

Who ordered this?

Vishik, Rep. Prog. Phys. (2018)

- Mott insulator
- Pseudogap
- Strange metal
- Quantum critical point (QCP)
- Superconductivity in the presence of strong repulsion
- Competing ground states

Mott Insulator : X-Ray absorption

Meinders et al. PRB 48, 3916 (1993)

Mott Insulator : X-Ray absorption

Meinders et al. PRB 48, 3916 (1993)

Take home messages

- Most of the main features of the phase diagram follow from the Hubbard model.
- This physics is continuously connected to the Mott transition at halffilling
- We need to look beyond traditional tools of solid state physics to work this out.

Outline

- Method
- One-band Hubbard model
 - Pseudogap
 - Quantum Critical Point
 - d-wave superconductivity
- Three-band Hubbard model
 - Pseudogap
 - d-wave superconductivity

Method : The precursors

Hohenberg-Kohn : Exchange correlation Kohn-Sham : Basis set Density Functional Theory

Method

Metzner, Vollhardt PRL **62**, 324 (1989) Georges, Kotliar, PRB **45**, 6479 (1992) Jarrell PRL **69**, 168 (1992) Review: Georges, Kotliar, Krauth, Rozenberg, RMP **68**, 13 (1996)

Dynamical Mean-Field Theory : DMFT

For additionnal physical intuition: Compare with more analytical approaches

- Pseudogap
 - Wei Wu, Scheurer, Chatterjee, Sachdev, Georges, Ferrero PRX 8, 021048 (2018)
 - Scheurer, Chatterjee, Wu, Ferrero, Georges, Sachdev, PNAS 115, E3665 (2018).

Localized and delocalized pictures

Lichtenstein *et al.*,PRB 2000 Kotliar *et al.*, PRB 2000 M. Potthoff, EJP 2003

REVIEWS Maier, Jarrell et al., RMP. (2005) Kotliar *et al.* RMP (2006) AMST *et al.* LTP (2006)

$$(G^{-1})_{ij} = (G_0^{-1})_{ij} - \Sigma_{ij}$$

Localized

$$(G^{-1})_{ij} = (G_0^{-1})_{ij} - \Sigma_{ij}$$

Localized and delocalized pictures

$$G_{ij}(\widetilde{k}) = \left(\frac{1}{(i\omega_n + \mu)I - \varepsilon(\widetilde{k}) - \Sigma}\right)_{ij}$$

$$G_{ij}(\widetilde{k}) = \left(\frac{1}{(i\omega_n + \mu)I - \varepsilon(\widetilde{k}) - \Sigma}\right)_{ij} \longrightarrow G_{ij} = \int \frac{d^d \widetilde{k}}{(2\pi)^d} G_{ij}(\widetilde{k})$$

Localized and delocalized pictures C-DMFT

$$G_{ij} = \int \frac{d^d \tilde{k}}{(2\pi)^d} \left(\frac{1}{(i\omega_n + \mu)I - \varepsilon(\tilde{k}) - \Sigma} \right)_{ij} \qquad (G^{-1})_{ij} = (G_0^{-1})_{ij} - \Sigma_{ij}$$

Dynamical cluster approximation (DCA)

Hettler ...Jarrell...Krishnamurty PRB 58 (1998)

Impurity solvers

USHERBROOKE.CA/IQ 17

Impurity solver (Exact diagonalisation)

Caffarel, Krauth, PRL 72 1545 (1994)

QCM David Sénéchal

Impurity solver : continuous-time quantum Monte Carlo

$$Z = \int \mathcal{D}[\psi^{\dagger}, \psi] \,\mathrm{e}^{-S_{c} - \int_{0}^{\beta} d\tau \int_{0}^{\beta} d\tau' \sum_{\mathbf{K}} \psi_{\mathbf{K}}^{\dagger}(\tau) \Delta(\tau, \tau') \psi_{\mathbf{K}}(\tau')}_{\mathbf{K}}$$

Hybridization expansion :

