Superconductivity in doped or pressurized insulators : cuprates and organics

A.-M. Tremblay

G. Sordi, K. Haule, D. Sénéchal, C.-D. Hébert
P. Sémon, B. Kyung, G. Kotliar,
M. Civelli, S. Kancharla,

Grenoble, 13 March, 2015

Half-filled band is metallic?

Half-filled band: Not always a metal

NiO, Boer and Verway

Peierls, 1937

Mott, 1949 Siterbrooke

Hubbard model

1931-1980

$$H = -\sum_{\langle ij \rangle \sigma} t_{i,j} \left(c_{i\sigma}^{\dagger} c_{j\sigma} + c_{j\sigma}^{\dagger} c_{i\sigma} \right) + U \sum_{i} n_{i\uparrow} n_{i\downarrow}$$

Effective model, Heisenberg:
$$J = 4t^2/U$$

Superconductivity and attraction?

Cuprates

SCIENTIFIC AMERICAN

JUNE 1988 \$3.50

How nonsense is deleted from genetic messages. R_x for economic growth: aggressive use of new technology. Can particle physics test cosmology?

High-Temperature Superconductor belongs to a family of materials that exhibit exotic electronic properties. Y Ba Cas O7. 8 92-37

High-temperature superconductors

Armitage, Fournier, Greene, RMP (2009)

Hubbard on anisotropic triangular lattice

H. Kino + H. Fukuyama, J. Phys. Soc. Jpn **65** 2158 (1996), R.H. McKenzie, Comments Condens Mat Phys. **18**, 309 (1998)

Phase diagram for organics

S. Lefebvre et al. PRL 85, 5420 (2000), P. Limelette, et al. PRL 91 (2003)

Perspective

Outline

- Method
- *T*=*0* phase diagram
- Finite *T* phase diagram
 - Normal state
 - First order transition
 - Widom line and pseudogap
 - Superconductivity

Method

"The effect of concept-driven revolution is to explain old things in new ways. The effect of tool-driven revolution is to discover new things that have to be explained." Freeman Dyson *Imagined Worlds*

Mott transition and Dynamical Mean-Field Theory. The beginnings in d = infinity

- Compute scattering rate (self-energy) of impurity problem.
- Use that self-energy (ω dependent) for lattice.
- Project lattice on single-site and adjust
 bath so that single-site
 DOS obtained both
 ways be equal.

W. Metzner and D. Vollhardt, PRL (1989)A. Georges and G. Kotliar, PRB (1992)M. Jarrell PRB (1992)

DMFT, (d = 3)

2d Hubbard: Quantum cluster method

DMFT as a stationnary point

+ and -

- Long range order:
 - Allow symmetry breaking in the bath (mean-field)
- Included:
 - Short-range dynamical and spatial correlations
- Missing:
 - Long wavelength p-h and p-p fluctuations

C-DMFT

$$Z = \int \mathcal{D}[\psi^{\dagger}, \psi] \,\mathrm{e}^{-S_{c} - \int_{0}^{\beta} d\tau \int_{0}^{\beta} d\tau' \sum_{\mathbf{K}} \psi_{\mathbf{K}}^{\dagger}(\tau) \Delta(\tau, \tau') \psi_{\mathbf{K}}(\tau')}_{\mathbf{K}}$$

EFFECTIVE LOCAL IMPURITY PROBLEM

SELF-CONSISTENCY CONDITION

Why important

Here: continuous time QMC

Mean-field is not a trivial

problem! Many impurity

solvers.

P. Werner, PRL 2006 P. Werner, PRB 2007 K. Haule, PRB 2007

$$\Delta(i\omega_n) = i\omega_n + \mu - \Sigma_c(i\omega_n) \\ - \left[\sum_{\tilde{k}} \frac{1}{i\omega_n + \mu - t_c(\tilde{k}) - \Sigma_c(i\omega_n)}\right]^{-1}$$

T = 0 phase diagram n = 1

Phase diagram Exact diagonalization as impurity solver (T=0).

Theoretical phase diagram BEDT

 $X = Cu_2(CN)_3 (t' \sim t)$

Phys. Rev. Lett. 95, 177001(2005) Y. Shimizu, et al. Phys. Rev. Lett. 91, (2003)

T = 0 phase diagram: cuprates

Phase diagram Exact diagonalization as impurity solver (T=0).

