



Fonds de recherch Nature et technologies

Ouébec 🖬



#### Pseudogap and superconductivity in cuprates, a dynamical mean-field perspective

#### A.-M.S. Tremblay,

S. Bergeron, Maxime Charlebois, L. Fratino, A. Foley, Charles-David Hébert, A. Reymbaut, D. Sénéchal O. Simard, G. Sordi, Patrick Sémon, M. Thénault

Ringberg symposium on Unconventional Superconductivity and Spin Liquids, 14-18 Oct. 2019



USHERBROOKE.CA/IQ

## Phase diagram YBa<sub>2</sub>Cu<sub>3</sub>O<sub>7-x</sub>





Zhao et al. Nat. Phys. 13, 250 (2017).

A W. A Yan- Par

### Knight shift (Spin susceptibility)



Nakano *et al.* Phys. Rev. B **49**, 16000 (1994) Alloul *et al* (1989)





#### Figure from: Marc-Henri Julien



## Model









## Hubbard model



Attn: Charge transfer insulator

## Method

- **Dynamical Mean Field Theory** - clusters
- Concept: atomic-like localized correlations consistent with delocalized aspect

#### **REVIEWS**

Maier, Jarrell et al., RMP. (2005) Kotliar et al. RMP (2006) AMST et al. LTP (2006)











## **Dynamical Mean-Field Theory.** The beginnings in d = infinity



W. Metzner and D. Vollhardt, PRL (1989)A. Georges and G. Kotliar, PRB (1992)M. Jarrell PRB (1992)

DMFT, (d = 3)

## 2d Hubbard: Quantum cluster method



## + and -

- Long range order:
  - No mean-field factorization on the cluster
  - Symmetry breaking allowed in the bath (mean-field)
- Included exactly:
  - Short-range dynamical and spatial correlations
- Missing:
  - Long wavelength p-h and p-p fluctuations
  - Hence good when the correponding correlation lengths are small

## Some groups using these methods for cuprates

- Europe:
  - Georges, Parcollet, Ferrero, Civelli, Wu (Paris)
  - Lichtenstein, Potthoff, (Hamburg) Aichhorn (Graz),
     Liebsch (Jülich) de Medici (Grenoble) Capone (Italy)
- USA:
  - Gull (Michigan) Millis (Columbia)
  - Kotliar, Haule (Rutgers)
  - Jarrell (Louisiana)
  - Maier, Okamoto (Oakridge)
- Japan
  - Imada (Tokyo) Sakai, Tsunetsugu, Motome

## Outline

- The model
- The method
- Part I: T = 0 phase diagram
- Part II: The pseudogap from Knight shift
- Part III: Specific heat in the strange metal
- Part IV: Strongly correlated superconductivity
- Part V: Perspective



## Part I

## T = 0 phase diagram







### T = 0 phase diagram

$$U = 8t, t' = -0.3t, t'' = 0.2t$$



A. Foley *et al.* Phys. Rev. B **99**, 184510 (2019)
S. S. Kancharla, *et al.* Phys. Rev. B **77**, 184516 (2008)
D. Sénéchal, *et al.* Phys. Rev. Lett. **94**, (2005)
M. Jarrell *et al.* EPL **56** 563, (2001)

#### **CDMFT 4 sites**

Fall at half-filling without AFM

t' = 0 DCA, 8 site



Gull et al. Phys. Rev. Lett. 110, 216405 (2013)



## Part II:

## The pseudogap









Simon Bergeron



Maxime Charlebois

B

Patrick Sémon



Alexis Reymbaut

R. Garioud

## The pseudogap from Knight shift

A. Reymbaut, et al. Phys. Rev. Research 1, 023015 (2019)



Marion Thénault





#### **Thanks: Marc-Henri Julien**

## Knight shift (Q=0 spin susceptibility)



**Fig. 3** Temperature and doping dependence of the q = 0 spin susceptibility. At the smaller dopings (larger filling  $\langle n \rangle$ ),  $\chi_s(T)$  exhibits a peak in the temperature dependence indicating the opening of a PG

#### DCA 12 sites, *t*'=0, *U* = 7

T.A. Maier, D.J. Scalapino, npj Quantum Materials (2019)

#### Comparison



**Fig. 3** Temperature and doping dependence of the q = 0 spin susceptibility. At the smaller dopings (larger filling  $\langle n \rangle$ ),  $\chi_s(T)$  exhibits a peak in the temperature dependence indicating the opening of a PG

