High-temperature superconductors: Where is the mystery?

A.-M. Tremblay

Strongly correlated systems: from models to materials 9 January 2014

Superconductivity

— -p'

#1 Cooper pair, #2 Phase coherence

$$E_{P} = \sum_{\mathbf{p},\mathbf{p}'} U_{\mathbf{p}-\mathbf{p}'} \psi_{\mathbf{p}\uparrow,-\mathbf{p}\downarrow} \psi_{\mathbf{p}'\uparrow,-\mathbf{p}'\downarrow}^{*}$$

$$E_{P} = \sum_{\mathbf{p},\mathbf{p}'} U_{\mathbf{p}-\mathbf{p}'} \left(\langle \psi_{\mathbf{p}\uparrow,-\mathbf{p}\downarrow} \rangle \psi_{\mathbf{p}'\uparrow,-\mathbf{p}'\downarrow}^{*} + \psi_{\mathbf{p}\uparrow,-\mathbf{p}\downarrow} \langle \psi_{\mathbf{p}'\uparrow,-\mathbf{p}'\downarrow}^{*} \rangle \right)$$

$$|\mathrm{BCS}(\theta)\rangle = \dots + e^{iN\theta}|N\rangle + e^{i(N+2)\theta}|N+2\rangle + \dots$$

Breakdown of band theory Half-filled band is metallic?

Half-filled band: Not always a metal

NiO, Boer and Verway

Peierls, 1937

Mott, 1949 SHERBROOKE

« Conventional » Mott transition

Figure: McWhan, PRB 1970; Limelette, Science 2003

High temperature superconductors

Failure of BCS theory Band structure and more

New and old superconductors

H. Takahashi: JPSJ Online-News and Comments [June 10, 2008]

Atomic structure

JUNE 1988 \$3.50

How nonsense is deleted from genetic messages. R_x for economic growth: aggressive use of new technology. Can particle physics test cosmology?

High-Temperature Superconductor belongs to a family of materials that exhibit exotic electronic properties. Y Ba Cas O7. 8 92-37

Our road map

Conventional wisdom vs high Tc

- Transition metals
- Cubic
- Stay away from
 - O
 - Magnets
 - Insulators
- Stay away from theorists

- Cu
- Layered
- Stay close to
 - O
 - Magnets
 - Insulators

2. The model

$$H = -\sum_{\langle ij \rangle \sigma} t_{i,j} \left(c_{i\sigma}^{\dagger} c_{j\sigma} + c_{j\sigma}^{\dagger} c_{i\sigma} \right) + U \sum_{i} n_{i\uparrow} n_{i\downarrow}$$

Band structure for high Tc

W. Pickett, Rev. Mod. Phys. 1989

Hubbard model

1931-1980

$$H = -\sum_{\langle ij \rangle \sigma} t_{i,j} \left(c_{i\sigma}^{\dagger} c_{j\sigma} + c_{j\sigma}^{\dagger} c_{i\sigma} \right) + U \sum_{i} n_{i\uparrow} n_{i\downarrow}$$

Attn: Charge transfer insulator

U = 0

$$H = -\sum_{\langle ij \rangle \sigma} t_{i,j} \left(c_{i\sigma}^{\dagger} c_{j\sigma} + c_{j\sigma}^{\dagger} c_{i\sigma} \right)$$

$$c_{i\sigma} = \frac{1}{\sqrt{N}} \sum_{\mathbf{k}} e^{i\mathbf{k}\cdot\mathbf{r}_{i}} c_{\mathbf{k}\sigma}$$
$$H = \sum_{\mathbf{k},\sigma} \varepsilon_{\mathbf{k}} c_{\mathbf{k}\sigma}^{\dagger} c_{\mathbf{k}\sigma}$$
$$|\Psi\rangle = \prod_{\mathbf{k},\sigma} c_{\mathbf{k}\sigma}^{\dagger} |0\rangle$$

 $|E_F|$

 \boldsymbol{E}

0

 \boldsymbol{q}

$$t_{ij} = 0$$

Interesting in the general case

$$H = -\sum_{\langle ij \rangle \sigma} t_{i,j} \left(c_{i\sigma}^{\dagger} c_{j\sigma} + c_{j\sigma}^{\dagger} c_{i\sigma} \right) + U \sum_{i} n_{i\uparrow} n_{i\downarrow}$$

