Et pourtant ils s'attirent: le cas de la supraconductivité à haute température

A.-M. Tremblay

Sherbrooke, 8 juillet 2015

Half-filled band is metallic?

Half-filled band: Not always a metal

NiO, Boer and Verway

Peierls, 1937

Mott, 1949 Siterbrooke

BCS Superconductivity

Superconductivity

© Alexis Reymbaut

— -p'

#1 Cooper pair, #2 Phase coherence

$$E_{P} = \sum_{\mathbf{p},\mathbf{p}'} U_{\mathbf{p}-\mathbf{p}'} \psi_{\mathbf{p}\uparrow,-\mathbf{p}\downarrow} \psi_{\mathbf{p}'\uparrow,-\mathbf{p}'\downarrow}^{*}$$

$$E_{P} = \sum_{\mathbf{p},\mathbf{p}'} U_{\mathbf{p}-\mathbf{p}'} \left(\langle \psi_{\mathbf{p}\uparrow,-\mathbf{p}\downarrow} \rangle \psi_{\mathbf{p}'\uparrow,-\mathbf{p}'\downarrow}^{*} + \psi_{\mathbf{p}\uparrow,-\mathbf{p}\downarrow} \langle \psi_{\mathbf{p}'\uparrow,-\mathbf{p}'\downarrow}^{*} \rangle \right)$$

$$|\mathrm{BCS}(\theta)\rangle = \dots + e^{iN\theta}|N\rangle + e^{i(N+2)\theta}|N+2\rangle + \dots$$

Kinetic energy increases

New and old superconductors

H. Takahashi: JPSJ Online—News and Comments [June 10, 2008]

March meeting APS, 1987

- New York Times headlines "The Woodstock of Physics"

"They began lining up outside the New York Hilton Sutton Ballroom at 5:30PM for an evening session that would last until 3:00 AM"

15-18 Aug. 1969 500,000 participants

Simplest Model for Mott insulator

Hubbard model

1931-1980

$$H = -\sum_{\langle ij \rangle \sigma} t_{i,j} \left(c_{i\sigma}^{\dagger} c_{j\sigma} + c_{j\sigma}^{\dagger} c_{i\sigma} \right) + U \sum_{i} n_{i\uparrow} n_{i\downarrow}$$

Effective model, Heisenberg:
$$J = 4t^2/U$$

Superconductivity and attraction?

Cuprates

SCIENTIFIC AMERICAN

JUNE 1988 \$3.50

How nonsense is deleted from genetic messages. R_x for economic growth: aggressive use of new technology. Can particle physics test cosmology?

High-Temperature Superconductor belongs to a family of materials that exhibit exotic electronic properties. Y Ba Cas O7. 8 92-37

Phase diagram

The central line $-T_x = T_{nem}$

Cyr-Choinière et al. arXiv:1503.02033

 $T_{\rm nem} = E_{\rm PG} / 2.4$

Phase diagram for organics

Outline

- Method
- T=0 phase diagram
- Finite *T* phase diagram
 - Normal state
 - First order transition
 - Widom line and pseudogap
 - Superconductivity
 - Condensation energy
 - Superfluid density

Method

"The effect of concept-driven revolution is to explain old things in new ways. The effect of tool-driven revolution is to discover new things that have to be explained." Freeman Dyson *Imagined Worlds*

Mott transition and Dynamical Mean-Field Theory. The beginnings in d = infinity

- Compute scattering rate (self-energy) of impurity problem.
- Use that self-energy (ω dependent) for lattice.
- Project lattice on single-site and adjust
 bath so that single-site
 DOS obtained both
 ways be equal.

W. Metzner and D. Vollhardt, PRL (1989)A. Georges and G. Kotliar, PRB (1992)M. Jarrell PRB (1992)

DMFT, (d = 3)

2d Hubbard: Quantum cluster method

DMFT as a stationnary point

+ and -

- Long range order:
 - Allow symmetry breaking in the bath (mean-field)
- Included:
 - Short-range dynamical and spatial correlations
- Missing:
 - Long wavelength p-h and p-p fluctuations

Tools: Impurity solver

CTQMC impurity solver (tool) (T finite)

$$Z = \int \mathcal{D}[\psi^{\dagger}, \psi] \,\mathrm{e}^{-S_{c} - \int_{0}^{\beta} d\tau \int_{0}^{\beta} d\tau' \sum_{\mathbf{K}} \psi_{\mathbf{K}}^{\dagger}(\tau) \Delta(\tau, \tau') \psi_{\mathbf{K}}(\tau')}_{\mathbf{K}}$$

Mean-field is not a trivial problem! Many impurity solvers.

