Strongly correlated superconductivity

A.-M. Tremblay

CMP in the City, London, 17th June 2013

How to make a metal

Courtesy, S. Julian

Superconductivity

— -p'

#1 Cooper pair, #2 Phase coherence

$$E_{P} = \sum_{\mathbf{p},\mathbf{p}'} U_{\mathbf{p}-\mathbf{p}'} \psi_{\mathbf{p}\uparrow,-\mathbf{p}\downarrow} \psi_{\mathbf{p}'\uparrow,-\mathbf{p}'\downarrow}^{*}$$

$$E_{P} = \sum_{\mathbf{p},\mathbf{p}'} U_{\mathbf{p}-\mathbf{p}'} \left(\langle \psi_{\mathbf{p}\uparrow,-\mathbf{p}\downarrow} \rangle \psi_{\mathbf{p}'\uparrow,-\mathbf{p}'\downarrow}^{*} + \psi_{\mathbf{p}\uparrow,-\mathbf{p}\downarrow} \langle \psi_{\mathbf{p}'\uparrow,-\mathbf{p}'\downarrow}^{*} \rangle \right)$$

$$|\mathrm{BCS}(\theta)\rangle = \dots + e^{iN\theta}|N\rangle + e^{i(N+2)\theta}|N+2\rangle + \dots$$

Breakdown of band theory Half-filled band is metallic?

Half-filled band: Not always a metal

NiO, Boer and Verway

Peierls, 1937

Mott, 1949 SHERBROOKE

« Conventional » Mott transition

Figure: McWhan, PRB 1970; Limelette, Science 2003

Superconductivity, in the presence of strong repulsion?

High-temperature superconductors

Armitage, Fournier, Greene, RMP (2009) La_{2-x}Sr_xCuO₄ Re_{2-x}Ce_xCuO₄ ~ 300K V T_N T_N AF AF T T_{c} 30K 0.10 0.20 0.10 0.20 Electron doping / Ce content (x) Hole doping / Sr content (x) $< \frac{1}{2}$ 1/2 Band filling $> \frac{1}{2}$

Mott Physics away from n = 1

Strongly correlated SC: Layered d=2 organics

Powell, McKenzie J. Phys.: Condens. Matter 18 (2006) R827–R866

Model

Hubbard model

1931-1980

Effective model, Heisenberg: $J = 4t^2 / U$

Outline

- Weak to intermediate coupling
 - TPSC
 - e-doped cuprates
- A phase at weak and at strong coupling
- h-doped cuprates as doped Mott insulators
- Cluster Dynamical Mean-Field Theory
- Strong coupling superconductivity
 - Organics
 - High Tc

Methodology

Weak-coupling approaches

Theory difficult even at weak to intermediate coupling!

- $\frac{1}{3} = \frac{1}{3} = \frac{1}$
- RPA (OK with conservation laws)
 - Mermin Wagner
 - Pauli
- Moryia (Conjugate variables HS $\phi^4 = \langle \phi^2 \rangle \phi^2$)

Σ

- Adjustable parameters: c and U_{eff}
- Pauli
- FLEX
 - No pseudogap
 - Pauli
- Renormalization Group
 - 2 loops

Rohe and Metzner (2004) Katanin and Kampf (2004)

Two-Particle-Self-Consistent Approach

Benchmarks for TPSC

SHERBROOKE

QMC benchmark for TPSC

Calc. + QMC: Moukouri et al. P.R. B 61, 7887 (2000).

Two-Particle Self-Consistent Approach

- General philosophy
 - Drop diagrams (U < 6t)
 - Impose constraints and sum rules
 - Conservation laws
 - Pauli principle ($< n_{\sigma}^2 > = < n_{\sigma} >$)
 - Local moment and local density sum-rules
- Get for free:
 - Mermin-Wagner theorem
 - Kanamori-Brückner screening
 - Consistency between one- and two-particle $\Sigma G = U < n_{\sigma} n_{-\sigma} >$

Vilk, AMT J. Phys. I France, 7, 1309 (1997); Allen et al.in *Theoretical methods for* strongly correlated electrons also cond-mat/0110130 (Mahan, third edition)

