Et pourtant ils s'attirent: les supraconducteurs organiques et la supraconductivité fortement corrélée

A.-M. Tremblay

VERITATEM IN CHARITATE

Half-filled band: Not always a metal

NiO, Boer and Verway

Peierls, 1937

Mott, 1949 Siterbrooke

BCS Superconductivity

Superconductivity

© Alexis Reymbaut

— -p'

#1 Cooper pair, #2 Phase coherence

$$E_{P} = \sum_{\mathbf{p},\mathbf{p}'} U_{\mathbf{p}-\mathbf{p}'} \psi_{\mathbf{p}\uparrow,-\mathbf{p}\downarrow} \psi_{\mathbf{p}'\uparrow,-\mathbf{p}'\downarrow}^{*}$$

$$E_{P} = \sum_{\mathbf{p},\mathbf{p}'} U_{\mathbf{p}-\mathbf{p}'} \left(\langle \psi_{\mathbf{p}\uparrow,-\mathbf{p}\downarrow} \rangle \psi_{\mathbf{p}'\uparrow,-\mathbf{p}'\downarrow}^{*} + \psi_{\mathbf{p}\uparrow,-\mathbf{p}\downarrow} \langle \psi_{\mathbf{p}'\uparrow,-\mathbf{p}'\downarrow}^{*} \rangle \right)$$

$$|\mathrm{BCS}(\theta)\rangle = \dots + e^{iN\theta}|N\rangle + e^{i(N+2)\theta}|N+2\rangle + \dots$$

Kinetic energy increases

Simplest Model for Mott insulator

Hubbard model

1931-1980

$$H = -\sum_{\langle ij \rangle \sigma} t_{i,j} \left(c_{i\sigma}^{\dagger} c_{j\sigma} + c_{j\sigma}^{\dagger} c_{i\sigma} \right) + U \sum_{i} n_{i\uparrow} n_{i\downarrow}$$

Effective model, Heisenberg:
$$J = 4t^2/U$$

Superconductivity and attraction?

Phase diagram for organics

Layered organics (κ –BEDT-X family)

One-band Hubbard model of BEDT organics

H. Kino + H. Fukuyama, J. Phys. Soc. Jpn **65** 2158 (1996), R.H. McKenzie, Comments Condens Mat Phys. **18**, 309 (1998)

Y. Shimizu, et al. Phys. Rev. Lett. **91**, 107001(2003)

Magnetic frustration

Perspective

A doped BEDT organic

	W (eV)	U (eV)	U/W	BF	<i>T</i> _c (K)
κ-Cu(NCS) ₂ ^{a)}	0.57	0.46	0.81	0.50	10.4
κ -Cu[N(CN) ₂]Br ^{a)}	0.55	0.49	0.89	0.50	11.8
κ -Hg _{2.89} Br ₈ ^{b)}	0.26	0.465	1.79	0.45	4.3

Taniguchi et al. J. Phys. Soc. Japan, **76**, 113709 (2007)

R. N. Lyubovskaya et al. JETP Lett. 45, 530 (1987)

Perspective

Generalized Phase Diagram

A. Reymbaut

Outline

- Method
- Weak vs strong correlations (AFM and SC)
- Phase diagram
 - *n* = 1
 - finite doping
- What controls maximum T_c ? (Quantum critical point?)

Method

"The effect of concept-driven revolution is to explain old things in new ways. The effect of tool-driven revolution is to discover new things that have to be explained." Freeman Dyson *Imagined Worlds*

2d Hubbard: Quantum cluster method

DMFT as a stationnary point

+ and -

- Long range order:
 - Allow symmetry breaking in the bath (mean-field)
- Included:
 - Short-range dynamical and spatial correlations
- Missing:
 - Long wavelength p-h and p-p fluctuations

Tools: Impurity solver

CTQMC impurity solver (tool) (T finite)

$$Z = \int \mathcal{D}[\psi^{\dagger}, \psi] \, \mathrm{e}^{-S_{c} - \int_{0}^{\beta} d\tau \int_{0}^{\beta} d\tau' \sum_{\mathbf{K}} \psi_{\mathbf{K}}^{\dagger}(\tau) \Delta(\tau, \tau') \psi_{\mathbf{K}}(\tau')}$$

Mean-field is not a trivial problem! Many impurity solvers.

