

Fondation canadienne pour l'innovation

Maximum Entropy analytic continuation with OmegaMaxEnt

D. Bergeron, A.-M.S Tremblay PRE **94**, 023303 (2016)

USHERBROOKE.CA/IQ

What is the problem?

What is the problem?

$$G(i\omega_n) = \int_{-\infty}^{\infty} \frac{d\omega}{2\pi} \frac{A(\omega)}{i\omega_n - \omega},$$

$$G(\tau) = -\int \frac{d\omega}{2\pi} \frac{e^{-\omega\tau} A(\omega)}{1 \pm e^{-\beta\omega}},$$

$$\omega_n = \begin{cases} (2n+1)\pi T, & \text{fermions,} \\ 2n\pi T, & \text{bosons,} \end{cases}$$

1) « Standard » approaches

Standard approaches

$$P(A|G) = \frac{P(G|A)P(A)}{P(G)} \sim \frac{-(\chi^2/2 - \alpha S)}{e}$$

$$P(G|A) \propto e^{-\frac{\chi^2}{2}}, \qquad P(A) = \frac{e^{\alpha S}}{Z_{\alpha}^{S}},$$
$$\chi^2 = \sum_i \frac{(G_i - \bar{G}_i)^2}{\sigma_i^2}. \qquad S = -\int \frac{d\omega}{2\pi} A(\omega) \ln \frac{A(\omega)}{D(\omega)}$$
$$\bar{G} = \mathbf{K}A$$

 $\chi^2 = (G - \mathbf{K}A)^T \mathbf{C}^{-1} (G - \mathbf{K}A).$

Ν

 $\sum_{i=1}^{M} A'(\omega_i) \Delta \omega_i = 1.$

 $N \to \infty (N \gg M),$

$$P_i \equiv \frac{n_i(N)}{N} = A'(\omega_i) \Delta \omega_i,$$

 $\lim_{N \to \infty} P_i = \lim_{N \to \infty} \frac{n_i(N)}{N} = q_i$

$$1 \quad 2 \quad 3 \quad 4 \quad \lim_{N \to \infty} P_i = \lim_{N \to \infty} \frac{n_i(N)}{N} N$$
$$\Gamma(n_1, n_2, \dots, n_M) = \frac{N!}{n_1! n_2! \cdots n_M!} (q_1)^{n_1} (q_2)^{n_1} \cdots (q_M)^{n_M}$$
$$\ln \Gamma(n_1, n_2, \dots) = \ln N! - \sum_i \ln n_i! + \sum_i n_i \ln q_i$$

 $= -N\sum_{i}P_{i}\ln\left(\frac{P_{i}}{q_{i}}\right),$

Constraints

$$N\sum_{i=1}^{N} P_i = N \qquad \lim_{N \to \infty} P_i = \lim_{N \to \infty} \frac{n_i(N)}{N} = q_i.$$

If we know expected χ^2 then the value of α is determined

$$P(A|G) \propto e^{\alpha S - \frac{\chi^2}{2}}$$

Maximum entropy

• All *a priori* probabilities equal to 1/M, then the frequency grid determines the model

$$\ln \Gamma(n_1, n_2, \ldots) = -N \sum_i \Delta \omega_i A'(\omega_i) \ln \left[\frac{\Delta \omega_i A'(\omega_i)}{1/M} \right]$$

$$\ln \Gamma(n_1, n_2, \ldots) = -N \sum_i \Delta \omega_i A'(\omega_i) \ln \left[\frac{A'(\omega_i)}{D(\omega_i)} \right],$$

Outline

- 1) Standard approaches
- 2) OmegaMaxEnt in a nutshell
- 3) Algorithms
- 4) Step by step
- 5) Benchmarks
- 6) Discussion

USHERBROOKE.CA/IQ

2) OmegaMaxEnt in a nutshell

In a nutshell

$$G(i\omega_n) = \int_{-\infty}^{\infty} \frac{d\omega}{2\pi} \frac{A(\omega)}{i\omega_n - \omega},$$

- 1. Computation time is almost independent of T and $A(\omega)$
- 2. Original criterion for choosing α
- 3. Diagnostic tools to estimate the accuracy of the continuation.
- Can be used for
 - Fermions
 - Bosons (transport quantities)
 - Self-energies
 - Imaginary-time of Matsubara frequency data