Here: continuous time QMC

P. Werner, PRL 2006 P. Werner, PRB 2007 K. Haule, PRB 2007

P. Sémon *et al.* PRB **90** 075149 (2014); and PRB **89**, 165113 (2014)

EFFECTIVE LOCAL IMPURITY PROBLEM

SELF-CONSISTENCY CONDITION

$$\Delta(i\omega_n) = i\omega_n + \mu - \Sigma_c(i\omega_n)$$

$$(-); \qquad - \left[\sum_{\tilde{k}} \frac{1}{i\omega_n + \mu - t_c(\tilde{k}) - \Sigma_c(i\omega_n)}\right]^{-1}$$

A bit of physics: superconductivity and repulsion

Cartoon « BCS » weak-correlation picture (d-wave)

$$\Delta_{\mathbf{p}} = -\frac{1}{2V} \sum_{\mathbf{p}'} U(\mathbf{p} - \mathbf{p}') \frac{\Delta_{\mathbf{p}'}}{E_{\mathbf{p}'}} \left(1 - 2n \left(E_{\mathbf{p}'} \right) \right)$$

p

Exchange of spin waves? Kohn-Luttinger

T_c with pressure

D. J. Scalapino, E. Loh, Jr., and J. E. Hirsch P.R. B 34, 8190-8192 (1986). Béal-Monod, Bourbonnais, Emery P.R. B. **34**, 7716 (1986). Kohn, Luttinger, P.R.L. 15, 524 (1965). P.W. Anderson Science 317, 1705 (2007) UNIVERSITÉ DE SHERBROOKE

AFM Quantum critical point

A cartoon strong correlation picture

P.W. Anderson Science 317, 1705 (2007)

$$J\sum_{\langle i,j\rangle} \mathbf{S}_{i} \cdot \mathbf{S}_{j} = J\sum_{\langle i,j\rangle} \left(\frac{1}{2}c_{i}^{\dagger}\vec{\sigma}c_{i}\right) \cdot \left(\frac{1}{2}c_{j}^{\dagger}\vec{\sigma}c_{j}\right)$$
$$d = \langle \hat{d} \rangle = 1/N\sum_{\vec{k}} (\cos k_{x} - \cos k_{y}) \langle c_{\vec{k},\uparrow}c_{-\vec{k},\downarrow} \rangle$$
$$H_{MF} = \sum_{\vec{k},\sigma} \varepsilon(\vec{k}) c_{\vec{k},\sigma}^{\dagger} c_{\vec{k},\sigma} - 4Jm\hat{m} - Jd(\hat{d} + \hat{d}^{\dagger}) + F_{0}$$

Pitaevskii Brückner:

Pair state orthogonal to repulsive core of Coulomb interaction

Kotliar and Liu, P.R. B **38,** 5142 (1988) Miyake, Schmitt–Rink, and Varma P.R. B **34**, 6554-6556 (1986)

T = 0 phase diagram: cuprates

Phase diagram Exact diagonalization as impurity solver (T=0).

Theory: T_c down vs Mott

S. Kancharla et al. Phys. Rev. B (2008)

CDMFT global phase diagram

Simon Verret, MSc

Kancharla, Kyung, Civelli, Sénéchal, Kotliar AMST Phys. Rev. B (2008) AND Capone, Kotliar PRL (2006)

Armitage, Fournier, Greene, RMP (2009)

Outline

- Method
- T=0 phase diagram
- Finite *T* phase diagram
 - Normal state
 - First order transition
 - Widom line and pseudogap
 - Superconductivity
 - Condensation energy
 - Superfluid density

Finite T phase diagram

Normal state of the cuprates

Weak vs Strong correlations

Local moment and Mott transition

Finite-doping first-order transition

Giovanni Sordi

G. Sordi, K. Haule, A.-M.S.T PRL, **104**, 226402 (2010) and Phys. Rev. B. **84**, 075161 (2011)

Doping-induced Mott transition (t'=0)

Kristjan Haule

Lesson from DMFT, first order transition + critical point governs phase diagram

A first order transition at finite doping?