## **Knight shift**



DCA 8 sites, U = 6, t' = -0.1t

Chen, LeBlanc, Gull, Nature Com. Apr. 2017

See also Jarrell et al. 2001, 2002

## **Spin susceptibility**





## G.Sordi et al. Phys. Rev. B 87, 041101(R) (2013)





W Wu, A Georges, M Ferrero Phys. Rev. X 8, 021048 (2018). Bragança, Sakai, Aguiar, Civelli, PRL **120**, 067002 (2018)

## **Results : effect of t' on T\***



Doiron-Leyraud *et al.* Nature Comm. **8** 2044



 $p^* < p_{fs}$ 

Doiron-Leyraud *et al.* Nature Comm. **8** 2044



A. Reymbaut *et al.* Phys. Rev. Research **1**, 023015 (2019)



A. Reymbaut *et al.* Phys. Rev. Research **1**, 023015 (2019)



A. Reymbaut *et al.* Phys. Rev. Research **1**, 023015 (2019)



Phys. Rev. Research 1, 023015 (2019)

### **Results : effect of t' on T\***



Doiron-Leyraud et al.A.Reymbaut, et al.Nature Comm.8 2044Phys. Rev. Research 1, 023015 (2019)

## **Results: van Hove singularity**



Doiron-Leyraud *et al.* Nature Comm. **8** 2044

A.Reymbaut, *et al.* Phys. Rev. Research **1**, 023015 (2019) Sordi et al., Sci. Rep. 2 547 (2012);

### **Physics: Plaquette eigenstates**



U = 6.2; t' = 0

Sordi et al., Sci. Rep. 2 547 (2012);

See also:

Michel Ferrero, P. S. Cornaglia, L. De Leo, O. Parcollet, G. Kotliar, A. Georges PRB **80**, 064501 (2009)

## Part III:

# Specific heat in the strange metal phase











#### Maxime Charlebois

#### Alexis Reymbaut

#### Specific heat in the strange metal phase

A. Reymbaut, et al. Phys. Rev. Research 1, 023015 (2019)



Marion Thénault

R. Garioud

## Specific heat in the strange metal phase



B. Michon, C. Girod, Taillefer, Klein, Nature 567, 218 (2019)

## Specific heat in the strange metal phase





**Part IV:** 

# Strongly correlated superconductivity









Giovanni Sordi

Patrick Sémon

Lorenzo Fratino

## Superconductivity for large U

Sordi et al. PRL 108, 216401 (2012) Fratino et al. Sci. Rep. 6, 22715 (2016)

## **Superconducting transition temperature**



T.A. Maier, D.J. Scalapino, npj Quantum Materials (2019)









Olivier Simard

Charles-David Hébert

Alexandre Foley

David Sénéchal

## What causes $T_c$ to drop near n = 1?

O. Simard, C.-D. Hébert, A. Foley, A.-M.S. Tremblay, D. Sénéchal, Phys. Rev. B **100**, 094506 (2019)

## What causes T<sub>c</sub> to drop?

Phase fluctuations? Emery Kivelson Nature 374 (1995)



Uemura, Y.J. *et al.*, PRL vol.62, (1989) Tallon *et al.*, PRB **68**, 180501(R) (2003)

## Superfluid stiffness T=0

$$j = -\rho_s A$$
  $d = 2$ 

$$\frac{1}{\lambda^2} = \rho_s \mu_0$$

$$T_c^{KT} = \frac{\pi}{8e^2} \rho_s(T_c^{KT})$$

$$T_c^{KT} < \frac{\pi}{8e^2} \rho_s(T_c^{KT} = 0)$$

 $\hbar = 1; k_B = 1$ 

Emery Kivelson, Nature **374**, 434 (1995) Metzner, Yamase, Phys. Rev. B **100**, 014504 (2019) Hazra, Verma, and Randeria, Phys. Rev. X **9**, 031049 (2019)



O. Simard, *et al.* Phys. Rev. B **100**, 094506 (2019) See also E. Gull, A.J. Millis, Phys. Rev. B **88**, 075127 (2013)



## What energy scale controls Tc ?

#### T<sub>c</sub> controlled by J 0.08 (a) 0.06 (b)U=5.6t < U<sub>MIT</sub> (d) (e) -(c) -(f) (g) $U=6.2t > U_{MIT}$ 300 $\delta = 0$ U=7.0t U=12.0t U=16.0t U=9.0t 0.05 T(K) 0.06 0.04 T/t 200 0.04 0.03