In a nutshell

- Choosing $\boldsymbol{\alpha}$

$$-(\chi^2/2 - \alpha S)$$

 $Log(\chi^2)$ Default model (1) $\overline{G} = \mathbf{K}A$ is a good approximation to the exact Green's function. It is therefore a smooth function. (2) The elements of $\Delta G_U = \mathbf{U}^{\dagger}(G - \bar{G}) = \mathbf{U}^{\dagger}(G - \mathbf{K}A)$, where U contains the eigenvectors of the covariance matrix C, are *uncorrelated* random variables. Noise-fitting

a) Kernel
b) Optimal α
c) Diagnostic tools

USHERBROOKE.CA/IQ

Algorithms: a) Kernel

$$G(i\omega_n) = \int_{-\infty}^{\infty} \frac{d\omega}{2\pi} \frac{A(\omega)}{i\omega_n - \omega},$$

- Matsubara Kernel (origin of name)
- Can spline $A(\omega)$ and do piecewise analytic integration
 - Grid adapted to A, not to both kernel and A
 - Similar complexity at low T or with complicated spectrum
- Hybrid spline:

$$u = \begin{cases} \frac{1}{\omega - \omega_{0r}}, & \omega > \omega_r, \\ \frac{1}{\omega - \omega_{0l}}, & \omega < \omega_l. \end{cases}$$

• If $G(\tau)$, then from two moments, spline and go to $G(i\omega_n)$

Algorithms: a) Kernel

• Take care of the high-frequency tails as follows:

 $[G_{in}(i\omega_n) - K(i\omega_n)A]/\sigma(\omega_n)$ with $\omega_n > \omega_{as}$

replaced with a few terms of the form $(M_j - m_j A)^2 / \sigma_{M_j}$

• Generally, $A(\omega)$ is small at large frequencies, and accordingly, Matsubara grid can be sparse for $G(i\omega_n)$ at large frequencies.

Algorithms: b) Optimal α

Analog to phase transition in SAC

$$\delta A_{j} = \Delta \alpha_{j} \left[\tilde{\mathbf{K}}^{T} \tilde{\mathbf{K}} + \alpha_{j} \Delta \omega \mathbf{A}_{j-1}^{-1} \right]^{-1} \\ \times \left[\Delta \omega \ln(\mathbf{D}^{-1} A_{j-1}) + \Delta \omega \right],$$

- $\Delta G(i\omega_n) = G_{in}(i\omega_n) K(i\omega_n)A$ equals noise of the data is best solution
- Annealing not necessary (but can be used)
- Curvature is used to find α^{\star}
- Reliability does not depend on proximity to model

Algorithms: c) Diagnostic tools

- $\Delta \tilde{G}(i\omega_n) = [G_{in}(i\omega_n) G_{out}(i\omega_n)]/\sigma(i\omega_n)$ is smooth in information fitting region, noisy in noise-fitting region
- $\Delta \tilde{G}^2(\Delta n) \equiv (1/N) \sum_n \Delta \tilde{G}(\omega_n) \Delta \tilde{G}(\omega_{n+\Delta n})$ is like a Kronecker δ in noisy region
- $A(\omega)$ for a few test frequencies: It must be independent of α as a function of $\log \alpha$

4) Step by step procedure

a) Information from input

b) $G(\tau)$

- c) Frequency grid and default model
- d) Kernel
- e) Spectrum as a function of $\boldsymbol{\alpha}$
- f) Optimal α
- g) Diagnostics

USHERBROOKE.CA/IQ

5) Benchmark applications and diagnostics

Two artificial cases Single site DMFT

USHERBROOKE.CA/IQ

Benchmarks: a) Toy model

relative error of 10^{-5} , at a temperature T = 0.05

Benchmarks: a) Toy model

Benchmarks: b) Toy model

T = 0.002

constant relative diagonal error of 10⁻⁶

intervals. For the example, in Fig. 4, the step around $\omega = 0$ is $\Delta \omega = 2 \times 10^{-4}$, while $\Delta \omega = 0.1$ for the peak centered on $\omega = -3$ and $\Delta \omega = 0.05$ for the one at $\omega = 2$.