At positive *t*'

A. Macridin, M. Jarrell, and T. Maier, Phys. Rev. B **74**, 085104 (2006)

E. Khatami, K. Mikelsons, D. Galanakis, A. Macridin, J. Moreno, R. T. Scalettar, and M. Jarrell PRB **81**, 201101(R) 2010

A. Liebsch, N.H. Tong, PRB 80, 165126 (2009)

Here t'=0

Link to Mott transition up to optimal doping

Doping dependence of critical point as a function of U

Characterisation of the phases (U=6.2t)

Density of states

Density of states

Khosaka et al. Science 315, 1380 (2007);

Spin susceptibility

Spin susceptibility

Julien et al. PRL 76, 4238 (1996)

Plaquette eigenstates

Michel Ferrero, P. S. Cornaglia, L. De Leo, O. Parcollet, G. Kotliar, A. Georges PRB 80, 064501 (2009)

Different definitions for broad crossovers

Spin susceptibility

Julien et al. PRL 76, 4238 (1996)

What is the minimal model?

H. Alloul arXiv:1302.3473 C.R. Académie des Sciences, (2014)

Fig 1 Spin contribution K_s to the ⁸⁹Y NMR Knight shift [11] for YBCO_{6.6} permit to define the PG onset T^* . Here K_s is reduced by a factor two at $T \sim T^*/2$. The sharp drop of the SC fluctuation conductivity (SCF) is illustrated (left scale) [23]. We report as well the range over which a Kerr signal is detected [28], and that for which a CDW is evidenced in high fields from NMR quadrupole effects [33] and ultrasound velocity data [30]. (See text).

G. Sordi et al. Phys. Rev. Lett. 108, 216401/1-6 (2012) P. Sémon, G. Sordi, A.-M.S.T., Phys. Rev. B **89**, 165113/1-6 (2014)

c-axis resistivity

Figure : La_{2-x}Sr_xCuO₄ Nakamura et al., PRB 1993

Also K. Takenaka, *et al.* Phys. Rev.B 50, 6534 (1994).

P. Sémon, G. Sordi, A.-M.S.T., Phys. Rev. B 89, 165113/1-6 (2014) 💹 🖼 SHERBROOKE

G. Sordi et al. Phys. Rev. Lett. 108, 216401/1-6 (2012) P. Sémon, G. Sordi, A.-M.S.T., Phys. Rev. B **89**, 165113/1-6 (2014)

Giovanni Sordi

Patrick Sémon

Kristjan Haul

Widom line (t' = 0)

Pseudogap in the normal state and the Widom line

G. Sordi et al. Phys. Rev. Lett. 108, 216401/1-6 (2012) P. Sémon, G. Sordi, A.-M.S.T., Phys. Rev. B **89**, 165113/1-6 (2014)

What is the Widom line?

McMillan and Stanley, Nat Phys 2010

- it is the continuation of the coexistence line in the supercritical region
- ▶ line where the maxima of different response functions touch each other asymptotically as $T \rightarrow T_p$
- liquid-gas transition in water: max in isobaric heat capacity C_p, isothermal compressibility, isobaric heat expansion, etc
- DYNAMIC crossover arises from crossing the Widom line! water: Xu et al, PNAS 2005, Simeoni et al Nat Phys 2010

Giovanni Sordi

Crossovers and Widom line

G. Sordi et al. Phys. Rev. Lett. 108, 216401/1-6 (2012) P. Sémon, G. Sordi, A.-M.S.T., Phys. Rev. B **89**, 165113/1-6 (2014)

Patrick Sémon

Satoshi Okamoto

David Sénéchal

Marcello Civelli

Maxime Charlebois

Anisotropy (nematicity)

Normal state and large anisotropy in an *orthorhombic* crystal ED solver t' = -0.3t

Phase diagram

The central line
$$-T_x = T_{nem}$$
 $T_{nem} = E_{PG} / 2.4$

Γ

Cyr-Choinière et al. arXiv:1503.02033

Underdoped metal very sensitive to anisotropy

FIG. 3: (Color online) Anisotropy in the CDMFT conductivity $\delta_{\sigma} = 2 \left[\sigma_x(0) - \sigma_y(0) \right] / \left[\sigma_x(0) + \sigma_y(0) \right]$ as a function of filling N for various values of U and $\eta = 0.1$, $\delta_0 = 0.04$.