Here: continuous time QMC

P. Werner, PRL 2006 P. Werner, PRB 2007 K. Haule, PRB 2007

P. Sémon *et al.* PRB **90** 075149 (2014); and PRB **89**, 165113 (2014)

EFFECTIVE LOCAL IMPURITY PROBLEM

SELF-CONSISTENCY CONDITION

$$\Delta(i\omega_n) = i\omega_n + \mu - \Sigma_c(i\omega_n)$$

$$(-); \qquad - \left[\sum_{\tilde{k}} \frac{1}{i\omega_n + \mu - t_c(\tilde{k}) - \Sigma_c(i\omega_n)}\right]^{-1}$$

Exact diagonalization impurity solver

Weakly vs strongly correlated superconductivity

Analog to weakly and strongly correlated antiferromagnets

Weak vs Strong correlations

Local moment and Mott transition

Weakly vs strongly correlated superconductivity

Cartoon « BCS » weak-coupling picture

$$\Delta_{\mathbf{p}} = -\frac{1}{2V} \sum_{\mathbf{p}'} U(\mathbf{p} - \mathbf{p}') \frac{\Delta_{\mathbf{p}'}}{E_{\mathbf{p}'}} \left(1 - 2n\left(E_{\mathbf{p}'}\right)\right)$$

Exchange of spin waves? Kohn-Luttinger

 T_c with pressure

P.R. B **34**, 8190-8192 (1986). Kohn, Luttinger, P.R.L. **15**, 524 (1965).

P.W. Anderson Science 317, 1705 (2007)

#1 Cooper pair, #2 Phase coherence

$$E_{P} = \sum_{\mathbf{p},\mathbf{p}'} U_{\mathbf{p}-\mathbf{p}'} \psi_{\mathbf{p}\uparrow,-\mathbf{p}\downarrow} \psi_{\mathbf{p}\uparrow,-\mathbf{p}'\downarrow}^{*}$$

$$E_{P} = \sum_{\mathbf{p},\mathbf{p}'} U_{\mathbf{p}-\mathbf{p}'} \left(\langle \psi_{\mathbf{p}\uparrow,-\mathbf{p}\downarrow} \rangle \psi_{\mathbf{p}'\uparrow,-\mathbf{p}'\downarrow}^{*} + \psi_{\mathbf{p}\uparrow,-\mathbf{p}\downarrow} \langle \psi_{\mathbf{p}'\uparrow,-\mathbf{p}'\downarrow}^{*} \rangle \right)$$

$$|\mathrm{BCS}(\theta)\rangle = \dots + e^{iN\theta}|N\rangle + e^{i(N+2)\theta}|N+2\rangle + \dots$$

Kinetic energy increases

A cartoon strong coupling picture

$$J\sum_{\langle i,j\rangle} \mathbf{S}_{i} \cdot \mathbf{S}_{j} = J\sum_{\langle i,j\rangle} \left(\frac{1}{2}c_{i}^{\dagger}\vec{\sigma}c_{i}\right) \cdot \left(\frac{1}{2}c_{j}^{\dagger}\vec{\sigma}c_{j}\right)$$
$$d = \langle \hat{d} \rangle = 1/N\sum_{\vec{k}} (\cos k_{x} - \cos k_{y}) \langle c_{\vec{k},\uparrow}c_{-\vec{k},\downarrow} \rangle$$
$$H_{MF} = \sum_{\vec{k},\sigma} \varepsilon(\vec{k}) c_{\vec{k},\sigma}^{\dagger} c_{\vec{k},\sigma} - 4Jm\hat{m} - Jd(\hat{d} + \hat{d}^{\dagger}) + F_{0}$$

Pitaevskii Brückner:

Pair state orthogonal to repulsive core of Coulomb interaction

P.W. Anderson Science Miyake, Schmitt–Rink, and Varma 317, 1705 (2007)
 P.R. B 34, 6554-6556 (1986)
 More sophisticated Slave Boson: Kotliar Liu PRB 1988 SHERBROOKE

T = 0 phase diagram n = 1

Phase diagram Exact diagonalization as impurity solver (T=0).

 $X = Cu_2(CN)_3 (t' \sim t)$

Phys. Rev. Lett. 95, 177001(2005) Y. Shimizu, et al. Phys. Rev. Lett. 91, (2003)

Other compounds (R. Valenti et al.)

Hueckel

DFT

X	t'/t	U/t	t'/t	U/t
CN	1.06	8.2	0.83 (0.85)	7.3 (12)
SCN	0.84	6.8	0.58 (0.83)	6.0
Cl	0.75	7.5	0.44	7.5
Br	0.68	7.2	0.42	5.1

Kandpal et al. PRL (2009) Nakamura et al. JPSJ (2009)

Komatsu et al. JPSJ (1996)

Kyung, Tremblay PRL (2006) Tocchio, Parola, Gros, Becca PRB (2009)

Analogous results with other methods

- H. Morita et al., J. Phys. Soc. Jpn. 71, 2109 (2002).
- J. Liu et al., Phys. Rev. Lett. 94, 127003 (2005).
- S.S. Lee et al., Phys. Rev. Lett. 95, 036403 (2005).
- B. Powell et al., Phys. Rev. Lett. 94, 047004 (2005).
- J.Y. Gan et al., Phys. Rev. Lett. 94, 067005 (2005).
- T. Watanabe et J. Phys. Soc. Japan (2006)