Two-Particle Self-Consistent Approach

A better approximation for single-particle properties (Ruckenstein)

Y.M. Vilk and A.-M.S. Tremblay, J. Phys. Chem. Solids **56**, 1769 (1995). Y.M. Vilk and A.-M.S. Tremblay, Europhys. Lett. **33**, 159 (1996);

N.B.: No Migdal theorem

Cartoon « BCS » weak-coupling picture

$$\Delta_{\mathbf{p}} = -\frac{1}{2V} \sum_{\mathbf{p}'} U(\mathbf{p} - \mathbf{p}') \frac{\Delta_{\mathbf{p}'}}{E_{\mathbf{p}'}} \left(1 - 2n\left(E_{\mathbf{p}'}\right)\right)$$

Exchange of spin waves? Kohn-Luttinger

 T_c with pressure

Kohn, Luttinger, P.R.L. 15, 524 (1965).

P.W. Anderson Science 317, 1705 (2007)

e-doped cuprates with TPSC

Hot spots from AFM quasi-static scattering

d = 2

Armitage et al. PRL 2001

Pseudogap for e-doped curates

Fermi surface plots

Hubbard repulsion U has to...

d = 2 precursors, e-doped

$$\xi^{\star} = 2.6(2)\xi_{\rm th}$$

Vilk, A.-M.S.T (1997)

Kyung, Hankevych, A.-M.S.T., PRL, sept. 2004

Semi-quantitative fits of both ARPES and neutron

Cartoon « BCS » weak-coupling picture

$$\Delta_{\mathbf{p}} = -\frac{1}{2V} \sum_{\mathbf{p}'} U(\mathbf{p} - \mathbf{p}') \frac{\Delta_{\mathbf{p}'}}{E_{\mathbf{p}'}} \left(1 - 2n\left(E_{\mathbf{p}'}\right)\right)$$

Exchange of spin waves? Kohn-Luttinger

 T_c with pressure

Kohn, Luttinger, P.R.L. 15, 524 (1965).

P.W. Anderson Science 317, 1705 (2007)

Superconductivity in TPSC

BCS vs AFM mediated SC

- Symmetry from wave vector of AFM
- Dominant wave vector from shape of Fermi surface
- For given shape of FS, T_c increases with U
- *N*(*0*) not so important
- Competition with pseudogap => optimal *t*'
- T_c above or below RC regime, but $\xi > a$

Hassan, Davoudi, Kyung, A.-M.S.T. Phys. Rev. B **77**, 094501 (2008)

Outline

- Weak to intermediate coupling
 - TPSC
 - e-doped cuprates
- A phase at weak and at strong coupling
- h-doped cuprates as doped Mott insulators
- Cluster Dynamical Mean-Field Theory
- Strong coupling superconductivity
 - Organics
 - High Tc

What is a phase?

Weak vs strong coupling

Local moment and Mott transition

Local moment and Mott transition

Superconducting phase

- Emergent:
 - Same broken symmetry U(1) for s-wave,
 - U(1) and C_{4v} for d-wave
 - Single-Particle gap, point or line node.
 - *T* dependence of C_p and κ at low *T*
 - Goldstone modes (Higgs)

Superconductivity not universal even with phonons: weak or strong coupling

- In BCS universal ratios: e.g. Δ/k_BT_c
 - Would never know the mechanism for sure if only BCS!

A phase: Superconducting

AFM and superconductivity

L. Taillefer, Annual Reviews of CMP 2010

Weakly or strongly correlated?

L. Taillefer, Annual Reviews of CMP 2010

Outline

- Weak to intermediate coupling
 - TPSC
 - e-doped cuprates
- A phase at weak and at strong coupling
- h-doped cuprates as doped Mott insulators
- Cluster Dynamical Mean-Field Theory
- Strong coupling superconductivity
 - Organics
 - High Tc

Hole-doped cuprates as Mott insulators

Mott-Ioffe-Regel limit

$$\sigma = \frac{ne^2\tau}{m}$$

$$k_F \ell = rac{2\pi}{\lambda_F} \ell \sim 2\pi$$
 $\sigma_{MIR} = rac{e^2}{\hbar d}$