Effective model, Heisenberg:
$$J = 4t^2/U$$

Outline

For references, September 2013 Julich summer school Strongly Correlated Superconductivity

http://www.cond-mat.de/events/correl13/manuscripts/tremblay.pdf

3. A normal, normal state?

Our road map

« Phase » and emergent properties

- Emergent properties
 - e.g. Fermi surface
 - Shiny
 - Quantum oscillations (in B field)
- Many microscopic models will do the same
 - Electrons in box or atoms in solid, Fermi surface
 - Concept of Fermi liquid
 - Often hard to « derive » from first principles (fractionalization - gauge theories)

h-doped are strongly correlated: evidence from the normal state

Mott-Ioffe-Regel limit

$$\sigma = \frac{ne^{2}\tau}{m}$$

$$n = \frac{1}{2\pi d}k_{F}^{2}$$

$$\sigma = \left(\frac{1}{2\pi d}k_{F}^{2}\right)\frac{e^{2}\tau}{m}$$

$$\ell = \left(\frac{\hbar k_{F}}{m}\right)\tau$$

$$\sigma = \frac{1}{2\pi d}k_{F}e^{2}\left(\frac{\ell}{\hbar}\right)$$

$$k_{F}\ell = \frac{2\pi}{\lambda_{F}}\ell \sim 2\pi$$

$$\sigma_{MIR} = \frac{e^{2}}{\hbar d}$$

Hole-doped cuprates and MIR limit

PHYSICAL REVIEW B 84, 085128 (2011)

Optical and dc conductivity of the two-dimensional Hubbard model in the pseudogap regime and across the antiferromagnetic quantum critical point including vertex corrections

Experiment, X-Ray absorption

Experiment: X-Ray absorption

Peets et al. PRL **103**, (2009), Phillips, Jarrell PRL , vol. **105**, 199701 (2010)

Number of low energy states above $\omega = 0$ scales as 2x +Not as 1+x as in Fermi liquid

Meinders et al. PRB 48, 3916 (1993)

Thermopower

T. Honma and P. H. Hor, Phys. Rev. B **77**, 184520 (2008).

Hall coefficient

Ando et al. PRL 92, 197001 (2004)

Density of states (STM)

Khosaka et al. Science 315, 1380 (2007);

4. e-doped cuprates

Less strongly coupled: evidence from the normal state

Electron-doped and MIR limit

Dominic Bergeron et al. TPSC PRB **84**, 085128 (2011)

Onose et al. 2004

Quantum critical points

e-doped

Our road map

TPSC vs experiment for ξ

Kyung et al. PRL 93, 147004 (2004)

P. K. Mang et al., Phys. Rev. Lett. 93, 027002 (2004).M. Matsuda et al., Phys. Rev. B 45, 12 548 (1992).

$\xi(T)$ at the QCP

z = 1 Motoyama, Nature 2007

U=6, *t*'=-0.175, *t*''=0.05, *n*=1.2007

Dominic Bergeron TPSC

Linear resistivity

Fournier et al. PRL 1998

QCP and linear T dependence of R

L. Taillefer, Annual Reviews of CMP 2010

Another QCP

Pseudogap

e-doped

Our road map

Hot spots from AFM quasi-static scattering

Mermin-Wagner

Vilk, A.-M.S.T (1997) Kyung, Hankevych, A.-M.S.T., PRL, 2004

$$\xi^{*} = 2.6(2)\xi_{\text{th}}$$

Motoyama, E. M. et al.. 445, 186–189 (2007).

Armitage et al. PRL 2001

d = 2

e-doped cuprates: precursors

Fermi surface plots

Hubbard repulsion U has to...

5. Weakly and strongly correlated antiferromagnets

What is a phase?