Theory: T_c down vs Mott

S. Kancharla et al. Phys. Rev. B (2008)

Dome vs Mott (CDMFT)

CDMFT global phase diagram

Kancharla, Kyung, Civelli, Sénéchal, Kotliar AMST Phys. Rev. B (2008) AND Capone, Kotliar PRL (2006)

Armitage, Fournier, Greene, RMP (2009)

Outline

- Method
- *T*=*0* phase diagram
- Finite *T* phase diagram
 - Normal state
 - First order transition
 - Widom line and pseudogap
 - Superconductivity

Finite T phase diagram

Normal state of the cuprates

Preliminary: Weak vs Strong correlations

Local moment and Mott transition

Giovanni Sordi

G. Sordi, K. Haule, A.-M.S.T PRL, **104**, 226402 (2010) and Phys. Rev. B. **84**, 075161 (2011)

Doping-induced Mott transition (t'=0)

Mot just adding new piece: Kristjan Haule
 Lesson from DMFT, first order transition + critical
 point governs phase diagram

First order transition at finite doping

 $n(\mu)$ for several temperatures: T/t = 1/10, 1/25, 1/50

The critical point

Normal state phase diagram

Link to Mott transition up to optimal doping

Doping dependence of critical point as a function of U

Characterisation of the phases (U=6.2t)

 $U > U_{\rm MIT}$:

- 1. Mott insulator (MI)
- 2. Underdoped phase (UD): $\delta < \delta_{\rm c}$
- 3. Overdoped phase (OD): $\delta > \delta_{\rm c}$
- 4. Coexistence/forbidden region

Here "optimal doping" $\delta_{\rm c}=$ doping at which the 1st order transition occurs

How does the UD phase differ from the OD phase?

Giovanni Sordi

Patrick Sémon

Kristjan Haul

Widom line (t' = 0)

Pseudogap in the normal state and the Widom line

What is the Widom line?

McMillan and Stanley, Nat Phys 2010

- it is the continuation of the coexistence line in the supercritical region
- ▶ line where the maxima of different response functions touch each other asymptotically as $T \rightarrow T_p$
- liquid-gas transition in water: max in isobaric heat capacity C_p, isothermal compressibility, isobaric heat expansion, etc
- DYNAMIC crossover arises from crossing the Widom line! water: Xu et al, PNAS 2005, Simeoni et al Nat Phys 2010

The Widom line

Rapid change also in dynamical quantities

Density of states

Density of states

Khosaka et al. Science 315, 1380 (2007);

Spin susceptibility

Spin susceptibility

Julien et al. PRL 76, 4238 (1996)

Plaquette eigenstates

Pseudogap along the Widom line T_W

What is the minimal model?

H. Alloul arXiv:1302.3473 C.R. Académie des Sciences, (2014)

Fig 1 Spin contribution K_s to the ⁸⁹Y NMR Knight shift [11] for YBCO_{6.6} permit to define the PG onset T^* . Here K_s is reduced by a factor two at $T \sim T^*/2$. The sharp drop of the SC fluctuation conductivity (SCF) is illustrated (left scale) [23]. We report as well the range over which a Kerr signal is detected [28], and that for which a CDW is evidenced in high fields from NMR quadrupole effects [33] and ultrasound velocity data [30]. (See text).

Two crossover lines

Giovanni Sordi

C-axis resistivity

Summary: normal state

- Mott physics extends way beyond half-filling
- Pseudogap is a phase
- Pseudogap *T* controlled by a Widom line and its precursor
- High compressibility (stripes?)

Charge Density Wave

h-doped

Intra-unit cell nematic order: STM

Kohsaka et al. Nature Physics 2012

Quantum oscillations in cuprates: 2007

Quantum oscillations

 $R_{\rm H} < 0$

Fermi surface includes a small *electron* pocket !

