

onds de recherch Nature et technologie

A unified perspective on cuprates and layered organic superconductors

A.-M.S. Tremblay, Charles-David Hébert, Giovanni Sordi, Patrick Sémon

A62.00004, APS March Meeting Boston Monday, March 4, 2019, BCEC Room: 258C UNIVERSITÉ DE SHERBROOKE 9:48 AM-10:24 AM USHERBROOKE.CA/IQ

Atomic structure

SCIENTIFIC AMERICAN

JUNE 1988 \$3.50

How nonsense is deleted from genetic messages. R_x for economic growth: aggressive use of new technology. Can particle physics test cosmology?

High-Temperature Superconductor belongs to a family of materials that exhibit exotic electronic properties. Y Ba Ca O7. 8 92-37

Phase diagram YBa₂Cu₃O_{7-x}

Layered organics (*k*-BEDT-X family)

H. Kino + H. Fukuyama, J. Phys. Soc. Jpn **65** 2158 (1996), R.H. McKenzie, Comments Condens Mat Phys. **18**, 309 (1998)

BEDT-TTF layer

Anion layer

Y. Shimizu, et al. Phys. Rev. Lett. **91**, 107001(2003)

 $t \approx 50 \text{ meV}$ $\Rightarrow U \approx 400 \text{ meV}$ $t'/t \sim 0.6 - 1.1$

Phase diagram for organics

Phase diagram (X=Cu[N(CN)₂]Cl) S. Lefebvre et al. PRL **85**, 5420 (2000), P. Limelette, et al. PRL 91 (2003)

Phase diagram at n = 1

Model

1931-1980

$$H = -\sum_{\langle ij \rangle \sigma} t_{i,j} \left(c_{i\sigma}^{\dagger} c_{j\sigma} + c_{j\sigma}^{\dagger} c_{i\sigma} \right) + U \sum_{i} n_{i\uparrow} n_{i\downarrow}$$

$$t = 1, \ k_B = 1, \ \hbar = 1$$

Attn: Charge transfer insulator

Method

- **Dynamical Mean Field Theory** - clusters
- Concept: atomic-like localized correlations consistent with delocalized aspect

REVIEWS

Maier, Jarrell et al., RMP. (2005) Kotliar et al. RMP (2006) AMST et al. LTP (2006)

Cellular DMFT + CT-QMC

E. Gull, A J. Millis, A. I. Lichtenstein, A. N. Rubtsov. M. Troyer. P. Werner, RMP 83, 350 (2011)

 $Z = \int D[d^{\dagger}, d] \exp\left[-S_c - \int_0^\beta d\tau \int_0^\beta d\tau' \sum_i [d_i^{\dagger}(\tau) \Delta_{i'i}(\tau, \tau') d_{i'}(\tau')]\right]$

EFFECTIVE LOCAL IMPURITY PROBLEM

SELF-CONSISTENCY CONDITION

$$\Delta(i\omega_n) = i\omega_n + \mu - \Sigma_c(i\omega_n) \\ - \left[\sum_{\tilde{k}} \frac{1}{i\omega_n + \mu - t_c(\tilde{k}) - \Sigma_c(i\omega_n)}\right]^{-1}$$

+ and -

- Long range order:
 - No mean-field factorization on the cluster
 - Symmetry breaking allowed in the bath (mean-field)
- Included exactly:
 - Short-range dynamical and spatial correlations
- Missing:

Long wavelength p-h and p-p fluctuations

Some groups using these methods for cuprates

- Europe:
 - Georges, Parcollet, Ferrero, Civelli, Wu (Paris)
 - Lichtenstein, Potthoff, (Hamburg) Aichhorn (Graz),
 Liebsch (Jülich) de Medici (Grenoble) Capone (Italy)
- USA:
 - Gull (Michigan) Millis (Columbia)
 - Kotliar, Haule (Rutgers)
 - Jarrell (Louisiana)
 - Maier, Okamoto (Oakridge)
- Japan
 - Imada (Tokyo) Sakai, Tsunetsugu, Motome, Kato, Kawasugi

Outline

- The model
- The method
- Part I: Half-filling (Mott insulator)
- Part II: Cuprates
 - Pseudogap
 - Strongly correlated superconductivity
- Part III: Organics
 - Half filling: insulator and superconductor
 - Doped case

Part I

Half-filling

Giovanni Sordi

Lorenzo Fratino

Maxime Charlebois Patrick Sémon

Mott transition and antiferromagnetism

L. Fratino, P. Sémon, M. Charlebois, G. Sordi, AMT Phys. Rev. B 95, 235109 (2017)

Underlying Mott transition

Understanding finite temperature phase from a *mean-field theory* down to T = 0

Underlying Mott transition

to T = 0

Part II: Cuprates

- Pseudogap

Giovanni Sordi

Kristjan Haule

Pseudogap from the influence of the Mott transition away from half-filling

Sordi et al., PRL 104, 226402 (2010) Sordi et al., PRB 84, 075161 (2011) Fratino et al., PRB 93, 245147 (2016) [Emery model] Sordi et al., Sci. Rep. 2 547 (2012); Sordi et al., PRB 87, 041101(R) (2013) Fratino et al., PRB 93, 245147 (2016) [Emery model]