Werner Millis PRB 74, 155107 (2006) Werner Millis B 75, 085108 (2007) Haule, PRB 75, 155113 (2007) Sémon, Sordi, AMST PRB 89, 165113 (2014) Sémon, Yee, Haule, AMST PRB 90, 075149 (2014)

LPSCoreCT-HYBiQISTComCTQMC

Impurity solver : continuous-time quantum Monte Carlo

$$S = \int_0^\beta \mathrm{d}\tau \mathrm{d}\tau' \sum_{\sigma=\uparrow,\downarrow} \xi^*_{\sigma}(\tau) \left[g^{-1}_{0\sigma}(\tau - \tau') \right] \xi_{\sigma}(\tau') + U \int_0^\beta \mathrm{d}\tau \left(n_{\uparrow}(\tau) n_{\downarrow}(\tau) - \frac{n_{\uparrow}(\tau) + n_{\downarrow}(\tau)}{2} \right)$$

CT-AUX : Gull, Werner, Parcollet, Troyer, 2008, Europhys. Lett. 82, 57003 (2008) DCA++

Review of these methods

Gull, Millis, Lichtenstein, Rubtsov, Troyer, Werner RMP 83, 349 (2011)

Some groups using these methods for cuprates

- Europe:
 - Georges, Parcollet, Ferrero, Civelli, Wu (Paris)
 - Lichtenstein, Potthoff, (Hamburg) Aichhorn (Graz),
 Liebsch (Jülich) de Medici (Grenoble) Capone (Italy)
- USA:
 - Gull (Michigan) Millis (Columbia)
 - Kotliar, Haule (Rutgers)
 - Jarrell (Louisiana)
 - Maier, Okamoto (Oakridge)
- Japan
 - Imada (Tokyo) Sakai, Tsunetsugu, Motome

Critique

USHERBROOKE.CA/IQ 22

+ and -

- Long range order:
 - No mean-field factorization on the cluster
 - Symmetry breaking allowed in the bath
- Included exactly:
 - Short-range dynamical and spatial correlations
- Missing:
 - Long wavelength p-h and p-p fluctuations
 - Hence good when the correponding correlation lengths are small

Possible artefacts

Verret, Roy, Foley, Charlebois, Sénéchal, A.-M.S.T, RPB 100, 224520 (2019)

STM Kohsaka, ... Davis, Nature (London) **454**, 1072 (2008).

What to do

- Exact in the infinite size limit of the cluster
 - Compare different cluster sizes
 - Compare real-space (CDMFT) and momentum space (DCA) clusters

A bird's eye overview of the T = 0 phase diagram

U = 8t, t' = -0.3t, t'' = 0.2t

A. Foley *et al.* Phys. Rev. B **99**, 184510 (2019)
S. S. Kancharla, *et al.* Phys. Rev. B **77**, 184516 (2008)
D. Sénéchal, *et al.* Phys. Rev. Lett. **94**, (2005)
M. Jarrell *et al.* EPL **56** 563, (2001)

CDMFT 4 sites

Competing ground states

PHYSICAL REVIEW X 10, 031016 (2020)

Absence of Superconductivity in the Pure Two-Dimensional Hubbard Model

Mingpu Qin⁽⁰⁾,^{1,2,*} Chia-Min Chung⁽⁰⁾,^{3,4,*} Hao Shi,⁵ Ettore Vitali,^{6,2} Claudius Hubig⁽⁰⁾,⁷ Ulrich Schollwöck⁽⁰⁾,^{3,4} Steven R. White⁽⁰⁾,⁸ and Shiwei Zhang⁽⁰⁾,^{5,2}

