Phase diagram of the cuprates: Where is the mystery?

A.-M. Tremblay

I- Similarities between phase diagram and quantum critical points

Quantum Criticality in 3 Families of Superconductors

L. Taillefer, Annual Reviews of CMP 2010

Electron-doped cuprates

Fournier et al. PRL **81**, 4720 (1998)

Quantum critical point

Nd-LSCO

Neutrons: Ichikawa et al., PRL 2000

NMR: Hunt et al., PRB 2001

X-rays: Niemoller et al., EPJB 1999

 $T^* \sim 2 T_{\rm CO}$

Daou et al., Nature Physics 2009

II- Charge order is the competing phase in the hole-doped cuprates

Charge order causes Fermi-surface reconstruction

X-rays: Chang et al., Nature Physics 2012

Hall: LeBoeuf et al., Nature 2007

LeBoeuf et al., PRB 2011

Pseudogap phase YBCO

NMR

Pseudogap regime

YBCO

Daou *et al., Nature* **463**, 519 (2010)

III- Coefficient of linear term vs Tc

Organics & Pnictides

Doiron-Leyraud et al., PRB 80, 214531 (2009)

Hole-doped cuprates

Linear-T resistivity

Linear-T resistivity is universal in hole-doped cuprates

Correlation between linear-T resistivity and T_c

Doiron-Leyraud et al., arXiv:0905.0964

Taillefer, Annual Review of CMP 1, 51 (2010)

Outline

- Phases of matter: Strong vs weak coupling
- Standard model: pillars
- Breakdown of band theory + BCS
- Model
- QCP in e-doped near optimal doping
- Hole –doped cuprates as doped Mott insulators.

What is a phase of matter?

« Phase » and emergent properties

- Emergent properties
 - e.g. Fermi surface
 - Shiny
 - Quantum oscillations (in B field)
- Many microscopic models will do the same
 - Electrons in box or atoms in solid, Fermi surface
 - Often hard to « derive » from first principles (fractionalization - gauge theories)

Antiferromagnetic phase: emergent properties

• Some broken symmetries

- Time reversal symmetry
- Translation by one lattice spacing
- Unbroken Time-reversal times translation by lattice vector **a**
- Spin waves
- Single-particle gap

Differences between weakly and strongly correlated

- Different in ordered phase (finite frequency)
 - Ordered moment
 - Landau damping
 - Spin waves all the way or not to J
- Different, even more, in the normal state:
 - metallic in d = 3 if weakly correlated
 - Insulating if strongly correlated

Local moment and Mott transition

Local moment and Mott transition

Superconducting phase: identical properties

- Emergent:
 - Same broken symmetry U(1) for s-wave,
 - U(1) and C_{4v} for d-wave
 - Single-Particle gap, point or line node.
 - *T* dependence of C_p and κ at low *T*
 - Goldstone modes (Higgs)

Superconductivity not universal even with phonons: weak or strong coupling

- In BCS universal ratios: e.g. Δ/k_BT_c
 - Would never know the mechanism for sure if only BCS!

Two pilars of Solid State Physics

How to make a metal

Courtesy, S. Julian

Superconductivity

— -p'

#1 Cooper pair, #2 Phase coherence

$$E_{P} = \sum_{\mathbf{p},\mathbf{p}'} U_{\mathbf{p}-\mathbf{p}'} \psi_{\mathbf{p}\uparrow,-\mathbf{p}\downarrow} \psi_{\mathbf{p}'\uparrow,-\mathbf{p}'\downarrow}^{*}$$

$$E_{P} = \sum_{\mathbf{p},\mathbf{p}'} U_{\mathbf{p}-\mathbf{p}'} \left(\langle \psi_{\mathbf{p}\uparrow,-\mathbf{p}\downarrow} \rangle \psi_{\mathbf{p}'\uparrow,-\mathbf{p}'\downarrow}^{*} + \psi_{\mathbf{p}\uparrow,-\mathbf{p}\downarrow} \langle \psi_{\mathbf{p}'\uparrow,-\mathbf{p}'\downarrow}^{*} \rangle \right)$$

$$|\mathrm{BCS}(\theta)\rangle = \dots + e^{iN\theta}|N\rangle + e^{i(N+2)\theta}|N+2\rangle + \dots$$

Breakdown of band theory Half-filled band is metallic?

Half-filled band: Not always a metal

NiO, Boer and Verway

Peierls, 1937

Mott, 1949 SHERBROOKE

« Conventional » Mott transition

Figure: McWhan, PRB 1970; Limelette, Science 2003

Experimental phase diagram for Cl

S. Lefebvre et al. PRL 85, 5420 (2000), P. Limelette, et al. PRL 91 (2003)

Where is the mystery?

