick Sémon

Interaction-induced Mott transition, theory

κ–BEDT-Cl

κ–BEDT-CN

Liebsch Phys. Rev. B 79, 195108 (2009)

See also: Ohashi et al. PRL 100, 076402 (2008)

n = 1 unfrustrated, t' = 0

Sordi et al. PRL 108, 216401 (2012)

Another phase transition related to Mott

G. Sordi, P. Sémon, K. Haule, and A.-M.S.T., PRL **104**, 226402 (2010); PRB **84**, 075161 (2011); Sci. Rep. **2**, 547 (2012); PRB **87**, 041101(R) (2013)

Finite-doping first-order transition Widom line

Link to Mott transition up to optimal doping

G. Sordi, P. Sémon, K. Haule, and A.-M.S.T., PRL **104**, 226402 (2010); PRB **84**, 075161 (2011); Sci. Rep. **2**, 547 (2012); PRB **87**, 010141 (R) (2013)

A doped BEDT organic

	W (eV)	U (eV)	U/W	BF	<i>T</i> _c (K)
κ -Cu(NCS) ₂ ^{a)}	0.57	0.46	0.81	0.50	10.4
κ -Cu[N(CN) ₂]Br ^{a)}	0.55	0.49	0.89	0.50	11.8
к-Hg _{2.89} Br ₈ ^{b)}	0.26	0.465	1.79	0.45	4.3

Taniguchi et al. J. Phys. Soc. Japan, **76**, 113709 (2007)

R. N. Lyubovskaya et al. JETP Lett. 45, 530 (1987)

Unified phase diagram

G. Sordi, P. Sémon, K. Haule, and A.-M.S.T., PRL 108, 216401 (2012) For SCR see: H. Kondo, T. Moriya J. Phys. Soc. Japan, **68**, 3170 (1999)

Outline

- Model and method
 - T = 0
 - Finite T
- Phase diagram: Organics and cuprates
 - -T = 0
 - Finite T
- The Mott critical point and critical exponents

Patrick Sémon

Mott critical point

Critical behavior

Universality and Critical Behavior at the Mott Transition P. Limelette, et al. Science **302**, 89 (2003); DOI: 10.1126/science.1088386

Double occupancy: Ising universality classC. Castellani et al., Phys. Rev. Lett. 43, 1957 (1979).G. Kotliar, et al. Phys. Rev. Lett. 84, 5180 (2000).Limelette et al. Science (2003)

McWhan, PRB 1970; Limelette, Science 2003

Mott critical point in layered organics

What is the critical behavior?

Phase diagram BEDT-X (X=Cu[N(CN)₂]Cl) S. Lefebvre et al. PRL **85**, 5420 (2000), P. Limelette, et al. PRL **91** (2003)

F. Kagawa, K. Miyagawa, + K. Kanoda PRB **69** (2004) +Nature **436** (2005)

Surprising critical behavior

Kagawa, Miyagawa, Kanoda, Nature 436, 534 (2005), Nature Physics 5, 880 (2009)

b

$$\delta = 1 + (\gamma/\beta)$$

Unconventional behavior

Unconventional critical behaviour in a quasi-two- Nature dimensional organic conductor 436, 534 (2005)

F. Kagawa¹, K. Miyagawa^{1,2} & K. Kanoda^{1,2}

Possible explanations

M. Imada, Phys. Rev. B **72**, 075113 (2005). M. Imada, et al. J. Phys.: Condens.Matter **22**, 164206 (2010).

S. Papanikolaou, R. M. Fernandes, E. Fradkin, P. W. Phillips, J. Schmalian, and R. Sknepnek, Phys. Rev. Lett. **100**, 026408 (2008).

Numerical results

P. Sémon and A.-M.S.T. PRB 85, 201101(R)

The method

Cellular dynamical mean-field theory Continuous-time quantum Monte Carlo Hybridization expansion P. Werner, et al., Phys. Rev. Lett. 97, 076405 (2006). P. Werner and A. J. Millis, Phys. Rev. B 74, 155107 (2006).

- E. Gull, et al., Rev. Mod. Phys. **83**, 349 (2011).
- K. Haule, Phys. Rev. B 75, 155113 (2007).

2d Hubbard: Quantum cluster method physics

- Observed behavior is a transient from a QCP?
- Quantum fluctuations
- Cluster necessary in d = 2 for
- Short-range spatial fluctuations
- Disantangle effects of J
- No low q spatial fluctuations

Maier, Jarrell et al., RMP. (2005) Kotliar *et al.* RMP (2006) AMST *et al.* LTP (2006)

Double occupancy (δ)

|D - Dc| / Dc

Red circles: CDMFT Blue squares: single-site DMFT

Double occupancy (δ)

Summary

Main collaborators

Giovanni Sordi

David Sénéchal

Bumsoo Kyung

Massimo Capone

Patrick Sémon

Sarma Kancharla

Marcello Civelli

Gabriel Kotliar

André-Marie Tremblay

Le regroupement québécois sur les matériaux de pointe

CIAR The Canadian Institute for Advanced Research

Sponsors:

Fonds FCAR

Mammouth

compute • calcul

High Performance Computing

CREATING KNOWLEDGE DRIVING INNOVATION BUILDING THE DIGITAL ECONOMY

Le calcul de haute performance

CRÉER LE SAVOIR ALIMENTER L'INNOVATION BÂTIR L'ÉCONOMIE NUMÉRIQUE Calcul Québec