PRL 113. 046402 (2014)	PHYSICAL REVIEW LETTERS
------------------------	-------------------------

week ending 25 JULY 2014

Competing States in the *t-J* Model: Uniform *d*-Wave State versus Stripe State

Philippe Corboz,^{1,2} T. M. Rice,¹ and Matthias Troyer¹

Competing ground states

ARTICLE OPEN Stripe order from the perspective of the Hubbard model DCA (16 x 4 cluster) Edwin W. Huang^{1,2}, Christian B. Mendl², Hong-Chen Jiang², Brian Moritz^{2,2} and Thomas P. Devereaux^{2,4} $U/t = 6, T/t = 0.2, \langle n \rangle = 0.8$ (b) 0.042 a., p = 0.083 0.125 11 a., p = 0.167 0 p = 0.208 ٠ 0 DQMC on 16 x 4 Hubbard: 0.815 -0.0159.010 -0.001 0.4006 0.025 U/t = 6, t'/t = -0.25, T/t = 0.22

P. Mai, S. Karakuzu, S. Johnston & TAM, in preparation

Competing states

Pseudogap

Simon Bergeron

Maxime Charlebois

Patrick Sémon

Marion Thénault

Reymbaut, et al. Phys. Rev. Research 1, 023015 (2019)

USHERBROOKE.CA/IQ 31

Knight shift (Q=0 spin susceptibility)

Fig. 3 Temperature and doping dependence of the q = 0 spin susceptibility. At the smaller dopings (larger filling $\langle n \rangle$), $\chi_s(T)$ exhibits a peak in the temperature dependence indicating the opening of a PG

DCA 12 sites, *t*'=0, *U* = 7

T.A. Maier, D.J. Scalapino, npj Quantum Materials (2019)

Comparison

Fig. 3 Temperature and doping dependence of the q = 0 spin susceptibility. At the smaller dopings (larger filling $\langle n \rangle$), $\chi_s(T)$ exhibits a peak in the temperature dependence indicating the opening of a PG

Knight shift

Chen, LeBlanc, Gull, Nature Com. Apr. 2017

See also Jarrell et al. 2001, 2002
Experiments and *T**

Results : effect of *t***'on** *T**

Results: van Hove singularity

Doiron-Leyraud *et al.* Nature Comm. **8** 2044

A.Reymbaut, *et al.* Phys. Rev. Research **1**, 023015 (2019) W Wu, A Georges, M Ferrero Phys. Rev. X 8, 021048 (2018).

Giovanni Sordi

Patrick Sémon

Kristjan Haule

First-order transition, Widom line and Mott physics

G. Sordi, et al. Scientific Reports 2, 547 (2012)

Mott transition at half-filling, CDMFT 2 x 2

Change in potential energy due to large ξ

Fratino, Sémon, Charlebois, Sordi, AMST, PRB 95, 235109 (2017)

Mott and Sordi transition: CDMFT 2 x 2

P. Sémon, G. Sordi, et al., Phys. Rev. B 89, 165113/1-6 (2014)

Anisotropic triangular Downey lattice

Maxime Charlebois

Charles-David Hébert

USHERBROOKE.CA/IQ 55

Triangular lattice with DCA, 6 patches

Some Physics on the triangular lattice

Mott and Sordi transition on the triangular lattice DCA, N=6

⁶¹

(Topological) stability

Another Fermi Surface Reconstruction without Symmetry Breaking

• Gazit, Assaad, Sachdev Phys. Rev. X 10, 041057

Quantum Critical point Back to square lattice

Yang, ... Zaanen, and Jarrell PRL 106, 047004 (2011)

SHERBROOKE

USHERBROOKE.CA/IQ 65

Specific heat in the strange metal phase

A.Reymbaut, et al. Phys. Rev. Research 1, 023015 (2019)

See also for C_v Maximum: Sordi, Walsh, Sémon, and A.-M.S.T, PRB **100**, 121105(R) (2019)

d-wave superconductivity

USHERBROOKE.CA/IQ 68

Cartoon « BCS » weak-coupling picture

Exchange of spin waves, U = 4t doping 10%

A cartoon strong correlation picture

$$J\sum_{\langle i,j\rangle} \mathbf{S}_{i} \cdot \mathbf{S}_{j} = J\sum_{\langle i,j\rangle} \left(\frac{1}{2}c_{i}^{\dagger}\vec{\sigma}c_{i}\right) \cdot \left(\frac{1}{2}c_{j}^{\dagger}\vec{\sigma}c_{j}\right)$$
$$d = \langle \hat{d} \rangle = 1/N\sum_{\vec{k}} (\cos k_{x} - \cos k_{y}) \langle c_{\vec{k},\uparrow}c_{-\vec{k},\downarrow} \rangle$$
$$H_{MF} = \sum_{\vec{k},\sigma} \varepsilon(\vec{k}) c_{\vec{k},\sigma}^{\dagger} c_{\vec{k},\sigma} - 4Jm\hat{m} - Jd(\hat{d} + \hat{d}^{\dagger}) + F_{0}$$