Hole-doped cuprates and MIR limit

LSCO 17%, YBCO optimal

Dominic Bergeron et al. TPSC PRB **84**, 085128 (2011)

PHYSICAL REVIEW B 84, 085128 (2011)

Optical and dc conductivity of the two-dimensional Hubbard model in the pseudogap regime and across the antiferromagnetic quantum critical point including vertex corrections

Spectral weight transfer

Experiment: X-Ray absorption

Peets et al. PRL **103**, (2009), Phillips, Jarrell PRL , vol. **105**, 199701 (2010)

Number of low energy states above $\omega = 0$ scales as 2x +Not as 1+x as in Fermi liquid

Meinders et al. PRB 48, 3916 (1993)

Charge-transfer insulator

Meinders et al. PRB 48, 3916 (1993)

Strong coupling superconductivity

A cartoon strong coupling picture

P.W. Anderson Science 317, 1705 (2007)

$$J\sum_{\langle i,j\rangle} \mathbf{S}_{i} \cdot \mathbf{S}_{j} = J\sum_{\langle i,j\rangle} \left(\frac{1}{2}c_{i}^{\dagger}\vec{\sigma}c_{i}\right) \cdot \left(\frac{1}{2}c_{j}^{\dagger}\vec{\sigma}c_{j}\right)$$
$$d = \langle \hat{d} \rangle = 1/N\sum_{\vec{k}} (\cos k_{x} - \cos k_{y}) \langle c_{\vec{k},\uparrow}c_{-\vec{k},\downarrow} \rangle$$
$$H_{MF} = \sum_{\vec{k},\sigma} \varepsilon(\vec{k}) c_{\vec{k},\sigma}^{\dagger} c_{\vec{k},\sigma} - 4Jm\hat{m} - Jd(\hat{d} + \hat{d}^{\dagger}) + F_{0}$$

Pitaevskii Brückner:

Pair state orthogonal to repulsive core of Coulomb interaction

Miyake, Schmitt–Rink, and Varma P.R. B **34**, 6554-6556 (1986)

High-temperature superconductors

What is under the dome? Mott Physics away from n = 1

- Competing order
 - Current loops: Varma, PRB
 81, 064515 (2010)
 - Stripes or nematic:
 Kivelson et al. RMP 75
 1201(2003); J.C.Davis
 - d-density wave : Chakravarty, Nayak, Phys. Rev. B 63, 094503 (2001); Affleck et al. flux phase
 - SDW: Sachdev PRB 80, 155129 (2009) ...
- Or Mott Physics?
 - RVB: P.A. Lee Rep. Prog.
 Phys. **71**, 012501 (2008)

Another strongly correlated superconductor

F. Kagawa, K. Miyagawa, + K. Kanoda PRB **69** (2004) +Nature **436** (2005)

Phase diagram (X=Cu[N(CN)₂]Cl) S. Lefebvre et al. PRL 85, 5420 (2000), P. Limelette, et al. PRL 91 (2003)

CIAR The Canadian Institute for Advanced Research

Layered organics (κ -BEDT-X family)

Perspective

Outline

- Weak to intermediate coupling
 - TPSC
 - e-doped cuprates
- What is a phase
- h-doped as doped Mott insulators
- Cluster Dynamical Mean-Field Theory
- Strong coupling superconductivity
 - Organics
 - High Tc

Method

Mott transition and Dynamical Mean-Field Theory. The beginnings in d = infinity

- Compute scattering rate (self-energy) of impurity problem.
- Use that self-energy (ω dependent) for lattice.
- Project lattice on single-site and adjust bath so that single-site DOS obtained both ways be equal.

W. Metzner and D. Vollhardt, PRL (1989)A. Georges and G. Kotliar, PRB (1992)M. Jarrell PRB (1992)

DMFT, (d = 3)

