

Perspectives on d-wave superconductivity and the pseudogap

A.-M.S. Tremblay,

CIFAR, Toronto, 19 November 2018

Phase diagram YBa₂Cu₃O_{7-x}

Keimer et al., Nature 518, 179 (2015)

Model

$$t = 1, \ k_B = 1, \ \hbar = 1$$

Traditional mean-field: AFM, no d-wave, very small charge fluctuations

Attn: Charge transfer insulator

Method

- **Dynamical Mean Field Theory** - clusters
- Concept: atomic-like localized correlations consistent with delocalized aspect

REVIEWS

Maier, Jarrell et al., RMP. (2005) Kotliar et al. RMP (2006) AMST et al. LTP (2006)

Dynamical "variational" principle

$$\Omega_{\mathbf{t}}[G] = \Phi[G] - Tr[(G_{0\mathbf{t}}^{-1} - G^{-1})G] + Tr\ln(-G)$$

$$\Phi[G] = \bigodot + \bigodot + \oiint + \oiint + \dotsb + \dots$$
$$\frac{\delta \Phi[G]}{\delta G} = \Sigma[G]$$
$$\frac{\delta \Omega_i[G]}{\delta G} = \Sigma[G] - G_{0t}^{-1} + G^{-1} = 0$$
$$DMFT \qquad \Phi[G] = \sum_i \Phi[G_{ii}(i\omega_n)]$$

Luttinger and Ward 1960, Baym and Kadanoff (1961)

+ and -

- Long range order:
 - No mean-field factorization on the cluster
 - Symmetry breaking allowed in the bath (mean-field)
- Included exactly:
 - Short-range dynamical and spatial correlations
- Missing:
 - Long wavelength p-h and p-p fluctuations
- Overall assessment
 - Works well for other correlated cases (BEDT organics)
 - Tools: solvers into modern electronic structure codes (d=3)

Some groups using these methods for cuprates

- Europe:
 - Georges, Parcollet, Ferrero, Civelli, Wu (Paris)
 - Lichtenstein, Potthoff, (Hamburg) Aichhorn (Graz),
 Liebsch (Jülich) de Medici (Grenoble) Capone (Italy)
- USA:
 - Gull (Michigan) Millis (Columbia)
 - Kotliar, Haule (Rutgers)
 - Jarrell (Louisiana)
 - Maier, Okamoto (Oakridge), Scalapino (UCSB)
- Japan
 - Imada (Tokyo) Sakai, Tsunetsugu, Motome

Outline

- The model
- The method
- Part I: Half-filling (AFM Mott insulator)
- Part II: The pseudogap (doped Mott insulator)
- Part III: Strongly correlated superconductivity

Part I

Half-filling

Giovanni Sordi

Lorenzo Fratino

Maxime Charlebois

Patrick Sémon

Mott transition and antiferromagnetism

Influence of the underlying normal state on the ordered state

Underlying Mott transition

n = 1, d = 3 square lattice

Understanding finite temperature phase from a *mean-field theory* down to T = 0

Underlying Mott transition

n = 1, d = 2 square lattice

to T = 0

Change in mechanism for stability of the OAFM

L. F. Tocchio, F. Becca, and S. Sorella, Phys. Rev. B 94, 195126 (2016).

The pseudogap (doped Mott insulator)

Phase diagram YBa₂Cu₃O_{7-x}

$p \text{ or } \delta$

Keimer et al., Nature 518, 179 (2015)

Zhao et al, Nature Physics 13 (2017)

Phase diagram YBa₂Cu₃O_{7-x}

Courtesy, M-H. Julien

Zhao et al, Nature Physics 13 (2017)

Simon Bergeron

B

Patrick Sémon

Alexis Reymbaut Marion Thénault

The pseudogap from the calculated Knight shift

Courtesy, M-H. Julien

Maier Scalapino, arXiv:1810.10043

Results T*

A. Reymbaut, M. Thénault, L. Fratino, G. Sordi,

P. Sémon, AMT, unpublished

W Wu, A Georges, M Ferrero - arXiv preprint arXiv: 1707.06602 Bragança, Sakai, Aguiar, Civelli, PRL **120**, 067002 (2018)