Pitaevskii Brückner:

Pair state orthogonal to repulsive core of Coulomb interaction

P.W. Anderson ScienceMiyake, Schmitt–Rink, and Varma317, 1705 (2007)P.R. B 34, 6554-6556 (1986)

More sophisticated Slave Boson: Kotliar Liu PRB 1988

Superconducting transition temperature

T.A. Maier, D.J. Scalapino, npj Quantum Materials (2019)

DCA, 8 sites, U/t = 6 and t'=0

DCA, 12 sites, U/t = 7 and t'/t = -0.15

T_c controlled by J, CDMFT 2x2

Condensation energy

Fratino et al. Sci. Rep. **6**, 22715

Kyung, Sénéchal, Tremblay, Phys. Rev. B **80**, 205109 (2009) Sénéchal, Day, Bouliane, AMST, Phys. Rev. B **87**, 075123 (2013) A. Reymbaut *et al.* PRB **94** 155146 (2016)

Im Σ_{an} and electron-phonon in Pb

Maier, Poilblanc, Scalapino, PRL (2008)

The glue CDMFT 2x2, T=0

The glue and neutrons

FIG. 3 (color online). **Q**-integrated dynamic structure factor $S(\omega)$ which is derived from the wide-*H* integrated profiles for LBCO 1/8 (squares), LSCO x = 0.25 (diamonds; filled for $E_i = 140$ meV, open for $E_i = 80$ meV), and x = 0.30 (filled circles) plotted over $S(\omega)$ for LBCO 1/8 (open circles) from [2]. The solid lines following data of LSCO x = 0.25 and 0.30 are guides to the eyes.

Wakimoto ... Birgeneau PRL (2007); PRL (2004)

Three-band (Emery VSA) Hubbard model

Nicolas Kowalski

Sidhartha Dash

V. J. Emery, Phys. Rev. Lett. 58, 2794 (1987)

C. M. Varma, S. Schmitt-Rink, and E. Abrahams, Solid State Communications **62**, 681–685 (1987), ISSN 0038-1098,

David Sénéchal

USHERBROOKE.CA/IQ 83

Sordi transition linked to the Mott transition

Fratino, Sémon, Sordi, A.-M.S. T. PRB 93, 245147 (2016)

Superconductivity

USHERBROOKE.CA/IQ 85

"Ionic" limiting cases with manageable sign problem

Experimental puzzle #1 with oxygen

Rybicki,,, Haase, Nat. Comm. 7, 11413 (2016)

Results

Critical Temperature

D. Rybicki et al. "Perspective on the phase diagram of cuprate high-temperature superconductors," Nature Communications, vol. 7, p. 11413, 2016