2d Hubbard: Quantum cluster method

Another way to look at this (Potthoff)

$$\Omega_{\mathbf{t}}[G] = \Phi[G] - Tr[(G_{0\mathbf{t}}^{-1} - G^{-1})G] + Tr\ln(-G)$$

$$\Omega_{t}[\Sigma] = \begin{bmatrix} \frac{\delta \Phi[G]}{\delta G} = \Sigma \\ \Phi[G] - Tr[\Sigma G] - Tr \ln(-G_{0t}^{-1} + \Sigma) \end{bmatrix}$$
Still stationary (chain rule)

$$\Omega_{t}[\Sigma] = F[\Sigma] - Tr \ln(-G_{0t}^{-1} + \Sigma)$$

M. Potthoff, Eur. Phys. J. B 32, 429 (2003).

SFT : Self-energy Functional Theory

With $F[\Sigma]$ Legendre transform of Luttinger-Ward funct.

$$\Omega_{\mathbf{t}}[\Sigma] = F[\Sigma] + \operatorname{Tr}\ln(-(G_0^{-1} - \Sigma)^{-1})$$

is stationary with respect to Σ and equal to grand potential there.

$$\Omega_{\mathbf{t}}[\Sigma] = \Omega_{\mathbf{t}'}[\Sigma] - \mathrm{Tr}\ln(-(G_0^{\prime - 1} - \Sigma)^{-1}) + \mathrm{Tr}\ln(-(G_0^{-1} - \Sigma)^{-1}).$$

Vary with respect to parameters of the cluster (including Weiss fields)

Variation of the self-energy, through parameters in $H_0(\mathbf{t'})$

M. Potthoff, Eur. Phys. J. B 32, 429 (2003).

+ and -

- Long range order:
 - Allow symmetry breaking in the bath (mean-field)
- Included:
 - Short-range dynamical and spatial correlations
- Missing:
 - Long wavelength fluctuations

Two solvers for the cluster-in-a-bath problem

See also, Capone and Kotliar, Phys. Rev. B 74, 054513 (2006), Macridin, Maier, Jarrell, Sawatzky, Phys. Rev. B 71, 134527 (2005).

SHERBROOKE

C-DMFT

$$Z = \int \mathcal{D}[\psi^{\dagger}, \psi] \,\mathrm{e}^{-S_{c} - \int_{0}^{\beta} d\tau \int_{0}^{\beta} d\tau' \sum_{\mathbf{K}} \psi_{\mathbf{K}}^{\dagger}(\tau) \Delta(\tau, \tau') \psi_{\mathbf{K}}(\tau')}_{\mathbf{K}}$$

EFFECTIVE LOCAL IMPURITY PROBLEM

SELF-CONSISTENCY CONDITION

Here: continuous time QMC

Mean-field is not a trivial

problem! Many impurity

solvers.

P. Werner, PRL 2006 P. Werner, PRB 2007 K. Haule, PRB 2007

$$\Delta(i\omega_n) = i\omega_n + \mu - \Sigma_c(i\omega_n) - \left[\sum_{\tilde{k}} \frac{1}{i\omega_n + \mu - t_c(\tilde{k}) - \Sigma_c(i\omega_n)}\right]^{-1}$$

At finite T, solving cluster in a bath problem

- Continuous-time Quantum Monte Carlo calculations to sum all diagrams generated from expansion in powers of hybridization.
 - P. Werner, A. Comanac, L. de' Medici, M. Troyer, and A. J. Millis, Phys. Rev. Lett. 97, 076405 (2006).
 - K. Haule, Phys. Rev. B **75**, 155113 (2007).

Outline

- Weak to intermediate coupling
 - TPSC
 - e-doped cuprates
- A phase at weak and at strong coupling
- h-doped cuprates as doped Mott insulators
- Cluster Dynamical Mean-Field Theory
- Strong coupling superconductivity
 - Organics
 - High Tc

T = 0 phase diagram n = 1

Phase diagram Exact diagonalization as solver for cluster-in-a bath problem (T=0).

Theoretical phase diagram BEDT

 $X = Cu_2(CN)_3 \quad (t' \sim t)$

Phys. Rev. Lett. 95, 177001(2005) Y. Shimizu, et al. Phys. Rev. Lett. 91, (2003)
AFM and dSC order parameters for various t'/t

•Discontinuous jump

•Strongest superconductivity near the Mott insulator!

Cu(NCS)₂

0.84

10.4

1.06

3.9

Cu[N(CN)₂]Br

0.68

11.6

X

ť/t

T_c

121 Kyung, A.-M.S.T. PRL 97, 046402 (2006)

T = 0 phase diagram: cuprates

Phase diagram Exact diagonalization as impurity solver (T=0).