Our road map

Antiferromagnetic phase: emergent properties

• Some broken symmetries

- Time reversal symmetry
- Translation by one lattice spacing
- Unbroken Time-reversal times translation by lattice vector **a**
- Spin waves
- Single-particle gap

Differences between weakly and strongly correlated

- Different in ordered phase (finite frequency)
 - Ordered moment
 - Landau damping
 - Spin waves all the way or not to J
- Different, even more, in the normal state:
 - metallic in d = 3 if weakly correlated
 - Insulating if strongly correlated
 - Pressure dependence of T_N

Local moment and Mott transition

Local moment and Mott transition

High Tc: almost Heisenberg model

Delannoy et al. PRB **79** (2009) Dalla Piazza, Phys. Rev. B **85** (2012)

Summary, magnetic excitation spectrum

Spin fluctuations, energy momentum

Note resonance in superconducting state Above *100 meV* almost doping independent (RIXS)

Keimer, Julich summer school 2013

6. Charge Density Wave

h-doped

Our road map

Quantum oscillations in cuprates: 2007

Quantum oscillations

Fermi surface includes a small *electron* pocket !

 $R_{\rm H} < 0$

Quantum oscillations in cuprates: 2013

Resistance

Nernst

NHMFL, Tallahassee

Stripes and reconstructed Fermi surface

nature physics

PUBLISHED ONLINE: 14 OCTOBER 2012 | DOI: 10.1038/NPHYS2456

Direct observation of competition between superconductivity and charge density wave order in YBa₂Cu₃O_{6.67}

J. Chang^{1,2*}, E. Blackburn³, A. T. Holmes³, N. B. Christensen⁴, J. Larsen^{4,5}, J. Mesot^{1,2}, Ruixing Liang^{6,7}, D. A. Bonn^{6,7}, W. N. Hardy^{6,7}, A. Watenphul⁸, M. v. Zimmermann⁸, E. M. Forgan³ and S. M. Hayden⁹

Figure 4 [Phase diagram of YBa₂Cu₃O_{7-z}. **a**, Doping dependence of the antiferromagnetic ordering temperature T_N , the incommensurate spin-density wave order T_{SDW} (green triangles; ref. 21), the superconducting temperature T_c and the pseudogap temperature T^* as determined from the Nernst effect³⁰ (black squares) and neutron diffraction²⁹ (purple squares). Notice that the Nernst effect³⁰ indicates a broken rotational symmetry inside the pseudogap region, whereas a translational symmetry preserving magnetic order is found by neutron scattering²⁹. Below temperature scale T_H (black circles), a larger and negative Hall coefficient was observed²⁶ and interpreted in terms of a Fermi surface reconstruction. Our X-ray diffraction experiments show that in YBCO p = 0.12 incommensurate CDW order spontaneously breaks the crystal translational symmetry at a temperature T_{CDW} that is twice as large as T_c . T_{CDW} is also much larger than T^{NMR} (red squares), the temperature below which the CDW is suppressed by superconductivity, compared with T_H (open black circle) and T_{VL} (filled blue circles), the temperature where the vortex liquid state forms²⁶. Error bars on T_{SDW} , T_H , T_{NMR} , and T^* are explained in refs 21,26,30,33. The error bars on T_{CDW} and T_{cusp} reflect the uncertainty in determining the onset and suppression temperature of CDW order from Fig. 2.

Fermi surface vs wave vector of instability

Comin et al. arXiv:1312.1343 Da Silva Neto, arXiv:1312.1347 (also in BSCCO)

Wave vector

Keimer, Julich summer school 2013

7. Pseudogap

h-doped

Our road map

Hole-doped 17%, U=8t (CPT)

F. Ronning et al. Jan. 2002, Ca2-xNaxCuO2Cl2

Ronning *et* al. (PRB 2003)

Sénéchal, AMT,

PRL (2004)

Electron-doped (17%) (CPT)

Armitage *et c* PRL 2003

Sénéchal, AMT, PRL (2004)

How does the pseudogap develops as a function of T?

NMR Knight shift?

Fig 1 Spin contribution K_s to the ⁸⁹Y NMR Knight shift [11] for YBCO_{6.6} permit to define the PG onset T^* . Here K_s is reduced by a factor two at $T \sim T^*/2$. The sharp drop of the SC fluctuation conductivity (SCF) is illustrated (left scale) [23]. We report as well the range over which a Kerr signal is detected [28], and that for which a CDW is evidenced in high fields from NMR quadrupole effects [33] and ultrasound velocity data [30]. (See text).