Kowalski, Dash Sénéchal, A-M.T. arXiv 2104.07087

Two limiting cases

Electronic structure

	Compound	$\epsilon_d - \epsilon_p \; (eV)$	t_{pd} (eV)	t_{pp} (eV)	$t_{pp'}$ (eV)	t'/t	layers	$d_{\rm Cu-O}^{\rm apical}$ (Å)	$T_{\rm c}~({\rm K})$
(1)	La_2CuO_4	2.61	1.39	0.640	0.103	0.070	1	2.3932	38
(2)	$Pb_2Sr_2YCu_3O_8$	2.32	1.30	0.673	0.160	0.108	2	2.3104	70
(3)	$Ca_2CuO_2Cl_2$	2.21	1.27	0.623	0.132	0.085	1	2.7539	26
(4)	$La_2CaCu_2O_6$	2.20	1.31	0.644	0.152	0.120	2	2.2402	45
(5)	$\mathrm{Sr}_2\mathrm{Nb}\mathrm{Cu}_2\mathrm{O}_{10}$	2.10	1.25	0.612	0.144	0.110	2	2.0450	28
(6)	${ m Bi}_2{ m Sr}_2{ m CuO}_6$	2.06	1.36	0.677	0.153	0.105	1	2.5885	24
(7)	$YBa_2Cu_3O_7$	2.05	1.28	0.673	0.150	0.110	2	2.0936	93
(8)	$HgBa_2CaCu_2O_6$	1.93	1.28	0.663	0.187	0.133	2	2.8053	127
(9)	$HgBa_2CuO_4$	1.93	1.25	0.649	0.161	0.122	1	2.7891	90
(10)	$\mathrm{Sr}_{2}\mathrm{CuO}_{2}\mathrm{Cl}_{2}$	1.87	1.15	0.590	0.140	0.108	1	2.8585	30
(11a)	$HgBa_2Ca_2Cu_3O_8$ (outer)	1.87	1.29	0.674	0.184	0.141	3	2.7477	135
(11b)	$HgBa_2Ca_2Cu_3O_8$ (inner)	1.94	1.29	0.656	0.167	0.124	3	2.7477	135
(12)	$Tl_2Ba_2CuO_6$	1.79	1.27	0.630	0.150	0.121	1	2.7143	90
(13)	$LaBa_2Cu_3O_7$	1.77	1.13	0.620	0.188	0.144	2	2.2278	79
(14)	${ m Bi_2Sr_2CaCu_2O_8}$	1.64	1.34	0.647	0.133	0.106	2	2.0033	95
(15)	$Tl_2Ba_2CaCu_2O_8$	1.27	1.29	0.638	0.140	0.131	2	2.0601	110
(16a)	$\mathrm{Bi}_2\mathrm{Sr}_2\mathrm{Ca}_2\mathrm{Cu}_3\mathrm{O}_{10}~(\mathrm{outer})$	1.24	1.32	0.617	0.159	0.138	3	1.7721	108
(16a)	$\mathrm{Bi}_2\mathrm{Sr}_2\mathrm{Ca}_2\mathrm{Cu}_3\mathrm{O}_{10}$ (inner)	2.24	1.32	0.678	0.198	0.121	3	1.7721	108

Weber, Yee, Haule, Kotliar, EPL 100, 2012

T = 0 superconducting domes for the covalent model

T = 0 max order parameter for the two models

T = 0 max order parameter for the two models

Kowalski, Dash Sénéchal, A-M.T. arXiv 2104.07087

Experimental puzzle #2 with Charge Transfer Gap

Optimal doping

Experimental puzzle #2 with Charge Transfer Gap

Optimal doping

Charge-transfer gap, oxygen hole content

Importance of each parameter

$$\begin{array}{lll} \text{Optimal CTG} \\ (\Delta_{opt}) & : & \left| \frac{\partial \Delta_{opt}}{\partial t_{pd}} \right| > \left| \frac{\partial \Delta_{opt}}{\partial U} \right| > \left| \frac{\partial \Delta_{opt}}{\partial t'_{pp}} \right| > \left| \frac{\partial \Delta_{opt}}{\partial \epsilon_{p}} \right| \\ & + & + & - \end{array}$$

$$\begin{array}{lll} \text{Optimal SC order} \\ \text{parameter } (\psi_{opt}) : & \left| \frac{\partial \psi_{opt}}{\partial t_{pd}} \right| > \left| \frac{\partial \psi_{opt}}{\partial U} \right| > \left| \frac{\partial \psi_{opt}}{\partial t'_{pp}} \right| > \left| \frac{\partial \psi_{opt}}{\partial \epsilon_{p}} \right| \\ & + & - & + \end{array}$$

$$\begin{array}{lll} \text{Order of importance of parameters: } t_{pd} > U > t'_{pp} > \epsilon_{p} \end{array}$$

Covalency (talk by Chandra Varma)

Affinity Energy ($E(M^{2+}) - E(M^{1+})$) of first row Trans. Metals in relation to Ionization Energy of Oxygen ($E(O^{2-}) - E(O^{1-})$)

Also, Zaanen, Sawatzky, Allen (prl 1985).