Okamoto, Sénéchal, Civelli, AMST Phys. Rev. B **82**, 180511R 2010

Dynamical electronic nematicity

D. Fournier et al. Nature Physics (2010)

At finite temperature, anisotropy in Z

FIG. 3. (Color online) Color map of the anisotropic ratio of the quasiparticle weight σ_Z over the temperature-doping plane, for U = 6t. The solid blue curve indicates the pseudogap temperature $T^*(\delta)$ which is obtained as the temperature at which the uniform magnetic susceptibility $\chi_{-1}[q = (0, 0), T]$ has a maximum. Curve M

susceptibility $\chi_m[q = (0,0),T]$ has a maximum. Su, Maier, PRB 84, 220506(R) (2011)

Superconductivity not much influenced by anisotropy in hopping

CDMFT: Emergent first-order transition

Summary: normal state

- Signatures of Mott physics extend way beyond half-filling
- Pseudogap is a phase
- Pseudogap *T** controlled by a Widom line and its precursor
- High compressibility (stripes?)
- Widom line
 - Thermodynamics (Susceptibility)
 - Transport (c-axis resistivity)
 - DOS

Lorenzo Fratino

Giovanni Sordi

Patrick Sémon

Superconductivity

T_c and order parameter, plaquette

Finite-doping first-order transition vs maximum of order parameter

D. J. Scalapino and S. R. White Phys. Rev. B **58**, 8222 (1998)

Neutron

J.E. Hirsch, F. Marsiglio Physica C 331 150 (2000)

Condensation energy: mechanism

M. R. Norman, M. Randeria, B. Janko[´], and J.C. Campuzano, Phys. Rev. B **61**, 14 742 (2000).

ARPES

H. J. A. Molegraaf, C. Presura, D. van der Marel, P. H. Kes, and M. Li, Science **295**, 2239 (2002). Optical sum rule

A. F. Santander-Syro, R. P. S.M. Lobo, N. Bontemps, Z. Konstantinovic, Z. Z. Li, and H. Raffy, Europhys. Lett. **62** 568 (2003) Optical sum rule

Condensation energy

E. Gull, A. Millis, PRB 86, 241106(R) (2012)

Th. A. Maier, M. Jarrell, et al. PRL 92, 027005 (2004)

D. J. Scalapino and S. R. White Phys. Rev. B 58, 8222 (1998)

Role of J

Kinetic energy gain

Kinetic energy gain

c-axis superfluid stiffness

Experiment – theory $(T \rightarrow 0)$

C. Bernhard, J. L. Tallon, et al. PRL (2001)

FIG. 8. Superfluid stiffness ρ_s determined in the superconducting state at T = t/60 from Eq. 15, as a function of doping.

E. Gull, A.J. Millis, Phys. Rev. B **88**, 075127 (2013)

Maximum $T \rightarrow 0$ superfluid stiffness does not correspond to maximum T_c

U = 7

Panagopoulos et al. PRB 2000

Summary

The central line
$$-T_x = T_{nem}$$

$$T_{\rm nem} = E_{\rm PG} / 2.4$$

Cyr-Choinière et al. arXiv:1503.02033

Summary

- With a single theoretical framework,
- Essential physics is described by the oneband Hubbard model
 - Mott + short-range superexchange leads to an emergent phase transition that is an organizing principle for both
 - normal state properties, including pseudogap
 - non BCS features of the normal state (Potential vs Kinietic energy driven...)

Two speculations

To do

- Effect of *t*' (Sordi, Fratino, Sémon)
- Three-band model (Sordi, Fratino, Sémon)
- Nematicity at finite *T*
- Nematicity CDW at T = 0 (Maxime Charlebois)
- STM at T = 0 (Simon Verret)
- Transport properties (Anne-Marie Gagnon)
- Effect of V on pairing (Alexis Reymbaut, Marco Fellous Asiani)
- Iron oxides (Reza Nourafkan)

Main collaborators

Giovanni Sordi

Patrick Sémon

Lorenzo Fratino Charles-David Hébert

David Sénéchal

Kristjan Haule

Bumsoo Kyung

Team

Tremblay, Reymbaut, Gagnon, Verret, Hébert, Charlebois, Nourafkan

André-Marie Tremblay

Le regroupement québécois sur les matériaux de pointe

CIAR The Canadian Institute for Advanced Research

Sponsors:

Fonds FCAR

Mammouth

compute • calcul

High Performance Computing

CREATING KNOWLEDGE DRIVING INNOVATION BUILDING THE DIGITAL ECONOMY

Le calcul de haute performance

CRÉER LE SAVOIR ALIMENTER L'INNOVATION BÂTIR L'ÉCONOMIE NUMÉRIQUE Calcul Québec

Review: A.-M.S.T. arXiv: 1310.1481

A.-M.S. Tremblay *"Strongly correlated superconductivity"* Chapt. 10 : *Emergent Phenomena in Correlated Matter Modeling and Simulation, Vol. 3,* E. Pavarini, E. Koch, and U. Schollwöck (eds.) Verlag des Forschungszentrum Jülich, 2013