Spin susceptibility

Julien et al. PRL 76, 4238 (1996)

Pseudogap from transport

Daou et al., Nature **463**, 519 (2010)

3 measurements: Kerr, ARPES, TRR

Fig. 3. Temperature dependence of Kerr rotation (θ_{ν}) measured by PKE, in comparison with that of the binding energy position of the EDC maximum at k_F given by **ARPES** [reproduced from fig. S1F and (29)]. ARPES results are normalized to the 80 K values (free from the interference of fluctuating superconductivity). The dashed black curve is a guide to the eye for the PKE data, showing a mean-field-like critical behavior close to T* [see additional discussion in (27)]. (Left inset) Temperature dependence of the transient reflectivity change measured by TRR (right axis). The dashed

black curve (left axis) is reproduced from the main panel. Error bars (if not visible) are smaller than the symbol size. (**Right inset**) Dispersion of the EDC maximum at various temperatures above T_{cr} , summarizing the results of Figs. 2A and 4A and fig. S1, A to E. All data were taken on samples from the same growth and annealing batch, except those reproduced from (29) on differently annealed samples.

He et al, Science

From transport measurements same signatures in single layer material HgBaCuO

Hall and Nernst Coefficients of Underdoped $HgBa_2CuO_{4+\delta}$: Fermi-Surface Reconstruction in an Archetypal Cuprate Superconductor

Nicolas Doiron-Leyraud,^{1,*} S. Lepault,² O. Cyr-Choinière,¹ B. Vignolle,² F. Laliberté,¹ J. Chang,¹ N. Barišić,³ M. K. Chan,³ L. Ji,³ X. Zhao,^{3,4} Y. Li,⁵ M. Greven,³ C. Proust,^{2,6} and Louis Taillefer^{1,6,†}

31 oct 2012

Pseudogap not from SC fluctuations Effect of disorder

F. Rullier-Albenque, H. Alloul, and G.Rikken, Phys. Rev. B **84**, 014522 (2011).

Pseudogap not from SC fluctuations

Figure 4 | Phase diagram. The color contour shows $log_{10}(\Delta_{\rm H}\chi_{\rm torque}/\chi^{250}_{\rm torque})$ for Hg1201 (same data as in Fig. 3d, but for wider temperature range), obtained from an interpolation of measurements of seven samples (indicated by vertical red bars), and for optimally-doped Bi2201 and underdoped LSCO (p = x = 0.08 and 0.125). The grey shaded area indicates schematically the extent of SC fluctuations in LSCO and

Intra-unit cell nematic order: STM

Kohsaka et al. Nature Physics 2012

Loop current order (Varma)

YBaCuO : Bourges et al.

HgCaCuO: Greven et al.

8. Superconductivity in general

Analog to weakly and strongly correlated antiferromagnets

Superconducting phase: identical properties

- Emergent:
 - Same broken symmetry U(1) for s-wave,
 - U(1) and C_{4v} for d-wave
 - Single-Particle gap, point or line node.
 - *T* dependence of C_p and κ at low *T*
 - Goldstone modes (+Higgs)

Superconductivity not universal even with phonons: weak or strong coupling

- In BCS universal ratios: e.g. Δ/k_BT_c
 - Would never know the mechanism for sure if only BCS!
 - N.B. Strong coupling in a different sense

High Tc are d-wave (interference)

Wollman et al. PRL 1993

Tsuei Kirtley, Rev. Mod. Phys. 2000

Two emergent universal laws?

FIG. 2. Homes' scaling plot, Eq. (2). The gray stripe corresponds to $\rho_s = (110 \pm 60) T_c \sigma_{dc}$. The data points are the same as in Fig. 1.

FIG. 1. Basov scaling plot, Eq. (1). The gray stripe corresponds to $\lambda_s = (45 \pm 25) \sigma_{dc}^{-0.5}$. Only data as in F from optical spectroscopies (IR and MW SI) are included in the plot. The data points are from: cuprates *ab*-cuprates *c*-axis [2], pnictides [13, 14], elements [2], TiN [15], Ba_{1-x}K_xBiO₃ [16], MgB₂ [17, 18], organic SC [19–21], fullerenes [22], heavy fermion CeCoIn₅ [23], negative-U induced SC Tl_xPb_{1-x}Te [24] and Y₂C₂I₂ [25].