0 0.05 0.10 0.15 0 0.05 0.10 0.15

δ

Fratino et al. Sci. Rep. **6**, 22715

5.0

U/t

4.0

6.0 0 0.05 0.10 0.15

δ

0.02

Some experiments that suggest  $T_c < T_{pair} < T^*$ T. Kondo *et al.* PRL 111 (2013) Kondo, Takeshi, et al. Kaminski Nature Physics 2011, 7, 21-25 A. Pushp, Parker, ... A. Yazdani, Science **364**, 1689 (2009) Lee ...Tajima (Osaka) https://arxiv.org/pdf/1612.08830 Patrick M. Rourke, et al. Hussey Nature Physics **7**, 455–458 (2011) Lee et al. J. Phys. Soc. Jpn. 86, 023701 (2017)

0 0.05 0.10 0.15

δ

0.02

0.01

0.00

100

0

O COA-

0 0.05 0.10 0.15

δ

0 0.05 0.10 0.15

## **Condensation energy**



Fratino et al. Sci. Rep. **6**, 22715

Theory, see also Jarrel PRL (2004), Gull Millis PRB (2014) Experiments: Bontemps, Santander-Syro Van der Marel ...



## Part V:

## Perspective









Giovanni Sordi

Kristjan Haule

## Influence of the Mott transition away from half-filling

Sordi et al., PRL 104, 226402 (2010) Sordi et al., PRB 84, 075161 (2011) Fratino et al., PRB 93, 245147 (2016) [Emery model] Sordi et al., Sci. Rep. 2 547 (2012); Sordi et al., PRB 87, 041101(R) (2013)

## AFM phase diagram d=2, t'=0



L. Fratino, P. Sémon, M. Charlebois, G. Sordi, AMT Phys. Rev. B 95, 235109 (2017)

## Change in potential energy due to large $\xi$



L. Fratino,<sup>1</sup> P. Sémon,<sup>2</sup> M. Charlebois,<sup>2</sup> G. Sordi,<sup>1</sup> and A.-M. S. Tremblay<sup>2, 3</sup> arXiv:1702.01821

## Influence of Mott transition away from half-filling

n = 1, d = 2 square lattice



## Influence of Mott transition away from half-filling

n = 1, d = 2 square lattice







G. Sordi et al. Phys. Rev. Lett. 108, 216401/1-6 (2012)
G.Sordi et al. Phys. Rev. B 87, 041101(R)/1-5 (2013)
P. Sémon, G. Sordi, *et al.*, Phys. Rev. B 89, 165113/1-6 (2014)

**c-axis resistivity** 





K. Takenaka, K. Mizuhashi, H. Takagi, and S. Uchida, Phys. Rev.B 50, 6534 (1994).

G.Sordi et al. Phys. Rev. B 87, 041101(R)/1-5 (2013)

## **Connecting the finite doping behavior to** the Mott transition at half-filling



## Conclusion

## p\* in Hubbard is the end of Mott physics

## Mott transition and its finite doping extension is the organizing principle













#### Figure from: Marc-Henri Julien





Compute • calcul

High Performance Computing

CREATING KNOWLEDGE DRIVING INNOVATION BUILDING THE DIGITAL ECONOMY

#### Le calcul de haute performance

CRÉER LE SAVOIR ALIMENTER L'INNOVATION BÂTIR L'ÉCONOMIE NUMÉRIQUE Calcul Québec

Fondation canadienne pour l'innovation

## Merci Thank you



USHERBROOKE.CA/IQ





D. Sénéchal

Bumsoo Kyung

## The glue

Kyung, Sénéchal, Tremblay, Phys. Rev. B **80**, 205109 (2009) Sénéchal, Day, Bouliane, AMST, Phys. Rev. B **87**, 075123 (2013) A. Reymbaut *et al.* PRB **94** 155146 (2016)

## Im $\Sigma_{an}$ and electron-phonon in Pb

Maier, Poilblanc, Scalapino, PRL (2008)



## The glue



## The glue and neutrons



FIG. 3 (color online). **Q**-integrated dynamic structure factor  $S(\omega)$  which is derived from the wide-*H* integrated profiles for LBCO 1/8 (squares), LSCO x = 0.25 (diamonds; filled for  $E_i = 140 \text{ meV}$ , open for  $E_i = 80 \text{ meV}$ ), and x = 0.30 (filled circles) plotted over  $S(\omega)$  for LBCO 1/8 (open circles) from [2]. The solid lines following data of LSCO x = 0.25 and 0.30 are guides to the eyes.

#### Wakimoto ... Birgeneau PRL (2007); PRL (2004)