High-temperature superconductors

What is under the dome? Mott Physics away from n = 1

- Competing order
 - Current loops: Varma, PRB 81, 064515 (2010)
 - Stripes or nematic: Kivelson et al. RMP 75 1201(2003); J.C.Davis
 - d-density wave : Chakravarty, Nayak, Phys. Rev. B 63, 094503 (2001); Affleck et al. flux phase
 - SDW: Sachdev PRB 80, 155129 (2009) ...
- Or Mott Physics?
 - RVB: P.A. Lee Rep. Prog. Phys. 71, 012501 (2008)

Anomalous properties

- Strong particle-hole asymmetry in DOS even in SC state.
- Mott Ioffe-Regel limit
- Spectral weight transfer in XAS
- No sharp phase transition at pseudogap
- Carriers are hole measured with respect to half-filling (Hall, thermopower etc...)
- Superfluid density not BCS

Model

Hubbard model

1931-1980

$$H = -\sum_{\langle ij \rangle \sigma} t_{i,j} \left(c_{i\sigma}^{\dagger} c_{j\sigma} + c_{j\sigma}^{\dagger} c_{i\sigma} \right) + U \sum_{i} n_{i\uparrow} n_{i\downarrow}$$

$$f = 1$$

Effective model, Heisenberg: $J = 4t^2 / U$

The normal state is not always normal A first case: MIR

Mott-Ioffe-Regel limit

$$\sigma = \frac{ne^{2}\tau}{m}$$

$$n = \frac{1}{2\pi d}k_{F}^{2}$$

$$\sigma = \left(\frac{1}{2\pi d}k_{F}^{2}\right)\frac{e^{2}\tau}{m}$$

$$\ell = \left(\frac{\hbar k_{F}}{m}\right)\tau$$

$$\sigma = \frac{1}{2\pi d}k_{F}e^{2}\left(\frac{\ell}{\hbar}\right)$$

$$k_{F}\ell = \frac{2\pi}{\lambda_{F}}\ell \sim 2\pi$$

$$\sigma_{MIR} = \frac{e^{2}}{\hbar d}$$

Electron-doped and MIR limit

Dominic Bergeron et al. TPSC PRB **84**, 085128 (2011)

Onose et al. 2004

Quantum criticality vs AFM in e-doped

Electron-doped and MIR limit

300

250

200

150

100

50

 $o(\mu\Omega cm)$

 (\mathbf{c})

1.5 bubble

 $\left(\frac{hd}{e^2}\right)$

0.5

bubble + VC1 0.1

200

400

T(K)

600

all terms

Jin et al., Nature 2011

```
Dominic Bergeron et al. TPSC
PRB 84, 085128 (2011)
```


TPSC vs experiment for ξ

Kyung et al. PRL 93, 147004 (2004)

P. K. Mang et al., Phys. Rev. Lett. 93, 027002 (2004).M. Matsuda et al., Phys. Rev. B 45, 12 548 (1992).

$\xi(T)$ at the QCP

z = 1 Motoyama, Nature 2007

U=6, *t*'=-0.175, *t*''=0.05, *n*=1.2007

Dominic Bergeron TPSC

AFM QCP means there is also a pseudogap driven by AFM fluctuations

Three broad classes of mechanisms for pseudogap

- Rounded first order transition
- *d* =2 precursor to a lower temperature broken symmetry phase
- Mott physics

- Competing order
 - Current loops: Varma, PRB
 81, 064515 (2010)
 - Stripes or nematic: Kivelson et al. RMP 75 1201(2003); J.C.Davis
 - d-density wave : Chakravarty, Nayak, Phys. Rev. B 63, 094503 (2001); Affleck et al. flux phase
 - SDW: Sachdev PRB 80, 155129 (2009) ...
- Or Mott Physics?
 - RVB: P.A. Lee Rep. Prog. Phys. **71**, 012501 (2008) UNIVERSI

E-doped quantum critical

NCCO

Motoyama, E. M. et al.. Nature 445, 186–189 (2007).

Fermi surface plots

Hubbard repulsion U has to...

Correlation resistivity vs T_c

Dominic Bergeron et al. TPSC PRB **84**, 085128 (2011)

Extended quantum criticality

Jin et al. Nature 2011

Hole-doped cuprates as Mott insulators

Hole-doped cuprates

Linear-T resistivity

Linear-T resistivity is universal in hole-doped cuprates

Correlation between linear-T resistivity and T_c

Doiron-Leyraud et al., arXiv:0905.0964

Taillefer, Annual Review of CMP 1, 51 (2010)

Hole-doped cuprates and MIR limit

LSCO 17%, YBCO optimal

Dominic Bergeron TPSC

PHYSICAL REVIEW B 84, 085128 (2011)

Optical and dc conductivity of the two-dimensional Hubbard model in the pseudogap regime and across the antiferromagnetic quantum critical point including vertex corrections

Spectral weight transfer

Experiment: X-Ray absorption

Chen et al. PRL 66, 104 (1991)

Peets et al. PRL **103**, (2009), Phillips, Jarrell PRL , vol. **105**, 199701 (2010)

Number of low energy states above $\omega = 0$ scales as 2x +Not as 1+x as in Fermi liquid

Meinders et al. PRB 48, 3916 (1993)

Charge-transfer insulator

Meinders et al. PRB 48, 3916 (1993)

Thermopower

T. Honma and P. H. Hor, Phys. Rev. B **77**, 184520 (2008).

Hall coefficient

Ando et al. PRL 92, 197001 (2004)

Density of states (STM)

Khosaka et al. Science 315, 1380 (2007);