C. M. Varma and T. Giamarchi, *Model for copper oxide metals* and superconductors (Elsevier Science B.V., 1995).

Copper pairing mechanism

Spin fluctuations on copper

Kowalski, Dash Sénéchal, A-M.T. in preparation

Bethe-Salpeter point of view

Mai, Balduzzi, Johnston, Maier npj Quantum Materials 6, 26 (2021)

Summary Conclusion

Summary

- Intrinsic to the doped Mott insulator
 - Pseudogap
 - First-order transition QCP
 - d-wave superconductivity
 - Short-range spin fluctuations (J)
 - Role of charge-transfer gap and of oxygen-hole doping
- Other effects that have not been discussed V >> J
 - Reymbaut, Charlebois, Fellous Asiani, Fratino, Sémon, Sordi A.-M.S.T. PRB 94, 155146 (2016)
- Other experiment consistent with doped Mott picture
 - Frachet, ... Leboeuf, Julien Nat. Phys. 10.1038/s41567-020-0950-5

Entanglement properties

- Sharp variation in the entanglement-related properties and not broken symmetry phases characterizes the onset of the pseudogap phase at finite temperature.
 - Walsh, Sémon, Poulin, Sordi, A.-M.S.T. PRX QUANTUM 1, 020310 (2020)

What is the most important problem from your point of view? Smoking gun calculation

Lone genius

Merci Thank you

Entanglement entropy and mutual information near the Mott transition

Caitlin Walsh

Patrick Sémon

David Poulin

Giovanni Sordi

C. Walsh, et al. Phys. Rev. Lett. 122, 067203 (2019) Phys. Rev. B 99, 075122 (2019)

UNIVERSITÉ DE SHERBROOKE

Single-site entanglement entropy

Schrödinger: I would not call [entanglement] *one* but rather *the* characteristic trait of <u>quantum mechanics</u>, the one that enforces its entire departure from <u>classical</u> lines of thought. Proceedings of the Cambridge Philosophical Society **31**, 555 (1935); **32**, 446 (1936).

Motivation

PHYSICAL REVIEW X 7, 031025 (2017)

Measuring Entropy and Short-Range Correlations in the Two-Dimensional Hubbard Model

E. Cocchi,^{1,2} L. A. Miller,^{1,2} J. H. Drewes,¹ C. F. Chan,¹ D. Pertot,¹ F. Brennecke,¹ and M. Köhl¹

First-order nature of the transition, universality class of the end point, crossovers emanating from the end point.
For quantum critical or finite temperature critical points
A. Anfossi *et al.* Phys. Rev. Lett. **95**, 056402 (2005).
L. Amico *et al.* Europhys. Lett. **77**, 17001 (2007).

L. Amico et al. Rev. Mod. Phys. 80, 517 (2008).

D. Larsson et al. Phys. Rev. A 73,042320 (2006).

D. Larsson et al. Phys. Rev. Lett. 95, 196406 (2005).

What is measured (Using CDMFT CT-HYB on plaquette)

• Single site entanglement entropy for fermions [1]

$$\rho_A = \operatorname{Tr}_B[\rho_{AB}] \qquad s_A = -\operatorname{Tr}_A[\rho_A \ln \rho_A]$$

$$\rho = \operatorname{diag}(p_0, p_{\uparrow}, p_{\downarrow}, p_{\uparrow\downarrow}) \qquad s_1 = -\sum_i p_i \ln(p_i)$$

$$p_{\uparrow\downarrow} = \langle n_{i\uparrow} n_{i\downarrow} \rangle \quad p_{\uparrow} = p_{\downarrow} = \langle n_{i\uparrow} - n_{i\uparrow} n_{i\downarrow} \rangle \quad p_0 = 1 - 2p_{\uparrow} - p_{\uparrow\downarrow}$$

[1] P. Zanardi et al. Phys. Rev. A 65, 042101 (2002).