Influence of Mott transition away from half-filling

n = 1, d = 2 square lattice

Influence of Mott transition away from half-filling

n = 1, d = 2 square lattice

Two crossover lines

Widom line

G. Sordi et al. Phys. Rev. Lett. 108, 216401/1-6 (2012) P. Sémon, G. Sordi, A.-M.S.T., Phys. Rev. B **89**, 165113/1-6 (2014)

Spin susceptibility

Plaquette eigenstates

Michel Ferrero, P. S. Cornaglia, L. De Leo, O. Parcollet, G. Kotliar, A. Georges PRB **80**, 064501 (2009)

Part II: Cuprates

- Strongly correlated superconductivity

Giovanni Sordi

Patrick Sémon

Lorenzo Fratino

Superconductivity in a doped Mott insulator

Sordi et al. PRL **108**, 216401 (2012) Fratino et al. Sci. Rep. **6**, 22715 (2016)

Superconductiviy in Doped Mott insulator

n = 1, d = 2 square lattice

T_c controlled by J 0.08 (a) 0.06 (b)U=5.6t < U_{MIT} (d) (e) -(c) -(f) (g) $U=6.2t > U_{MIT}$ 300 $\delta = 0$ U=7.0t U=12.0t U=16.0t U=9.0t 0.05 T(K) 0.06 0.04 T/t 200 0.04 0.03

0 0.05 0.10 0.15 0 0.05 0.10 0.15

δ

Fratino et al. Sci. Rep. **6**, 22715

5.0

U/t

4.0

6.0 0 0.05 0.10 0.15

δ

0.02

Some experiments that suggest $T_c < T_{pair} < T^*$ T. Kondo *et al.* PRL 111 (2013) Kondo, Takeshi, et al. Kaminski Nature Physics 2011, 7, 21-25 A. Pushp, Parker, ... A. Yazdani, Science **364**, 1689 (2009) Lee ...Tajima (Osaka) https://arxiv.org/pdf/1612.08830 Patrick M. Rourke, et al. Hussey Nature Physics **7**, 455–458 (2011) Lee et al. J. Phys. Soc. Jpn. 86, 023701 (2017)

0 0.05 0.10 0.15

δ

0.02

0.01

0.00

100

0

O COA-

0 0.05 0.10 0.15

δ

0 0.05 0.10 0.15

Olivier Simard

Charles-David Hébert

Alexandre Foley

David Sénéchal

What causes T_c to drop near n = 1?

O. Simard, C.-D. Hébert, A. Foley, A.-M.S. Tremblay, D. Sénéchal, unpublished

Superfluid stiffness T=0

Part III: Organics

- Half-filling: insulator and superconductor

Charles-David Hébert

Patrick Sémon

Organics : Phase diagram, finite T

Made possible by algorithmic improvements

P. Sémon *et al.* PRB **85**, 201101(R) (2012) PRB **90** 075149 (2014); and PRB **89**, 165113 (2014)

Superconductivity near the Mott transition

n = 1, d = 2 square lattice

Phase diagram at n = 1

Superconductivity near the Mott transition

n = 1, d = 2 square lattice

Superconductivity near Mott transition (n = 1)

C.-D. Hébert, P. Sémon, A.-M.S. T PRB 92, 195112 (2015)

Part III: Organics

- Doped case

C.-D. Hébert, P. Sémon, A.-M.S. T PRB 92, 195112 (2015)

Doped organics

n = 1, d = 2 square lattice

Doped organics: Crossover

Charles-David Hébert, AMST, unpublished

Doped organics: crossover

Charles-David Hébert, AMST, unpublished

Doped organics: superconductivity

C.-D. Hébert, P. Sémon, A.-M.S. T PRB 92, 195112 (2015)

Doped organics: Overall phase diagram

C.-D. Hébert, P. Sémon, A.-M.S. T PRB 92, 195112 (2015)

Doped organics: Schematic phase diagram, strong frustration

C.-D. Hébert, P. Sémon, A.-M.S. T PRB 92, 195112 (2015)

Non BCS superconductivity

Charles-David Hébert, AMST, unpublished

USHERBROOKE.CA/IQ

Superfluid stiffness: Effective mass

$$\rho_s = \frac{n_s e^2}{m^*}$$

M. I. Larkin and al. Phys. Rev. B 64, 144514 (2001)

 $\kappa - ET_2Cu[(NCS)_2]$

Superfluid stiffness: unusual

Superfluid stiffness

Summary

USHERBROOKE.CA/IQ

Summary : organics

- Agreement with experiment
 - SC: larger T_c and broader *P* range if doped
 - Larger frustration: Decreases T_N much more than T_c
 - Normal state metal to pseudogap crossover
 - Effective mass increases towards Mott
 - Superfluid stiffness increases before fall near Mott
- Predictions
 - First order transition at low *T* in normal state (B induced)
 - Crossovers in SC state associated with normal state.
- Physics
 - SC dome without an AFM QCP. Extension of Mott
 - SC from short range *J*.
 - T_c dome maximum near normal state 1st order

Compute • calcul

High Performance Computing

CREATING KNOWLEDGE DRIVING INNOVATION BUILDING THE DIGITAL ECONOMY

Le calcul de haute performance

CRÉER LE SAVOIR ALIMENTER L'INNOVATION BÂTIR L'ÉCONOMIE NUMÉRIQUE Calcul Québec

Fondation canadienne pour l'innovation

Merci Thank you

USHERBROOKE.CA/IQ