Dome vs Mott (CDMFT)

Kancharla, Kyung, Civelli, Sénéchal, Kotliar AMST Phys. Rev. B (2008)

CDMFT global phase diagram

Kancharla, Kyung, Civelli, Sénéchal, Kotliar AMST Phys. Rev. B (2008) AND Capone, Kotliar PRL (2006)

Armitage, Fournier, Greene, RMP (2009)

T = 0 phase diagram

The glue

Im Σ_{an} and electron-phonon in Pb

Maier, Poilblanc, Scalapino, PRL (2008)

The glue

The glue and neutrons

FIG. 3 (color online). **Q**-integrated dynamic structure factor $S(\omega)$ which is derived from the wide-*H* integrated profiles for LBCO 1/8 (squares), LSCO x = 0.25 (diamonds; filled for $E_i = 140 \text{ meV}$, open for $E_i = 80 \text{ meV}$), and x = 0.30 (filled circles) plotted over $S(\omega)$ for LBCO 1/8 (open circles) from [2]. The solid lines following data of LSCO x = 0.25 and 0.30 are guides to the eyes.

Wakimoto ... Birgeneau PRL (2007); PRL (2004)

Frequencies important for pairing

Bumsoo Kyung

David Sénéchal

$$I_{F}(\omega) \equiv -\int_{0}^{\omega} \frac{d\omega'}{\pi} \operatorname{Im} F_{ij}^{R}(\omega') \xrightarrow{(a)}_{\beta \to 0.02} 0.01$$
Cumulative Order Parameter
$$\langle c_{i\uparrow}c_{j\downarrow} \rangle \quad \text{for } \omega \to \infty$$
B. Kyung, D. Sénéchal, and A.-M.S.T, Phys. Rev. B **80**, 205109 (2009).

Resilience to near-neighbor repulsion V

In mean-field,
$$J - V$$

 $J = 130 meV$
 $V = 400 meV$

The $ln(E_F/\omega_D)$ necessary to screen V, for μ^* not enough

Weak-coupling: V < U (U/W) for survival of d-wave

S. Raghu, E. Berg, A. V. Chubukov, and S. A. Kivelson, PRB 85, 024516 (2012).
S. Onari, R. Arita, K. Kuroki, and H. Aoki, PRB 70, 094523 (2004).

Resilience to near-neighbor repulsion

David Sénéchal

Market SHERBROOKE

J in the presence of V

 $J = \frac{4t^2}{U-V}$

Resilience to near-neighbor repulsion

David Sénéchal

Market SHERBROOKE

Giovanni Sordi

Patrick Sémon

Kristjan Haule

Finite T phase diagram

Superconductivity PRL 2012

Unified phase diagram

Giovanni Sordi

Cuprates (doping driven transition)

Patrick Sémon

SC vs pseudogap

Nodal gap

Pushp, Yazdani Science 26 June 2009: Vol. 324 no. 5935 pp. 1689-1693

Tpair

ARPES Bi2212

Kondo, Takeshi, et al. Kaminski Nature Physics **2011**, *7*, 21-25

Patrick M. Rourke, et al. Hussey Nature Physics 7, 455–458 (2011)

Giant proximity effect

Figure 6 | Depth profile of the local field at different temperatures. The

Actual T_c in underdoped

• Quantum and classical phase fluctuations

- V. J. Emery and S. A. Kivelson, Phys. Rev. Lett. 74, 3253 (1995).
- V. J. Emery and S. A. Kivelson, Nature **374**, 474 (1995).
- D. Podolsky, S. Raghu, and A. Vishwanath, Phys. Rev. Lett. 99, 117004 (2007).
- Z. Tesanovic, Nat Phys 4, 408 (2008).

• Magnitude fluctuations

- I. Ussishkin, S. L. Sondhi, and D. A. Huse, Phys. Rev. Lett. 89, 287001 (2002).

• Competing order

 E. Fradkin, S. A. Kivelson, M. J. Lawler, J. P. Eisenstein, and A. P. Mackenzie, Annual Review of Condensed Matter Physics 1, 153 (2010).

