And yet they attract: Superconductivity in the presence of strong repulsion

A.-M. Tremblay

Institut quantique

Brookhaven National Laboratory Tuesday January 17, 2017

Two pillars of Condensed Matter Physics

- Band theory
 - DFT
 - Fermi liquid Theory
 - Metals
 - Semiconductors: transistor
- BCS theory of superconductivity
 - Broken symmetry
 - Emergent phenomenon
 - Also in particle physics, astrophysics...

Superconductivity

— -p'

#1 Cooper pair, #2 Phase coherence

$$E_{P} = \sum_{\mathbf{p},\mathbf{p}'} U_{\mathbf{p}-\mathbf{p}'} \psi_{\mathbf{p}'\uparrow,-\mathbf{p}'\downarrow}^{*} \psi_{\mathbf{p}\uparrow,-\mathbf{p}\downarrow}$$

$$E_{P} = \sum_{\mathbf{p},\mathbf{p}'} U_{\mathbf{p}-\mathbf{p}'} \left\langle \psi_{\mathbf{p}'\uparrow,-\mathbf{p}'\downarrow}^{*} \right\rangle \left\langle \psi_{\mathbf{p}\uparrow,-\mathbf{p}\downarrow}^{*} \right\rangle$$

*

 $|BCS(\theta)\rangle = \dots + e^{iN\theta}|N\rangle + e^{i(N+2)\theta}|N+2\rangle + \dots$

Breakdown of band theory Half-filled band is metallic?

Metals and insulators: standard theory

http://chem.libretexts.org/Textbook_Maps/

Half-filled band: Not always a metal

NiO, Boer and Verway

Peierls, 1937

Mott, 1949 Siter Sherbrooke

« Conventional » Mott transition

Figure: McWhan, PRB 1970; Limelette, Science 2003

Atomic structure

JUNE 1988 \$3.50

How nonsense is deleted from genetic messages. R_x for economic growth: aggressive use of new technology. Can particle physics test cosmology?

High-Temperature Superconductor belongs to a family of materials that exhibit exotic electronic properties. Y Ba Cu O7. 8 92-37

Phase diagram YBa₂Cu₃O_{7-x}

Keimer et al., Nature 518, 179 (2015)

- 1. The model
- 2. The method

Part I: Weakly and strongly correlated electrons

Part II: Strongly correlated superconductivity

2. The model

Hubbard model

1931-1980

$$H = -\sum_{\langle ij \rangle \sigma} t_{i,j} \left(c_{i\sigma}^{\dagger} c_{j\sigma} + c_{j\sigma}^{\dagger} c_{i\sigma} \right) + U \sum_{i} n_{i\uparrow} n_{i\downarrow}$$

Attn: Charge transfer insulator

Interesting in the general case

No mean-field factorization for d-wave superconductivity

$$H = -\sum_{\langle ij \rangle \sigma} t_{i,j} \left(c_{i\sigma}^{\dagger} c_{j\sigma} + c_{j\sigma}^{\dagger} c_{i\sigma} \right) + U \sum_{i} n_{i\uparrow} n_{i\downarrow}$$

Mott transition

Method for strongly correlated matter

Dynamical Mean Field Theory (+ clusters) Concept: atomic localized correlations consistent with delocalized aspect

Mott transition and Dynamical Mean-Field Theory. The beginnings in d = infinity

W. Metzner and D. Vollhardt, PRL (1989)A. Georges and G. Kotliar, PRB (1992)M. Jarrell PRB (1992)

DMFT, (d = 3)

2d Hubbard: Quantum cluster method

Impurity solver

$$Z = \int D[d^{\dagger}, d] \exp\left[-S_c - \int_0^\beta d\tau \int_0^\beta d\tau' \sum_i [d_i^{\dagger}(\tau) \Delta_{i'i}(\tau, \tau') d_{i'}(\tau')]\right]$$

EFFECTIVE LOCAL IMPURITY PROBLEM

SELF-CONSISTENCY CONDITION

Mean-field is not a trivial problem! Many impurity solvers.

Here: continuous time QMC

P. Werner, PRL 2006 P. Werner, PRB 2007 K. Haule, PRB 2007

$$\Delta(i\omega_n) = i\omega_n + \mu - \Sigma_c(i\omega_n) \\ - \left[\sum_{\tilde{k}} \frac{1}{i\omega_n + \mu - t_c(\tilde{k}) - \Sigma_c(i\omega_n)}\right]^{-1}$$

+ and -

- Long range order:
 - Allow symmetry breaking in the bath (mean-field)
- Included:
 - Short-range dynamical and spatial correlations
- Missing:
 - Long wavelength p-h and p-p fluctuations

Groups using these methods for cuprates

- Europe:
 - Georges, Parcollet, Ferrero, Civelli, (Paris)
 - de Medici (Grenoble) Capone (Italy)
- USA:
 - Gull (Michigan) Millis (Columbia)
 - Kotliar, Haule (Rutgers)
 - Jarrell (Louisiana)
 - Maier, Okamoto (Oakridge)
- Japan
 - Imada (Tokyo) Sakai, Tsunetsugu, Motome

Part I

Weakly vs strongly correlated electrons Normal and antiferromagnetic state

Weak vs Strong correlations

n = 1, unfrustrated d = 3 cubic lattice

Local moment and Mott transition

n = 1, d = 2 square lattice

« Conventional » Mott transition

Figure: McWhan, PRB 1970; Limelette, Science 2003

Influence of Mott transition away from half-filling

n = 1, d = 2 square lattice

Influence of Mott transition away from half-filling

n = 1, d = 2 square lattice

Link to Mott transition up to optimal doping Another emergent transition

Doping dependence of critical point as a function of U

Spin susceptibility

G. Sordi, et al. Scientific Reports 2, 547 (2012)

Spin susceptibility

Julien et al. PRL 76, 4238 (1996)

G. Sordi et al. Phys. Rev. Lett. 108, 216401/1-6 (2012) P. Sémon, G. Sordi, A.-M.S.T., Phys. Rev. B **89**, 165113/1-6 (2014)

Plaquette eigenstates

Michel Ferrero, P. S. Cornaglia, L. De Leo, O. Parcollet, G. Kotliar, A. Georges PRB 80, 064501 (2009)

Giovanni Sordi

Patrick Sémon

Kristjan Haule

The Widom line

G. Sordi, et al. Scientific Reports 2, 547 (2012)

What is the Widom line?

