Supraconductivité avec et sans point critique quantique antiferromagnétique

A.-M. Tremblay

Institut quantique

Réunion inaugurale, LIA Jouvence 27 octobre 2016

SHERBROOKE

Pnictides and organics

Pnictides

Bechgaard salts

Magnetic superconductivity

Nicolas Doiron-Leyraud, Bourbonnais, Taillefer 2010

Canfield et al. (2010)

Cartoon « BCS » weak-coupling picture

$$\Delta_{\mathbf{p}} = -\frac{1}{2V} \sum_{\mathbf{p}'} U(\mathbf{p} - \mathbf{p}') \frac{\Delta_{\mathbf{p}'}}{E_{\mathbf{p}'}} \left(1 - 2n\left(E_{\mathbf{p}'}\right)\right)$$

Exchange of spin waves? Kohn-Luttinger

 T_c with pressure

P.R. B **34**, 8190-8192 (1986). Kohn, Luttinger, P.R.L. **15**, 524 (1965).

P.W. Anderson Science 317, 1705 (2007)

High temperature superconductors

Hubbard model

Method for strongly correlated matter

Dynamical Mean Field Theory (+ clusters) Concept: atomic localized correlations consistent with delocalized aspect

2d Hubbard: Quantum cluster method

Impurity solver

$$Z = \int D[d^{\dagger}, d] \exp\left[-S_c - \int_0^\beta d\tau \int_0^\beta d\tau' \sum_i [d_i^{\dagger}(\tau) \Delta_{i'i}(\tau, \tau') d_{i'}(\tau')]\right]$$

EFFECTIVE LOCAL IMPURITY PROBLEM

SELF-CONSISTENCY CONDITION

Mean-field is not a trivial problem! Many impurity solvers.

Here: continuous time QMC

P. Werner, PRL 2006 P. Werner, PRB 2007 K. Haule, PRB 2007

$$\Delta(i\omega_n) = i\omega_n + \mu - \Sigma_c(i\omega_n) \\ - \left[\sum_{\tilde{k}} \frac{1}{i\omega_n + \mu - t_c(\tilde{k}) - \Sigma_c(i\omega_n)}\right]^{-1}$$

+ and -

- Long range order:
 - Allow symmetry breaking in the bath (mean-field)
- Included:
 - Short-range dynamical and spatial correlations
- Missing:
 - Long wavelength p-h and p-p fluctuations

Groups using these methods for cuprates

- Europe:
 - Georges, Parcollet, Ferrero, Civelli, (Paris)
 - de Medici (Grenoble) Capone (Italy)
- USA:
 - Gull (Michigan) Millis (Columbia)
 - Kotliar, Haule (Rutgers)
 - Jarrell (Louisiana)
 - Maier, Okamoto (Oakridge)
- Japan
 - Imada (Tokyo) Sakai

Wei Wu

Superconductivity around an AFM quantum critical point

A heavy fermion example

W. Wu A.-M.S.T. Phys. Rev. X, 2015

Heavy fermions

Heavy fermions 3D metals tuned by pressure, field or concentration

Knebel et al. (2009)

Quantum criticality

Magnetic superconductivity

Mathur et al., Nature 1998

Heavy fermions

$$H = \sum_{k,\sigma} \epsilon_k c_{k,\sigma}^{\dagger} c_{k,\sigma} + \sum_{k,\sigma} \epsilon^f f_{k,\sigma}^{\dagger} f_{k,\sigma}$$
$$+ \sum_{k,\sigma} V_k (f_{k,\sigma}^{\dagger} c_{k,\sigma} + \text{H.c.}) + \sum_i U \left(n_f^{\dagger} - \frac{1}{2} \right) \left(n_f^{\downarrow} - \frac{1}{2} \right)$$
$$4f, 5f \text{ spd}$$

W. Wu A.-M.S.T. Phys. Rev. X, 2015

Phase diagram

U=4

AFM: antiferro-magnetism SC: superconducting

V'/V = 2 : more frustrated case V'/V = 5 : less frustrated case

A REAL

3

Weakly vs strongly correlated superconductivity

Analog to weakly and strongly correlated antiferromagnets

Weak vs Strong correlations

n = 1, unfrustrated d = 3 cubic lattice

Local moment and Mott transition

n = 1, d = 2 square lattice

Phase diagram for organics

Influence of Mott transition away from half-filling

n = 1, d = 2 square lattice

Influence of Mott transition away from half-filling

n = 1, d = 2 square lattice

Spin susceptibility

Spin susceptibility

Julien et al. PRL 76, 4238 (1996)

G. Sordi et al. Phys. Rev. Lett. 108, 216401/1-6 (2012) P. Sémon, G. Sordi, A.-M.S.T., Phys. Rev. B **89**, 165113/1-6 (2014)