Benchmarks: b) Toy model

Benchmarks: c) Single site DMFT

Relative error: 5x10⁻⁴ at most

Benchmarks: c) Single site DMFT

6) Discussion

Discussion

- Splines in Matsubara kernel:
 - Real-frequency grid size can be minimized because of hybrid splines
 - Matsubara frequency grid size also minimized
 - Grid adapted to spectrum because of analytic piecewise integration
 - Large frequencies go into moments
- Overall, little dependence on *T* or spectrum complexity
- Few minutes computation compared with hours for generic optimization method or SAC

Discussion

- Consistency with assumptions of MaxEnt means
 - α chosen where *d* log χ^2 / *d* log α drops
 - Where χ^2 assumption valid
 - In crossover region value of α not so relevant (can be checked) log χ² vs γ log α.
 - γ helps putting α^* closer to noise-fitting
- Results independent of default model
- Check with diagnostics
 - $-\Delta G$ looks like noise
 - $-\Delta G$ autocorrelation like Kronecker δ
 - Sample values of spectrum

Discussion

- « Accuracy » of error estimate is important
 - Misbehavior of ∆G and its covariance tell us about bad error estimates
 - Possible to have converged results in a frequency range and not in another
- If errors are unknown (roundoff errors) it is preferable to add known gaussian noise artificially and reduce that noise gradually.

Extensions to non-positive spectral weights

A. Reymbaut,¹ A.-M. Gagnon,¹ D. Bergeron,¹ and A.-M. S. Tremblay^{1,2}

PRB **95**, 121104(R) (2017) PRB **92**, 060509(R) (2015)

 $\chi_{\gamma\delta}(\vec{k},\tau) = -\langle \hat{T}_{\tau} \, \hat{\mathcal{O}}_{\vec{k}\nu}(\tau) \, \hat{\mathcal{O}}_{\vec{k}s}^{\dagger}(0) \rangle_{\hat{\mathcal{H}}},$

$$\chi_{\gamma\delta}(\vec{k},i\omega_n) = \int_0^\beta d\tau \ e^{i\omega_n\tau} \chi_{\gamma\delta}(\vec{k},\tau) = \int \frac{d\omega}{\pi} \frac{\chi_{\gamma\delta}''(\vec{k},\omega)}{\omega - i\omega_n}.$$

$$\frac{\pi}{\mathcal{Z}} \sum_{mm'} e^{-\beta H_m} [e^{\beta \omega} - 1] \langle m | \hat{\mathcal{O}}_{\vec{k}\gamma} | m' \rangle \langle m' | \hat{\mathcal{O}}_{\vec{k}\delta}^{\dagger} | m \rangle$$

 $\times \delta[\omega - (H_m - H_{m'})]$

Extensions to non-positive spectral weights

$$\begin{split} \langle m | \hat{\mathcal{O}}_{\vec{k}\gamma} | m' \rangle \langle m' | \hat{\mathcal{O}}_{\vec{k}\gamma}^{\dagger} | m \rangle &= | \langle m | \hat{\mathcal{O}}_{\vec{k}\gamma} | m' \rangle |^{2} \geqslant 0 \\ \hat{\mathcal{A}}_{\vec{k}\gamma\delta,\lambda} &= \hat{\mathcal{O}}_{\vec{k}\gamma} + \lambda \, \hat{\mathcal{O}}_{-\vec{k}\delta}^{\dagger} \\ \chi_{\gamma\delta,\lambda}^{aux\,1}(\vec{k},\tau) &= - \langle \hat{T}_{\tau} \, \hat{\mathcal{A}}_{\vec{k}\gamma\delta,\lambda}(\tau) \, \hat{\mathcal{A}}_{\vec{k}\gamma\delta,\lambda}^{\dagger}(0) \rangle_{\hat{\mathcal{H}}}, \\ \chi_{\gamma\delta,\lambda}^{aux\,1}(\vec{k},i\omega_{n}) &= \chi_{\gamma\gamma}(\vec{k},i\omega_{n}) + \lambda^{2} \chi_{\delta\delta}(\vec{k},i\omega_{n}) \\ &+ \lambda \, \chi_{\gamma\delta}(\vec{k},i\omega_{n}) + \lambda \, [\chi_{\gamma\delta}(\vec{k},-i\omega_{n})]^{*} \end{split}$$

$$\hat{\mathcal{B}}_{\vec{k}\gamma\delta,\lambda'} = \hat{\mathcal{O}}_{\vec{k}\gamma} + i\lambda' \hat{\mathcal{O}}_{-\vec{k}\delta}^{\dagger},$$

Merci

PRE **94**, 023303 (2016) PRB **95**, 121104(R) (2017) PRB **92**, 060509(R) (2015)

USHERBROOKE.CA/IQ