Quantum oscillations in cuprates: 2013

Resistance

Nernst

NHMFL, Tallahassee

Stripes and reconstructed Fermi surface

Competing CDW order

- Wise, W. D. et al. Charge-density-wave origin of cuprate checkerboard visualized by scanning tunnelling microscopy. Nature Phys. 4, 696699 (2008).
- Lawler, M. J. et al. Intra-unit-cell electronic nematicity of the high-Tc copper-oxide pseudogap states. Nature 466, 347351 (2010).
- Parker, C. V. et al. Fluctuating stripes at the onset of the pseudogap in the high-Tc superconductor B2Sr2CaCu2O8Cx. Nature 468, 677680 (2010).
- Chang, J. et al. Direct observation of competition between superconductivity and charge density wave order in YBa2Cu3O6:67. Nature Phys. 8, 871876 (2012).
- Ghiringhelli, G. et al. Long-range incommensurate charge fluctuations in (Y;Nd)Ba2Cu3O6Cx. Science 337, 821825 (2012).
- Achkar, A. J. et al. Distinct charge orders in the planes and chains of ortho-IIIordered YBa2Cu3O6C superconductors identified by resonant elastic X-ray scattering. Phys. Rev. Lett. 109, 167001 (2012).
- Wu, T. et al. Magnetic-field-induced charge-stripe order in the high-temperature superconductor YBa2Cu3Oy. Nature 477, 192194 (2011).
- LeBoeuf, D. et al. Thermodynamic phase diagram of static charge order in underdoped YBa2Cu3Oy. Nature Phys. 9, 7983 (2013).
 В SHERBROOKE

nature physics

PUBLISHED ONLINE: 14 OCTOBER 2012 | DOI: 10.1038/NPHYS2456

Direct observation of competition between superconductivity and charge density wave order in YBa₂Cu₃O_{6.67}

J. Chang^{1,2*}, E. Blackburn³, A. T. Holmes³, N. B. Christensen⁴, J. Larsen^{4,5}, J. Mesot^{1,2}, Ruixing Liang^{6,7}, D. A. Bonn^{6,7}, W. N. Hardy^{6,7}, A. Watenphul⁸, M. v. Zimmermann⁸, E. M. Forgan³ and S. M. Hayden⁹

Figure 4 [Phase diagram of YBa₂Cu₃O_{7-z}. **a**, Doping dependence of the antiferromagnetic ordering temperature T_N , the incommensurate spin-density wave order T_{SDW} (green triangles; ref. 21), the superconducting temperature T_c and the pseudogap temperature T^* as determined from the Nernst effect³⁰ (black squares) and neutron diffraction²⁹ (purple squares). Notice that the Nernst effect³⁰ indicates a broken rotational symmetry inside the pseudogap region, whereas a translational symmetry preserving magnetic order is found by neutron scattering²⁹. Below temperature scale T_H (black circles), a larger and negative Hall coefficient was observed²⁶ and interpreted in terms of a Fermi surface reconstruction. Our X-ray diffraction experiments show that in YBCO p = 0.12 incommensurate CDW order spontaneously breaks the crystal translational symmetry at a temperature T_{CDW} that is twice as large as T_c . T_{CDW} is also much larger than T^{NMR} (red squares), the temperature below which the CDW is suppressed by superconductivity, compared with T_H (open black circle) and T_{VL} (filled blue circles), the temperature where the vortex liquid state forms²⁶. Error bars on T_{SDW} , T_H , T_{NMR} , and T^* are explained in refs 21,26,30,33. The error bars on T_{CDW} and T_{cusp} reflect the uncertainty in determining the onset and suppression temperature of CDW order from Fig. 2.

Wave vector

Keimer, Julich summer school 2013

Theories

- S. Sachdev and R. La Placa Phys. Rev. Lett. **111**, 027202 (2013) D. Chowdhury, S. Sachdev arxiv. 1501.00002
- K. B. Efetov, H. Meier, and C. Pepin, Nat Phys 9, 442 (2013).
- Y. Wang and A. Chubukov, Phys. Rev. B 90, 035149 (2014).

. . .

Phase diagram with CDW

Cyr-Choinière et al, arxiv1503.02033

T = 0 phase diagram

Normal state and large anisotropy

Recall phase diagram

Doping dependence of critical point as a function of U

Underdoped metal very sensitive to anisotropy

FIG. 3: (Color online) Anisotropy in the CDMFT conductivity $\delta_{\sigma} = 2 \left[\sigma_x(0) - \sigma_y(0) \right] / \left[\sigma_x(0) + \sigma_y(0) \right]$ as a function of filling N for various values of U and $\eta = 0.1$, $\delta_0 = 0.04$.