Plaquette eigenstates

Michel Ferrero, P. S. Cornaglia, L. De Leo, O. Parcollet, G. Kotliar, A. Georges PRB 80, 064501 (2009)

Giovanni Sordi

Patrick Sémon

Lorenzo Fratino

Finite T phase diagram Superconductivity

Sordi et al. PRL **108**, 216401 (2012) Fratino et al. Sci. Rep. **6**, 22715 (2016)

Crossovers inside the AFM phase

n = 1, unfrustrated d = 3 cubic lattice

Superconductivity in Doped Mott insulator

n = 1, d = 2 square lattice

An organizing principle

Fratino et al. Sci. Rep. **6**, 22715

3 bands, charge transfer insulator

Giovanni Sordi

Lorenzo Fratino

3 bands, charge transfer insulator

Fratino et al. PRB 93, 245147 (2016)

Charles-David Hébert

Patrick Sémon

Organics : Phase diagram, finite T

Made possible by algorithmic improvements

P. Sémon *et al.* PRB **85**, 201101(R) (2012) PRB **90** 075149 (2014); and PRB **89**, 165113 (2014)

Phase diagram for organics

Anisotropic triangular lattice

See: Poster Shaheen Acheche

Phase diagram at n = 1

Superconductivity near the Mott transition

n = 1, d = 2 square lattice

Superconductivity near the Mott transition

n = 1, d = 2 square lattice

Superconductivity near Mott transition (n = 1)

C.-D. Hébert, P. Sémon, A.-M.S. T PRB 92, 195112 (2015)

Doped Organics

Doped BEDT

H. Oike, K. Miyagawa, H. Taniguchi, K. Kanoda PRL 114, 067002 (2015)

Doped organics

Doped organics

n = 1, d = 2 square lattice

First order and Widom line in organics

Compare: T. Watanabe, H. Yokoyama and M. Ogata JPS Conf. Proc. **3**, 013004 (2014)

C.-D. Hébert, P. Sémon, A.-M.S. T PRB 92, 195112 (2015)

Doped BEDT

H. Oike, K. Miyagawa, H. Taniguchi, K. Kanoda PRL 114, 067002 (2015)

Compare: T. Watanabe, H. Yokoyama and M. Ogata JPS Conf. Proc. **3**, 013004 (2014)

Generic case highly frustrated case

Summary : organics

- Agreement with experiment
 - SC: larger T_c and broader P range if doped
 - Larger frustration: Decrease T_N much more than T_c
 - Normal state metal to pseudogap crossover
- Predictions
 - First order transition at low *T* in normal state (B induced)
 - Crossovers in SC state associated with normal state.
- Physics
 - SC dome without an AFM QCP. Extension of Mott
 - SC from short range *J*.
 - T_c dome maximum near normal state 1st order

Pairing mechanism

Back to high T_c

Cartoon « BCS » weak-coupling picture

$$\Delta_{\mathbf{p}} = -\frac{1}{2V} \sum_{\mathbf{p}'} U(\mathbf{p} - \mathbf{p}') \frac{\Delta_{\mathbf{p}'}}{E_{\mathbf{p}'}} \left(1 - 2n\left(E_{\mathbf{p}'}\right)\right)$$

Exchange of spin waves? Kohn-Luttinger

 T_c with pressure

P.R. B **34**, 8190-8192 (1986). Kohn, Luttinger, P.R.L. **15**, 524 (1965).

P.W. Anderson Science 317, 1705 (2007)

A cartoon strong coupling picture

$$J\sum_{\langle i,j\rangle} \mathbf{S}_{i} \cdot \mathbf{S}_{j} = J\sum_{\langle i,j\rangle} \left(\frac{1}{2}c_{i}^{\dagger}\vec{\sigma}c_{i}\right) \cdot \left(\frac{1}{2}c_{j}^{\dagger}\vec{\sigma}c_{j}\right)$$
$$d = \langle \hat{d} \rangle = 1/N\sum_{\vec{k}} (\cos k_{x} - \cos k_{y}) \langle c_{\vec{k},\uparrow}c_{-\vec{k},\downarrow} \rangle$$
$$H_{MF} = \sum_{\vec{k},\sigma} \varepsilon(\vec{k}) c_{\vec{k},\sigma}^{\dagger} c_{\vec{k},\sigma} - 4Jm\hat{m} - Jd(\hat{d} + \hat{d}^{\dagger}) + F_{0}$$

Pitaevskii Brückner:

Pair state orthogonal to repulsive core of Coulomb interaction

P.W. Anderson Science Miyake, Schmitt–Rink, and Varma 317, 1705 (2007)
 P.R. B 34, 6554-6556 (1986)
 More sophisticated Slave Boson: Kotliar Liu PRB 1988 SHERBROOKE