Agreement with experiment

Results

From single-site entanglement entropy

- The Mott transition,
- Critical exponent (not usually the case)
- Associated high-temperature crossovers,
 - Without knowledge of the order parameter of the transition

Mutual information

Mutual information

 $I(A:B) = s_A + s_B - s_{AB}$

Here we are not looking at the area law

What is measured experimentally

$$\bar{I}_1 = s_1 - s_1$$

Total mutual information

Agreement with experiment

From average mutual information

- The Mott transition,
- Critical exponent (not usually the case)
- Associated high-temperature crossovers,
 - Without knowledge of the order parameter of the transition

Mutual information at the Doping-Driven Mott Transition

Caitlin Walsh

Maxime Charlebois

Patrick Sémon

Giovanni Sordi

PRX QUANTUM 1, 020310 (2020)

USHERBROOKE.CA/IQ139

Total mutual information near the Widom line

FIG. 10. (a) Total mutual information \overline{I}_1 versus δ for $U = 6.2 > U_{\text{MIT}}$ and different temperatures. (b) The same as (a) for the doping interval shaded in (a), and highlighting the positions of the inflections that can be seen in $\overline{I}_1(\mu)_T$ (which are not visible as a function of δ) with vertical dashed lines. (c) Plot of $\partial \overline{I}_1/\partial \mu$ versus δ for different temperatures at U = 6.2, showing the peaks that become more pronounced on approaching T_c . We have used the loci of the inflections that show the sharpest change in $\overline{I}_1(\mu)$ to obtain the crossover line $T_{\overline{I}_1}$ in the $T - \delta$ phase diagram of Fig. 4(b).

140

(b) (a) (c) Mott $- \delta_{c1}$ $T_{\rm W} = \arg \max \kappa(\mu)_T$ $-\delta_{c2}$ $T^* = \arg \max \chi_0(T)_\delta$ Ф insulator 0.15 -0.15 $\rightarrow T_W = \arg \max \kappa(\mu)_T$ $T_{s1} = \arg \min \left(\partial s_1 / \partial \mu \right)_T$ $T^* = \arg \max \chi_0(T)_{\delta}$ Φ $T_{s1} = \arg \min (\partial s_1 / \partial \mu)_T$ $T_s = \arg \min \left(\partial s / \partial \mu \right)_T$ $T_{\overline{I}_1} = \arg \max \left(\partial \overline{I}_1 / \partial \mu \right)_T$ Pseudogap 0.10 -0.10 -Ы С Е Metal 0.05 - $0.05 \cdot$ $U_{\rm MIT}$ (δ_c, T_c) Metal Pseudogap Pseudogap Metal 0.00 0.00 0.04 0.04 0.08 0.08 $\delta = 1 - n$ $\delta = 1 - n$ $\delta = 1 - n$ (f) (d) (e) U = 6.2, T = 1/401.51.50.8U = 6.2, T = 1/50 $\delta = 0.10$ U = 7.2, T = 1/50×^{0 1.0}1 $\delta = 0.08$ $\ominus \delta = 0.08$ $\hat{\varkappa}^{1.0}$ U = 7.2, T = 1/1002 $\delta = 0.06$ $\rightarrow \delta = 0.06$ 0.4 $\ominus \delta = 0.04$ $\ominus \delta = 0.04$ 0.5 -0.5 - $\delta = 0.02$ $\ominus \delta = 0.02$ $\delta = 0.00$ $\rightarrow \delta = 0.00$ 0.0 + 0.00 = 0.000.0 + 0.000.0 0.040.08 0.050.10 0.150.200.050.100.150.200.250.25141 $\delta = 1 - n$ Τ T

Detecting the Sordi transition

Mutual information in the superconducting state

Caitlin Walsh

Patrick Sémon

Giovanni Sordi

C. Walsh, et al.

Total mutual information

Merci

USHERBROOKE.CA/IQ