Dordevich et al. arXiv:1305.0019v1

High-temperature superconductors

What is under the dome? Mott Physics away from n = 1

- Competing order
 - Current loops: Varma, PRB
 81, 064515 (2010)
 - Stripes or nematic:
 Kivelson et al. RMP 75
 1201(2003); J.C.Davis
 - d-density wave : Chakravarty, Nayak, Phys. Rev. B 63, 094503 (2001); Affleck et al. flux phase
 - SDW: Sachdev PRB 80, 155129 (2009) ...
- Or Mott Physics?
 - RVB: P.A. Lee Rep. Prog.
 Phys. 71, 012501 (2008)

UNIVERSITÉ DE SHERBROOKE

ន

8. Superconductivity

a. Weakly correlated case (e-doped ?)

Cartoon « BCS » weak-coupling picture

$$\Delta_{\mathbf{p}} = -\frac{1}{2V} \sum_{\mathbf{p}'} U(\mathbf{p} - \mathbf{p}') \frac{\Delta_{\mathbf{p}'}}{E_{\mathbf{p}'}} \left(1 - 2n\left(E_{\mathbf{p}'}\right)\right)$$

p
Béal–Monod, Bourbonnais, Emery P.R. B. 34, 7716 (1986).
D. J. Scalapino, E. Loh, Jr., and J. E. Hirsch

Exchange of spin waves? Kohn-Luttinger

 T_c with pressure

P.R. B **34**, 8190-8192 (1986). Kohn, Luttinger, P.R.L. **15**, 524 (1965).

P.W. Anderson Science 317, 1705 (2007)

Weak coupling methods

• Functional renormalization group

Zanchi, Schultz 2000 Honerkamp, Salmhofer 2000 + Bourbonnais Sedeki PRB 2012

• Weak coupling perturbation theory S. Maiti and A.V. Chubukov: arXiv:1305.4609

Results from TPSC

Satisfies Mermin-Wagner

Tc from TPSC

Correlation between T_c and coefficient of linear T dependence

Linear-T resistivity is universal in hole-doped cuprates

Correlation between linear-T resistivity and T_c

Doiron-Leyraud et al., arXiv:0905.0964

Taillefer, Annual Review of CMP 1, 51 (2010)

Linear T coefficient of R and T_c in other systems

Doiron-Leyraud et al., PRB 80, 214531 (2009)

Correlation resistivity vs T_c

Dominic Bergeron et al. TPSC PRB **84**, 085128 (2011)

8. Superconductivity

b. Strong coupling point of view

A cartoon strong coupling picture

P.W. Anderson Science 317, 1705 (2007)

$$J\sum_{\langle i,j\rangle} \mathbf{S}_{i} \cdot \mathbf{S}_{j} = J\sum_{\langle i,j\rangle} \left(\frac{1}{2}c_{i}^{\dagger}\vec{\sigma}c_{i}\right) \cdot \left(\frac{1}{2}c_{j}^{\dagger}\vec{\sigma}c_{j}\right)$$
$$d = \langle \hat{d} \rangle = 1/N\sum_{\vec{k}} (\cos k_{x} - \cos k_{y}) \langle c_{\vec{k},\uparrow}c_{-\vec{k},\downarrow} \rangle$$
$$H_{MF} = \sum_{\vec{k},\sigma} \varepsilon(\vec{k}) c_{\vec{k},\sigma}^{\dagger} c_{\vec{k},\sigma} - 4Jm\hat{m} - Jd(\hat{d} + \hat{d}^{\dagger}) + F_{0}$$

Pitaevskii Brückner:

Pair state orthogonal to repulsive core of Coulomb interaction

Miyake, Schmitt–Rink, and Varma P.R. B **34**, 6554-6556 (1986)

Strongly correlated superconductors

- T_c does not scale like order parameter
- Superfluid stiffness scales like doping
- Superconductivity can be largest close to the metal-insulator transition
- Resilience to near-neighbor repulsion

The view from dynamical mean-field theory (I am not supposed to do this)

International summer school on Computational Methods for Quantum Materials 26 May - 6 June 2014