Extended Hubbard model

$$\hat{\mathcal{H}} = -t \sum_{\langle i,j \rangle \sigma} \left(\hat{c}_{i\sigma}^{\dagger} \hat{c}_{j\sigma} + c.h \right) + U \sum_{i} \hat{n}_{i\uparrow} \hat{n}_{i\downarrow} + V \sum_{\langle i,j \rangle} \hat{n}_{i} \hat{n}_{j} - \mu \sum_{i} \hat{n}_{i} \hat{n}_{i}$$

$$i = -t \sum_{\langle i,j \rangle \sigma} \left(\hat{c}_{i\sigma}^{\dagger} \hat{c}_{j\sigma} + c.h \right) + U \sum_{i} \hat{n}_{i\uparrow} \hat{n}_{i\downarrow} + V \sum_{\langle i,j \rangle} \hat{n}_{i} \hat{n}_{j} - \mu \sum_{i} \hat{n}_{i} \hat{n}_{i}$$

$$i = -t \sum_{\langle i,j \rangle \sigma} \left(\hat{c}_{i\sigma}^{\dagger} \hat{c}_{j\sigma} + c.h \right) + U \sum_{i} \hat{n}_{i\uparrow} \hat{n}_{i\downarrow} + V \sum_{\langle i,j \rangle} \hat{n}_{i} \hat{n}_{j}$$

$$i = -t \sum_{\langle i,j \rangle \sigma} \hat{n}_{i} \hat{n}_{j} - \mu \sum_{i} \hat{n}_{i} \hat{n}_{i}$$

$$i = -t \sum_{i} \hat{n}_{i\uparrow} \hat{n}_{i\downarrow} + V \sum_{\langle i,j \rangle} \hat{n}_{i} \hat{n}_{i\downarrow} + V \sum_{i} \hat{n}_{i\downarrow} \hat{n}_{$$

Strongly correlated: From *J*, yet retarded

Sénéchal, Day, Bouliane, AMST, Phys. Rev. B 87, 075123 (2013)

x

Antagonistic effects of V at finite T

Summary

- AFM QCP for a heavy-fermion model
- No QCP: First order transition that extends Mott physics away from half-filling
- Is an organizing principle for
 - The normal and superconducting states
 - Cuprates and organics are examples
 - Predictions for organics
- Mechanism: *J* short-range

Mammouth

compute • calcul

High Performance Computing

CREATING KNOWLEDGE DRIVING INNOVATION BUILDING THE DIGITAL ECONOMY

Le calcul de haute performance

CRÉER LE SAVOIR ALIMENTER L'INNOVATION BÂTIR L'ÉCONOMIE NUMÉRIQUE Calcul Québec

Review: A.-M.S.T. arXiv: 1310.1481

A.-M.S. Tremblay "Strongly correlated superconductivity" Chapt. 10 : Emergent Phenomena in Correlated Matter Modeling and Simulation, Vol. 3, E. Pavarini, E. Koch, and U. Schollwöck (eds.) Verlag des Forschungszentrum Jülich, 2013

Collaborators for this work

Charles-David Hébert

Patrick Sémon

Wei Wu

Weakly vs strongly correlated superconductivity

Analog to weakly and strongly correlated antiferromagnets

Weak vs Strong correlations

Local moment and Mott transition

Doped organic: experiment

Doped BEDT

H. Oike, K. Miyagawa, H. Taniguchi, K. Kanoda PRL 114, 067002 (2015)

Doped BEDT

H. Oike, K. Miyagawa, H. Taniguchi, K. Kanoda PRL 114, 067002 (2015)

Method

Concept: Cluster - DMFT Tools: Impurity solver

CTQMC impurity solver (tool) (*T* finite)

$$Z = \int \mathcal{D}[\psi^{\dagger}, \psi] \,\mathrm{e}^{-S_{c} - \int_{0}^{\beta} d\tau \int_{0}^{\beta} d\tau' \sum_{\mathbf{K}} \psi_{\mathbf{K}}^{\dagger}(\tau) \Delta(\tau, \tau') \psi_{\mathbf{K}}(\tau')}_{\mathbf{K}}$$

Mean-field is not a trivial problem! Many impurity solvers.

Here: continuous time QMC

P. Werner, PRL 2006 P. Werner, PRB 2007 K. Haule, PRB 2007

P. Sémon *et al.* PRB **85**, 201101(R) (2012) PRB **90** 075149 (2014); and PRB **89**, 165113 (2014)

EFFECTIVE LOCAL IMPURITY PROBLEM

SELF-CONSISTENCY CONDITION

$$\Delta(i\omega_n) = i\omega_n + \mu - \Sigma_c(i\omega_n) \\ - \left[\sum_{\tilde{k}} \frac{1}{i\omega_n + \mu - t_c(\tilde{k}) - \Sigma_c(i\omega_n)}\right]^{-1}$$