• Disorder

- F. Rullier-Albenque, H. Alloul, F. Balakirev, and C. Proust, EPL (Europhysics Letters) 81, 37008 (2008).
- H. Alloul, J. Bobro, M. Gabay, and P. J. Hirschfeld, Rev. Mod. Phys. 81, 45 (2009).

Larger clusters

- Is there a minimal size cluster where T_c vanishes before half-filling?
- Learn something from small clusters as well
 Local pairs in underdoped

Larger cluster 8 site DCA

FIG. 8. Superfluid stiffness ρ_s determined in the superconducting state at T = t/60 from Eq. 15, as a function of doping.

Gull, Millis, arxiv.org:1304.6406

Gaussian amplitude fluctuations in Eu-LSCO

Chang, Doiron-Leyraud et al.

Phase fluctuations and disorder?

Monolayer LSCO, field doped

A. T. Bollinger et al. & I. Božović, Nature 472, 458–460

Figure 2 | Superconductor-insulator transition driven by electric field. a, Temperature dependence of normalized resistance $r = R_{\Box}(x,T)/R_Q$ of an initially heavily underdoped and insulating film (see Supplementary Fig. 12 for linear scale). The device (Supplementary section B) employs a coplanar Au gate and DEME-TFSI ionic liquid. The carrier density, fixed for each curve, is tuned by varying the gate voltage from 0 V to -4.5 V in 0.25 V steps; an insulating film becomes superconducting via a QPT. The inset highlights a separatrix independent of temperature below 10 K. The open circles are the actual raw data points; the black dashed line is $R_{\Box}(x_{\odot}T) = R_Q = 6.45$ k Ω . b, The inverse representation of the same data, that is, the $r_T(x)$ dependence at fixed temperatures below 20 K. Each vertical array of (about 100) data points corresponds to one fixed carrier density, that is, to one $r_x(T)$ curve in Fig. 2a. The colours refer to the temperature, and the continuous lines are interpolated for selected temperatures (4.5, 6.0, 8.0, 10.0, 12.0, 15.0 and 20.0 K). The crossing point defines the critical carrier concentration $x_c = 0.06 \pm 0.01$, and the critical resistance $R_c = 6.45 \pm 0.10 \,\mathrm{k\Omega}$. c, Scaling of the same data with respect to a single variable $u = |x - x_c| T^{-1/zv}$, with zv = 1.5. This figure is derived by folding panel b at x_c and scaling the abscissa of each $r_T(|x - x_c|)$ curve by $T^{-2/3}$. For 4.3 K < T < 10 K, the discrete groups of points of Fig. 2b collapse accurately onto a two-valued function, with one branch corresponding to x larger and the other to x smaller than x_c . The critical exponents are identical on both sides of the superconductor–insulator transition. The raw data points cover the interpolation lines almost completely, except close to the origin.

Effect of disorder

F. Rullier-Albenque, H. Alloul, and G.Rikken, Phys. Rev. B **84**, 014522 (2011).

Superconductivity in underdoped vs BCS

Summary

Summary

Rutherford

- Below the dome finite *T* critical point (not QCP) controls normal state
- First-order transition destroyed but traces in the dynamics
- T^* different from T_c^d
- Actual T_c in underdoped
 - Competing order
 - Long wavelength fluctuations (see O.P.)
 - Disorder

Conclusions

- Tools for Hubbard model,
 - weak to intermediate coupling
 - Strong coupling
- The influence of Mott Physics extends way beyond half-filling

Main collaborators

Giovanni Sordi

David Sénéchal

Bumsoo Kyung

Patrick Sémon

Dominic Bergeron

Sarma Kancharla

Marcello Civelli

Massimo Capone

André-Marie Tremblay

Le regroupement québécois sur les matériaux de pointe

CIAR The Canadian Institute for Advanced Research

Sponsors:

Fonds FCAR

Mammouth

compute • calcul

High Performance Computing

CREATING KNOWLEDGE DRIVING INNOVATION BUILDING THE DIGITAL ECONOMY

Le calcul de haute performance

CRÉER LE SAVOIR ALIMENTER L'INNOVATION BÂTIR L'ÉCONOMIE NUMÉRIQUE Calcul Québec

