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Constraints

If we know expected  then the value of  is determined

Maximum entropy



Stochastic Analytic Continuation

• All a priori probabilities equal to 1/M, then the 
frequency grid determines the model

• but if
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2) OmegaMaxEnt
in a nutshell



In a nutshell

1. Computation time is almost independent of T and A() 
2. Original criterion for choosing 
3. Diagnostic tools to estimate the accuracy of the 

continuation.
Can be used for

• Fermions
• Bosons (transport quantities)
• Self-energies
• Imaginary-time of Matsubara frequency data
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3) Algorithms

a) Kernel
b) Optimal 
c) Diagnostic tools



Algorithms: a) Kernel

• Matsubara Kernel (origin of name)
• Can spline A() and do piecewise analytic integration

• Grid adapted to A, not to both kernel and A
• Similar complexity at low T or with complicated spectrum

• Hybrid spline:

• If G(), then from two moments, spline and go to G(in)



Algorithms: a) Kernel

• Take care of the high-frequency tails as follows:

• Generally, A() is small at large frequencies, and 
accordingly, Matsubara grid can be sparse for 
G(in) at large frequencies. 



Algorithms: b) Optimal 

• Analog to phase transition in SAC

• equals noise of the 
data is best solution

• Annealing not necessary (but can be used)
• Curvature is used to find *
• Reliability does not depend on proximity to model



Algorithms: c) Diagnostic tools

• is smooth in 
information fitting region, noisy in noise-fitting
region

• is like a 
Kronecker  in noisy region

• A() for a few test frequencies: It must be
independent of  as a function of log 



4) Step by step procedure

a) Information from input
b) G
c) Frequency grid and default model
d) Kernel
e) Spectrum as a function of 
f ) Optimal 
g) Diagnostics



5) Benchmark 
applications and 
diagnostics

Two artificial cases
Single site DMFT



Benchmarks: a) Toy model
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Benchmarks: c) Single site DMFT 

Relative error: 5x10-4 at most



Benchmarks: c) Single site DMFT 
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Discussion

• Splines in Matsubara kernel:
– Real-frequency grid size can be minimized

because of hybrid splines
– Matsubara frequency grid size also minimized
– Grid adapted to spectrum because of analytic

piecewise integration
– Large frequencies go into moments

• Overall, little dependence on T or spectrum
complexity

• Few minutes computation compared with hours
for generic optimization method or SAC



Discussion

• Consistency with assumptions of MaxEnt means
– chosen where d log  d log  drops

• Where  assumption valid
• In crossover region value of not so relevant (can

be checked) log  vs log 
•  helps putting closer to noise-fitting

• Results independent of default model
• Check with diagnostics

– G looks like noise
– G autocorrelation like Kronecker 
– Sample values of spectrum



Discussion

• « Accuracy » of error estimate is important
– Misbehavior of G and its covariance tell us 

about bad error estimates
– Possible to have converged results in a frequency

range and not in another
• If errors are unknown (roundoff errors) it is

preferable to add known gaussian noise artificially
and reduce that noise gradually.
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