Charles-David Hébert

Patrick Sémon

n = 1, finite T

Made possible by

P. Sémon *et al.* PRB **85**, 201101(R) (2012) PRB **90** 075149 (2014); and PRB **89**, 165113 (2014)

Effect of frustration (n = 1)

Generalized Phase Diagram

Doped Organics: normal state

Doped BEDT

H. Oike, K. Miyagawa, H. Taniguchi, K. Kanoda PRL 114, 067002 (2015)

Widom line in organics

Charles-David Hébert, Patrick Sémon, AMT

Generalized Phase Diagram

Results from variational MC

 $U_{\rm c}$

₹ _{0.1}

$$t'/t = 0.8$$

T. Watanabe, H. Yokoyama and M. Ogata JPS Conf. Proc. **3**, 013004 (2014)

Superconductivity in the organics at finite *T*

Doped BEDT

H. Oike, K. Miyagawa, H. Taniguchi, K. Kanoda PRL 114, 067002 (2015)

Doped BEDT

H. Oike, K. Miyagawa, H. Taniguchi, K. Kanoda PRL 114, 067002 (2015)

t'=0.4*t*

SHERBROOKE

Signatures of Widom line in the superconducting state

(a)

Results from variational MC

T. Watanabe, H. Yokoyama and M. Ogata JPS Conf. Proc. **3**, 013004 (2014)

Antiferromagnetic quantum critical point scenario (weakly correlated)

Pnictides and organics

Pnictides

Magnetic superconductivity

Nicolas Doiron-Leyraud, Bourbonnais, Taillefer 2010

Canfield et al. (2010)

AFM not related to maximum T_c

(a)

Generic case highly frustrated case

Wei Wu

AFM quantum critical point in heavy fermions (with same methods)

Heavy fermions

Heavy fermions 3D metals tuned by pressure, field or concentration

Knebel et al. (2009)

Quantum criticality

Magnetic superconductivity

Mathur et al., Nature 1998

Heavy fermions

$$H = \sum_{k,\sigma} \epsilon_k c_{k,\sigma}^{\dagger} c_{k,\sigma} + \sum_{k,\sigma} \epsilon^f f_{k,\sigma}^{\dagger} f_{k,\sigma}$$

$$+ \sum_{k,\sigma} V_k (f_{k,\sigma}^{\dagger} c_{k,\sigma} + \text{H.c.}) + \sum_i U \left(n_f^{\dagger} - \frac{1}{2} \right) \left(n_f^{\downarrow} - \frac{1}{2} \right)$$

$$V_k = V + 2V' [\cos(k_x) + \cos(k_y)]$$

U=4

AFM: antiferro-magnetism SC: superconducting V'/V = 2 : more frustrated case V'/V = 5 : less frustrated case

W. Wu A.-M.S.T. Phys. Rev. X, 2015

Summary : organics

- Agreement with experiment
 - SC: larger T_c and broader *P* range if doped
 - Larger frustration: Decrease T_N much more than T_c
 - Normal state metal to pseudogap crossover
- Predictions
 - First order transition at low *T* in normal state
 - (or remnants in SC state) (also T_c decreases in e-doped)
- Physics
 - SC dome without an AFM QCP. Extension of Mott
 - SC from short range *J*.
 - $-T_c$ decreases at Widom line

Main collaborators

David Sénéchal

Patrick Sémon

Giovanni Sordi

Kristjan Haule

Bumsoo Kyung Charles-David Hébert

Wei Wu

Lorenzo Fratino

Team

Tremblay, Reymbaut, Gagnon, Verret, Hébert, Charlebois, Nourafkan

André-Marie Tremblay

Le regroupement québécois sur les matériaux de pointe

CIAR The Canadian Institute for Advanced Research

Sponsors:

Fonds FCAR

Mammouth

compute • calcul

High Performance Computing

CREATING KNOWLEDGE DRIVING INNOVATION BUILDING THE DIGITAL ECONOMY

Le calcul de haute performance

CRÉER LE SAVOIR ALIMENTER L'INNOVATION BÂTIR L'ÉCONOMIE NUMÉRIQUE Calcul Québec

Review: A.-M.S.T. arXiv: 1310.1481

A.-M.S. Tremblay "Strongly correlated superconductivity" Chapt. 10 : Emergent Phenomena in Correlated Matter Modeling and Simulation, Vol. 3, E. Pavarini, E. Koch, and U. Schollwöck (eds.) Verlag des Forschungszentrum Jülich, 2013