Okamoto, Sénéchal, Civelli, AMST Phys. Rev. B 82, 180511R 2010

Satoshi Okamoto

D. Fournier et al. Nature Physics (Marcello Civelli

Resistivity anisotropy and curvature map

Y. Ando et al., Phys. Rev. Lett. 93, 267001 (2004).

Phase diagram, including CDW

Cyr-Choinière et al, arxiv1503.02033

Summary

Giovanni Sordi

Patrick Sémon

Kristjan Haul

Finite T phase diagram

Superconductivity

G. Sordi et al. Phys. Rev. Lett. 108, 216401/1-6 (2012) P. Sémon, G. Sordi, A.-M.S.T., Phys. Rev. B **89**, 165113/1-6 (2014)

Meaning of T_c^d

K. K. Gomes, A. N. Pasupathy, A. Pushp, S. Ono, Y. Ando, and A. Yazdani, Nature **447**, 569 (2007)

F. Rullier-Albenque, H. Alloul, and G.Rikken, Phys. Rev. B **84**, 014522 (2011).

Order parameter (color) and T_c

L. Fratini, G. Sordi (unpublished)

T_c vs T_{max order parameter}

L. Fratini, G. Sordi (unpublished)

U=7, $T_W vs T_c vs T_{max order parameter}$

Larger clusters

- In 2x2 T_c vanishes extremely close to half-filling. In larger cluster, earlier.
- Local pairs in underdoped (2x2)

8 site DCA, U=6.5t

8 site DCA, U=6t

Gull Parcollet Millis, PRL **110**, 216405 (2013)

Competition between CDW and SC

J. Chang et al., Nat. Phys. 8, 871-876 (2012).

Cyr-Choinière et al, arxiv1503.02033

Tuning SC and CDW

Cyr-Choinière et al, arxiv1503.02033

Getting rid of the CDW

Cyr-Choinière et al, arxiv1503.02033

T* not affected

Cyr-Choinière et al, arxiv1503.02033

An alternate point of view

- - Is the pseudogap (PG) a crossover or a phase transition ?
- Relation between CDW and the PG?
- - Why CDW peaked at 12% doping ?
- Origin of nematicity ?
- Why superconducting ?
- Why a dome of SC ?
- Does a one-band model capture the key physics ?
- AFM QCP important?
- Lessons from other SC?

A first order transition?

Tao Wu, H. Mayaffre, ... & M.-H. Julien Nat. Commun. **4**, 2113 (2013).

Charles-David Hébert

Patrick Sémon

Bandwidth control and doping control of the Mott transition in organics

 $X = Cu_2(CN)_3 (t' \sim t)$

Phys. Rev. Lett. 95, 177001(2005) Y. Shimizu, et al. Phys. Rev. Lett. 91, (2003)

Doped BEDT

H. Oike, K. Miyagawa, H. Taniguchi, K. Kanoda PRL 114, 067002 (2015)

Widom line in organics

Charles-David Hébert, Patrick Sémon, AMT

t'=0.4*t*

t' = 0.4t overview

Generic case

Summary : organics

- Agreement with experiment
 - SC: larger T_c and broader *P* range if doped
 - Larger frustration: Decrease T_N and T_c
 - Normal state metal to pseudogap crossover
- Predictions
 - First order transition at low *T* in normal state (or remnants in SC state)
- Physics
 - SC dome without a AFM-QCP. Follows first-order.
 - SC from short range *J*.
 - $-T_c$ decreases at Widom line

Main collaborators

Giovanni Sordi

David Sénéchal

Bumsoo Kyung

Patrick Sémon

Charles-David Hébert

Sarma Kancharla

Marcello Civelli

Massimo Capone 🐇

André-Marie Tremblay

Le regroupement québécois sur les matériaux de pointe

CIAR The Canadian Institute for Advanced Research

Sponsors:

Fonds FCAR

Mammouth

compute • calcul

High Performance Computing

CREATING KNOWLEDGE DRIVING INNOVATION BUILDING THE DIGITAL ECONOMY

Le calcul de haute performance

CRÉER LE SAVOIR ALIMENTER L'INNOVATION BÂTIR L'ÉCONOMIE NUMÉRIQUE Calcul Québec

Review: A.-M.S.T. arXiv: 1310.1481

A.-M.S. Tremblay "Strongly correlated superconductivity" Chapt. 10 : Emergent Phenomena in Correlated Matter Modeling and Simulation, Vol. 3, E. Pavarini, E. Koch, and U. Schollwöck (eds.) Verlag des Forschungszentrum Jülich, 2013