McMillan and Stanley, Nat Phys 2010

- it is the continuation of the coexistence line in the supercritical region
- line where the maxima of different response functions touch each other asymptotically as $T \rightarrow T_p$
- liquid-gas transition in water: max in isobaric heat capacity C_p, isothermal compressibility, isobaric heat expansion, etc
- DYNAMIC crossover arises from crossing the Widom line! water: Xu et al, PNAS 2005, Simeoni et al Nat Phys 2010

Giovanni Sordi

Maxime Charlebois Patrick Sémon

Lorenzo Fratino

Influence of the underlying normal state on the ordered state

Crossovers inside the AFM phase

n = 1, unfrustrated d = 3 cubic lattice

Change in mechanism for stability of the AFM

L. Fratino,¹ P. Sémon,² M. Charlebois,² G. Sordi,¹ and A.-M. S. Tremblay^{2,3} unpublished

Giovanni Sordi

Patrick Sémon

Lorenzo Fratino

Part II

Strongly correlated Superconductivity

Sordi et al. PRL **108**, 216401 (2012) Fratino et al. Sci. Rep. **6**, 22715 (2016)

Cartoon « BCS » weakly-correlated picture

A cartoon strongly-correlated picture

$$J\sum_{\langle i,j\rangle} \mathbf{S}_{i} \cdot \mathbf{S}_{j} = J\sum_{\langle i,j\rangle} \left(\frac{1}{2}c_{i}^{\dagger}\vec{\sigma}c_{i}\right) \cdot \left(\frac{1}{2}c_{j}^{\dagger}\vec{\sigma}c_{j}\right)$$
$$d = \langle \hat{d} \rangle = 1/N\sum_{\vec{k}} (\cos k_{x} - \cos k_{y}) \langle c_{\vec{k},\uparrow}c_{-\vec{k},\downarrow} \rangle$$
$$H_{MF} = \sum_{\vec{k},\sigma} \varepsilon(\vec{k}) c_{\vec{k},\sigma}^{\dagger} c_{\vec{k},\sigma} - 4Jm\hat{m} - Jd(\hat{d} + \hat{d}^{\dagger}) + F_{0}$$

Pitaevskii Brückner:

Pair state orthogonal to repulsive core of Coulomb interaction

P.W. Anderson Science Miyake, Schmitt–Rink, and Varma 317, 1705 (2007)
 P.R. B 34, 6554-6556 (1986)
 More sophisticated Slave Boson: Kotliar Liu PRB 1988 SHERBROOKE

Superconductiviy in Doped Mott insulator

n = 1, d = 2 square lattice

An organizing principle

Fratino et al. Sci. Rep. **6**, 22715

Theory, see also Jarrel PRL (2004), Gull Millis PRB (2014) Experiments: Bontemps, Van der Marel ... Es Sherbrooke

Evidence for local pairs from $\sigma_2(\omega)$

Lee ... Tajima (Osaka) https://arxiv.org/pdf/1612.08830

An organizing principle

3 bands, charge transfer insulator

Giovanni Sordi

Lorenzo Fratino

Fratino et al. PRB 93, 245147 (2016)

Patrick Sémon

3 bands, charge transfer insulator

Fratino et al. PRB 93, 245147 (2016)

Charles-David Hébert

Patrick Sémon

Organics : Phase diagram, finite T

Made possible by algorithmic improvements

P. Sémon *et al.* PRB **85**, 201101(R) (2012) PRB **90** 075149 (2014); and PRB **89**, 165113 (2014)

A general principle in strongly correlated matter?

Swagato Mukherjee, Raju Venugopalan, and Yi Yin Phys. Rev. Lett. **117**, 222301 (2016)

Phase diagram

Keimer et al., Nature 518, 179 (2015)

P.W. Anderson

Raising the question

D.J. Scalapino

Is There Glue in Cuprate Superconductors? Philip W. Anderson Science 316, 1705 (2007); DOI: 10.1126/science.1140970

Is There Glue in Cuprate Superconductors?

Philip W. Anderson

Many theories about electron pairing in cuprate superconductors may be on the wrong track.

Science e-letter, 5 and 10 Dec. 2007

Retardation

$$V^{eff}_{\acute{e}l-ph}(ec{q},\omega)=rac{e^2}{4\piarepsilon_0(q^2+k_{TF}^2)}\left[1+rac{\omega_{ph}^2(ec{q})}{\omega^2-\omega_{ph}^2(ec{q})}
ight]$$

"We have a mammoth and an elephant in our refrigerator do we care much if there is also a mouse?"

Conclusion

- Even within a single phase, there can be qualitative differences between the strong and weak correlation limit
- A phase transition in the underlying normal state can act as an organizing principle for the phase diagram.

Review: A.-M.S.T. arXiv: 1310.1481

A.-M.S. Tremblay *"Strongly correlated superconductivity"* Chapt. 10 : *Emergent Phenomena in Correlated Matter Modeling and Simulation, Vol. 3,* E. Pavarini, E. Koch, and U. Schollwöck (eds.) Verlag des Forschungszentrum Jülich, 2013