Results : effect of *t***' on** *T**

Doiron-Leyraud *et al.* Nature Comm. **8** 2044

A. Reymbaut, M. Thénault, L. Fratino, G. Sordi, P. Sémon, AMT, unpublished

Giovanni Sordi

Kristjan Haule

Pseudogap from the influence of the Mott transition away from half-filling

Sordi et al., PRL 104, 226402 (2010) Sordi et al., PRB 84, 075161 (2011) Fratino et al., PRB 93, 245147 (2016) [Emery model] Sordi et al., Sci. Rep. 2 547 (2012); Sordi et al., PRB 87, 041101(R) (2013)

Influence of Mott transition away from half-filling

n = 1, d = 2 square lattice

Influence of Mott transition away from half-filling

n = 1, d = 2 square lattice

G. Sordi et al. Phys. Rev. Lett. 108, 216401/1-6 (2012) P. Sémon, G. Sordi, A.-M.S.T., Phys. Rev. B **89**, 165113/1-6 (2014)

Plaquette eigenstates

Michel Ferrero, P. S. Cornaglia, L. De Leo, O. Parcollet, G. Kotliar, A. Georges PRB **80**, 064501 (2009)

Part III:

Strongly correlated superconductivity

Giovanni Sordi

Patrick Sémon

Lorenzo Fratino

Superconductivity in a doped Mott insulator

Sordi et al. PRL **108**, 216401 (2012) Fratino et al. Sci. Rep. **6**, 22715 (2016)

Superconductiviy in Doped Mott insulator

n = 1, d = 2 square lattice

An organizing principle

Fratino et al. Sci. Rep. **6**, 22715

Superconductiviy in Doped Mott insulator

n = 1, d = 2 square lattice

An organizing principle

Fratino et al. Sci. Rep. **6**, 22715

Theory, see also Jarrel PRL (2004), Gull Millis PRB (2014) Experiments: Bontemps, Santander-Syro Van der Marel ...

An organizing principle

T_c controlled by J 0.08 (a) 0.06 (b)U=5.6t < U_{MIT} (d) (e) -(c) -(f) (g) $U=6.2t > U_{MIT}$ 300 $\delta = 0$ U=7.0t U=12.0t U=16.0t U=9.0t 0.05 T(K) 0.06 0.04 T/t 200 0.04 0.03

0 0.05 0.10 0.15 0 0.05 0.10 0.15

δ

Fratino et al. Sci. Rep. **6**, 22715

5.0

U/t

4.0

6.0 0 0.05 0.10 0.15

δ

0.02

Some experiments that suggest $T_c < T_{pair} < T^*$ T. Kondo *et al.* PRL 111 (2013) Kondo, Takeshi, et al. Kaminski Nature Physics 2011, 7, 21-25 A. Pushp, Parker, ... A. Yazdani, Science **364**, 1689 (2009) Lee ...Tajima (Osaka) https://arxiv.org/pdf/1612.08830 Patrick M. Rourke, et al. Hussey Nature Physics **7**, 455–458 (2011) Lee et al. J. Phys. Soc. Jpn. 86, 023701 (2017)

0 0.05 0.10 0.15

δ

0.02

0.01

0.00

100

0

O COA-

0 0.05 0.10 0.15

δ

0 0.05 0.10 0.15

Phase diagram YBa₂Cu₃O_{7-x}

Maier Scalapino, arXiv:1810.10043 *U*=7, *t*'=-0,15

Keimer et al., Nature 518, 179 (2015)

What causes T_c to drop?

Phase fluctuations? Emery Kivelson Nature 374 (1995)

Uemura, Y.J. *et al.*, PRL vol.62, (1989) Tallon *et al.*, PRB **68**, 180501(R) (2003)

Olivier Simard

Charles-David Hébert

Alexandre Foley

David Sénéchal

What causes T_c to drop near n = 1?

O. Simard, C.-D. Hébert, A. Foley, A.-M.S. Tremblay, D. Sénéchal, unpublished

Superfluid stiffness T=0

Superfluid stiffness vs doping with d-SC for U = 8t, t'=-0.3 and t'' = 0.2

Giovanni Sordi

Patrick Sémon

h-doped as charge-transfer insulator

3 bands, charge transfer insulator

Fratino et al. PRB 93, 245147 (2016)

Compute • calcul

High Performance Computing

CREATING KNOWLEDGE DRIVING INNOVATION BUILDING THE DIGITAL ECONOMY

Le calcul de haute performance

CRÉER LE SAVOIR ALIMENTER L'INNOVATION BÂTIR L'ÉCONOMIE NUMÉRIQUE Calcul Québec

Fondation canadienne pour l'innovation

Merci Thank you

USHERBROOKE.CA/IQ